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Abstract

Massive amounts of user behavior logs and sensor data are generated on mobile

devices, which can help to improve the usability of social media apps and other in-

telligent apps. However, collecting such personal data may spark privacy and legal

concerns. Recently, many efforts in both academia and industry have been devoted

to developing distributed machine learning methods and architectures to scale up

to a large amount of distributed data. However, most such methods focus on a

server cluster or data residing on several datacenters. This work takes one more

step toward the more ambitious objective of collectively training machine learning

models based on data from mobile devices, yet without collecting such private data

centrally. We propose CO-OP, an asynchronous protocol which leverages the com-

puting power of each mobile client to train local models based on small amounts

of newly generated training samples, and merges such local models into a global

model on the server judiciously, balancing the model accuracy and communication

overhead. We implemented a CO-OP Android app and tested it on 60 real clients

distributed in different continents. Results suggest that CO-OP can achieve an ac-

curacy of more than 80% on image classification using neural networks based on

the MNIST datasets, even when the clients are intermittently available and train-

ii



ing data are generated dynamically on the go. Additional simulation results also

demonstrate the effectiveness of CO-OP in training Support Vector Machine (SVM)

and Logistic Regression models.
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The result of Chapter 3, Chapter 4 and part of Chapter 5 has been submitted to
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Chapter 1

Introduction

With the increasing popularity of social media, online shopping and location-based

services, mobile phones and tablets have gradually become the major personal com-

puting devices [2]. An enormous amount of data are constantly being generated

from these mobile devices , including data from sensors and cameras, behavior

and click logs in apps and location information. Such massive data, together with

machine learning, have powered the success of modern intelligent apps and recom-

mender systems [3]–[5].

However, collecting such private and sensitive personal data from mobile de-

vices for machine learning purposes has sparked ever-increasing privacy and legal

concerns [6]–[8]. On one hand, app operators must take a greater responsibility

protecting user data from leakage both during transmission and in storage. On the

other hand, many users do not want to share their data at all out of privacy reasons.

There is a growing need to design decentralized algorithms and systems that can

effectively perform widely adopted machine learning tasks without collecting the

user data to a central site. A related field, distributed machine learning, has recently

attracted significant attention both in industry and in academia, which however

mainly focuses either on training models on a cluster of co-located servers based

on the Parameter Server architecture [9]–[13] or on learning a shared model when

datasets reside on several different datacenters [8], [14]. None of these schemes

can directly be used to reap insights from data that come from a potentially large
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number of independent and unorganized mobile devices.

Google Research has initiated a project called “Federated Learning”, aiming at

testing the feasibility of training supervised learning models, e.g., image classifica-

tion, on mobile devices without collecting data centrally, with research results pub-

lished recently [15]–[17]. Unlike traditional distributed machine learning [9]–[11]

which aggregates the error gradient computed by each node, the key idea of Fed-

erated Learning is to leverage the computing power which modern mobile devices

are equipped with to generate high-quality local models and aggregate these local

models directly in each iteration, thus reducing the required rounds of server-client

communication. However, existing work has only scratched the surface of what

is possible in the ambitious goal of decentralized learning from mobile devices—a

number of practical issues are yet to be addressed: First, the dataset on a mobile

device is not static in reality: the training samples are generated and added to each

client on the go. Second, Federated Learning adopts a synchronous protocol, where

in each communication round, the server selects a number of random clients to pull

their local models for aggregation. However, it is hard to synchronize the clients in

reality; local models are computed asynchronously. Third, a pull-based scheme is

used, where the server contacts the clients to pull local models, whereas in reality,

a client may only be available intermittently or never respond due loss of connec-

tion. Finally, Mobile devices have significantly heterogeneous bandwidth, latency,

and computing powers. Communication and model updating protocols need to be

designed to respect the usefulness and timeliness of each local computed model,

eliminate unnecessary transmissions, and avoid biasing toward faster users.

To solve these challenges, this thesis presents the design of CO-OP, cooperative

machine learning from mobile devices without collecting the raw data. Our major

contributions are highlighted as follows:

• A push-based protocol: in CO-OP, it is the clients, instead of the server,

that initiate all the communication. A client may choose to contact the server

when it has trained its local model based on a new batch of data and has free

Wifi connection or is plugged in. Unlike prior work [15]–[17], the server
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does not schedule any update. This design suits the real scenario well, where

mobile clients are only intermittently available, while the server is always

available.

• Asynchronous updates: each client uploads its local model asynchronously.

We propose an asynchronous model merging algorithm: whenever a qualified

local model is received, the server immediately takes action to merge it into

the global model without waiting for updates from other clients.

• Heterogeneity and Age-Dependency: CO-OP adopts several key strategies

to respect the heterogeneity of devices in computing power and connection

speed. We keep track of the model “age” both at the server and at each client,

and throttle a client from updating if it becomes too aggressive while discard-

ing obsolete updates and let slow clients to catch up with the global model.

The “age” of a local model also decides the weighting at which it is merged

into the global model.

• Real experiments: we implemented a CO-OP Android app and conducted

experiments on 60 real Android clients, including mobile phones and tablets

of diverse setups, to collectively train an image classification neural network

model based on 60, 000 MNIST data samples which are assumed to be gener-

ated at the clients in mini-batches over a period of 6 hours. CO-OP success-

fully trained a model with a test accuracy of 80%, even when participating

clients are highly dynamic, heterogeneous and unorganized.

To the best of our knowledge, this thesis presents the first experimental results

from a medium-scale real-world deployment of distributed machine learning on

mobile devices. In addition, we also conducted extensive simulation studies to

verify the effectiveness of CO-OP in training several popular types of supervised

learning models including logistic regression, neural networks, and support vector

machines (SVM), as compared to the centralized mini-batch learning as well as

Federated Learning. Simulation results demonstrate the generalizability of CO-OP

in performing diverse types of machine learning tasks.
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Chapter 2

Related work

The topic of distributed machine learning based on data partitioned in multiple ma-

chines is first addressed in the context of tightly coupled server clusters [12], [18]–

[21], where all the worker nodes, each holding a part of the data, still reside in

a same datacenter and communicate with each other through local-area networks

(LANs). There are three basic distributed machine learning architectures: iterative

MapReduce [22], Dataflow [23] and the Parameter Server (PS) [9]–[11], [13], [24].

The MapReduce architecture, only using synchronous update, has been adopted

in MLlib[25] and Mahout [26]. The Dataflow architecture has been successfully

applied to TensorFlow [18]. However, Dataflow-based systems have high-level ab-

straction and low-level flexibility. Comparing to the other two architectures, the Pa-

rameter Server supports different model aggregation mechanisms, especially asyn-

chronous model updates. Due to its performance advantage, Parameter Server is

widely adopted in systems such as Petuum [27] and Google’s DistBelief [9]. How-

ever, in distributed machine learning, even though data are distributed in different

workers, they are still in one datacenter and each worker has a large amount of static

data, which is not the case in our settings. Also, in the above-mentioned architec-

tures, workers need to communicate with each other intensively through LANs to

synchronize their models, which is impossible when all the workers are mobile

devices and communicate through wireless networks.

Geo-distributed machine learning has been studied in Gaia [14] and [8], which
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propose decentralized machine learning systems where training data are distributed

among more than one datacenter and the communication between datacenters is

through wide-area networks (WANs). These systems take the variable network

bandwidth into consideration. In Gaia [14], each datacenter will individually apply

the same training algorithm onto its local data to optimize its own model, while

synchronizing the model parameters to all other datacenters using the so-called Ap-

proximate Synchronous Parallel (ASP), which is a loosely synchronous protocol.

ASP does not only take workers’ computational speed into account, but also con-

siders the data transmission speed, which is similar to the needs in our system.

However, in geo-distributed machine learning, all the workers are highly reliable

servers in datacenters. Each worker is always available and has a large static dataset

to work on. We do not have such privileges in our system, where workers are unre-

liable mobile devices.

Federated Learning [15], [16] is the first study that identifies distributed ma-

chine learning from mobile devices as an important research direction. Two ap-

proaches are proposed in [16]: 1) Structured Updates, where an update is learned

from a restricted lower-dimensional space, and 2) Sketched Updates, where the

model is compressed before being sent to the server. In [15], synchronized simu-

lation has been conducted to show the correctness of their approaches. However,

both [16] and [15] use the same pull-based algorithm where in each synchronized

communication round, the server initiates the contact and chooses a random set of

clients to pull their trained local models for aggregation, whereas in real world,

a mobile device may never respond and it is hard to synchronize mobile devices.

Furthermore, in Federated Learning [15], [16], the dataset in each worker is as-

sumed to be static, whereas in reality the training samples are generated on mobile

devices dynamically. This thesis takes one more step to propose an asynchronous

push-based protocol, which is optimized to perform well in a highly heterogeneous

environment. We are also the first work that puts cooperative machine learning from

mobile devices to reality check on a medium-scale real-world experiment among 60

mobile clients.
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Finally, many efforts have been devoted to the theoretical studies of distributed

machine learning algorithms [28]–[32]. These algorithms all try to strike balance

between the model accuracy and communication overhead. Bulk Synchronous Par-

allel (BSP) [33] synchronizes updates after all the workers finish their local train-

ing. Before the next iteration starts, all the workers will obtain the most up-to-date

model. Stale Synchronous Parallel (SSP) [11] only allows the fastest worker to be

ahead of the slowest worker by up to a bounded number of rounds. Total Asyn-

chronous Parallel (TAP)[34] removes all synchronization between workers. BSP

and SSP can guarantee algorithm convergence in theory but have heavier commu-

nication cost. While there is no convergence guarantee for TAP, it has the least

communication cost. However, in these algorithms, each worker performs a simple

gradient update before sending it to the server, where the gradients (instead of the

models) are aggregated for model updates. Thus, a large number of communica-

tion rounds between each worker and the server is required for these algorithms to

converge.

To reduce communication rounds, distributed learning algorithms by iteratively

averaging locally trained models (instead of gradients) have also been studied, for

example, Perceptron [35], speech recognition DNNs [36] and Elastic Averaging

SGD [37]. CO-OP is another variant of asynchronous model averaging (instead

of gradient aggregation) put into the specific setting of using mobile devices as

workers.
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Chapter 3

The Asynchronous CO-OP Protocol

Unlike prior work [14], [16], [15] which assumes each client has a fixed dataset

that can be used for training, in this thesis, we deal with dynamic data, which are

generated as users use mobile devices and are added to their individual training

datasets on the go. Suppose there are K mobile devices, or clients, participating

in the cooperative learning. Each client is independent and accumulates its own

training data according to its user’s habit. Once B training samples have arrived at

a a client (B is referred to as the local batch size), the client starts to train the local

model using gradient descent based on the new batch of samples. Fig. 3.1 shows

the framework of CO-OP.

In contrast to Federated Learning [16],[15] where a server contacts some ran-

dom clients to perform model updates in synchronized communication rounds, we

let each client initiate model update attempts asynchronously. Client can conduct

the local training process based on gradient descent anytime at any place whenever

it wants to update its local model based on the new data, e.g., when it is plugged

in. When client has better network connection, e.g., it can attempt to upload its

local model to the server for aggregation (subject to the CO-OP protocol) and sub-

sequently download the updated global model from the server to replace its local

model.

Let w ∈ R
d denote the global model parameters at the server and wk ∈ R

d

represent the model parameters at each client k ∈ 1, . . . , K. Denote by n the
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age of the global model, i.e., the number of times that the global model has been

merged with any local models. Each client keeps a local model age nk, which is

updated according to the CO-OP protocol. The CO-OP protocol is described in

Algorithm 3.1.

Algorithm 3.1 The asynchronous CO-OP protocol.

1: Initialization: set w = w1 = . . . = wK := w0; set n := a, n1 = . . . = nK :=
0.

2: Each client k performs the following independently:

3: while true do

4: Accumulate a new batch of B samples Dk.

5: wk =ClientUpdate(k,Dk)

6: When the client is ready to contact the server, pull the model age n from the

server.

7: if n− nk > b then

8: {Update is too old}

9: Pull w, n from the server and set nk := n, wk := w.

10: wk =ClientUpdate(k,Dk)

11: else if n− nk < a then

12: {Updated too often}

13: Continue

14: else

15: {Normal upload}

16: Upload wk to the server. Upon receiving wk, the server immediately per-

forms the update:

w :=

(

1−
1

√

(n− nk) + 1

)

w +
1

√

(n− nk) + 1
· wk,

and sets n := n+ 1.

17: Download the global model w and set wk := w, nk := n.

Initially, each client, when joining the system, downloads the global model w0

and sets the the local model age to 0. Once a client k has accumulated a new batch

of B training samples, it will train the local model wk using gradient descent (for

R rounds) based on these B samples. When client k is ready to upload its newly

trained local model, wk will be accepted by server for merging into the global model

subject to an age filter, i.e., the local model age nk will be compared with the global

model age n. The intuition is that the global model will only be updated if wk is
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neither obsolete nor too frequently updated. In the following, we first explain the

model merging scheme, followed by the interpretation of the age filter.

3.1 Model Merging

Model aggregation is a critical problem, which will directly affect the model con-

vergence and accuracy. In Federated Learning [16], [15], the FedAvg algorithm

updates w as w := (wk1
+ · · ·+wkC

)/C, where wk1
, . . . , wkC

are the C local mod-

els collected in a particular synchronized round. Although FedAvg works well in

the synchronous scenario, it is not suitable for the asynchronous case in reality. As

local model updates arrives asynchronously, we must merge them into the global

model one by one. In our algorithm, the global model w is updated with the combi-

nation of the current w and the newly received local mode wk in a simple weighting

equation w := (1− α)w + αwk.

Setting a proper α is important to the algorithm performance. When the server

aggregates asynchronously updated local models, there might be some local models

that were trained with outdated global models as the initial starting point. There-

fore, it is unfair to give local models equal weights. In CO-OP, we assign α de-

pending on the age gap n − nk between the local and global models, i.e., setting

α = 1/
√
n− nk + 1.

Intuitively speaking, when n − nk is smaller, the local model wk is more im-

portant. In the extreme case when n − nk = 0, the global model will be updated

to w := wk, which is exactly the same update scheme in mini-batch learning. On

the other hand, when n− nk is large, which means that the local model was trained

with a much earlier global model as the starting point, wk is not reliable. Thus, the

merging weight α should be small in this case to ensure convergence of the global

model.
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3.2 The Age Filters

Note that in CO-OP, a normal upload and update will occur only when a < n −

nk < b. This leads to the discussion of another key design in CO-OP, i.e., we have

adopted age filters to reduce the upload traffic as well as to avoid unbalanced data

which hurts the convergence performance.

Uploading and downloading models could still incur high traffic volume. Espe-

cially, for a mobile device, the upload bandwidth could be up to 10x smaller than

the download bandwidth.

In CO-OP, a client checks the age gap n− nk before sending out a local model

wk. If n − nk > b, wk was trained based on an old global model and will not

be reliable for model merging. In this case, the server will not let client k upload

wk to save traffic. Instead, it will send the current global model to client k, which

subsequently sets nk := n and wk := w, and trains the model again to catch up.

On the other hand, n − nk < a implies that client k is very active; it generates

data and uploads their local models at a much higher frequency than other clients. In

this case, accepting wk will make the whole dataset unbalanced and bias the global

model toward the personal model of such clients, which actually decreases the gen-

eralizability of the global model on test data. Therefore, for such an active client k,

CO-OP will let it continue training on its next local batches without uploading or

downloading until n− nk falls into the normal range.

This idea is essentially similar to the Staleness Synchronous Parallel (SSP) [11]

algorithm in parameter servers; when the server detects that the fastest client is

ahead of the lowest client by b − a rounds, it will block the fastest client from

uploading or downloading until other clients catch up.

10



Fig. 3.1. The framework of the CO-OP system for asynchronous distributed machine learning from

mobile devices. The training data are dynamically generated
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Fig. 3.2. The flowhchart of asynchronous CO-OP protocol.
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Chapter 4

Simulation results

In this chapter, we show the applicability of CO-OP to general machine learning

problems, through simulations performed on three widely-used machine learning

models, including Neural Networks, Logistic Regression (LR) and Support Vector

Machine (SVM) on three different datasets, respectively.

We simulate the asynchronous update scenario with round-based simulation,

where each round represents a small unit of time. The real asynchronous case

will be evaluated in the experiments. Suppose there are 100 clients. Each client

receives a new batch of data at a random frequency and performs gradient descent

local training on the new batch for a number of iterations. After a new local model

is ready, the client will contact the server according to the CO-OP protocol. We

model the interval (in rounds) between the points of time when a local model is

ready as a certain truncated random variable bounded below by 0 and rounded to

integer simulation rounds. Such an interval is approximately equal to the batch

arrival interval.

We evaluate the effectiveness of CO-OP, in comparison to two other state-of-

the-art algorithms:

1) Centralized (batched): centralized learning based on mini-batch gradient de-

scent (GD) is one of the most commonly used learning algorithms, which

tries to find a balance between the robustness of stochastic GD and conver-

13



gence of full-batch GD. The dataset is split into multiple mini-batches, which

are fed to the model separately.

2) Federated Averaging (FedAvg) [15]: the best algorithm in Federated Learn-

ing. The server randomly selects C clients to pull their local models wk1
, . . . , wkC

in each communication round. And the global model is updated as w :=
∑

C

i=1
wki

/C.

To adapt FedAvg, which is essentially a synchronized protocol, to our simulated

asynchronous case, in each simulation round, the server does not select C clients

to pull models. Instead, those clients with a new local model ready will upload

their models to the server for direct averaging. For Centralized (batched), all local

batches of data, once generated, are sent to the server where the mini-batch GD

algorithm is performed to training the global model.

4.1 Neural Networks

Neural network is one of the most powerful models in machine learning, which has

been successfully implemented in many applications. In this work, we test CO-OP

on a feedforward neural network with a single hidden layer. There are 512 neurons

in the hidden layer using tanh as the active function. The dataset is MNIST, which

is a handwritten digit database of 28∗28 images, containing 70,000 samples in total.

We split it into the training and testing datasets, containing 60,000 and 10,000 data

points, respectively. The batch arrival intervals at each client are generated from a

Gaussian Distribution with a mean of 20, and a variance of 10. The local batch size

B is 100.

Fig. 4.1 shows the accuracy of the global model under different algorithms on

the test set over time. The performance of CO-OP is close to the centralized learn-

ing in spite of a few unstable points, and is much better than Federated Averaging.

The unstable situation happens because of some clients with a low age. Fig. 4.2 is

the comparison among different versions of CO-OP. It is obviously that the curve of

14
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Fig. 4.1. A comparison of different algorithms for the neural network.

CO-OP (without the age filter and with random weights) is oscillating more wildly,

which demonstrates the effectiveness of age-dependent weighting. Comparing CO-

OP with and without the age filter , we can see that CO-OP with the age filter is

better, because the age filter helps to block some unreliable local model updates.

The age filter also helps to greatly reduce the total number of server contacts (es-

pecially the uploads) performed by the clients. With the age filter the number of

uploads is 3392, while the number of downloads is 5597. Without the age filter the

numbers of uploads and downloads are both 5130.

4.2 Logistic Regression

Logistic Regression (LR) is a classical and simple machine learning algorithm for

classification problems. Using a logit function, LR is able to learn from some de-

pendent variables. To evaluate the performance of CO-OP on training LR models,

we choose a dataset called Shuttle in LIBSVM, which contains over 40,000 sam-

ples. Each sample has 9 input features and the output falls in 7 categories. We split

the dataset evenly into two parts, one for training and the other for testing. The local

batch size B is 20, and the batch arrival interval at each client follows a (60, 0.5)

15
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Fig. 4.2. The effects of the age filter and age-dependent weighting in CO-OP in the neural network.

Binomial distribution.

Fig. 4.3 shows the performance of CO-OP as compared to the Centralized algo-

rithm and Federated Averaging. As we see, all the algorithms, including Centralized

(batched) fluctuate a little bit, because LR is sensitive itself due to the S shape of

the logistic function. From the figure we can see all three algorithms have a mean

accuracy around 95% in the final stage.

Fig. 4.4 shows the communication overhead reduction due to the use of age fil-

ters. Especially, we can observe that with the age filter, the number of uploads from

clients is significantly reduced, because the local models that are either too “old”

or too “aggressive” are blocked from being uploaded. This is an advantage, since

the upload bandwidth of a mobile device could be 10× slower than its download

bandwidth.

4.3 Support Vector Machine

Support vector machine is another popular model in machine learning. The standard

linear SVM classification problem attempts to create a hyperplane which separates

the given data points in a feature space based on their associated binary labels. To
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Fig. 4.3. A comparison of different algorithms for Logistic Regression.

test the performance of CO-OP on SVM, the USPS dataset of handwritten digits,

consisting of 7,291 training samples and 2007 testing samples, was used. The batch

arrival interval at each client follows a truncated Gaussian distribution with a mean

of 15 rounds and a variance of 10. The local batch size is B = 30. We repeated

feed the dataset to clients in batches, with each training sample utilized about 5

times throughout the simulation. Additionally, the learning rate was established as

batchsize−2, which was empirically optimized.

Fig. 4.5 shows the algorithm comparison result. We can conclude that CO-

OP and Centralized (batched) are better than Federated Averaging in terms of both

prediction accuracy and model convergence. Again, Fig. 4.6 shows the reduction

in the number of uploads and downloads by clients with the age filter technique

applied. We can see that both uploads and downloads have been reduced by the age

filter, especially the uploads.

To summarize, applying CO-OP on three classic machine learning models,

neural networks, Logistic Regression and SVM, we find that CO-OP, as an asyn-

chronous protocol works well on all three models. The age-awareness introduced

into the protocol not only helps to stabilize the algorithm performance but also
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greatly reduces unnecessary communication without hurting the accuracy.
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Chapter 5

Real Experiments

In this chapter, we present the experimental results of testing CO-OP on 60 geo-

graphically distributed Android clients for training an image classifier using neural

networks based on the MNIST dataset dynamically fed into the clients.

5.1 System Implementation

Our system includes two parts: the client devices each running the CO-OP Android

mobile app and a central server that stores the global model.

5.1.1 Server Side Setup

In our experiment, the server simply runs on a MacBook Pro (mid 2015) with 4

cores 2.5 GHz Intel Core i7 and 16GB 1600 MHz DDR3 memory, connecting to

the university LAN which has relatively ample bandwidth connection.

On the central server, we run a Node.js application. Node.js is an asynchronous

event-driven JavaScript runtime, and designed to build scalable network applica-

tions [38]. It is a different solution from popular network solutions called concur-

rency model.

For concurrency models, when a request reaching a web server, the web server

launches a new OS thread to process the request, handle the service and send re-
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sponse back. Meanwhile, if another request reaches the server before the first one

finished, the web server would launch another OS thread, which is identical to the

first one, to do the same jobs for the second request. It would raise problems when

multiple threads trying to access the same resource. For example, in our case,

multiple clients connect to the central server, and are served by different threads

simultaneously. When they all upload their local model to the central server at the

same time, race conditions for network controllers occur.

On the other hand, Node.js is asynchronous and single-threaded. Network I/O

controllers are scheduled to divide their time to network port fairly equally, such

that no connection would be dropped because of timeout. All I/O accesses (includ-

ing networking) are performed asynchronously, so the process never blocks. This

ensures all the clients’ local models get uploaded to the central server.

Fig. 5.1 shows the API setup for the central server. When clients call checking

age API, one of three results will be sent back. If the client model is too old, the

client needs to call the download API to get the updated global model and discard

its local outdated model. If the client model is updated too often, the client would

neither call uploading API nor downloading API. If the client model’s age confirms

update requirement, the client would call uploading API to upload the local model,

and the server would send back the merged global model.

5.1.2 Android Client Side App

Each CO-OP app simply runs the SGD algorithm to train the local model based

on training samples that appear in batches. There are two types of client devices

we have used in our experiment. The first type is 30 real Android mobile devices,

including mobile phones and tablets, from past 3–5 years. They run different ver-

sions of the Android kernel and different distributions of the Android system, such

as the Samsung distribution version and Huawei version. As most of the devices we

could find are older than the latest Android devices on the market, we introduce the

second type of 30 clients to emulate faster latest Android devices. These clients are

laptops running the CO-OP app via Android emulators, including BlueStacks and
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Fig. 5.1. The architecture of the server side application of CO-OP system and the Web API expose

to client side application

Android Studio emulators running one of the latest Android systems with the latest

kernel. It is worth noting that we chose the Android platform over iOS, because

it is much easier to distribute a demo app on Android by just installing an .apk

(Android application package) file.

In order to provide better user experience, Android requires applications to put

computation heavy tasks (like batched gradient descent calculation) and time con-

suming tasks (like networking uploading and downloading) off the main thread (UI

thread), to prevent the UI thread getting blocked and causing user interface frozen

or lagging [39]. The common solutions are asynchronous tasks [40] and services

[41]. Either of them runs tasks on a separated thread, taking the advantages of mul-
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tiple cores of CPU inside of modern cell phones. We choose asynchronous tasks

as our solution because it is lighter and easier to implement. I would not cover the

differences between asynchronous tasks and services in detail, as it is out of scope

for this thesis.

Fig. 5.2 shows the workflow of the client applications. When a client joins the

CO-OP system, we assume it has already generated a batch of data. Then the client

starts its first cycle of processing by loading the first batch of data. After each cycle

is done, the client goes into next cycle of processing, loading the next batch of data.

The client applications would keep generating and processing data batch by batch,

until all the data in its dataset has been processed. The following shows the details

of data processing in each cycle.

1. Load next batch of data.

2. Train the local model with stochastic gradient descent on the batch of data.

3. Call checking age API on server.

4. Based on different server responses, the client application would perform dif-

ferent tasks.

• If n - nk < a, the client uploads too often.

4.1. Wait for next batch of data to be generated.

4.2. Go back to step 1.

• If a ≤ n - nk ≤ b, the client could is allowed to update global model.

4.1. Call API to upload local model to the central server to aggregate

with global model, and then download the updated global model,

replacing the local one.

4.2. Wait for next batch of data to be generated.

4.3. Go back to step 1.

• If n - nk > b, the age of the client is too old.

23



4.1. Call download API to fetch the newest global model from server,

replacing the local one.

4.2. Go back to step 2.

I also want to clarify that the uploading step and downloading step do not have

to be separated into two asynchronous tasks. With a single request, the client app

would send its local model to central server, and in the corresponding response, the

central server would send back the updated global model to the client. So there is

only one round of communication between the client and the central server, without

having to establish redundant connections.

5.2 Application

We evaluate our system for training a neural network image classification based on

the MNIST dataset, which contains 60,000 training samples and 10,000 test sam-

ples. Again, the goal here is to train a neural network to learn the relationship

between the pixels (in grayscale) of a 28 × 28 image and the digit (0–9) it repre-

sents. Note that image classification on the MNIST dataset is a complicated enough

model to stress test the capability of our cooperative learning framework, while in

reality many popular machine learning tasks such as linear/logistic regression or

next-action prediction requires far less computing power than the application con-

sidered in our experiment.

We adopt a single-hidden-layer neural network with 300 hidden nodes as the

model to be trained. We choose this model to strike a balance between the power

of the model and the model size in order to avoid overly high computation burden

on mobile devices, since for a highly sophisticated model such as deep learning,

the best resort is still to collect data centrally and train the model on dedicated

hardware.
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5.3 Experiment Setup

The MNIST training data (containing 60,000 samples) are equally divided into 60

smaller datasets, each containing 1000 samples. We assume each client holds one

of such smaller datasets, and does not want to share it to the server for privacy

concerns. Furthermore, the 1000 samples on each client are generated in batches

of 50 samples to mimic the scenario where samples are dynamically added to the

training set on each client while he/she uses the device. We assume the inter-arrival

time between consecutive batches on each client is a Gaussian random variable

with a mean of 30 seconds, and a standard deviation of 5 seconds. Note that such a

dynamic batch-based scenario is closer to reality than the static datasets considered

in prior work [15], [16].

We performed the experiment for 6 hours in total and the 60 clients join the

system at random times during the 6 hours, depending on the availability of the

human user holding each device. There are 8–15 devices simultaneously online at

each particular point of time. Upon joining the system, each client first fetches all

the hyper-parameters from the server, including the hidden layer dimension, local

learning rate, the number of iterations of local SGD training to be performed on

each batch of data, etc. Then it downloads the initial global model and carries out

the CO-OP algorithm. At each client, the local SGD training for each local batch

of 50 samples runs for 50 iterations, with the local learning rate set to 0.02, which

is 1/batch size.

Finally, in order to reduce server load and save bandwidth, we only transfer

each model parameter up to two decimal places, which can save network traffic by

3/4. Again, the justification is that we want to stress test the capability of CO-OP

in a network of everyday mobile devices even with bandwidth cut. And it is not

an objective of CO-OP to achieve extreme accuracy requirement for sophisticated

models.
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5.4 Results

Fig. 5.3 plots the CDF of client lifetime defined as the time interval between the

first time a client contacts the central server, trying to upload its local model and the

last time it does so. The lifetime does not depend on how fast the client does the

computation or how many uploads it tries to make. As long as a client participated,

the time difference described above will be used as its lifetime, even though some

slower clients may only have a few tries during the entire experiment. As the figure

shows, most of the clients stay online for a relative long time period of over 100

minutes, and the mean of the lifetime of all clients is around 41 minutes.

For the next, let us talk about the accuracy of the model. Fig. 5.4 shows the

change of model accuracy over time for the CO-OP system and the centralized

learning in batches, which collects all data from clients, then performs batched

learning with stochastic gradient descent. We can see that the accuracy for central-

ized learning climbs fast, and achieves its highest value of 93%. However, since

all the data is collected centrally, it violates the privacy-preserving requirement and

only serves as a baseline for the accuracy comparison here.

The CO-OP system starts relatively slowly and achieves its highest accuracy

value of around 80%. The lower accuracy for the CO-OP system can be expected,

as the CO-OP system is asynchronous and the learning is performed in a decen-

tralized fashion only based on unreliable real mobile devices. However, such asyn-

chronous and decentralized model learning brings more features and benefits that

centralized learning system does not, such as better privacy protection and a higher

level of personal customization. As user’s data stays on the devices locally, it pre-

vents all kinds of hacks and attacks during data transmission. And as the newly

trained model can be directly used on the user’s device, it provides better user ex-

perience for the applications. We can conclude that under such a stress test of a

medium-sized neural network image classification model, CO-OP can yield some

positive training results by only using mobile devices as computing workers without

collecting the raw data.
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The vertical dashed line divides the figure into two parts. On the right part, all

datasets have been re-fed into each client again, and be used to train the systems

one more time to ensure the system achieve their highest accuracy value, although

both centralized learning system and the CO-OP system have already achieved their

highest model accuracy value before the data points have been re-fed into the sys-

tems (the left part).

We also notice that, for the CO-OP system, the model accuracy moves up and

down drastically at the beginning of the experiment. We believe there are two rea-

sons for it. On one hand, the initial model is randomly generated. It might have

a good accuracy by some chance. On the other hand, at the beginning of the ex-

periment, there are just a small number of clients joined into the CO-OP system,

and one or a few of them are much faster than the others. They trained their local

models fast, contacted the server to try to update global model frequently. However,

as the difference of global age and local age is smaller than the lower bounds of the

filter, the updates sent by these fast clients had been evaluated as “too often”. When

the updates got rejected, these clients kept training their local models with next

batch of data generated. After a few times of trying and rejecting, the local model

on these clients accumulatively trained with much more data than models on other

clients. Thus, these models are much more accurate than models on other clients.

Once global model updated enough times (global age increases, and becomes large

enough), the updating submitted by these faster clients finally got approved. When

the global model aggregated with a more accurate model, the spike appeared.

Now let us take a look at how the mobile clients behave in the system. In

Fig. 5.5, the inter-upload times for each client are shown. Most of the clients would

successfully update the global model every 2 to 5 minutes on average. Among

them, the fastest client updates the global model with an average period of less

than 1 minute (53 seconds), while the slowest client updates every 45 minutes. The

fastest client should be one of the emulators running on our desktop computers, and

the slowest client should be a Samsung Galaxy S4 phone which was released in

2013.
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Fig. 5.6 shows the boxplot of the number of attempts clients make to update the

global model (the first box), and the age-checking results responded by server (the

following three boxes). Any try/check would be evaluated as one of three possible

results: “too often", “normal uploads", and “too old". Therefore, the number of

tries/checks is equal to the total numbers of checking results. As shown in the

figure, about 70% of tries/checks finally lead into local model uploading followed

by global model updating. And 30% of them are rejected, and most of them are

from those faster clients. For the last part of the figure, it shows the number of

checks evaluated as “too old", which means the model the clients used to train their

data was too old, and was not suitable to be merged into the global model. It also

shows that attempts/checks from 9 clients have been evaluated as “too old", and

rejected. Half of these 8 clients have only been rejected for once, while the other

half is been rejected for 8 to 10 times. (That is why only 4 points are shown on the

figure).

Last but not the least, let us talk about data transmission. Fig. 5.7 and Fig. 5.8

show the amount of data transferred (in bytes) through network and the number of

uploads and downloads in CO-OP system (with filter), comparing with in central-

ized system. Even though, in Fig. 5.7, the total number of uploads and downloads

in CO-OP is larger the number of uploads (there is no download) in centralized

training system, it could not be a disadvantage of CO-OP system. In real world

scenario, the download bandwidth is much larger than the upload bandwidth (10

times larger), so saving the number of uploads is more effective and critical than

saving the number of downloads. In Fig. 5.8, there are much more data transmitted

in CO-OP system than in centralized training system. This cannot be the disadvan-

tage of CO-OP system as well. First, there are more data transmitted, but there is

less user information transmitted. The CO-OP system keeps user’s privacy more

safe. Second, the amount of data transmitted not only depends on the number of

uploads/downloads, but also depends on the size of data sample and the size of

model. In our experiment, the size of each MNIST data sample is 784 bytes (an 28

* 28 image with only 1 color channel). So in centralized training system, the size
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of data in each upload is 38 KB (784 * 50). And for the neural network we used

in the experiment, the model size is over 238 KB, which is also the size of data

for each upload in CO-OP system. However, the size of data sample in real world

applications could be much larger. A good example could be the photos user tak-

ing with their cell phones, which equipped with a multi-mega-pixel camera. These

photos could be as large as 6-10 MB each. With a dataset like this, the size of data

transferred in centralized training system would be much larger the size of model

transferred in CO-OP system.

Fig. 5.9 shows the amount of data transmitted in CO-OP system comparing with

itself but without age filter. About 2/7 amount of data transmission is saved with the

filter. The age filter would significantly save the bandwidth for data transmission.
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Fig. 5.2. The workflow of Android client application based on different check response from server
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Chapter 6

Concluding Remarks

In this thesis, we propose CO-OP, a privacy-preserving asynchronous system that

can train machine learning models based on data batches generated on mobile de-

vices, without collecting these data to central server. Although a number of dis-

tributed machine learning algorithms and systems have been developed recently

both in academia and in industry, most of them focus on training models on a clus-

ter of co-located servers or on multiple datacenters each holding a part of the data.

Federated learning advanced the concept of distributed machine learning to mobile

devices with a synchronized Federated Averaging algorithm proposed.

In contrast, CO-OP is a completely asynchronous protocol, where the client ini-

tiates contacts to the server whenever it connects to a free Wifi network. Also, we

consider the more realistic scenario where the data on each device are generated in

batches on the go. CO-OP adopts an age-based filter to avoid unnecessary uploads

and downloads in the case that the download is obsolete or if the updates from a

certain client are too often. CO-OP also uses a carefully designed age-dependent

weighting mechanism to merge qualified local models into the global model. Ex-

tensive simulation results have shown that CO-OP is capable of training neural

networks, logistic regression and SVM models on several different datasets in a

distributed setting.

We implemented CO-OP and tested the system on 60 Android clients, includ-

ing mobile phones, tables, and Android emulators, distributed worldwide on the
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application of training hand-written digits recognition neural networks based on

60,000 MNIST data samples. Experimental results have demonstrated that CO-OP

can yield a model accuracy of 80% on a separate test set of 10,000 samples even

when the mobile clients are highly dynamic, some of which reside in bandwidth-

limited environment. To the best of our knowledge, this is the first work that has

reported experimental results from a fairly large number of real Android devices to

investigate the feasibility of cooperative machine learning on mobile devices.
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[16] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and

D. Bacon, “Federated learning: Strategies for improving communication effi-

ciency,” arXiv preprint arXiv:1610.05492, 2016.

[17] V. Smith, C.-K. Chiang, M. Sanjabi, and A. Talwalkar, “Federated multi-task

learning,” arXiv preprint arXiv:1705.10467, 2017.

[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale

machine learning on heterogeneous distributed systems,” arXiv preprint

arXiv:1603.04467, 2016.

[19] G. Lee, J. Lin, C. Liu, A. Lorek, and D. Ryaboy, “The unified logging infras-

tructure for data analytics at twitter,” Proceedings of the VLDB Endowment,

vol. 5, no. 12, pp. 1771–1780, 2012.

[20] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Heller-

stein, “Distributed graphlab: a framework for machine learning and data min-

ing in the cloud,” Proceedings of the VLDB Endowment, vol. 5, no. 8, pp.

716–727, 2012.

[21] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Free-

man, D. Tsai, M. Amde, S. Owen et al., “Mllib: Machine learning in apache

spark,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 1235–

1241, 2016.

[22] C. tao Chu, S. K. Kim, Y. an Lin, Y. Yu, G. Bradski, K. Olukotun, and A. Y.

Ng, “Map-reduce for machine learning on multicore,” in Advances in Neural

Information Processing Systems 19, P. B. Schölkopf, J. C. Platt, and T. Hoff-

man, Eds. MIT Press, 2007, pp. 281–288. [Online]. Available: http://papers.

nips.cc/paper/3150-map-reduce-for-machine-learning-on-multicore.pdf

39



[23] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and

I. Stoica, “Graphx: Graph processing in a distributed dataflow framework.”

in OSDI, vol. 14, 2014, pp. 599–613.

[24] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A.

Gibson, and E. P. Xing, “Managed communication and consistency for fast

data-parallel iterative analytics,” in Proceedings of the Sixth ACM Symposium

on Cloud Computing. ACM, 2015, pp. 381–394.

[25] Apache Spark MLlib., http://spark.apache.org/mllib/.

[26] Apache Mahout., http://mahout.apache.org.

[27] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Ku-

mar, and Y. Yu, “Petuum: A new platform for distributed machine learning on

big data,” IEEE Transactions on Big Data, vol. 1, no. 2, pp. 49–67, 2015.

[28] M. F. Balcan, A. Blum, S. Fine, and Y. Mansour, “Distributed learning,

communication complexity and privacy,” in Conference on Learning Theory,

2012, pp. 26–1.

[29] Y. Zhang, J. Duchi, M. I. Jordan, and M. J. Wainwright, “Information-

theoretic lower bounds for distributed statistical estimation with communi-

cation constraints,” in Advances in Neural Information Processing Systems,

2013, pp. 2328–2336.

[30] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient distributed op-

timization using an approximate newton-type method,” in International con-

ference on machine learning, 2014, pp. 1000–1008.

[31] T. Yang, “Trading computation for communication: Distributed stochastic

dual coordinate ascent,” in Advances in Neural Information Processing Sys-

tems, 2013, pp. 629–637.

40



[32] C. Ma, V. Smith, M. Jaggi, M. I. Jordan, P. Richtárik, and M. Takáč,
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