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Abstract. The purpose of this paper is to detect pedestrians from im-
ages. This paper proposes a method for extracting feature descriptors
consisting of co-occurrence histograms of oriented gradients (CoHOG).
Including co-occurrence with various positional offsets, the feature de-
scriptors can express complex shapes of objects with local and global
distributions of gradient orientations. Our method is evaluated with a
simple linear classifier on two famous pedestrian detection benchmark
datasets: “DaimlerChrysler pedestrian classification benchmark dataset”
and “INRIA person data set”. The results show that proposed method
reduces miss rate by half compared with HOG, and outperforms the
state-of-the-art methods on both datasets.

Keywords: Pedestrian detection, CoHOG, co-occurrence histograms of
oriented gradients, co-occurrence matrix.

1 Introduction

Detecting pedestrians in images is essential in many applications such as auto-
matic driver assistance, image surveillance, and image analysis. Extensive variety
of postures and clothes of pedestrians makes this problem challenging.

Many types of feature descriptors have been proposed for pedestrian detection.
Gavrila et al. used templates of pedestrian contours with chamfer matching [1],
and LRF (Local Receptive Fields) with a quadratic SVM classifier [2]. They also
combined those feature descriptors [3]. LRF are weight parameters of hidden
layers of neural network which extract local feature of pedestrians. Viola et al.
proposed a motion feature descriptor and combined it with cascaded AdaBoost
classifier [4]. Papageorgiou et al. used SVM-based parts detectors with Haar
wavelet feature and integrated them with SVM [5], [6].

Recently, using gradient-orientation-based feature descriptors, such as SIFT
(Scale Invariant Feature Transform) [7] and HOG (Histograms of Oriented Gra-
dients) [8], is a trend in object detection [9], [10]. Those feature descriptors are
also used for pedestrian detection [8],[11],[12],[13]. Shashua et al. used body parts
detectors using SIFT [11] and Mikolajczyk et al. also used jointed SIFT with an
SVM classifier [12]. Dalal et al. proposed HOG and combined it with an SVM
classifier [8], and also extended their method to motion feature descriptors [13].
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(a) Single (b) Paired

Fig. 1. Vocabulary of gradient orientations. Though (a) a single gradient orientation
has only eight varieties, (b) a pair of them has many more varieties than the single
one.

Some multiple-edge-based feature descriptors also have been proposed. Wu et
al. proposed edgelet feature descriptor which expresses long curves of edges [14].
Sabzmeydani et al. proposed shapelet feature descriptor based on selected edges
by AdaBoost [15]. Since shapelets are the combination of edges, they can express
more detailed shape information than what SIFT/HOG feature descriptors can.

We propose a multiple-gradient-orientation-based feature descriptor named
“Co-occurrence Histograms of Oriented Gradients (CoHOG)”. CoHOG is his-
tograms of which a building block is a pair of gradient orientations. Since the pair
of gradient orientations has more vocabulary than single one as shown in Fig. 1.
CoHOG can express shapes in more detail than HOG, which uses single gra-
dient orientation. Benchmark results on two famous datasets: DaimlerChrysler
pedestrian classification benchmark dataset and INRIA person data set, show
the effectiveness of our method.

The rest of this paper is organized as follows: Section 2 explains the outline
of our pedestrian detection approach; Section 3 briefly explains HOG, and then
describes our feature descriptor; Section 4 shows experimental results on two
benchmark datasets; The final section is the conclusion.

2 Outline of Our Approach

In most pedestrian detection tasks, classification accuracy is the most important
requirement. The performance of the system depends on the effectiveness of
feature descriptors and the accuracy of classification models.

In this paper, we focus on the feature descriptor. An overview of our pedes-
trian detection processes is shown in Fig. 2. The first two parts extract feature
descriptors from input images, and then the last part classifies and outputs clas-
sification results. We propose a high-dimensional feature descriptor in Section 3.
Our feature descriptor is effective for classification, because it contains building
blocks that have an extensive vocabulary.
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Fig. 2. Our classification process. We combine strong feature descriptor CoHOG and a
conventional simple classifier. Our classification process consists of three parts: (a) com-
putation of gradient orientations from input images, (b) computation of CoHOG from
gradient orientations, and (c) classification with linear SVM classifier which is fast at
learning and classification.

If the feature descriptor is informative enough, a simple linear classifier can
detect pedestrians accurately. We use a linear classifier obtained by a linear
SVM [16] which works fast at learning and classification.

3 Gradient Orientation Based Feature Descriptor

3.1 Histograms of Oriented Gradients (HOG)

We briefly explain the essence of the HOG calculation process with Fig. 3. In
order to extract HOG from an image, firstly gradient orientations at every pixel
are calculated (Fig. 3(a)). Secondly a histogram of each orientation in a small
rectangular region is calculated (Fig. 3(b)). Finally the HOG feature vector is
created by concatenating the histograms of all small regions (Fig. 3(c)).

HOG has two merits for pedestrian detection. One merit is the robustness
against illumination variance because gradient orientations are computed from
local intensity difference. The other merit is the robustness against deformations
because slight shifts and affine deformations make small histogram value changes.

3.2 Co-occurrence Histograms of Oriented Gradients (CoHOG)

We propose a high-dimensional feature “Co-occurrence Histograms of Oriented
Gradients (CoHOG)”. Our feature uses pairs of gradient orientations as units,

Fig. 3. Overview of HOG calculation
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Fig. 4. Co-occurrence matrix of gradient orientations. It calculates sums of all pairs of
gradient orientations at a given offset.

Fig. 5. Overview of CoHOG calculation

from which it builds the histograms. The histogram is referred to as the co-
occurrence matrix, hereafter. The co-occurrence matrix expresses the distribu-
tion of gradient orientations at a given offset over an image as shown in Fig. 4.
The combinations of neighbor gradient orientations can express shapes in detail.
It is informative for pedestrian classification. Mathematically, a co-occurrence
matrix C is defined over an n×m image I, parameterized by an offset (x, y), as:

Cx,y(i, j) =

n
∑

p=1

m
∑

q=1

{

1, if I(p, q) = i and I(p + x, q + y) = j

0, otherwise.
(1)
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Fig. 6. Offsets of co-occurrence matrices. Offsets are smaller than the large dashed-
circle. The center small white-circle and the other 30 dark-circles are paired. We cal-
culate 31 Co-occurrence matrices with different offsets including zero offset.

Fig. 7. Offset values of (a) (1, 1) and (b) (−1, −1) are different, but they behave as
same as the other in the calculation of co-occurrence matrix

1: given I : an image of gradient orientation
2: initialize H ← 0
3: for all positions (p, q) inside of the image do

4: i ← I(p, q)
5: k ← the small region including (p, q)
6: for all offsets (x, y) such that corresponds neighbors do

7: if (p + x, q + y) is inside of the image then

8: j ← I(p + x, q + y)
9: H(k, i, j, x, y) ← H(k, i, j, x, y) + 1

10: end if

11: end for

12: end for

Fig. 8. Implementation of CoHOG calculation. The bins of histogram H are initialized
to zero before voting. All pixels in the gradient orientation image I are scanned, and
bins of H corresponding to pixels are incremented.

CoHOG has robustness against deformation and illumination variance for the
same reasons as HOG, because CoHOG is gradient based histogram feature
descriptor.

We describe the processes of CoHOG calculation shown in Fig. 5. Firstly, we
compute gradient orientations from an image by

θ = arctan
v

h
, (2)
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where v and h are vertical and horizontal gradient respectively calculated by
Sobel filter, Roberts filter, etc. We label each pixel with one of eight discrete
orientations or as no-gradient (Fig. 5(a)). All 0◦ – 360◦ orientations are divided
into eight orientations per 45◦. No-gradient means

√
v2 + h2 is smaller than a

threshold. Secondly, we compute co-occurrence matrices by Eq. (1) (Fig. 5(b)).
The offsets we used are shown in Fig. 6. By using short-range and long-range
offsets, the co-occurrence matrix can express local and global shapes. We do not
use half of the offsets, because they behave as same as the others in calculation
of co-occurrence matrix as shown in Fig. 7. The dashed-circle is the maximum
range of offsets. We can get 31 offsets including a zero offset. The co-occurrence
matrices are computed for each small region (Fig. 5(c)). The small rectangular
regions are tiled N × M , such as 3 × 6 or 6 × 12, with no overlapping. Finally,
the components of all the co-occurrence matrices are concatenated into a vec-
tor (Fig. 5(d)).

Since CoHOG expresses shapes in detail, it is high-dimensional. The dimen-
sion is 34, 704, when the small regions are tiled 3 × 6. From one small region,
CoHOG obtains 31 co-occurrence matrices. A co-occurrence matrix has 64 com-
ponents (Fig. 4(c)). The co-occurrence matrix calculated with zero offset has only
eight effective values because non-diagonal components are zero. Thus CoHOG
obtains (64 × 30 + 8) × (3 × 6) = 34, 704 components from an image. In fact,
the effective values are fewer than 34, 704, because co-occurrence matrices have
multiple zero valued components. Zero valued components are not used in clas-
sification, because their inner product is zero at all times. Nevertheless, CoHOG
is a more powerful feature descriptor than HOG.

The implementation of CoHOG is simple. An example of CoHOG implementa-
tion is shown in Fig. 8. We can calculate CoHOG by only iterating to increment
the components of co-occurrence matrices, whereas HOG calculation includes
more procedures, such as orientation weighted voting, histogram normalization,
region overlapping, and etc. CoHOG can achieve high performance without those
complex procedures.

4 Experimental Results

We evaluated the performance of CoHOG by applying our method to two pedes-
trian image datasets: the DiamlerChrysler dataset [2] and the INRIA dataset [8],
which are widely used pedestrian detection benchmark datasets. The Daim-
lerChrysler dataset contains human images and non-human images cropped
into 18 × 36 pixels. the INRIA dataset contains human images cropped 64 × 128
pixels and non-human images of various sizes. The details of those datasets are
shown in Table 1, and some samples of the datasets are shown in Fig. 9.

Because the size of the images are different, in our method we divided the
DiamlerChrysler dataset images into 3×6 small regions, and the INRIA dataset
images into 6 × 12 small regions. Thus the dimension of our feature is 34, 704
on the DiamlerChrysler dataset, and quadruple that on the INRIA dataset. We
used a linear SVM classifier trained with LIBLINEAR [17] which solves linear
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Table 1. Pedestrian detection benchmark datasets

(a) DaimlerChrysler dataset

Dataset Name DaimlerChrysler Pedestrian Classification Benchmark Dataset

Distribution site http://www.science.uva.nl/research/isla/downloads/pedestrians/

Training data 4,800 × 3 human images
5,000 × 3 non-human images

Test data 4,800 × 2 human images
5,000 × 2 non-human images

Image size 18 × 36 pixels

(b) INRIA dataset

Dataset Name INRIA Person Data Set

Distribution site http://pascal.inrialpes.fr/data/human/

Training data 2,716 human images
1,218 non-human images (10 regions are randomly sampled per an
image for training.)

Test data 1,132 human images
453 non-human images

Image size Human images are 64 × 128 pixels
Non-human images are various size (214 × 320 – 648 × 486 pixels)

(a) DaimlerChrysler dataset

(b) INRIA dataset

Fig. 9. Thumbnails of (a) DaimlerChrysler dataset and (b) INRIA dataset. Upper rows
are images of humans and lower rows are images of non-humans in each dataset.
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Fig. 10. Performance of our methods on (a) DaimlerChrysler dataset and (b) IN-
RIA dataset. We compared our method with several previous methods. Our method
shows the best performance on the DaimlerChrysler dataset. Miss rate improves more
than 40% from that of the state-of-the-art method at a false positive rate of 0.05. On
the INRIA dataset, our method decreased miss rate by 30% from that of the state-of-
the-art method at a FPPW of 10−6. Our method reduces miss rate by half compared
with HOG on both datasets.
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SVM learning problems much faster than previous solvers such as LIBSVM [18]
and SVMLight [19].

We compared our method with five previous methods [8], [2], [20], [15], [21].
All the methods use different features and classifiers: Dalal et al. used HOG,
and RBF kernel SVM and linear SVM [8]; Gavrila et al. used local receptive
fields (LRF) and quadratic SVM [2]; Dollar et al. used Haar wavelet and Ada-
Boost [20]; Sabzmeydani et al. used shapelet and AdaBoost [15]; and Maji
et al. used multi-level oriented edge energy features and intersection kernel
SVM (IKSVM) [21].

The comparison of their performances is shown in Fig. 10. The results of
previous methods are traced from the original papers except the performance
of HOG on the DaimlerChrysler dataset, because it is not shown by Dalal et
al. We show it based on the result of our experiment. The parameters of HOG
are as follows: Nine gradient orientations in 0◦–180◦, cell size of 3 × 3 pixels,
block size of 2 × 2 cells, L2Hys normalized. The classifier is an RBF-kernel
SVM. In Fig. 10(a), ROC (Receiver Operating Characteristic) curves on the
DaimlerChrysler dataset are shown. An ROC curve further towards the top-left
of the diagram means better performance. The results show that our method
achieved the best detection rate at every false positive rate. Our method reduced
the miss rate (= 1 − detection rate) by about 40% from the state-of-the-art
method at a false positive rate of 0.05; the miss rate of our method is 0.08 and
that of Dollar et al., the second best, is 0.14.

In Fig. 10(b), DET (Detection Error Tradeoff) curves on the INRIA dataset
are shown. A DET curve further towards the bottom-left of the diagram means
better performance. The results show that the performance of our method is the
best at low FPPW (False Positive Per Window) and comparable to the state-of-
the-art method at other FPPW. Our method reduced miss rate by about 30%
from the state-of-the-art method at a FPPW of 10−6; the miss rate of of our
method is 0.12 and the that of Maji et al. is 0.17. The performance at low FPPW
is important for pedestrian detection, because most of the pedestrian detection
systems work at low FPPW to improve usability with few false positives.

The results show that our method is better than the state-of-the-art methods
or at least comparable. Furthermore, they show the stability of our method; the
performance of the method of Dollar et al. is not good on the INRIA dataset and
the method of Maji et al. is not good on the DaimlerChrysler dataset, however,
the performance of our method is consistently good on both datasets. Though
our method uses a linear classifier which is simpler than an RBF-kernel SVM
classifier used with HOG, the miss rate of our method is less than half that of
HOG.

5 Conclusion

In this paper, we proposed a high-dimensional feature descriptor “Co-occurrence
histograms of oriented gradients (CoHOG)” for pedestrian detection. Our fea-
ture descriptor uses pairs of gradient orientations as units, from which it builds
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histograms. Since the building blocks have an extensive vocabulary, our feature
descriptor can express local and global shapes in detail. We compared the classi-
fication performance of our method and several previous methods on two famous
datasets. The experimental results show that the performance of our method is
better than that of the state-of-the-art methods or at least comparable, and
consistently good on both datasets. The miss rate (i.e. the rate of human images
classified as non-human) of our method is less than half that of HOG. Future
work involves applying the proposed feature descriptor to other applications.
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