
 
 

 

    Working Paper  
         Series 

_______________________________________________________________________________________________________________________ 
 
 
 

National Centre of Competence in Research  
Financial Valuation and Risk Management 

 
 

Working Paper No. 381 
 
 
 
 
 

 
 

Co-monotonicity of optimal investments and the 
design of structured financial products 

 
 
 

Marc Oliver Rieger 
 

 
 
 

 
 
 
 
 
 
 
 
 

 
First version: April 2007 

Current version: April 2007 
 

This research has been carried out within the NCCR FINRISK project on  
“Behavioural and Evolutionary Finance” 

 
 

___________________________________________________________________________________________________________ 
 
 



Co-monotonicity of optimal investments and

the design of structured financial products

Marc Oliver Rieger∗

April 25, 2007

Abstract

We prove that under very weak conditions optimal financial products

have to be co-monotone with the inverted state price density. Optimality is

meant in the sense of the maximization of an arbitrary preference model, e.g.

Expected Utility Theory or Prospect Theory. The proof is based on methods

from transport theory. We apply the general result to specific situations, in

particular the case of a market described by the Capital Asset Pricing Model,

where we derive an extension of the Two-Fund-Separation Theorem. We use

our results to derive a new approach to optimization in wealth management,

based on a direct optimization of the return distribution of the portfolio.

We provide existence and non-existence results for optimal products in this

framework. Finally we apply our results to the study of down-and-out barrier

options, show that they are not optimal and describe a construction of a

cheaper product yielding the same return distribution.
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2 1 INTRODUCTION

1 Introduction

Structured financial products have gained a large popularity in many countries

in the last years. With a volume of 225 billion Euro of structured retail prod-

ucts issued worldwide in 2005 and an yearly increase of nearly 30%, they are

quickly becoming a standard form of investment for private investors.1 Their suc-

cess sometimes challenges traditional financial models, but can often be explained

by behavioral theories that take effects like loss aversion into account.

On the other hand, many banks have understood today that selling separate

financial products is not the optimal way to achieve an overall optimal portfolio

for the client, since it does not consider the correlations between the different

products in the client’s portfolio. Therefore an integrated wealth management

that optimizes the overall portfolio of a client or offers a taylor-made collection of

assets and structured products is more and more frequently offered. A systematic

approach to this optimization that takes into account potential behavioral biases

of the client is therefore of high importance.

In this article we develop such a systematic approach for wealth management

and study properties that an optimized portfolio should have. We consider this in

the framework of structured products, where we assume that the total wealth of

the client is invested into this structured product and there is hence no background

risk to be hedged. On the other hand we aim to impose only the mildest possible

conditions on the preferences of the client. In particular we do not assume that the

client will want to optimize its investment according to Mean-Variance Theory or

to the rational framework of Expected Utility Theory, but we allow explicitly for

other decision models, e.g. behavioral models like Prospect Theory. We also allow

for “benchmarking”, i.e. for variable reference points that are set, for instance, by

some index (like a stock market index), as well as for decision models based on

the total return.

One main result of our work is that even in this general setting certain prop-

erties of an optimal financial product are always present. In particular, we will

1source: BNP Paribas, Structuredretailproducts.com
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show that optimal products “follow the market”, i.e. they are co-monotone with

the market portfolio (in the case of a CAPM market) or with the inverted state

price density (in the general case). This result has immediate consequences for

the design of financial products in the context of wealth management, and we will

mention some of the implications later on.

Let us have a closer look at the model we are studying: We consider complete

and efficient financial markets in which all market participants have homogenous

beliefs and act according to a maximization of their utility. The main focus of this

article lies on the question what properties a financial product on such a market has

to satisfy if it is optimal in the sense that it maximizes a given utility of an investor.

Before we make this question more precise, we first review some properties of

such markets (compare, e.g., [4] for details):

Let the returns of an asset be given by the probability measure p on R, and let

the state price density be π and let their mean and variance be given by E(p), E(π)

and var(p), var(π), respectively. Let R be the return of the risk-free asset (i.e. the

interest– or risk-free rate). Then we can derive from the no-arbitrage condition

that all financial products that are available for a fixed price and can be described

by a joint probability measure T such that p =
∫
R

dT (·, y) and π =
∫

R
dT (x, ·),

satisfy the constraint

E(p) − R = −βpπ(E(π) − R), where βpπ =
cov T
var(π)

. (1)

We make henceforth the general assumption that the state prices are nonneg-

ative (compare [4]) which corresponds to assuming that the preferences of the

market participants are weakly monotone.

An optimal product is defined as a product that maximizes a given utility sub-

ject to condition (1). The utility could hereby be given according to Expected

Utility Theory, Prospect Theory or a different model, depending on the applica-

tion one has in mind.

We define the inverted state price density π̃ by π̃(E(π) + x) := π(E(π) − x).

It has been observed in the literature that in certain cases an optimal asset is

co-monotone to π̃. (We will give a precise definition of co-monotonicity in Sec-

tion 2.1.) This is a classical result in the context of Pareto-efficiency, see, e.g., [10],
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and has been generalized by Dybvig [5] to optimal portfolio design in the case of

finite state spaces with equal probability for each state and an expected utility

maximizer. Dybvig states that then “any cheapest way to achieve a lottery assigns

the outcomes of the lottery to the states in reverse order of the state price density”,

in other words that an optimal portfolio and the inverted state price density are

co-monotone. He proves this case and notes that an extension to continuous dis-

tributions should be possible. Later, this approach has been used in the context of

insurance risks by Dhaene [3] and also by Carlier and Dana [2].

In this article we generalize the concept in a mathematically rigorous way to

arbitrary probability measures and to arbitrary preference relations for investors

without background risk. This is based on general mathematical results which

we present in Section 2.1 of this article and which extend works by Gangbo and

McCann [6, 12]. More information on the mathematical background and some

generalizations in the context of transport plans can be found in [15]. We apply

the mathematical results in Section 2.2 to obtain general conditions under which

the outcome distribution of every optimal financial product is co-monotone with

the inverted state price density. It turns out that this property is much more uni-

versal than had been anticipated. We discuss special cases in Section 2.3–2.5. In

particular, we investigate the implications of our result for a market described by

the Capital Asset Pricing Model (CAPM) and extend a variant of the Two-Fund-

Separation Theorem to the case of arbitrary decision models used for the product

selection.

The co-monotonicity result opens the path for a new approach to the design of

optimal financial products, which is based not on the optimization of asset allo-

cations, but instead of a direct optimization of the underlying return distribution.

This approach is explained in Section 3.1 and existence results for optimal fi-

nancial products are derived. We briefly sketch some numerical methods for the

computation of such optimal products in Section 3.2. There are, however, strong

limitations to this approach, which provide interesting insights into the shortfalls

of pricing formulas based on the no-arbitrage condition. These limitations will be

discussed in Section 3.3.
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We conclude this article by another practical application, namely the study of

barrier options (Section 4). We demonstrate that these options are not optimal

and can be improved by a monotonizing procedure that can be performed explic-

itly. We suggest an explanation for why the non-optimal products are nevertheless

quite popular on the market, based on systematic misestimation of probabilities.

An experimental study confirms this idea.

2 Co-monotonicity

In this section we present some of our main results. We start out from a mathe-

matical analysis of joint probability measures in Section 2.1. The mathematically

less inclined reader might skip this section and continue with Section 2.2 at first

reading, relying on the intuitive idea that joint probability measures that minimize

(or maximize) certain quantities are co-monotone, which means roughly that the

probability measures that are connected via the joint probability measure “fol-

low” each other: a larger outcome of one of them always corresponds to a larger

outcome of the other and vice versa. The results summarized in Section 2.1 are

extensions of work by Gangbo and McCann [6, 12]. They can essentially be found

in [15], however we adapt them to our application.

In Section 2.2 we apply these results to the study of optimal financial products

and prove that such optimal products are co-monotone with the inverted state price

density under general conditions. In the following Sections 2.3–2.5, we study

special cases of this general statement which are of particular interest.

2.1 Co-monotonicity of joint probability distributions

The main mathematical tool that we apply in this article is the so-called “transport

theory”. This theory originally dealt with optimizing transports of soil, e.g., in

construction or mining, and goes back to the 18th century where the French math-

ematician Monge [13] introduced the first version of this problem. Major progress

on this problem has been achieved in the 1940s with the seminal work by the Rus-

sian economist and mathematician Kantorovich [8]. We state his formulation for
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the one-dimensional case that is of particular interest for our purpose:

Definition 2.1 (Transport problem). Let µ, ν ∈ P(R) and let c : R × R → R be

a lower semicontinuous function (the cost function). Then the transport problem

consists of finding a joint probability measure T ∈ P(R × R) which minimizes

C(T ) :=
∫
R

∫
R

c(x, y)dT (x, y), (2)

such that the marginals of T are given by µ and ν, i.e.,

pr1T = µ, pr2T = ν,

where pr1 is the projection on the first coordinate and pr2 the projection on the

second coordinate, i.e.

pr1T :=
∫
R

dT (·, y), pr2T :=
∫
R

dT (x, ·).

In the optimum, the mass µ is transported for least cost to ν according to the

transport plan T . It is well known that the above transport problem admits a

solution, even in its n-dimensional generalization, see, e.g., [1].

The central property we use in this article is co-monotonicity:

Definition 2.2 (Co-monotonicity of joint probability measures).
Let T ∈ P(R,R) be a joint probability measure with marginals µ, ν ∈ P(R). Then

T is called co-monotone if for all (x1, y1), (x2, y2) ∈ supp T with x2 > x1, we have

y2 ≥ y1. (We also sometimes say that µ and ν are co-monotone.)

It is easy to see that this property can be expressed equivalently as a mono-

tonicity property as follows:

Remark 2.3. T is co-monotone if and only if it satisfies the following condition:

For all Borel sets A, B ⊂ R with µ(A) > 0, µ(B) > 0 and inf{x ∈ B} > sup{x ∈

A} we define

A′ := supp pr2(T |A×R), B′ := supp pr2(T |B×R).

Then inf{x ∈ B′} ≥ sup{x ∈ A′}.
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We can illustrate the definition by the observation that co-monotonicity of a

joint probability measure means nothing else than that its first marginal “follows”

its second marginal: the larger the outcome of the second marginal, the larger the

outcome of the first (and vice versa).

We define the following useful symbol:

Definition 2.4 (Push forward). Let f : R → R be a measurable function and µ a

measure on R, then we define the push forward f#µ by

( f#µ)(B) := µ( f −1(B)).

The definition of co-monotonicity is a natural extension of the usual notion of

monotonicity in the following sense:

Proposition 2.5. Let T be a joint probability measure with marginals µ and ν. If

T can be interpreted as a map that maps the measure µ pointwise to ν, then T is

co-monotone if this map is monotone as a function on R. More precisely, if there

exists a map T̃ : supp µ → R such that T = (Id × T̃ )#µ, then T is co-monotone iff

T̃ is µ-a.e. monotone.2

Proof. It is straigthforward to prove that supp T satisfies the condition of Def. 2.2

if and only if T̃ is monotone. �

We say that a sequence (ν j) ⊂ P converges weakly-? to ν, i.e. ν j
?
⇀ ν if∫

φ(x)ν j(x)→
∫

φ(x)ν(x)

for all bounded continuous functions φ.

The following result introduces a construction that can be used for numerical

computations of co-monotone joint probability measures. This and the following

results are extensions of previous work in the context of transport plans by Gangbo

and McCann [6, 12] and can in slightly different form also be found in [15].

Theorem 2.6. Let µ, ν ∈ P(R) then there exists a co-monotone joint probability

measure with marginals µ and ν and it can be approximated by weighted sums of

Dirac measures.
2We remark that it is necessary to allow T̃ to be non-monotone on a set N with µ(N) = 0, since

T̃ can be defined arbitrarily on such sets.
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Proof. Let ε > 0. We first choose bounded intervals D = (d1, d2), E = (e1, e2) ⊂ R

such that µ(D) = ν(E) ≥ 1−ε and µ((−∞, d1)) = ν((−∞, e1)). Then we decompose

D×E ⊂ R×R into squares. For simplicity we assume that d1 = e1 = 0. We define

Ik
i := [(i−1)2−k, i2−k) for 1 ≤ i ≤ N := [1+max(d2, e2)·2k] and mi := µ(Ik

i ∩D)/|Ik
i |,

ni := ν(Ik
i ∩ E)/|Ik

i |.

Denote the midpoints of the intervals Ik
i by zk

i . We define sequences of mea-

sures µk and νk by µk :=
∑N

i=1 miδzk
i

and νk :=
∑N

i=1 niδzk
i
. We choose ε = 1/k

and construct a co-monotone joint probability measure Tk for µk and νk: define

Tk :=
∑N

i, j=1 ak
i, jδ(zk

i ,z
k
j)

where the constants ak
i, j are determined by the following

algorithm:

Set i = j = 1, L = m1. While i ≤ N or j ≤ N do the following:

• If L > n j then set L = L − n j and ak
i, j = n j.

• If L ≤ n j then set L = 0 and ak
i, j = L.

• If L = 0 then increase i by one and set L = mi, otherwise increase j by one.

The algorithm terminates since
∑N

i=1 mi = µ(D) = ν(E) =
∑N

j=1 n j. The result-

ing joint probability measure Tk =
∑N

i, j=1 ak
i, jδzk

i
is co-monotone by construction.

Finally we let k → ∞. The resulting co-monotone joint probability measure

Tk converge weakly-? to a limit T ∈ P(R × R), which is still co-monotone. �

Marginals determine a co-monotone joint probability measure uniquely as the

following Proposition shows:

Proposition 2.7. Let T1,T2 ∈ P(R×R) be co-monotone joint probability measures

with marginals µ and ν. Then T1 = T2.

Proof. We discretize T1 and T2 similarly as before: Define ak
i j :=

∫
Ik
i ×Ik

j
dT1(x, y),

bk
i j :=

∫
Ik
i ×Ik

j
dT2(x, y) and T k

1 :=
∑k

i, j=1 ak
i jδ(zk

i ,z
k
j)

and T k
2 :=

∑k
i, j=1 bk

i jδ(zk
i ,z

k
j)

analo-

gously, where Ik
i and zk

i are defined as in the proof of Theorem 2.6.

Then for k → ∞ we have again T k
1

?
⇀ T1 and T k

2
?
⇀ T2. Suppose that T1 , T2.

Then for k sufficiently large, there are i0, j0 such that ai0 j0 < bi0 j0 . Then since∑
i ai j0 =

∑
i bi j0 (T1 and T2 have the same marginals), there exists a i1 , i0 such
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that ai1 j0 < bi1 j0 . Let us assume without loss of generality that i1 < i0. Since∑
j ai1 j =

∑
j bi1 j, there exists a j1 , j0 such that ai1 j1 > bi1 j1 . By co-monotonicity

we must hence have j1 < j0. Since
∑

i ai j1 =
∑

i bi j1 , there exists a i2 , i1 such that

ai2 j1 < bi2 j1 , and by co-monotonicity we must have i2 < i1. Iterating this argument,

we get an infinite sequence of ik with ik+1 < ik. Since ik are indices from a finite

index set, this is a contradiction. �

In the following we need this little lemma:

Lemma 2.8. Let A = (ai, j) ∈ Rn×m be a matrix with nonnegative entries. Let

c : {1, . . . , n} × {1, . . .m} → R be a function satisfying the inequality (3). Define

C(A) :=
n∑

i=1

m∑
j=1

c(i, j)ai, j.

Then there exists a matrix B = (bi, j) ∈ Rn×m with the following properties:

(i) bi, j ≥ 0 for all i, j,

(ii)
∑n

i=1 bi, j =
∑n

i=1 ai, j for all j and
∑m

j=1 bi, j =
∑m

j=1 ai, j for all i,

(iii) C(B) ≤ C(A),

(iv) either bi,1 = 0 for all i = 2, . . . , n

or b1, j = 0 for all j = 2, . . . ,m.

If c satisfies the stronger condition (4), then (iii) can be strengthened to C(B) <

C(A).

Proof. The proof is constructive, in fact we give a simple algorithm that com-

putes B for a given matrix A. Since property (iv) is directly connected to the

co-monotonicity of a corresponding joint probability measure, we say that this

algorithm “monotonizes” a given matrix A.

A key feature in the monotonization will be the following construction which

we call a switch of (i1, j1) and (i2, j2):
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Take i1, i2 ∈ {1, . . . , n} and j1, j2 ∈ {1, . . . ,m} with i1 < i2, j2 < j1. Define

β := min{ai1, j1 , ai2, j2} and

bi1, j1 := ai1, j1 − β,

bi2, j2 := ai2, j2 − β,

bi1, j2 := ai1, j2 + β,

bi2, j1 := ai2, j1 + β,

bi, j := ai, j for all other pairs (i, j).

A small calculation shows that the matrix B := (bi, j) satisfies the properties (i)-

(iii) in the statement of this lemma and that moreover either bi1, j1 = 0 or bi2, j2 = 0

(or both).

Now we just need to find a sequence of switches that transforms A into a matrix

B satisfying property (iv) and we have proved the lemma. This can be achieved

with the help of the following algorithm:

Set i = n and j = m. While i > 1 and j > 1 do the following:

• Switch (i, 1) and (1, j). (The result will again be called A.)

• If a1, j = 0 then decrease j by one.

• If ai,1 = 0 then decrease i by one.

Finally, set B = (ai, j).

The properties that the switch satisfies ensure that the algorithm terminates

and that its result B satisfies the properties (i)-(iii). A closer look at the algorithm

reveals furthermore that in each processing of the while loop either ai,1 or a1, j is

set to zero. From this it follows in particular that B also satisfies (iv). This proves

the lemma. �

We can now state and prove the main result of this section which specifies the

conditions under which solutions of transport problems are co-monotone:

Theorem 2.9. Let c be a continuous cost function satisfying for all x1, x2, y1, y2 ∈

R with x1 < x2 and y1 < y2

c(x1, y1) + c(x2, y2) ≤ c(x1, y2) + c(x2, y1), (3)
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then the transport problem of Definition 2.1 admits a co-monotone minimizer (and

possibly other minimizers which do not need to be monotone).

If c even satisfies the strict inequality

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1), (4)

then the transport problem admits a unique minimizer, and this minimizer is co-

monotone.

We mention that the second statement of this Theorem could be proved with a

simpler method using a proof by contradiction. However, we prefer to present the

following, more general and constructive proof:

Proof. Let T be some minimizer of the transport problem. We approximate T by

a sequence of measures which are finite sums of Dirac masses on a grid. To be

more precise we define for i, j = −4k, . . . , 4k the squares

Qk
i j := [i2−k, (i + 1)2−k) × [ j2−k, ( j + 1)2−k).

We denote the midpoint of the square Qk
i j by Mk

i j and define Tk by

Tk :=
4k∑

i, j=−4k

2kT (Qk
i j)δMk

i j
. (5)

It follows from either a short direct computation or Lemma 7 in [12] that Tk
?
⇀ T

for k → ∞. Now we can “monotonize” Tk, i.e. we can perform a finite number

of manipulations on Tk which lead to a modified joint probability measure T ′k
which is co-monotone and satisfies C(T ′k) ≤ C(Tk) (respectively, C(T ′k) < C(Tk) if

condition (4) holds). This is equivalent to convert the matrix a given by

ai, j := T (Qk
i j)

(where we omit for simplicity the index k) iteratively into a matrix a′i, j where for

all i1 < i2 and j1 > j2 either a′i1, j1 = 0 or a′i2, j1 = 0 whereby not changing the sums

over rows or columns, only allowing for nonnegative entries and not increasing
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(respectively, decreasing) the corresponding cost C(T ′k) of the joint probability

measure T ′k defined by

T ′k :=
4k∑

i, j=−4k

2ka′i, jδMk
i j
.

This can be achieved by applying Lemma 2.8 to the matrix

a(m)
i, j =


a(m)

1,1 a(m)
1,2 . . . a(m)

1,q
...

...

a(m)
p,1 a(m)

p,2 . . . a(m)
p,q

 .
We call its monotonization a(m+1)

i j .

We can now apply the same lemma in the next iteration step to proceed from

(m + 1) to (m + 2) where we apply it only for all but the first row of a(m+1) (if

a(m+1)
1,2 = · · · = a(m+1)

1,q = 0) or all but the first column (if a(m+1)
2,1 = · · · = a(m+1)

p,1 = 0).

Starting with a(0) := ai, j, the iteration stops after finitely many steps when

the remaining matrix has been reduced to a vector (since in every step the matrix

gets reduced by either a row or a column). The result a′ of this iteration is of

the desired form: It satisfies by construction the condition that for all i1 < i2 and

j1 > j2 either a′i1, j1 = 0 or a′i2, j1 = 0, and hence its associated joint probability

measure T ′k is co-monotone. Moreover, since in every iteration step the sums over

rows and columns of a(m) are preserved, the joint probability measure T ′k has the

same marginals as Tk, and finally C(T ′k) ≤ C(Tk) or, in the case of condition (4),

even C(T ′k) < C(Tk).

We now take the limit k → ∞. There exists a T ′ such that (at least for a subse-

quence) T ′k
?
⇀ T ′. Since (T ′k) is tight and ||T ′k|| → 1, we obtain from Prokhorov’s

Theorem [14] that T ′ ∈ P(R × R). Since pr1T − pr1T ′k = pr1T − pr1Tk → 0

when k → ∞, and the same holds for pr2, we have constructed a joint probability

measure T ′ with marginals µ and ν. Due to the weak-? convergence we also have

C(T ) − C(T ′) = limk→∞C(Tk) − C(T ′k) ≥ 0 (respectively > 0). Therefore T ′ is a

minimizing joint probability measure. It remains to show that T ′ is co-monotone.

Suppose that it is not, then there must be sets D, E ⊂ R×R with T ′(D),T ′(E) > 0

and such that for all (x1, y1) ∈ D and (x2, y2) ∈ E we have x1 < x2 and y1 > y2. We
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can assume that D and E are such that we can choose squares S D, S E in {Qk
i j} with

S D ⊂ D and S E ⊂ E and T ′(S D),T ′(S E) > 0, but this leads to a contradiction: By

the weak-? convergence we would have that also T ′k(S D),T ′k(S E) > 0 for k large

enough. This would be a contradiction to the co-monotonicity of T ′k. Hence T ′ is

a co-monotone minimizer. �

In the next section we will see how Theorem 2.9 can be applied to the study

of financial products.

We conclude this section with a useful approximation lemma that essentially

states that co-monotone distributions can be approximated by functions:

Lemma 2.10. Let T be a co-monotone joint probability measure with marginals

µ and ν. Then there is a sequence of co-monotone joint probability measures

Tε = (Id × ψε)#µ where ψε : supp µ→ R such that Tε

?
⇀ T.

Proof. The approximating joint probability measures Tε can be chosen as

Tε(x, y) := T (x + ε tanh(y), y),

where tanh denotes the hyperbolic tangent, but could be replaced by any smooth

increasing function which is bounded from above and below and is zero at zero.

Define ψε(x) := (supp Tε) ∩ ({x} × R). Suppose that ψε is not a function, then

it must be set-valued, i.e. there exists some x ∈ R with card(ψε(x)) > 1. Take

y1, y2 ∈ ψε(x) with y1 > y2 then x1 := x − ε tanh(y1) > x2 := x − ε tanh(y2) and

hence the points (x1, y1) and (x2, y2) violate the co-monotonicity condition.

It remains to prove that Tε

?
⇀ T as ε → 0: let φ ∈ C1(R2) be a bounded

function. Then we have∣∣∣∣∣∫
R2
φ(x, y) Tε(x, y) −

∫
R2
φ(x, y) T (x, y)

∣∣∣∣∣
=

∣∣∣∣∣∫
R2

(φ(x, y) − φ(x + ε tanh(y), y)) T (x, y)
∣∣∣∣∣

≤

∫
R2

∣∣∣∣φ(x, y) − (φ(x, y) + ε tanh(y)|∇φ(x, y)|)
∣∣∣∣ T (x, y)

≤

∫
R2
ε sup | tanh(y)| ||∇φ||∞T (x, y) = ||∇φ||∞ε,

which converges to zero as ε → 0. Using a standard approximation argument for

φ, we obtain Tε

?
⇀ T . �
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2.2 Optimal investments – the general case

We have now all mathematical tools at hand to study co-monotonicity of financial

products. We first define the optimization problem we want to study:

Definition 2.11 (Optimal financial products). Let T ∈ P(R,R) be a joint probabil-

ity measure with the marginals pr1T = p and pr2T = π, where p is the return dis-

tribution of a financial product and π the state price density. Let U : P(R,R)→ R

be a function that assigns to every joint probability distribution a utility. Then

we call T optimal if it maximizes U : P(R,R) → R under the no-arbitrage condi-

tion (1).

In the following we restrict the class of admissible utility functions. The main

underlying assumptions are a “positive attitude” regarding additional returns and

that there is no background risk involved into the investment decision. These two

assumptions are made rigorous in the following definition:

Definition 2.12 (Admissible utility functions). We call U : P(R,R)→ R admissi-

ble if the following two conditions hold:

(i) U(T ) ≤ U(T (·, · − c)) for all c > 0,

(ii) There is a non-decreasing function h : R→ R and a function Ũ : P(R)→ R

such that U(T ) = Ũ(ph), where ph(y) := pr1T (x, y + h(x)) =
∫

T (x, y +

h(x)) dy.

Condition (i) can be summarized as “more money is better”: if a financial

product is described by T , then an alternative product that is only different in that

it yields an additional sure return of c > 0, is always at least weakly preferred.

Condition (ii) seems at first glance quite technical, however, it becomes very natu-

ral, once we have seen how our main result (Theorem 2.13) fails if (ii) is violated,

see Remark 2.14 below. In Section 2.4 and Section 2.5 we will moreover discuss

two important special cases of (ii): in the first case h ≡ 0 and hence the utility

depends only on the return distribution, in the second case h(y) = y and hence the

utility depends on the difference between return and state price density.

We formulate our main result:
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Theorem 2.13 (Co-monotonicity of general optimal financial products). Let T ∈

P(R,R) be a joint probability measure describing a financial product, where the

marginals of T, i.e. p := pr1T and π := pr2T are the return distribution and the

state price density. Let T be optimal with respect to an admissible utility function

(compare Def. 2.11 and Def. 2.12).

Then T is co-monotone with the inverted state price density π̃, i.e. T̂ defined

by T̂ (x, y) := T (−x, y) is co-monotone.

It is important to notice here that we have made no assumptions on the precise

form of T and its regularity. T could for instance be an absolutely continuous

measure, i.e. a probability distribution, or it could be a finite weighted sum of

Dirac measures, but it does not need to be: it could be a combination of both or

generally any probability measure. Moreover, we have made no precise assump-

tions on the decision model underlying the utility function U. In fact, it is easy to

check that standard decision models as Expected Utility Theory, Prospect Theory

and Mean-Variance Theory could all be used.

Let us now see why the second condition for an admissible utility was so

important:

Remark 2.14. If condition (ii) of Def. 2.12 is violated, the utility U could be

chosen such that joint probability measures which fail to satisfy co-monotonicity

have particularly large utility: as a trivial example, we simply define U(T ) = 1

for all T which are not co-monotone with π̃, and U(T ) = 0 otherwise. This would

obviously satisfy condition (i), but an optimal product for U could not be co-

monotone with π̃.

We will now turn our attention to the general proof of Theorem 2.13, before

we discuss important special cases of this result in more detail in the following

sections. The main idea of the proof is to apply the general Theorem 2.9 to prove

that the covariance of T is maximized when T is co-monotone. For given p we can

then monotonize T in a way which leaves the utility unchanged, but at the same

time decreases the price of the product according to the no-arbitrage condition

(1). The price reduction can then be used to improve the product by adding a sure
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return. Condition (i) implies that this new product has a larger utility. We conclude

that an optimal T is co-monotone. To make this idea work for the general case of

condition (ii) will be the main task of the proof:

Proof. Let p ∈ P and let T ∈ P(R × R) be a joint probability measure with

marginals p and π̃ that maximizes the covariance, i.e.

cov T = max{cov T |T ∈ P(R × R), pr1T = E(p), pr2T = E(π̃)}. (6)

We prove that T is co-monotone: first, we reformulate the problem (6) as a trans-

port problem, i.e. we want to find T ∈ P(R × R) minimizing

C(T ) :=
∫
R

∫
R

c(x, y) dT (x, y),

such that pr1T = p, pr2T = π̃, where

c(x, y) := −(x − E(p))(y − E(π̃)). (7)

From Theorem 2.9 we know that T is co-monotone if for all x1 < x2 and y1 < y2

c(x1, y1) + c(x2, y2) < c(x1, y2) + c(x2, y1). (8)

We prove that c defined as in (8) satisfies this inequality: without loss of generality

we can assume that E(p) = E(π̃) = 0. Hence it is sufficient to check condition (8)

for c(x, y) = −xy.

If x1 < x2 and y1 < y2 we have (x1 − x2)(y2 − y1) < 0. A short computation

gives

0 > (x1 − x2)(y2 − y1)

= −x1y1 + x1y2 − x2y2 + x2y1

= c(x1, y1) + c(x2, y2) − c(x1, y2) − c(x2, y1).

Therefore condition (8) holds, and we can apply Theorem 2.9 to prove the co-

monotonicity of T .

In other words: any joint probability measure that maximizes the covariance,

given its marginals, is co-monotone.
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Suppose now T is a joint probability measure that maximizes the utility, but is

not co-monotone. We compute, denoting T h(x, y) := T (x, y + h(x)):

cov T =

∫
R

∫
R

(x − E(π̃))(y − E(p)) dT (x, y)

=

∫
R

∫
R

(x − E(π̃))(y + h(x) − E(p)) dT h(x, y)

= cov T h +

∫
R

∫
R

(x − E(π̃))h(x) dT h(x, y)

= cov T h +

∫
R

(x − E(π̃))h(x) dπ̃(x).

We use ph = pr1T h and pr2T = pr2T h = π̃. We can maximize cov T without

changing the marginals of T h by maximizing cov T h, since only the first term

in the above equation depends on T h, whereas the second term only depends

on π̃. Applying our above derivation, we see that cov T h can be maximized by

monotonizing T h. We call the resulting co-monotone joint probability measure T̃ h

and denote T̃ h(x, y − h(x)) by T̃ . Since U(T ) depends only on pr1T h, the utility

is unchanged, i.e. U(T ) = U(T̃ ). The covariance, however, has increased, i.e.

cov T̃ > cov T , since otherwise T h would have been already co-monotone, but

then T would have been co-monotone as well, since h is by assumption a mono-

tone function. We define

d := R +
E(π̃) − R

var(π̃)
cov T̃ − E(p).

Since p satisfies the no-arbitrage condition (1), we have

R +
E(π̃) − R

var(π̃)
cov T − E(p) = 0

and therefore d > 0. Now define a new product S ∈ P(R × R) by

S (x, y) := T̃ (x, y − d).

Then S satisfies the no-arbitrage condition (1) and its utility is by assumption (i)

larger than the utility of T̃ . Hence U(S ) > U(T̃ ) = U(T ) and therefore T cannot be

an optimal financial product. Thus every maximizer has to be co-monotone. �
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2.3 The special case of CAPM

A simplifying assumption on financial markets which is often done in applications

is to equal the inverted state price density with the market return. This is based on

the Capital Asset Pricing Model (CAPM) which follows from the Mean-Variance

approach introduced by Markowitz [11]. Its fundamental assumption is that every

investor in the market selects his portfolio according to the Mean-Variance prefer-

ences, i.e. considers only mean and variance of the assets. In such a market every

investor would hold only assets of a market portfolio and the risk free asset as the

Two-Fund Separation Theorem shows.

Although in his work Markowitz recommended the use of a mean-variance

rule, “...both as a hypothesis to explain well-established investment behavior and

as a maxim to guide one’s own action” [11], it is in general not a rational decision

model as we can see, e.g., by considering the Mean-Variance Paradox. The sug-

gestion to use Mean-Variance as a descriptive model for market behavior seems

more promising: many practitioners are following this approach to some extend

and therefore CAPM might work as a descriptive model of a real financial market.

The natural question is now, how to invest in such a market in order to maximize

a utility function that is not necessarily of Mean-Variance type, but, for instance,

follows Expected Utility Theory. Obviously, the Two-Fund Separation Theorem

will not hold in this case, but can we find some other general results describing

optimal investments?

Based on the general results of the previous sections, we can at first state the

following variant of Theorem 2.13:

Proposition 2.15 (Co-monotonicity in CAPM markets). Every financial product

on a CAPM market which is optimal for an arbitrary admissible utility has a

return distribution that is co-monotone with the market return.

Proof. To prove this, we just note that the no-arbitrage condition (1) in the case

of a CAPM market becomes

E(p) − R = βpm(E(m) − R), (9)
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where βpm = cov(p,m)/ var(m) and m is the market return. The market return

takes therefore the role of the inverted state price density in Theorem 2.13. �

We can now extend the Two-Fund Separation to the case of arbitrary admis-

sible decision models. Note that the Two-Fund Separation Theorem implies that

every product that is optimal in the Mean-Variance framework, has a return (ad-

justed by a constant depending on the risk-free rate) which depends linearly on

the market return. A product which is optimal for an arbitrary admissible decision

model does not necessarily have a return depending linearly on the market return,

but its return depends monotone on the market return. In other words, we have the

following result:

Theorem 2.16 (Generalized “Two-Fund-Separation”). Consider a CAPM market.

An optimal investment for an investor with admissible utility gives a return which

is co-monotone with the market return. If the joint probability measure can be

described by a function Rp, this function is monotone. If the investor is Mean-

Variance maximizer, this function is affine and Rp(x) = (1 − λ)R + λx with λ ∈ R.

Proof. The first part of this result is a reformulation of Proposition 2.15.

The second part simply follows from Two-Fund Separation: every optimal

product has a return of the form λx+ (1− λ)R, where x is the market return, R the

risk-free rate and λ ∈ R the shares invested into the market portfolio. �

An immediate consequence of this result is that an optimal financial product

should never speculate on falling prices, since this would violate co-monotonicity.

At this point it is important to keep in mind our two fundamental assumptions:

homogenous beliefs and no background risk: in a market situation where an in-

vestor has an information advantage he might have reason to believe in falling

prices and therefore it might be very wise for him to speculate on them. If beliefs

are homogenous, however, there is no reason in a CAPM market to invest in a

way that is not co-monotone. Similarly, an investor might need to hedge a back-

ground risk and is therefore investing into an additional investment which is not

co-monotone. On the other hand, even when we assume homogenous beliefs and

no background risk, there might still be many reasons for a non-Mean-Variance
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investor to violate the Two-Fund Separation and instead to construct rather com-

plex portfolios taylor-made for his preferences.

2.4 Performance based on the outcome

In this section we study an important special case of the general results of Sec-

tion 2.2, namely when utility is only based on the outcome. We call an investor

with such a utility a “private investor”, since prototypical private investors would

fall into this category.

We start with a precise definition what we understand by a “private investor”:

Definition 2.17 (Private investor). A private investor is described by a utility func-

tional U satisfying the following conditions:

1. The utility functional depends only on the return distribution of the invest-

ment, i.e. U = U(p) : P(R)→ R. (“Only the result matters.” )

2. If we shift the return distribution to the right, the utility increases, i.e. if the

return distribution is given by p ∈ P(R) and pc := p(· − c) for c > 0 then

U(p) < U(pc). (“The more, the better.”)

It is easy to see that a private investor’s utility function is admissible, we just

have to set h := 0 in Def. 2.12. Therefore, we can apply Theorem 2.13 and obtain

the following result:

Proposition 2.18. An optimal financial product for a private investor is co-mono-

tone with the inverted state price density.

This implies, e.g., that for all private investors in a CAPM market the results

of the previous section, in particular Proposition 2.15, apply, i.e. an optimal in-

vestment should “follow the market”.

At this point it might be worthwhile to discuss how these results relate to the

usual portfolio optimization strategy that tries to identify investments which are

uncorrelated with the market return to improve the overall performance of the

portfolio. Did we prove that such strategies have a substantial flaw? This is of

course not the case for the following reasons:
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• Our first assumption implies the absence of background risk. This means

that we consider the overall investment of a person, rather than an additional

position that he might or might not add to his portfolio. Our results do not

say anything about the structure of such additional positions. It might even

be useful for the investor to take an additional position into his portfolio

which is anti-co-monotone with the market (e.g. by going short in an asset)

in order to hedge a certain risk induced by a different part of his portfolio.

• Another misunderstanding may arise from the word “market”. This means

of course the entirety of all possible investments, not only stocks. In partic-

ular, an investment which is uncorrelated with the stock market is usually

still correlated with the “market” in this general sense.

• We have assumed that beliefs are homogenous and (to derive Prop. 2.15)

that the market can be described by the CAPM model. In reality we might

profit from anomalies of the market that are not described by the models of

classical finance. For such situations, Prop. 2.15 is not applicable.

Although these limitations set a caveat on applications of our results, co-monotoni-

city with the inverted state prices (or the market return, if we can describe the

market by CAPM) should still hold in practice if we do not aim to exploit market

anomalies and if we consider our investment portfolio as a whole.

In the next section we will see that this is even the case if we do not think in

absolute returns, but instead measure returns with respect to a benchmark index.

2.5 Performance based on a benchmark

Let us now consider the somehow opposite case of a private investor: an investor

whose utility only depends on the return of his investment relative to the state

price. In the case of a CAPM market, this would correspond to an investor who

is only interested in the excess return of his investment compared to the market

return. (Since this is the practical relevant case, we assume in this Section a CAPM

market.)
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We call such an investor a “fund manager”, imagining a fund manager who is

paid depending on the performance of his fund with respect to the market return.

More precisely, we define for the case of a CAPM market:

Definition 2.19 (Fund manager). A fund manager is described by a utility U sat-

isfying the following conditions:

1. The utility depends only on the difference between the return distribution of

the investment and the market, i.e. U = U(pm) : P(R) → R, where pm :=

pr2 T (x, y − x). (In other words, the market index is used as benchmark.)

2. If we shift the return distribution to the right, the utility increases, i.e. if the

return distribution is given by p ∈ P(R) and pc := p(· − c) for c > 0 then

U(p − m) < U(pc − m).

We can now easily see that this is just another special case of the general The-

orem 2.13, in fact a fund manager’s utility is admissible, we just have to choose h

as identity in Def. 2.12. Therefore, we obtain:

Proposition 2.20. In a CAPM market, an optimal portfolio for a fund manager

has a return distribution that is co-monotone with the market return.

There is another interesting consequence of the assumptions on the prefer-

ences of a fund manager:

Proposition 2.21 (Benchmarking leads to risky products). An optimal product for

a fund manager in a CAPM market is at least as risky as the market portfolio,

i.e. the difference between the return distribution and the market return is a non-

decreasing function of the return.

Proof. This follows immediately from the co-monotonicity of the optimal T h in

the proof of Theorem 2.13. �

In the case of an investor with expected utility preferences with respect to the

market return, i.e. an utility of the form

U =
∫ +∞

−∞

∫ +∞

−∞

u(x − y) dT (x, y), (10)

we can strengthen the last proposition:
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Proposition 2.22. A product that maximizes the utility function U in (10) with

u ∈ C1, u′(0) > 0 in a CAPM market must be riskier than the market portfolio,

i.e. the difference between the return of the product and the market return is an

non-decreasing and non-constant function of the market return.

Proof. Due to the co-monotonicity of any optimal joint probability distribution

and Lemma 2.10, it is again sufficient to consider the case where supp T is of the

form {(x,Rp(x))}.

By Prop. 2.21 we know already that Rp(x) − x must be non-decreasing. We

want to show that it Rp(x) − x is non-constant. The pricing constraint implies that

Rp(x) − x could only be constant if Rp(x) = x, i.e. if the optimal product were the

market portfolio itself. Let us suppose that Rp(x) = x is optimal. Our goal is to

construct an improved product that satisfies the pricing constraint and has a higher

utility for the fund manager.

For simplicity, we assume u(0) = 0. Moreover, we assume that m is absolutely

continuous. (Otherwise we could approximate m by a sequence of absolutely

continuous measures.)

Let ε ≥ 0 and define

Rpε(x) :=

 x − ε + δ, x < m0

x + ε + δ, x ≥ m0,

where m0 is defined by∫ m0

−∞

dm(x) =
∫ +∞

m0

dm(x) =
1
2

and δ > 0 is given by the no-arbitrage condition and will be computed below.

(δ is in some sense the “risk-premium” that we get for taking the additional risk

expressed by ε.)

Let pε be the joint probability measure induced by Rpε . Then its mean value is

given by

E(pε) =
∫ +∞

−∞

Rpε(x) dm(x)

=

∫ +∞

−∞

x + δ dm(x) + ε
∫ +∞

m0

dm(x) − ε
∫ m0

−∞

dm(x)

= E(m) + δ.
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Therefore the covariance of the co-monotone joint probability measure with marginals

m and pε can be computed as follows:

cov(pε,m) =
∫ m0

−∞

(x − E(m))(x − ε + δ − E(pε)) dm(x)

+

∫ m0

−∞

(x − E(m))(x + ε + δ − E(pε)) dm(x)

=

∫ m0

−∞

(x − E(m))(x − E(m) − ε + δ − E(pε) + E(m)) dm(x)

+

∫ m0

−∞

(x − E(m))(x − E(m) + ε + δ − E(pε) + E(m)) dm(x)

= var(m) +
∫ m0

−∞

(x − E(m))(−ε + δ − E(pε) + E(m)) dm(x)

+

∫ m0

−∞

(x − E(m))(ε + δ − E(pε) + E(m)) dm(x).

We insert this and the formula for E(pε) into the no-arbitrage condition and obtain

E(m) + δ − R = (E(m) − R)
(
1 +

1
var(m)

∫ m0

−∞

−(x − E(m))ε dm(x)

+
1

var(m)

∫ m0

−∞

(x − E(m))ε dm(x)
)

=
E(m) − R

var(m)

(
var(m) +

∫ m0

−∞

x dm(x) −
∫ +∞

m0

x dm(x)
)
ε.

We can resolve this to obtain a formula for δ:

δ(ε) =
E(m) − R

var(m)

(∫ m0

−∞

x dm(x) −
∫ +∞

m0

x dm(x)
)
ε.

We see from this that δ(0) = 0 and δ′(0) > 0. We use a Taylor expansion to

compute the utility difference of p and pε:

U(pε) − U(p) =
1
2

u(δ − ε) +
1
2

u(δ + ε)

= u′(0)δ(ε) + O((δ(ε) − ε)2, (δ(ε) + ε)2)

= u′(0)(δ′(0)ε) + O(ε2).

Therefore, for ε > 0 sufficiently small, this difference is positive, i.e. U(pε) >

U(p) which shows that p defined by Rp(x) = x cannot be optimal. �
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We want to stress that a crucial condition for the derivation of this result was

the differentiability of u at zero. If we replace the utility function u by a value

function that has a kink at zero (“loss aversion”) as suggested, e.g., by Kahneman

and Tversky [7], our result does not apply, and it is conceivable that an investor

would indeed stick exactly to the market portfolio.3

3 Designing optimal financial products

The usual way in which financial investments are optimized is by finding an opti-

mal allocation between several assets. This is the obvious “bottom-up” approach

which starts from the constituents and builds portfolios and finally financial prod-

ucts based on them. The alternative “top-down” approach is first to find optimal

financial products and then to design the underlying structure of assets from which

the product can be built.

Obviously, there are advantages to the latter method, in that it is independent

of the “educated guess” that would lead to a pre-selection of assets in the asset

allocation approach. The difficulty with the alternative approach, on the other

hand, is two-fold: first, the design of the asset allocation is more difficult, and

second it is at first glance not clear how to find an optimal financial product or

even how to define what this would be.4

Applying the results of the previous section, we can now solve these problems

to some extend which may open a new route to the design of financial products.

Our key observation so far was that optimal investments are co-monotone with

the inverted state price density π̃ (or, if we want to use the CAPM model, with the

market return m). We have seen that this result holds quite generally which makes

now our task of finding optimal investments a lot easier: we know from Prop. 2.7

that a co-monotone joint probability measure is unique. Therefore, it is sufficient

3This effect might explain the popularity of index funds that would otherwise be in contradic-

tion to our above result.
4This approach is similar to the martingale method in continuous-time market models, where

first an optimal payoff-/consumption-stream is found and then the replicating portfolio process is

computed, compare [9, Chapter 5] for an overview.
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to optimize the return distribution p, assuming that the joint probability measure T

is the unique co-monotone joint probability measure with marginals p and π̃. We

are therefore only left with maximizing the utility over all probability measures

that satisfy the no-arbitrage condition. We will outline in Section 3.2 how this

could be done numerically, but before that, in Section 3.1, we study existence and

some properties of solutions for the resulting optimization problem. In Section 3.3

we finally consider some cases where existence fails.

3.1 Existence of optimal financial products

In this section we mainly deal with rational investors in the sense of von Neumann

and Morgenstern [17], i.e. we assume that the utility U can be expressed by

U(T ) =
∫ ∞

0
u(x) dp(x),

where x is here the final wealth of the investor who invests in a product with the

return p, and u is the von Neumann-Morgenstern utility function. We assume that

u is continuous and increasing.

From now on, we implicitly assume that, for given p and π, T is the joint

probability measure with marginals p and π̃ which is co-monotone with π̃. Thus

we can define the maximum covariance between p and π̃ as

mcov(p, π̃) := cov T.

Our optimization problem can now be stated as finding the p ∈ P that maxi-

mizes

U(p) :=
∫ ∞

0
u(x) dp(x),

subject to

E(p) − R =
mcov(p, π̃)

var(π̃)
(E(π̃) − R). (11)

We formulate now the following existence result:
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Theorem 3.1 (Existence of optimal financial products). Let the preferences of the

investor be given by Expected Utility Theory with utility function u. Assume that

u is continuous, increasing and sublinear, i.e. that u(x)/x→ 0 as x→ ∞. Assume

furthermore that the state price density π̃ vanishes outside the interval [0,M] and

that var(π) > M(E(π̃) − R). Then there exists an optimal financial product, i.e. the

above problem admits a maximizer p ∈ P. Moreover, E(p) < ∞.

We will see in Section 3.3 that some of the conditions made in this theorem

are indeed necessary.

Proof. The proof consists of the following steps:

1. There is a constant C > 0 such that all p ∈ P that satisfy (11) fulfill E(p) ≤

C.

2. For every sequence (pn) satisfying (11) there exists a p ∈ P such that a

subsequence (pn′) of (pn) converges weakly-? to p, i.e. pn′
?
⇀ p.

3. The supremum of U(p) over all p ∈ P that satisfy (11) is finite.

4. The maximization problem admits a maximizer.

S 1:

First, we use the approximation result, Lemma 2.10, and assume therefore without

loss of generality that all joint probability measures can be expressed by functions.

We denote the function corresponding to a return p by Rp.

We observe the following useful identity:

mcov(p, π̃) =
∫ ∞

0
(x − E(π̃))(Rp(x) − E(p)) dπ(x) =

∫ ∞

0
xRp(x) dπ(x) − E(π̃).

To simplify notation, we write σ2 := var(π̃). Let p ∈ P and assume that p

satisfies the no-arbitrage condition (11). We want to obtain an estimate on E(p)

using the estimate on the support of π̃:

E(p) = R +
mcov(p, π̃)

σ2 (E(π̃) − R)

= R +

∫ ∞
0

xRp(x) dπ(x) − E(π̃)

σ2 (E(π̃) − R)

≤ R + ME(p) − E(π̃)σ2(E(π̃) − R).



28 3 DESIGNING OPTIMAL FINANCIAL PRODUCTS

Resolving this, while using the assumption σ2 = var(π) > M(E(π̃) − R), we get

E(p) ≤
R − E(π̃)

σ2 (E(π̃) − R)

1 − M
σ2

< ∞, (12)

thus arriving at the desired uniform bound for p.

S 2:

Let (pn) be a sequence of probability measures satisfying (11). We want to prove

that we can select a subsequence (pn′) which is converging weakly-? to a prob-

ability measure p. By Prokhorov’s Theorem [14], it is sufficient to prove that

(pn) is tight, i.e. that for all η > 0 there is a compact subset Kη of R+ such that

pn(Kη) > 1 − η.

Let us suppose that (pn) is not tight. Then there exists for all L > 0 an n0(L) ∈

N such that pn0(L)((L,+∞)) > η0.

Our strategy is now to estimate mcov(pn, π̃) from below to show that under

this assumption, it would diverge. This would then imply, via the no-arbitrage

condition (11), that also E(pn) diverges, in contradiction to the uniform bound we

have derived in step 1.

To this aim, we define M1,M2 such that (x − E(π̃)(Rpn(x) − E(pn)) =: h(x) is

positive on (0,M1) and (M2,M) and negative on (M1,M2). This is possible since

x − E(π̃) and Rpn(x) − E(pn) are non-decreasing functions with sign changes in

E(π̃) and r := R−1
pn

(E(pn)), respectively. Then we estimate, using the bound on the

support of π̃:

mcov(pn, π̃) =
∫ M

0
(x − E(π̃)(Rpn(x) − E(pn)) dπ(x)

=

∫ M1

0
(x − E(π̃)(Rpn(x) − E(pn)) dπ(x)

+

∫ M2

M1

(x − E(π̃)(Rpn(x) − E(pn)) dπ(x)

=

∫ M

M2

(x − E(π̃)(Rpn(x) − E(pn)) dπ(x)

=: I0 + I1 + I2.
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We have to distinguish two cases, depending on whether or not r ≥ E(π̃):

C A: r ≥ E(π̃), i.e. M1 = E(π̃), M2 = r.

In this case, we have:

I0 + I1 ≥

∫ M1

0
(x − E(π̃)(Rpn(E(π̃)) − E(pn)) dπ(x)

+

∫ M2

M1

(x − E(π̃)(Rpn(E(π̃)) − E(pn)) dπ(x) ≥ 0.

Now we use the assumption that (pn) is not tight. It implies for all L > Rpn(r) and

n ≥ n0(L):

I2 =

∫ M

M2

(x − E(π̃)(Rpn(x) − E(pn)) dπ(x)

≥

∫ M

R−1
pn (L)

(Rpn(L) − E(π̃))(L − E(pn)) dπ(x)

≥

∫ M

R−1
pn (L)

(
R−1

pn0(L)
(L) − E(π̃)

)
(L − E(pn)) dπ(x)

= pn0(L)((L,+∞))
(
R−1

pn0(L)
(L) − E(π̃)

)
(L − E(pn))

> const.(L − E(pn)) → +∞, as L→ ∞.

Taking both estimates together, we have proved in this case that mcov(pn,m) →

+∞ as n→ ∞.

C B: r < E(π̃), i.e. M1 = r, M2 = E(π̃).

We decompose the maximum covariance analogously to step A and estimate:

I0 + I1 =

∫ r

0
(x − E(π̃))(Rpn(x) − E(pn)) dπ(x)

+

∫ E(π̃)

r
(x − E(π̃))(Rpn(x) − E(pn)) dπ(x)

≥

∫ r

0
(r − E(π̃))(Rpn(x) − E(pn)) dπ(x)

+

∫ E(π̃)

r
(r − E(π̃))(Rpn(x) − E(pn)) dπ(x)

= (r − E(π̃))
∫ E(π̃)

0
Rpn(x) dπ(x),

which is positive, since Rpn is non-decreasing, E(p) =
∫ M

0
Rpn(x) dπ(x) and hence∫ E(π̃)

0
Rpn(x) dπ(x) ≤ E(p)

∫ E(π̃)

0
dπ(x).
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For I2 we can now use essentially the same estimate as in step A which proves

that also in this case mcov(pn, π̃)→ ∞ as n→ ∞.

From the no-arbitrage condition (11) we can now immediately see that since

mcov(pn, π̃) → ∞, also E(pn) → ∞ as n → ∞ which contradicts the uniform

bound of E(pn) in (12).

Therefore (pn) is tight and we can apply Prokhorov’s Theorem to show the

existence of a weak-? limit p ∈ P for a subsequence of (pn).

S 3:

We denote the concave envelope of the utility function u by uc. For every p ∈ P

which satisfies (11) and therefore also (12), we can estimate with the help of

Jensen’s inequality:

U(p) ≤
∫ ∞

0
uc(x) dp(x) ≤ uc(E(p)) ≤ uc

R − E(π̃)
σ2 (E(π̃) − R)

1 − M
σ2

 < +∞.

Due to this uniform bound we can find a maximizing sequence (pn) of probability

measures satisfying (11) and using the results of step 2 we can extract a subse-

quence that converges weakly-? to a limit p ∈ P. It remains to prove that this

limit is indeed a solution of our maximization problem. In the remaining part of

the proof we write for simplicity (pn) for the subsequence (pn′) of (pn).

S 4:

Here we use the sublinearity of u and estimate for arbitrary L > 0:∣∣∣∣∣∫ ∞

0
u(x) dp −

∫ ∞

0
u(x) dpn

∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫ L

0
u(x) dp −

∫ L

0
u(x) dpn

∣∣∣∣∣∣
+

∣∣∣∣∣∫ ∞

L

u(x)
x

x dp −
∫ ∞

L

u(x)
x

x dpn

∣∣∣∣∣ .
Whereas the first term converges to zero as n→ ∞, since pn

?
⇀ p, the second can

be estimated as follows:∣∣∣∣∣∫ ∞

L

u(x)
x

x dp −
∫ ∞

L

u(x)
x

x dpn

∣∣∣∣∣ ≤ u(L)
L

∫ ∞

L
x d(p − pn)

≤
u(L)

L
|E(p) − E(pn)|.

Using again estimate (12), the integral is bounded. If we consider the limit
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L→ ∞, this expression becomes arbitrarily small, therefore, using an appropriate

sequence of L = L(n), we have proved that U(pn)→ U(p).

It only remains to be proved that p satisfies the no-arbitrage condition (11).

We first show that

E(p) ≤ R +
mcov(π̃,m)

σ2 (E(π̃) − R). (13)

To this end, we use the no-arbitrage condition for pn and (12) and estimate for any

sufficiently small ε > 0:

E(p) = (E(p) − E(pn) + E(pn)

=

∫ M

0
Rp(x) − Rpn(x) dπ + R

+
E(π̃) − R
σ2

(∫ M−ε

0
(Rpn(x) − E(pn))(x − E(π̃)) dπ

+

∫ M

M−ε
(Rpn(x) − E(pn))(x − E(π̃)) dπ

)
≤

∫ M−ε

0
Rp(x) − Rpn(x) dπ + R

+
E(π̃) − R
σ2

∫ M−ε

0
(Rpn(x) − E(pn))(x − E(π̃)) dπ

+

∫ M

M−ε
Rp(x) − Rpn(x) dπ +

∫ M

M−ε
Rpn(x) − E(pn)(x) dπ.

Since E(pn) is uniformly bounded, it converges at least for a subsequence to some

constant E. We can therefore pass to the limit as n→ ∞ and obtain:

E(p) ≤
∫ M

M−ε
Rp(x) dπ + R +

E(π̃) − R
σ2

(∫ M−ε

0
(Rp(x)(x − E(π̃)) dπ

− E
∫ M−ε

0
(x − E(π̃)) dπ

)
+ E

∫ M

M−ε
dπ.

We apply the identity∫ M

M−ε
(x − E(π̃)) dπ = −

∫ M−ε

0
(x − E(π̃)) dπ
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to derive

E(p) ≤
∫ M

M−ε
Rp(x) dπ + R +

E(π̃) − R
σ2

(∫ M−ε

0
(Rp(x)(x − E(π̃)) dπ

+ E
∫ M

M−ε
(x − E(π̃)) dπ

)
+ E

∫ M

M−ε
dπ.

This inequality holds for all sufficiently small ε > 0. We can therefore pass to the

limit and obtain, as ε→ 0 the no-arbitrage condition (13).

Now let us suppose this inequality were a strict inequality. Then we could im-

prove p by adding a certain outcome for sure while at the same time satisfying the

no-arbitrage condition (11) exactly. (We have seen in the proof of Theorem 2.13

how to do this.) This improved product p′ would by assumption have a larger

utility than p, i.e. U(p′) > U(p), but U(pn)→ U(p) as n→ ∞ and pn was defined

as a maximizing sequence for U. Therefore inequality (13) must in fact be an

equality and (11) holds for p.

Thus p is indeed a solution of our maximization problem, and we have proved

the existence result. �

It is also possible to characterize some features of solutions. In particular, we

have the following result:

Proposition 3.2. If u′(x) → 0 as x → ∞, and π̃ satisfies the assumptions from

Theorem 3.1, then an optimal financial product has a finite maximum return, i.e.

supp p is bounded.

We briefly sketch the proof:

Proof. Assuming that there exists an optimal p ∈ P with unbounded support that

can be represented by a function Rp, we define for ε > 0:

Rp′(x) :=

 Rp(x) + δ, for x ∈ (0,M − ε)

Rp(x) − ε, for x ∈ (M − ε,M),

where δ is chosen such that p′ satisfies the no-arbitrage condition (11). We define

κ :=
∫ M

M−ε
dπ(x). A lengthy, but straightforward computation shows then that

δ = O(εκ) and that

U(p′) − U(p) ≥ u′(E(π̃))(1 − κ)δ − u′(Rp(M − ε))κε + O(ε2κ).
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This is positive if ε > 0 is chosen small enough, since in this case Rp(M−ε)→ +∞

and therefore u′(Rp(M − ε))→ 0. Thus p cannot be optimal. �

What kind of problems may arise for the existence result if one replaces Ex-

pected Utility Theory by Prospect Theory? One main difference is the probability

weighting that will overweight extreme small probability events. This might com-

pensate for the diminishing marginal utility of large outcomes. It is, e.g., possible

to construct a p ∈ P with finite expected value but infinite PT-utility. This phe-

nomenon is essentially a new variant of the St. Petersburg Paradox, compare [16]

for details.

3.2 Numerical approximation

In order to compute optimal financial products numerically, the existence proof of

the previous section can give some rough guidance: the main idea is to optimize

in p rather than in T and to compute T for every given p and π̃ as the unique

co-monotone joint probability measure with marginals p and π̃. This approach

is much more efficient than an optimization in T , since the number of necessary

variables for an approximation is much smaller, as we will see in a moment.

We formulate this method for the case of finitely many states, since in a nu-

merical approximation T would be replaced by a matrix and p and π̃ would be

approximated by vectors. This corresponds mathematically to approximating p

and π̃ by sums of weighted Dirac measures:

Let x1, . . . , xN be the set of possible outcomes, where x1 < x2 < · · · < xN . We

want to find the optimal vector (p1, . . . , pN) of probabilities for these outcomes,

where pi ≥ 0, such that:

(i) The total probability is one: p1 + · · · + pN = 1.

(ii) The probability measure p =
∑N

i=1 piδxi maximizes (among all probability

measures of this form) a given utility U(p) subject to the constraint implied

by (12).

It is now clear why our approach is more efficient than a direct optimization

of T : if we approximate p and π̃ by N weighted Dirac measures each, then T is a
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N × N-matrix. A direct optimization of T would therefore be an optimization in

N2 rather than in N variables.

However, we also have to compute the co-monotone T (or at least its covari-

ance), given its marginals p and π̃ in an efficient way to make this idea working.

Such an algorithm could be obtained from the construction of Theorem 2.9 by

starting from an arbitrary joint probability measure with given marginals. It is,

however, possible to compute the covariance of the co-monotone joint probability

measure directly and at the same time more efficiently applying a simple algorithm

used in [15] in the context of transport plans:

Set i = j = 1, L = π̃1 and C=0.

Then, as long as i ≤ n or j ≤ N do the following:

• If L > p j then L = L − p j, C = C + p j(xi − E(p))(x j − E(π̃)).

• If L ≤ p j then L = 0, C = C + L(xi − E(p))(x j − E(π̃)).

• If L = 0 then i = i + 1, L = π̃i, otherwise j = j + 1.

This algorithm terminates since
∑N

i=1 π̃i = 1 =
∑N

j=1 p j. The variable C returns

the maximum covariance of p and π̃, i.e. C = mcov(p, π̃).

Using this algorithm, the constraint (11) can be computed without explicitly

knowing the joint probability measure T . The resulting finite constrained maxi-

mization problem can be solved with standard algorithms for nonconcave maxi-

mization.

This rough sketch of ideas should be sufficient to demonstrate the possibility

of solving this optimization problem also in a practical application, but naturally

there are still interesting open questions, e.g. regarding the quality of convergence

of this approximation.

3.3 Potential non-existence

In this section we come briefly back to the existence theorem of Section 3.1 and

sketch an example that demonstrates how one could get non-existence in certain

situations.
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The source of potential problems is most easily seen when relaxing the con-

strained of positive final wealth (i.e. optimizing in P(R) rather than in P(R+)). For

simplicity, we set

π̃ :=
1
2
δ−1 +

1
2
δ2, R = 0.

In this case, we can construct a sequence of probability measures

pn :=
1
2
δ−n+c(n) +

1
2
δn+c(n),

where c(n) is chosen such that pn satisfies the no-arbitrage condition (11). based

on this condition, we compute c(n), where we use that E(pn) = c(n), E(π̃) = 1/2,

var(π̃) = 3/2 and that R = 0:

c(n) =
mcov(pn, π̃)

var(π̃)
E(π̃)

=
1
3

((−n + c(n) − c(n))(−3/2) + (n + c(n) − c(n))(3/2))

= n.

Therefore if u is unbounded, U(pn) → +∞ as n → ∞, and we have obvi-

ously non-existence. But even if u is bounded, but strictly increasing, U(pn)

is strictly increasing for n → ∞, but converges weakly-? to p := 1
2δ0, thus

U(p) < limn→∞U(pn). Hence also in this case, an existence proof is not pos-

sible.

We see that the fundamental problem is that mcov(pn, π̃) and E(pn) simulta-

neously tend to infinity. This problematic phenomenon that can, as we have just

seen, lead to non-existence, can only be excluded under additional conditions like

the one we introduced in our existence result. It is an interesting question for

future work to what extend these conditions can be relaxed.

4 Applications to barrier products

Are there any successful financial products on the market that are not co-mono-

tone? In fact there are some examples, and in this section we want to have a look
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on one of them which became quite popular in the last years, the so-called down-

and-out barrier products. A barrier product, in its simplest form, is an investment

in a certain underlying that guarantees capital protection as long as the prize of the

underlying does not fall below a certain threshold, the “barrier level”. In the case

of a “down-and-out” barrier product, once the underlying is below the threshold,

the capital protection is gone and is also not recovered by future increases above

the barrier level. The payoff diagram of such a product at maturity is schematically

illustrated in Figure 1.

return of product

return of underlying

if barrier 
is not hit

if barrier 
has been hit

Figure 1: Payoff diagram of a down-and-out barrier product.

The joint probability distribution of this product is obviously not co-monotone

if we assume a CAPM market, since its support contains the whole diagonal, but

also parts of the x-axis of the above diagram. Therefore, independently of the

stochastic process of the underlying, the product is not optimal, neither regard-

ing the zero reference point nor the reference point of the underlying (compare

Prop. 2.18 and Prop. 2.20).

To compute the “optimized” variant, e.g. with respect to the zero return, we

need to know the stochastic process determining the underlying, in order to calcu-

late the probability distribution of the product. Once this is done, the monotoniza-
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tion could be done numerically with the method of Theorem 2.6. In this special

case, however, we can even perform the monotonizing analytically:

Proposition 4.1 (Monotonized barrier product). Let T ∈ P(R2) be the joint prob-

ability measure of the market return m ∈ P and the return p ∈ P of the down-

and-out barrier product at maturity. Assume for simplicity that m is absolutely

continuous. Let B be the barrier level. Let Rp be defined by

Rp(x) :=


0 for x ∈ [x0, 0],

P−1(M(x)) for x ∈ [B, x0),

x otherwise,

where x0 := sup
{
x ∈ R |m([x0, 0]) ≥ T ([B, 0) × {0})

}
, P(x) := p((−∞, x]) and

M(x) := m((−∞, x]).

Then the alternative product Topt := (Id × Rp)#m that yields the payoff Rp(x)

when the market return is x, generates the same return p, i.e. pr2(Topt) = p, but

has a lower price.

Proof. We need to verify that pr2(Topt) = p. It is clear that (pr2(Topt))({0}) =

m([x0, 0]) = T ([B, 0] × {0}) = p({0}). Hence, we only need to check the condition

for y ∈ (B, 0). There, we have:

(pr2(Topt))(y) =
m(R−1

p (y))

R′p(R−1
p (y))

.

We compute

R′p(x) =
d
dx

(P−1(M(x))) = (P−1)′(M(x)) · m(x),

thus

(pr2(Topt))(y) =
m(R−1

p (y))

(P−1)′(M(R−1
p (y))) · m(R−1

p (y))
.

Now since (P−1)′ = 1/P′(P−1) and P−1(M(x)) = Rp(x), this simplifies to

(pr2(Topt))(y) = P′(P−1(M(R−1
p (y))) = p(y).
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return of product

return of underlying

x0B

Figure 2: Payoff diagram of the optimized product, yielding the same return dis-

tribution for a lower price.

Since Topt is co-monotone by construction (Rp is non-decreasing) and T is not co-

monotone (as we have seen), but U(Topt) = U(p) = U(T ), we can apply Prop. 2.18

to see that T cannot be optimal. �

The optimized product (see Figure 2) yields precisely the same return distri-

bution for the customer, but will be cheaper to hedge for the bank.5 This raises the

question why barrier products are nevertheless so successful. What is wrong with

our theory in this case?

One possibility is that we assumed here that the market can be described by

CAPM. This strong assumption could be the reason for the discrepancy between

their theoretical non-optimality of down-and-out barrier products and their high

popularity. Another possible explanation is that the optimized product might be

more difficult to hedge then the down-and-out barrier product.

The most likely answer, however, might be a very different one which is based

on the perception of the customer: it seems likely that customers underestimate

5There is no arbitrage opportunity here, since the optimized product will yield a lower return

in some states!
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the probability that the barrier is hit at some point in time before maturity with

respect to the probability that the prize is below the barrier level at maturity. How

different are these two probabilities in reality? We measured this using the Dow

Jones Industrial Index and assuming an arbitrary issue date between January 1,

1985 and December 31, 2004 and a maturity of one year. Figure 3 shows the

probability that the barrier was hit at some point within a year and the probability

that the prize was below the barrier level after one year for various barrier levels.

The quotient between these probabilities is depicted in Figure 4. In particular for

relatively low barrier levels between 70-80% as they are also quite frequently used

in real barrier products, this quotient is quite big.

0

0.1

0.2

0.3

0.4

0.5

0.6

<97% <94% <91% <88% <85% <82% <79% <76% <73%

Barrier level

P
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b
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b
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it

y

Figure 3: Probability to hit the barrier at maturity (lower line) or at some point

before (upper line). The latter corresponds to the probability to lose capital pro-

tection in a down-and-out barrier product.

How do customers estimate these probabilities? Do they see the big difference

between the two variants or do they underestimate the difference and could this

explain why customers choose the (sub-optimal) down-and-out barrier product?

We performed an anonymous classroom experiment with a sample of N = 109
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Figure 4: The quotient of the two probabilities is increasing steeply for low barrier

levels. This effect is likely to be underestimated by investors.

undergraduate students of economics and finance from the University of Zurich.

We asked the students to estimate the probabilities of the events “Dow Jones In-

dex is X% lower after one year” and “Dow Jones Index is X% lower at some point

during one year” for X = 10 and X = 20, where we specified that we are asking

based on the historical data from 1985 to 2004. In other words, the participants

had to estimate the probabilities from Figure 3. The choice of the sample im-

plied a fundamental knowledge on stock market development that was needed to

comprehend and perform the task. Moreover we controlled for order effects.

The results demonstrate that although the overall estimation of the probabili-

ties was quite good, the relative difference between the two different probabilities

was systematically underestimated. 42% of the participants were not even esti-

mating an increase in this relative difference when increasing X from 10 to 20.

This leads to a systematic underestimation of the risks involved in down-and-out

barrier products and a systematic over-estimation of the risks involved in barrier

products without down-and-out feature. In this way we can understand the high
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Real probabilities Estimates by participants

(historical data) Median Average

Probability that DJI is... -10% -20% -10% -20% -10% -20%

...lower at maturity 10.0% 1.0% 15% 5% 21.8% 14.2%

...lower at some point 32.0% 18.0% 30% 15% 41.4% 27.1%

Relative difference 3.2 17.5 2.0 3.0 1.9 1.9

Table 1: Real and estimated probabilities for the Dow Jones Index data. The re-

sults show a large misestimation of the relative difference between the two proba-

bilities.

popularity of down-and-out barrier products and why optimized products as we

have constructed them in Proposition 4.1 are not visible in the market.

5 Conclusions

We have seen that every optimal financial product is co-monotone with the in-

verted state price density. This holds regardless of the preferences under consid-

eration, as long as they measure performance relative to an index which is a non-

decreasing function of the inverted state price density. The result is applicable

particularly for an investor who only considers absolute returns of his investment.

In the special case of a market that can (at least to some extend) be described

by the Capital Asset Pricing Model, this implies that optimal portfolios for an in-

vestor who is only interested in the absolute returns of his portfolio “follow the

market”, i.e. their return is the better, the better the return of the market portfo-

lio. This monotonicity also holds for an investor who is only interested in relative

performance with respect to the market return. Again, in both instances the un-

derlying decision model can be chosen arbitrarily (e.g. Expected Utility Theory,

Mean-Variance or Prospect Theory). Moreover, we have showed that for an in-

vestor whose utility only depends on the relative return of his investment only

financial products that are at least as risky as the market portfolio can be optimal.

In the case of a concave von Neumann-Morgenstern utility investor, an optimal
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investment even has to be riskier than the market portfolio.

The main fundamental assumptions of these results were homogeneous beliefs

and no background risk. Moreover we assumed complete and arbitrage-free mar-

kets. The assumptions on the investor’s preferences were, however, very weak.

In this way, we have extended previous work by Dybvig [5] in several directions:

allowing for arbitrary state spaces, general probability measures, general prefer-

ences, and even preferences that are depending on the relative performance with

respect to a benchmark (e.g. the state price density or the market return).

These results are certainly of theoretical interest, but we also showed some

practical applications: first, we studied a new method for the construction of opti-

mal financial products, based on the idea of finding the optimal return distribution

among all probability measures satisfying the no-arbitrage condition. This ap-

proach makes it necessary to study existence of optimal financial products. We

proved an existence result using ideas from calculus of variations and outlined

a numerical algorithm for obtaining optimal financial products based on the in-

vestor’s preferences. Some remarks on situations where existence fails, underline

the role of some of the assumptions we had made in the existence theorem.

The second application was in the context of a special, currently very popular

financial product, the so-called down-and-out barrier options. Under the simpli-

fying assumption of a CAPM market, we could show that such products cannot

be optimal. Given their widespread use, this is certainly a puzzle. Its solutions

probably lies less in the well-known deficits of the CAPM, but likely they are

instead based on a wrong perception that investors have regarding the probabil-

ities involved in the set-up of the product. This hypothesis is supported by the

experimental data we collected that demonstrated a systematic misestimation of

the relevant probabilities.

Implications of our results to design and evaluation of structured products are

an interesting field for further research.
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