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Dear Sirs,

Amyotrophic lateral sclerosis (ALS) is a progressive neuro-
degenerative disorder causing selective loss of motor neu-
rons in brain motor cortex and spinal cord in which mus-
cle denervation and atrophy are associated with pyramidal 
involvement, typically spreading to contiguous muscular 
regions and leading eventually to a fatal paralysis. The 
pathogenic role of mitochondrial dysfunction in ALS has 
been investigated as there is evidence of morphological and 
biochemical mitochondrial abnormalities, both in patient 
tissues and animal models, suggesting their significant con-
tribution to motor neurons degeneration since early phases 
of ALS [1]. Here, we report two ALS cases carrying the 
m.11778A > G/MT-ND4 (R340H) mitochondrial DNA 
(mtDNA) mutation pathogenic for Leber’s hereditary optic 
neuropathy (LHON), a maternally inherited disease due to 
mtDNA mutations affecting complex I function and usually 
leading to isolated optic atrophy [2].

Both patients had positive family history for 
LHON and were followed on a regular basis. Routine 

neuro-ophthalmological evaluation included visual acu-
ity, fundus oculi pictures, Optical Coherence Tomography 
(OCT Stratus, Zeiss) and computerized visual fields (VF 
Humphrey, Zeiss). LHON mutations were investigated by 
complete mtDNA sequencing, as previously reported [3]. 
ALS diagnosis was established using Awajii criteria [4]. 
The clinical and instrumental workout included: neuro-
logical examination, electromyography, and brain MRI. A 
complete blood exam screening was performed to exclude 
autoimmune and paraneoplastic mimics. Patient 2 also 
performed muscle biopsy on the left biceps. A targeted 
multigenic Next Generation Sequencing (NGS) panel for 
neurodegenerative disorders was carried out, including ALS-
associated genes (list of genes available upon request), in 
both patients [5]. We compared age at onset and disease 
duration of our patients with an extensive dataset from our 
local ALS registry (BoReALS registry), collected from 2010 
to 2019 at the Bellaria Hospital (Bologna, Italy), composed 
of 330 ALS patients (55 with a genetic diagnosis in one of 
the major ALS-associated genes FUS, SOD1, TDP43 and 
C9orf72), 232 of which with spinal and 98 with bulbar onset 
[5]. This study was performed in accordance with the ethi-
cal standards of our institution and with the 1964 Helsinki 
declaration.

Case 1 (female) presented subacute bilateral vision loss 
at age 26. She carried the homoplasmic m.11778A > G/MT-
ND4 mtDNA mutation associated with LHON and other 
maternal relatives were similarly affected (pedigree on 
Fig.  1A). Neuro-ophthalmological follow-ups showed 
a severe bilateral optic atrophy at fundus examination 
(Fig. 1C) and OCT, with counting fingers as residual visual 
acuity. At age 73, she developed progressive hyposthenia 
of the right lower limb, spreading in 7 months to homo and 
contralateral muscular regions and in 10 months to bulbar 
region (timeline in Fig. 1A). Diagnosis of clinically definite 
ALS was made 11 months after onset. Neurological workout 
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Fig. 1   Case 1. Panel A Pedigree 
and clinical history, the proband 
is pointed by arrow. Panel 
B Results of the neurologi-
cal workout. Panel C Fundus 
imaging showing bilateral optic 
atrophy with prevalent temporal 
pallor (right eye on the left, 
left eye on the right). Panel D 
Brain MRI. On the left, axial 
GE T2* sequence showing 
bilateral hypointensity of the 
motor cortex due to deposition 
of ferromagnetic material (black 
arrow). On the right, coronal 
FLAIR T2-weighted sequence 
displaying hyperintensity of 
the cortico-bulbar tract (white 
arrow). Acronyms: RLL Right 
Lower Limb, RUL Right Upper 
Limb, LLL Left Lower Limb, 
LUL Left Upper Limb, LMN 
Lower Motor Neuron, UMN 
Upper Motor Neuron, RE Right 
Eye; LE Left Eye, EMG electro-
myography
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results are shown in Fig. 1B and brain MRI in Fig. 1D. She 
died 18 months after onset because of respiratory failure.

Case 2 (female) was an unaffected carrier of the 
m.11778A > G/MT-ND4 mutation, with a nephew affected 
by LHON (pedigree on Fig. 2A). At neuro-ophthalmological 
evaluation there was no evidence of optic atrophy and OCT 
was normal except for a slight increase of retinal nerve fiber 
layer thickness in the temporal quadrant, compatible with 
the LHON mutation carrier status (Fig. 2C). At age 74, she 
presented progressive dysphagia and dysarthria, leading in 
10 months to positioning of percutaneous endoscopic gas-
trostomy. In 12 months after onset, she developed dyspnea 
and proximal hyposthenia (timeline in Fig. 2A), meeting the 
diagnostic criteria for definite ALS (clinical-instrumental 
results are shown in Fig. 2B and D). She rapidly worsened 
and died 22 months after onset for respiratory failure. Mus-
cle biopsy (Fig. 2E) showed evidence of subsarcolemmal 
proliferation of mitochondria and two ragged-red-fibers 
(RRF), with scattered cytochrome-c-oxidase (COX) negative 
fibers and multiple atrophic fibers with a neurogenic pattern.

The complete mtDNA sequencing, beside the LHON-
associated mutation (homoplasmic m.11778A > G/MT-
ND4 in both cases, on U6a5 and H1b haplogroup, 
respectively), disclosed in case 1 a second homoplasmic 
m.10192C > T/MT-ND3 (p.Ser45Phe) variant, which is pre-
dicted as possibly pathogenic and affects the same codon of 

a pathogenic mutation (m.10191 T > C; p. Ser45Pro) asso-
ciated with a spectrum of phenotypes [6], but leading to a 
different amino acid change. This variant is rarely observed 
in the general population (93 cases in GenBank) indicating 
that is a polymorphism. Case 2 mtDNA was unremarkable 
except for the m.11778A > G/MT-ND4 mutation.

The NGS panel revealed variants of interest in both 
patients. Case 1 carried the c.142A > C, p.Lys48Gln het-
erozygous variant in the CHMP2B gene (OMIM #609512, 
phenotype: Frontotemporal dementia and/or amyotrophic 
lateral sclerosis 7, autosomal dominant). The variant is novel 
and is classified as of uncertain significance with minor 
pathogenic evidence according to the ACMG classification. 
Case 2 carried the c.587C > T p.Pro196Leu heterozygous 
variant in the PINK1 gene (#OMIM 608309, phenotype: Par-
kinson’s disease 6, early onset, autosomal recessive). This 
variant was reported in a patient with sporadic Parkinson’s 
disease and is classified as of uncertain significance [7].

We compared age at onset and disease duration of our two 
patients with demographic data from the BoReALS registry 
[5]. Median age of onset and disease duration of all 330 ALS 
patients were 63 years (range 27–87) and 35 months (range 
4–169), respectively. Excluding the 55 cases with a genetic 
diagnosis in the most frequent ALS genes, which may have 
an earlier onset, the median age of onset was 64 years and 
the disease duration 38 months. Patients with spinal form 

Fig. 2   Case 2. Panel A Pedigree and clinical history, the proband is 
pointed by arrow. Panel B Results of the neurological workout. Panel 
C OCT showing normal optic nerve appearance with slight increase 
of RNFL thickness in temporal sector, right eye (up) more than left 
eye (down). Panel D Brain MRI. On the left, axial GE T2* sequence 
showing atrophy and hypointensity of the right motor cortex (black 
arrow). On the right, axial FLAIR T2-weighted sequence displaying 
hyperintensity of the cortico-spinal bundle in the internal capsule 
(white arrow). Panel E Muscle biopsy. A ragged red fiber is shown on 
Gomori trichrome stain (E.1) and hematoxylin-eosin stain (E.2) indi-
cating a peripheral accumulation of abnormal mitochondria. With the 

combined cytochrome oxidase (COX)/succinic dehydrogenase (SDH) 
staining scattered fibers devoided of COX activity were observed 
(E.3) together with fibers showing subsarcolemmal mitochondrial 
proliferation (E.4). The adenosine triphosphatase (ATPase) staining, 
ph 9.4, showed neurogenic changes with angulated, atrophic fibers 
(E.5) and fiber type grouping (E.6). Acronyms: RLL Right Lower 
Limb, RUL Right Upper Limb, LLL Left Lower Limb, LUL Left 
Upper Limb, LMN Lower Motor Neuron, UMN Upper Motor Neu-
ron, RE Right Eye; LE Left Eye, OCT Optic Coherence Tomography, 
RNFL Retinal Nerve Fiber Layer, EMG electromyography
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had a median age at onset of 62 years (range 33–86) and 
41 months (range 4–133) of disease duration. In patients 
with bulbar onset, median age at onset was 67 years (range 
37–87) and the disease duration 29 months (range 5–119). 
Thus, in comparison, both our cases presented a delayed 
onset of ALS at 73–74 years (10 years later even exclud-
ing the genetic cases), and shortened disease duration of 
20 ± 2 months (about 15–18 months shorter).

We reported the unique association of ALS co-occur-
ring with LHON mutations, one of the probands being 
also affected with optic atrophy. Notably, both cases were 
remarkable for a relative late onset of ALS and aggressive 
course of disease. We consider the co-occurrence of ALS 
and LHON in these two patients as coincidental. Neverthe-
less, we argue that intrinsic mitochondrial dysfunction due 
to the LHON mutation may have acted as modifying factor 
in the natural history of ALS, in light of the rapid disease 
course observed in both patients. Thus, we conclude that 
mtDNA should be systematically re-valuated as genetic 
modifier in ALS.

A wide body of evidence documents mitochondrial dys-
function in patients with either sporadic or genetic forms of 
ALS [8]. In addition to the metabolic defect, alterations in 
mitochondrial dynamics and transport have been observed 
either in fibroblasts or neurons from patients as well as in 
animal models mutant for SOD1, FUS or TDP-43 genes [9]. 
Increased proportion of COX-negative and RRF fibres, hall-
marks of mitochondrial dysfunction, have been described in 
skeletal muscle of ALS patients [10], along with the typi-
cal pattern of denervation with clustered atrophic fibres and 
fibre type-grouping. The muscle biopsy of our patient (case 
2) documented indeed a few RRFs, which are unusual in 
LHON carriers, normally displaying only modest subsar-
colemmal compensatory proliferation of mitochondria [11].

The role of mtDNA mutations in ALS remains poorly 
investigated. Pathogenic mtDNA mutations have been found 
in ALS phenocopies with a primary mitochondrial disorder 
[12] and, more recently, mutations in nuclear genes, such as 
CHCHD10, have been associated with ALS and mitochon-
drial myopathy with accumulation of mtDNA multiple dele-
tions [13]. Case 1 presented an adjunctive mtDNA variant 
and both patients carried variants of uncertain significance 
in nuclear genes, which could contribute more directly to 
ALS pathogenesis, possibly worsening mitochondrial dys-
function. Indeed, deficits in mitochondrial activity have been 
shown in induced pluripotent stem cells (iPSC)-derived neu-
rons from CHMP2BIntron5 mutated patients [14]. Despite 
PINK1 is not an ALS causative gene, its altered expression at 
both mRNA and protein levels have been identified in ALS 
patients’ muscle [15]. This scenario of multiple variants, in 
nuclear and mitochondrial genomes, possibly contributing 
to multilayered mitochondrial dysfunction, highlights the 
complexities of the genetic background in sporadic ALS. 

Recently, one of the largest studies ever on ALS pointed to 
the burden of multiple risk factors disclosed in the nuclear 
genome, missing however to consider the impact of mtDNA 
variation [16].

LHON mutations rarely present with other neurological 
symptoms, defining the so-called “LHON-plus” phenotype 
[2]. Amongst these, “Harding’s disease” is the debated 
association of LHON with multiple sclerosis, most likely 
due to chance again, but for which a reciprocal modifying 
effect leading to a distinct and more severe phenotype has 
been similarly discussed [17]. Certainly, most pathogenic 
mechanisms reported in LHON, including increased ROS 
production, abnormal quality control and increased propen-
sity to apoptosis [18], may all well contribute to motor neu-
ron degeneration, as well as dysregulation of microglia and 
inflammatory phenotypes, all key elements implicated in 
ALS, potentially contributed by mitochondrial dysfunction 
as recently discussed [19, 20].

All considered, two main conclusions are drawn from this 
study: first, given the rarity of the two disorders, 3/100,000 
for LHON [17], 6/100,000 for ALS [21], most probably the 
two disorders co-occurred by chance, as already suggested 
for “Harding’s disease”; second, we documented a modified 
phenotype of the LHON-ALS association compared to clas-
sic ALS, again recalling LHON-MS. If this is the case, we 
wonder if these patients may benefit from a specific antioxi-
dant therapy, such as idebenone, approved for acute LHON 
by EMA [22].

To conclude, our limited observations on two LHON-
ALS cases are far from being definitive but highlight the 
contributory role that mitochondrial function and its small 
genome may play in ALS. Our observations should prompt 
large-scale studies designed to test the contribution as ALS 
risk factors of genetic variants in both mtDNA and nuclear 
genes encoding mitochondrial proteins (about 1500), as well 
as their possible role as disease modifiers.
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