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E~l~ 

F~eface. 

The main purpose of this preface is to ~xplain the specification 

''Preli~inar Version'', a~pearing on the title page ~f these lecture notes. 

They have bee~ prepared under ccnsiderable ti~e pressure, circumstances 

~nde~ which I was unable to ha~e my ~se of t~e Englisb language corrected 

by a ~ative, circumstances under which I was unable first to try out 

different methods of presentation. As they stand, I hope that they will 

serve their two primary purposes: to give my students a guide as to what 

I am telling and to give my Friends and Relations an idea of what I am 

doing. 

The future fate of this ~anuscript, that may prove to be a monograph 

in statu nascendi, will greatly depend on their reactions to it. I am greatly 

indebted, in advance, to any reader wro is so Kind as to take the trouble 

to give ~is comments, either in the form of suggestions how the presentation 

or the material itself could be improved, or in the form of an appreciation. 

From the latter comments I Wlll try to get an idea whether it is worth-while 

to pursue this effort any furt~er ard to p=epare a publication fit fo~ and 

agreeable to a wide~ public, 

Already at this stage I s~ould like to express my gratitude to many: 

to wy collaborators C.Eron (in particular for his scrutinous screening of 

the typed version), to A.N.Habermann, F.J.A.Hendriks, C.Ligtmans and P.A. 

Voorhoeve for many stimulating and clarifying discussions on the subject 

itself, to the Department of Mathematics of the Technological University, 

Eindhoven, for the opportunity to spend my time on the problems dealt with 

and to lecture on their solutions and also -trivial as it may seem, this 

is nevertheless vital!- for putting at my private disposal a type writer 

with a character set in complete accordance with my personal wishes. 

Department of Mathematics 

Technological University 

P.O. Box 513 
EINDHOVEN 
The Netherlands 

E.W.Dijkstra 
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0, IntrodL.:ction. 

These lectures are intended for all those that expect that i~ their 

future acti'lities they will become seriously involved in the problems that 

arise in either the desig0 or the more advanced applications of digital 

information processing equipment; they are furthe~ i~tended for all those 

that are uat interested. 

The applications I have in mind are those in which the activity of a 

computer must include the proper reacting to a possibly great variety of 

messages that can be sent to it at unpredictable moments, a situation which 

~ccurs in process control, traffic control, stock control, banking applica

ti.~ns, automization of informati:Jn flow in large organizations, centralized 

computer service and, finally, all information systems i1 whic~ a numbe~ of 

computers are coupled to each other. 

The desire to apply computers in the ways sketched above has often a 

strong economic motivation, but in these lectures the not unimportant ques

tion of efficiency will not be stressed too much. We shall occupy ourselves 

much 1lore with the logical problems which arise, for example, when speed 

ratios are unknown, cornrnuni::ation possibilities restricted etc. We intend 

to do so in order to creat:e a clearer insigl-ot into t:re origin of the diffi

culties we shall meet and into the nature of our solutions. To decide 

whether under given circumstances t~e application of our techniques is 

economically attractive or not falls outside the scope of these lectures. 

I regret that I cannot offer a fully worked out theory, complete with 

Greek letter formulae, so to speak. The only thing I can do under the present 

circumstances is to offer a variety of problems, together with solutions. 

And in discussing these, we can only hope to bring as much system into it 

as we possibly can, to find which concepts are relevant, as we go along. 

May everyone that follows me along this road enjoy the fascination of these 

intriguing problems as much as I do! 



EI.•JD1 23 - 1 

1. 011 the Nature of Seauential Processes. 

Our problem field proper is the cooperation between two or more sequential 

processes. Before we can enter this field, however, we rave to know quite 

clearly what we call ''a sequential process''· To this ~reliminary question 

the present section is devoted. 

I should like to start my elwcidation with the comparison of two machines 

to do the same example job, the one a non-sequential machine, the other a 

sequential one. 

Let us assume that of each of fcur quantities, named ''a[1]'', ''a[2]'', 

''a[3]'' and ''a[4]'' respectively, the value is given. Our machine has to process 

these values in such a way trat 1 as its reaction, it "tells" us, which of the 

four quantities has the largest value. E.g. in the case: 

"a[1]~7, a[2] ~ 12, a[3] ~ 2, a[4] ~ 9" 

the answer to be produced is "a[2]" (or only 11 2'1 , giving the index value 

pointing to the maximum element). 

Note that the desired answer would become incompletely defined if the 

set of values were -in order- "7, 1 2, 2, 12" 1 for then there is no unique 

largest element and the answer ''a[2]" would have been as good (or as bad) 

as "a[ 4 ]". This is remedied by the further assumption, that of the four 

values given, no two are equal. 

Remark 1 • If the required answer would have been the maximum value 

occuring among the given ones, then the last restriction would ~ave been 

superfluous, for then the answer corresponding to the value set "7 1 12, 2, 12" 

would have been "12". 

Remark 2 .. Our restriction "Of the four values no two are equal'' is 

still somewhat loosely formulated, for what do we mean by "equal"? In the 

processes to be constructed pairs of values will be compared with one another 

and what is really meant is, that every two values will be sufficiently 

different, so that the comparator will unambiguously decide, which of the 

two is the largest one .. In other words, the difference between any two must 

be large compared with "the resolving power'' of our comparators. 
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We shall first construct our non-sequential ~achine. When we assume 

our given values to be represented by currents, we can imagi~e a comparator 

consisti~g of a two-way switch, the position of wrich is schematically 

controlled by the currents ir the coils of electromagnets as in Fig.1 and 

Fig.2. 

f 
A 

~ 
X 

~ 
X 

~ ~ 
B( [c B~ [ 

Fig. 1. x<y Fig.2. y<x 

When current y is larger than current x, the left electromagnet pulls 

harder tl:an the right one a'ld tre s~itch switches to the left (Fig.1) and 

the input A is connected to output B; if current x is the larger one, we 

shall get the situation (Fig.2) where the input A is connected to output C. 

In our diagrams we shall omit the coils and shall represent such a 

comparator by a small box 

.~ 

~ 
B C 

only representing at the top side the input and at the bottom side the two 

outputs. The currents to be lead through the coils are identified in tl;e 

question written inside the box and the convention is, that the input will 

be connected to the right hand side output when the answer to the question 

is "Yes", to the left hand side output when the answer is "No". 

+ 

a[2] < a[4-] 

2 

+ 
Fig.3. 

+ + 

4 
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Now we can construct our machine as indica~ed in Fig.3. At the output 

side we have drawn four indicator lamps, one of wrich will lig~t up to 

indicate the answer. 

ln Fig.4 we indicate the position of the switches when the value set 

"7, 12, 2, 9" is applied to it. In the boxes the positions of the switches 

are indicated, wires not connected to the input are drawn blotted. 

' 
' ' 1 

\I !_ __ 

Fig.4. 

---~'>;: I 
I 

--< 

' '4 

We draw the readers attention to the fact that now only the positions 

of the three switches that connect output 2 to the input) matter; the reader 

is invited to convince himself that the position of the other three switches 

is indeed immaterial. 

It is also good to give a moment attention to see what happens in time 

when our machine of Fig.3 is fed with four 11 value currents 11
• Obviously it 

cannot be expected to give the correct answer before the four value currents 

are going through the coils. But one cannot even expect it to indicate the 

correct answer as soon as the currents are applied, for the switches must 

get into their correct position and this may take some time. In other words: 

as soon as the currents are applied (simultaneously or the one after the 

other) we must wait a period of time -characteristic for the machine- and 

after that the correct answer will be shown at the output side. What happens 

in this waiting time is immaterial, provided that it is long enough for all 

the switches to find their final position. They may start switching simulta

neously, the exact order in which they attain their final position is 

immaterial and, therefore, we shall not pay any attention to it any more. 

From the logical point of view the switching time can be regarded as 

a marker an the time axis: before it the input data have to be supplied, 

after it the answer is available. 
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In the use of our machine the progress of time is only reflected in 

the obvious "before - after" relation, which tells us, that we cannot expect 

an answer before the question has been properly put. This sequence relation 

is sa obvious (and fundamental) that it cannot be regarded as a characteristic 

property of our machine. And our machine is therefore called a "non-sequential 

machine" to distinguish it from the kind of equipment -or processes that can 

be performed by it- to be described now. 

Up till now we have interpreted the diagram of Fig.3 as the (schematic) 

picture of a machine to be built in space. But we can interpret this same 

diagram ir a very different manner if we place ourselves in the mind of the 

electron entering at the top input and wondering where to go. First it 

finds itself faced with the question whether "a[1] < a[2]" holds. Having 

found the answer to this question, it can proceed. Depending on the previous 

answer it will enter one of the two boxes 11 a[ 1] < a[3] 11 or "a[2] < a[3]", 

i.e. it will only know what to investigate next, after the first question 

has been answered. Having found the answer to the question selected from 

the second line, it will know which question to ask from the third line and 

having found this last answer it will now know which bulb should start to 

glow. Instead of regarding the diagram of Fig.3 as that of a machine, the 

parts of which are spread out in space, we have regarded it as rules of 

behaviour, to be followed in time. 

With respect to our earlier interpretation two differences are highly 

significant. In the first interpretation all six comparators started working 

simultaneously, although finally only three switch positions matter. In the 

second interpretation only three comparisons are actually evaluated -the 

wondering electran asks itself three questions- but the price of this gain 

is that they have to be perfmrmed the one after the other, as the outcome 

of the previous one decides what to ask next. In the second interpretation 

three questions have to be asked in sequence, the one after the other. The 

existence of such an order relation is the distinctive feature of the second 

interpretation which in contrast to the first one is therefore called "a 

sequential process". We should like to make two remarks. 

Remark 3. In actual fact, the three comparisons will each take a 

finite amount of time (switching time" t ''decision time" or, to use the 

jargon, "execution time") and as a result the total time taken w:i.ll at least 
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be equal to tre sun1 of these three execution times. 'We stress ance more, 

that for many i:lvestigations these executions can be regarded as ordered 

markers on a scaleless time axis and that it is only tr.e relative ordering 

that matters from this (logical) point of view. 

Remark 4. As a small side line we note that the two interpretations 

(call them "simultaneous comparisons" and "sequential comparisons 11
) are only 

extremes. There is a way of, again, only performing three comparisons, 

in which two of them can be done independently from one another, i.e. simul-

taneously; the third one, however, can only be done, after the other two 

have been completed. It can be represented with the aid of a box in which 

two questions are put and which, as a result, has four possible exits, as 

in Fig.5. 

I 
I a[ 1 J < a[2] ? 

' 
a[3 J < a[ 4 J ' I 

~~I I NY YN I yy~ 

I all ] < a[ 3] ? I I a[ I ] < a[4] ?lla[2]<a[3] ?lla[2] < aL 4] ? I 
1-

I 
2 3 4 

Fig.5. 

The total time taken will be at least the sum of the comparison execution 

times. The process is of the first ki~d in the sense that the first two 

comparisons can be performed simultaneously, it is of sequential nature 

as the third comparison can only be selected from the second line when the 

first two have both been completed. 

We return to our purely sequential interpretation. Knowing that the 

diagram is meant for purely sequential interpretation we can take advantage 

of this circumstance make the description of the "rules of behaviour" more 

compact. The idea is, that the two questions on the second line -only one 

of which will be actually asked- are highly similar: the questions one the 

same line only differ in the subscript value of the left operand of the 

comparison. And we may ask ourselves: "Can we map the questions on the same 

line of Fig .3 on a single question ?" 

This can be done, but it implies that the part that varies along a 

line -i.e. the subscript value in the left operand- must be regarded as a 
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parameter, t;~,e task of which is to determine whi2h of the questions mapped 

on each other is meant, when its turn to be executed has come. Obviously the 

value of this parameter must be defined by the past history of the process. 

Such parameters, in which past history can be condensed far future use 

are called "variables". To indicate that a new value has to be assigned to 

it we cse the so-called assignment operator'':='' (read: ''becomes''), a kind 

of directed equality sign which defines the value of the left hand side in 

terms of the value of the right hand side. 

We hope that tr.e previous paragraph is sufficient for the reader to 

recognize also in the diagram of Fig.6 a set of "rules of behaviour 11 • Our 

variable is called ''i''; if the reader wonders, why the first question, which 

is invariably "a[1] < a[2] ?'' is not written that way, he is kindly requested 

to ~ave some patience. 

Fig.6 

'~hen we have followed the rules of Fig .6 as intended from top till 

bottom, the final value of i will identify the maximum value, viz. a[i]. 

The transition from the scheme of Fig.3 to the one of Fig.6 is a drastic 

change, for the last "rules of behaviour" can only be interpreted sequentially. 

And this is due to the introduction of the variable 11 i": having only a[ 1 ] , 

a[2], a[3] and a(4] available as values to be compared, the question 

11 a[i] < a[2] ?'' is meaningless, unless it is known for which value of "i" 

this comparison has to be made. 
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Remark 5. It is somewhat L...!nhappy that the jargon of the trade calls 

the thing denoted by ''i'', a variable, because in normal mathematics, the 

concept of a variable is a completely timeless concept. Time has nothing 

to do with the "x" in the relation 

''sin(2 * x) = 2 * sin(x) * cos(x)''; 

if such a variable ever denotes a value, it denotes ''any value''· 

Each time, however, that a variable in a sequential p~ocess is used 

-such as "i" in "a[i]"- it denotes a very specific value, viz. the last 

value assigned to it, and nothing else! As long as no new value is assigned 

to a variable, it de~otes a constant value! 

I am, however, only too hesitart to coin ~ew terms: firstly it would 

make this monograph unintendedly pretentious, secondly I feel that the 

(fas~ionable~) coining of new terms often adds as much to the confusion in 

one way as it removes in the other. I shall therefore stick to the term 

"variable". 

Remark 6. One may well ask, what we are actually doing, when we 

introduce a variable without specifying, for instance, a domain for it, 

i.e. a set of values which is guaranteed to comprise all its future actual 

values. 'We shall not pursue this any further here. 

Now we are going to subject our scheme to a next transformation. In 

Fig.3 we have "wrapped up 11 t~e lines, now we are going to wrap up the scheme 

of Fig.6 in the other direction, an operation to wich we are invited by the 

repetitive nature of it and which can be performed at the price of a next 

variable, "j 11 say. t 
i:== 1 • 

' 

j :~ 1 . 
' 

I j - 4 ?I -

I 
j :~ j + 1· 

' 
a[i] < a[j] ? 

I i:~ j 

Fig.7 



The change is a dramatic one, for the fact that the original problem 

was to iderctify the :-~;aximum value among four given values is r.o longer 

reflected in the "topology" of the rules of behaviou:::: in Fig.7 we only 

find the number "4" mentioned once. By introducing another variable, say 

"n", and replacing the "4" in Fig.7 by "n" we have suddenly the rules of 

behaviour to identify the maximum occurring among then elements a[1 ], 

a[2], ••••••• , a[n] and this practically only for the price that before 

application, the variable n must be put to its proper value. 

I called the cGange a dramatic one, for now we have not only given 

rules of behaviour which r.,:.Jst be interpreted sequentially -this was already 

the case with Fig.6- but we have devised a single mechanism for identifying 

the maximum value amor<g any number of given elements, whereas our original 

non-sequential machine could only be built for a previously well-defined 

number of elements. We have mapped our comparisons in time instead of in 

space, and if we wish to compare the two methods, it is as if the sequential 

machine "extends itself" in terms of Fig.3 as the need arises. It is our 

last transition which displays the sequential processes in their full 

glory. 

The technical term for what we have called 11 rules of behaviour" is an 

algorithm or a program. (It is not customary to call it "a sequential program" 

although this name would be fully correct.) Equipment able to follow such 

rules, "to execute such a program" is called 11 a general purpose sequential 

computer" or "computer" for short; what happens during such a program 

execution is called "a sequential process". 

There is a commonly accepted technique of writing algorithms without 

the need of such pictures as we have used, v:..z. ALGOL 60 ("ALGOL" being 

short for Algorithmic Language). For a detailed discussion of ALGOL 60 

I must refer the reader to the existing literature. We shall use it in 

future, whenever convenient for our purposes. 

For the sake of illustration we shall describe the algorithm of Fig.7 

(but for "n" instead of 11411
) by a sequence of ALGOL statements: 



" 
back: if j /: n t··en 

begin j:::: j + 1; 

end" 

if a[i] < a[jJ the~ i::::: J; 

goto back 

The first two statements: 11 i: =1 ; j: = 1" are -I hope- self-explanatory, 

Then co~es ''back:'', a so-called label, ~sed to identify this place in the 

program. Then comes "if j /: n then", a so-called conditional clause. If the 

condition expr2ssed by it is satisfied, t.'le fol2_owirg statement will be 

perfo~med, otherwise it will be skipped. (Another example of it can be found 

two lines l~we~.) When the extent ~f the program which may have to be skipped 

presents itself ~rimarily as a sequence of more than one state~ent, then one 

puts the so-called statement brackets 11 begin 11 and "end" around this sec;uence, 

thereby making it into a single statement as far as its surroundings are 

concerned. (This is entirely analogous to the effect of parentheses in 

algebraic formulae, such as 11 a * (b +c)" where the parenthesis pair indicates 

that the whole expression contained within it is to be taken as factor.) The 

last statement 11 ~ back" means that the process should be continued at the 

point thus labeled; it does exactly the same thing for us as the upward 

leading line of Fig.7. 
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2. Loosely Connected Processes. 

T~e subject ma-;:;-te~ of this monograph is the cooperatior. between loosely 

connected sequential processes and this section will be devoted to a thorough 

discussion of a simple, but representative problem, in order to give the 

reader some feeling for tre problems in t~is area. 

In the previous section we have described the nature of a single 

sequential process, performing its sequence of actions autonomously, i.e. 

independent of its surroundings as soon as it hes been started. 

When two or more of such processes have to cooperate with each other, 

they ~ust be connected, i.e. t~ey must be able to communicate wi~h each otrer 

in order to exchange information. As we shall see below, the properties of 

these means of intercommunication play a vital role. 

Furthermore, we have stipulated that the processes should be connected 

loosely; by this we mean that apart from the (rare) moments of explicit 

intercommunication, the individual processes themselves are to be regarded 

as completely independent of each other. In particular we disallow any 

assumption about the relative speeds of the different processes. (Such an 

assumption -say''orocesses geared to the same clock''- could be regarded as 

implicit intercommunication.) This independence of speed ratios is in strict 

accordance with our appreciation of the single sequential process: its only 

essential feature is, that its elementary steps are performed in sequence. 

If we prefer to observe the performance with a chronometer in our hand, we 

may do so, but the process itself remains remarkably unaffected by this 

observation. 

I warn the reader that my consistent refusal to make any assumptions 

about the speed ratios will at first sight appear as a mean trick to make 

things more difficult than they already are. I feel, however, fully justi

fied in my refusal. Firstly, we may have to cope with situations in which, 

indeed, very little is kr.own about the speeds. For instance, part of the 

system r11ay be a manually operated input station, another part of the system 

might be such, that it can be stopped externally for any period of time, 

thus reducing its speed temporarily to zero. Secondly -and this is much more 
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important- wnen we thi<k that we can rely u~on certain speed ratios, we 

shall discover t'lat we have been "pouPd foolish and penr-y 'lllise 11 • True that 

certain mechanisms can be made simpler under the ass~mption of speed ratio 

restrictions. The verification, however, t~at such an assunption is always 

justified, is in general extremely tricky and tr.e task to 'l1Bke, in a reliable 

manner, a well behaved structure out of many interlinked components is 

seriously aggravated when such ''analogue intarferences" have to be taken 

into account as well. (For one thing: it will make the proper working a 

rather unstable equilibrium, sensitive to any change in the different 

speeds, as may easily arise by replacement of a component by another -say, 

replacement of a line printer by a faster ~ode!- or reprogramming of a 

certain portion.) 

2.1. A Simple Example. 

After these introductory remarks I shall discuss the first problem. 

We consider two sequential processes, "process 1" and "process 2", which 

for our purposes can be regarded as cyclic. lf"1 each cycle a so-called "criti

cal section'' occurs, critical in the sense that the processes Mave to be 

constructed in such a way, that at any moment at most one of the two is 

engaged in its critical section. In order to effectuate t~is mutual exclusion 

tr.e two processes have access to a number of common variables. We postulate, 

that inspecting the present value of such a common variable and assigning a 

new value to such a common variable are to be regarded as indivisible, non

interfering actions. I.e. when the two processes assign a new value to the 

same common variable "simultaneously", then the assignments are to be regarded 

as done the one after the other, the final value of the variable will be one 

of the two values assigned, but never a "mixture" of the two. Similarly, when 

one process inspects the value of a common variable 11 simultaneously" with 

the assignment to it by the other one, then the first process will find 

either the old or the new value, but never a mixture. 

For our purposes ALGOL 60 as it stands is not suited, as ALGOL 60 

has been designed to describe one single sequential process. We therefore 

propose the following extension to enable us to describe parallellism of 

execution. When a sequence of statements -separated by semicolons as usual 
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in ALGOL 60- is surrounded by the special statement bracket pair "parbeqin" 

a~d ''parend 11
, this is to be interpreted as parallel execution of the con

stituent staterrents. T~e whole construction -:et us call i~ ''a parallel 

compound''- can be regarded as a statement. Initiatio~ of a parallel compo~nd 

implies simultaneous initiation of all its constituent statements, its 

execution is completed after the completion of the execution of all its 

constituent statements. E.g.: 

11 begin 51; parbeqin 52; 53; 54 parend; 55 end'' 

(in which 51 ,52, 53. 54 and 55 are used to indicate s-:atements) means that 

af~er the completion of 51, the statements 52, 53 ar,d 54 will be executed 

in parallel, and only when they are all finished, then the execution of 

statement 55 will be i,..,i tiated. 

With the above conv<::ntions we can describe our first solutio'L: 

11 begin integer turn; turn:= 1· 
' 

parbegin 

process 1 : begin L1: if turn ~ 2 then gota L1; 

critical section 1· 
' 

turn:= 2; 

remainder of cycle 1· 
' 

goto L1 

end; 

process 2: begin L2: if turn ~ 1 then goto L2; 

critical section 2; 

turn:= 1; 

remainder of cycle 2; goto L2 

end 

parend 

end" 

(Note for the inexperienced ALGOL 60 reader. After "begin" in the first 

line we find the so-called declaration "integer turn 11
, thereby sticking to 

the rule of ALGOL 60 that program text is not allowed to refer to variables 

without having introduced them with the aid of a declaration. As tris 

declaration occurs after the "begin" of the outermost statement bracket 

pair it means that for the whole duration of the program a variable has 

been introduced that will only take on integer values and to which the 

program text can refer by means of the name "turn 11
.) 
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Th~ two processes communicate with ~ach other via the common integer 

''turn'', the value of which indicates w~ich of the two processes is the first 

to perform (or rather: to finish) its critical section. From the program it 

is clear that after the first assignment, the only possible values of the 

variable 11 turn 11 are 1 and 2. The condition for process 2 to enter its 

critical section is that it finds at some moment "turn /: 1", i.e. "tu:rn = 2 11
• 

But the only way in which the variable 11 turn'1 can get this value is by the 

assignment ''turn:= 2" in process 1. As process 1 performs this assignment 

only at the completion of its critical section, process 2 can only initiate 

its critical section after the completion of critical section 1. And critical 

section 1 could indeed be initiated, because the initial condition "turn = 1" 

implied "turn/. 2 11
, so that the potential wait cycle, labeled L1, was 

initially inactive. After the assignment "t:Jrn := 2" the roles of the two 

processes are interchanged. (N.B. It is assumed that ~he orly references to 

the variable "turn" are the ones explicitly shown in the program.) 

Our solution, though correct, is, however, unnecessarily restrictive: 

after the completion of critical section 1, the value of the variable "turn 11 

becomes 11 211
, and it must be =1 again, before the next entrance into critical 

section 1. As a result the only admissible succession of critical sections 

is the strictly alternating one ''1 ,2,1 ,2,1 ,2,1 , ••••• '', in other words, the 

two processes are synchronized. In order to stress explicitly that this is 

not the kind of solution we wanted, we impose the further condition "If one 

of the processes is stopped well outside its critical section, this is not 

allowed to lead to potential blocking of the other process.". This makes 

our previous solution unacceptable and we have to look for another. 

Our second effort works with two integers ''c1" and 11 c2", where c = 0 I 1 

respectively will indicate that the corresponding process in inside I outside 

its critical section respectively. We may try the following construction: 



"begin integer c1, c2; 

c1 :::::: 1; c2:::::: 1; 

parbeqin 

end" 

process 1 : begin L 1: if c? ·- 0 then qoto L 1; 

c1 :::::: 0; 

end; 

critical section 1; 

c1 :::::: 1; 

remainder of cycle 1 ; go to L 1 

process 2: begin L2: if c1 ~ 0 then goto L2; 

c2:= 0; 

end 

par end 

critical section 2; 

c2:::::: 1; 

remainder of cycle 2; gota L2 

The first ass'ignments set both c 's ::::: 1, in accordance with the fact 

that the processes are started outside their critical sections. During the 

entire execution of critical section 1 the relation 11 c1 ::::: 0 11 holds and the 

first line of process 2 is effectively a wait 11 Wait as long as process 1 is 

in its critical section.''. The trial solution gives indeed same protection 

against simultaneity of critical section execution, but is, alas, too simple, 

because it is wrong. Let first process 1 find that c2::::: 1; let process 2 

inspect c1 immediately afterwards, then it will (still) find c1 ::::: 1. Both 

processes, having found that the other is not in its critical section, will 

conclude that they can enter their own section safely! 

We have been too optimistic, we must play a safer game. Let us invert, 

at the beginning of the parallel processes, the inspection of the "c" of the 

other and the setting of the own "c". We then get the construction: 
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11 beqin integer c1, c2; 

c1 := 1 ; c2:= 1· 
' 

earbeg:in 

process 1: begin A1: c1 := 0· 
' 

L1: if c2 ~ 0 then got a L 1 ; 

critical section 1· 
' 

c1 := 1 . 
' 

rer:~air,der of cycle 1· 
' 

go to A1 

end; 

process 2: begin A2: c2::::: 0· 
' 

L2: if c1 ~ 0 then goto L2; 

critical section 2; 

c2:= 1; 

remainder of cycle 2; goto A2 

end 

parend 

end" 

It is worth while to verify that this solution is at least completely 

safe. Let us focus our attention an the moment that process 1 finds c2 = 1 

and therefore decides to enter its critical section. /l.t this moment we can 

conclude 

1) that the relation '1c1 = 0 11 already holds and will continue to hold 

until process 1 has completed the execution of its critical section, 

2) that, as "c2 = 1" holds, process 2 is well outside its critical 

section, which it cannot enter as long as "c1 = 0" holds, i.e. as long 

as process 1 is still engaged in its critical section. 

Thus the mutual exclusion is indeed guaranteed. 

But this solution, alas, must also be rejected: in its safety measures 

it has been too drastic, for it contains the danger of definite mutual 

blocking. When after the assignment 11 c1 := 0" but yet before the inspection 

of c2 (both by process 1) process 2 performs the assignment ''c2:= 0", then 

both processes have arrived at label L1 or L2 respectively and both relations 

"c1 = 0" and "c2 = 0'1 hold, with the result that both processes will wait 

upon each other until eternity. Therefore also this solution must be rejected. 



It was CK to set CJne's own "c" before inspecting t'le "c:" :~f tre other, 

but it was wrCJng to stick to one's owr c-setting and just ts wait. This is 

(somewhat) remedied in t~e following constructior: 

"begin irteger c1, c2; 

c1 :.-= 1; c2:= 1; 

parbeqin 

r;:r:Jcess 1: begin L1: c1 :::::: 0; 

end 11 

end; 

if c2 ::::: 0 then 

begin c1 := i; goto L1 end; 

critical section 1; 

c1 := 1; 

remainder of cycle 1; qcto L1 

prGcess 2: beqin L2: c2:= 0; 

end 

par end 

if c1 = 0 then 

begin c2:::::: 1; ~ L2 end; 

critical section 2; 

c2:= 1; 

remainder of cycle 2; goto L2 

This construction is as safe as the previous one and, when the assignments 

"c1 := 0" and "c2:::::: 0 11 are performed ''simultaneously" it will not necessarily 

lead to mutual blocking ad infinitum, because both processes will reset their 

own "c" back to 1 before restarting the entry rites, thereby enabling the 

other process to catch the opportunity. But our principles force us to reject 

also this solution, for the refusal to make any assumptions about the speed 

ratio implies that we have to cater for all speeds, and the last solution 

admits the speeds to be so carefully adjusted that the processes inspect 

the other's ''c'' only in those periods of time that its value is= 0. To make 

clear that we reject such solutions that only work wit~ some luck, we state 

our next requirement: 11 If tf-,e two processes are about to enter their critical 

sections, it must be impossible to devise for them such finite speeds, that 

the decision which one of the two is the first to enter its critical section 

is postponed until eternity.''· 
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In passing we ~ate, that the sol~tion just rejected is quite acceptable 

i~ everyday life. E.g., when two people are talking ave= t~e teleohone and 

they are suddenly disconnected, as a rule both try to reestablish the connec

tion. They bGth dial ar.d if' they get the signal ":\Ju~ber Engaged", ·they put 

down the receiver and, if not already called, they try 1'some 11 seconds later. 

Of course, this may coincide with the next effort of tre other party, but as 

a rule t~e connection is reestablished succesfully after very few trials. 

In our mechanical circ~mstances, however, we cannot accept this oattern of 

behaviour: our parties might very well be identical~ 

Quite a collection of trial sol~tions have been shown to be incorrect 

and at some moment people that had played witr the problem started to do~bt 

whether it could be solved at all. To the Dutch mathematician Th.J.Dekker 

the credit is due for the first correct solu~ion. It is, i~ fact, a mixture 

of our pr9vious efforts: it uses the ''safe sluice 11 of our last constructions, 

together with the integer "turn 11 of the first one, but only to resolve 

the indeterminateness w~en r.ei ther of tre tw::~ immediately succeeds .. The 

initial value of ''turn'' could have been 2 as well .. 

"begin integer c1, c2, turn; 

c1 := 1 ; c2 ::::: 1 ; turn::::: 1 ; 

parbegin 

process 1: begin A1: cl ::::: 0; 

L1: if c2:::: 0 then 

begin if turn 

c1 := 1; 

81: if turn 

goto A1 

critical section 1; 

turn:= 2; c1 == 1; 

then go to L 1 

2 then go to 81 ; 

remainder of cycle 1; goto A1 

process 2: ~ A2: c2:= 0; 

L2: if c1 = 0 then 

begi,, if turn 2 then go to L2; 

c2:= 1· , 

E2: if turn then go to 82; 

go to A2 

end; 



end 

parend 

end" 

critical section 2; 

turn::::: 1; c2:= 1; 

remainder of cyc~e 2; got::::J A2 
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'We shall now pr.:Jve t"ie correctnes3 of this solu-,;ior.. Jur first obser

vation is that each process only operates on its own ''c". As a result process 

1 inspects "c2'' only while ''c1 = 0'', it will only enter its critical section 

providea it finds "c2::: 1 11 ; for process 2 the analogous ::~bserv:;:~tion can be 

made. 

I: short, we recognize the safe sluice of our last constructions and the 

solution is safe in the sense that the two processes can never be in their 

critical sections simultaneously. The second part of the proof has to show 

that in case of doubt the decision which of the two will be the first to 

enter cannot be postponed until eternity. ~Jaw we should pay some attention 

to the integer "turn'': we note that assignment to this variable only occurs 

at the end -or, if you wish: as part- of critical sections and therefore we 

we can regard t'le variable "turn" as a constant during this decision process. 

Suppose that "turn = 1 ". Then process 1 can only cycle via L 1, that is with 

"c1 = 0" and only as long as it finds "c2 0". But if "turn = 1 11 then 

process 2 can only cycle via B2, but this state implies ''c2 = 1'', so that 

process cannot and is bound t:J enter its critical section. For ''turn = 2" 

the mirrored reasoning applies. As third and final part of the proof we 

observe that stopping, say, process 1 in "remainder of cycle 1" will not 

restrict process 2: the relation 11 C1 = 1" will then hold and process 2 can 

enter its critical section gaily, quite independent of the current value of 

''turn". And this completes the proof of the correctness of Dekker's solution. 

Those readers that fail to appreciate its ingenuity are kindly asked to 

realize, that for them I have prepared the ground by means of a carefully 

selected set of rejected constructions. 



2.2. The Ge~eralized Mutual Exclusion Problerr. 

The probleT of 3ection 2.1 ~as a natural generalizatior: given ~cyclic 

processes, eac~ with a critical section, can we construct t~em in s~c~ a way, 

that at any moment at :nost one of them is engaged in its critical section? 

We assume the same means of intercommunication available, i.e. a set of 

commonly accessible variables. Furthermore our solt..:tion has to satisfy the 

same requirements, that stopping one process well outside its critical section 

may in no way restrict the freedom of the others, and that if more than one 

process is about to enter its critical section, it ~ust be impossible to 

devise for the:n such finite speeds, that the decision wrich ore of them is 

t~e firs: one to enter its critical section, can be postponed Gntil eternity. 

In order to be able to describe the solution ir, ALGCL 60, we need the 

concept of the array. In section 2.1 we had to introduce a 1'c 11 for each of 

the two processes and we did so by declaring 

"integer c1, c2'1
• 

Instead of enumerating the quantities, we can declare -under the assumption 

that "N" has a well defined positive value-

"integer array c[ 1 N ]" 

which means, that at one stroke we have introduced N integers, accessible 

under the names 
"c[subscript]", 

where "subscript" might take the values 1, 2, •••••. , N. 

The next new ALGOL 60 feature we shall use is the so-called "for clause 1', 

which we shall use in the following form: 

"for j := 1 step 1 until N do statement 511 
, 

and whicl-, enables us to express repetition of "statement 5" quite conveniently. 

In principle, the for clause implies that "statement 5" will be executed N 

times, with "j" in succession = 1, = 2, •••... , = 1\J. ( 
1Ne have added "in 

principle'', for via a go to statement as constituent part of statement S 

and leading out of it, the repetition can be ended earlier.) 
-·: 

Finally we need the logical operator that in this monograph is denoted 

by "and". ·we have met the conditional clause in the form: 



''if condi~i~n then statement'' 

We shall new mee~: 

"if c~:mdition and condition 2 t~en statement '' 

meaning tha~ stetement 5 will ~n!y be executed if ''cand~tion 1'' and ''condition 

2" are both satisfied. \Once :nore we :::.hCJuld like t:J stress that this mon:Jgrao~ 

is ;nt an ALGOL bO progranr11ing marual: t~e above -lo.:;se!- explanations :Jf 

ALGOL 60 have only been introduced to meke this monograph as self-contained 

as possible.) 

With t~e notational aids just sketched we can describe our solution 

for fixed N as follows. 

The overall structure is: 

; 

"begin integer array b, c[O Nj; 

end" 

integer turn; 

for turn:= 0 ~ 1 until N do 

begin b[ turn]:= 1 ; c[ turn J:= 

turn:= 0; 

parbegin 

process 1 : begin ..••.••••.•.......... end; 

process 2: begin .......••.•....••••.. end; 

pr::tcess N: begin ........•..•....•.•.. end 

parend 

The first declaration introduces two arrays with N + 1 elements each, 

the next declaration introduces a single iilteger "turn". In the following 

f:::rr clause this variable "turn" is used to take on the successive values 

i, 2, 3, ••.... , ~J, so that the two arrays a=e initialized wit~ all elements 

= 1. Then ''turn'' is set= 0 (i.e. none of the processes, numbered from 1 

onwards, is privileged). After this theN processes are started simultaneously. 

The N processes are all similar. The structure of the i-th process is 

as follows (I < i < N) : 



"process i: begin inteqer j; 

Ai: c[ij:~ 0; 

Li: if tLr~ j i tren 

begin eLi]:= 1; 

if b[ turc] then turn:.:::o lj 

goto Li 

c[i]:~ 0; 

for j :~ I step I until N do 

begin if 
c f i and c[ j J 0 t~en 

critical secticn i· 
' 

turn:= 0· 
' 
c[i~:= 1; b[i]:~ 1 ; 

remainder o~ cycle i; 9oto ~i 

end" 

~ Li end; 

Remark. T~e description of the N individual processes starts with s declaration 

''integer j''· According to the rules of ALGOL 60 this means trat each process 

introduces its own, private integer "j" (a so-called 11 local quantity"). 

We leave the pr:J:Jf to the reader. It has to show again: 

1) that at any momef"1t at most one of "'::he processes is engaged in its 

critical section 

2) that the decision which of tre processes is the first to enter its 

critical section cannot be postponed until eternity 

2) that stopping a process in its ''remainder of cycle'' has no effect 

upon the others. 

Of these parts, the second one is tre most difficult one. (Hint: as soon 

as one of the processes has perfor~ed the assignment ''turn:= i", no new 

processes can decide to assign their number to turn before a critical section 

has been completed. Mind that two processes ·can decide "simultaneously'' to 

assign t~eir i-value to turn!) 

(Remark, that can be skipped at first r~ading.) 

The program just described inspects the value of "b[turn]" where both 

the array "b" and the integer "turn" are in common store. We have stated 

that inspecting a single variable is an indivisible action and inspecting 



''b[turn]'' can therefore ~nly mean: i~spect the value of ''turn'', and if t~is 

~appens to be= 5, well, ~hen inspect ''b[5]''· Or, ir ~ore explicit ALGOL: 

~precess i: ~ integer j, k; 

k:= turn; if b[k] = 1 ther ....••.. " 

implying that ty the time that ''b[k]'' is inspected, ''turn'' may already ~ave 

a value different from the current one of ''k''· 

Without the stated limitations in communicating with the ccmmcn stare, a 

possible interpretation of "the val:Je of b[turr<] 11 would have been "tre value 

of the element of the array b as inoicated by the current value of turn''· 

In so-called uniorogramming -i.e. a ~ingle seouential process operating 

on q~ar~ities local to it- the two interoretations are equivalent. In 

multiprogramming, where other active processes may access and change the 

same conmon informatio0, the two interpre":at:.ons make a great differarce! 

In particular for the reader with extensive experience in uniprcgramming 

this remark has been inserted as an i~dication of the subtleties of t~e 

games we are playing. 

2.3. A Linguistic Interlude. 

(This section may be skipped at first reading.) 

In section 2.2. we described the cooperation of N processes; in the 

ove::-all structure we used a vertical sequence of dots between the brackets 

''parbeqin" and "parend''. Tris is nothing but a loose formalism, suggesting 

to the human reader how to compose in our notation a set of N cooperating 

sequential processes, under the condition that the value of N has been fixed 

beforehand. It is a suggestion for the construction of 3, 4 or 5071 cooperating 

processes, it does not give a formal description of N such cooperating processes 

in which N occurs as a parameter, i.e. it is not a description, valid for amy 

value of N. 

It is the purpose ::Jf this section to show that the concept of the 

so-called "recursive procedure" of ALGOL 60 caters for this. This concept 

will be sketched briefly. 

We have seen, how after "begin" declarations could occur in order to 



introd~ce and t~ ~arne either single varibles (by enumeration of their names) 

or w~ole ordered sets of variables (viz. in the array declaration). Wit~ 

the so-called ''procedure declaration'' we can define and name a certain 

action; sue~ an acti~n may the~ be invoked by ~sing its name as a statement, 

thereby supplying the parameters, to which the action should be applied. 

As an illustration we ':.Onsider the fol:owing P..LGCL bO program: 

"begin integer a, b; 

procedure square(u, v); integer u, v; 

begin u:= v * v end; 

( ' ' \ (' ' L: square a, 3J; square(b, a 1 ; square a, b) 

end" 

In the first line the integer named ''a'' and ''b'' are declared. The next 

line declares the procedure named "square", operating on two parameters, 

which are specified to be single integers (and not, say, complete arrays). 

This line is called "the procedure heading 11
• The immediately following 

statement -the so-called 11 procedure body"- describes by definition the 

action named: in the third line -in which the bracket pair "begin •..• end" 

is superfluous- it is told that the action of "square'' i~ to assign to the 

first parameter the square of the value of the second one. Then, labeled "L", 

comes the first statement. Before its execution the values of both ''a'' and 

''b'' are undefined, after its execution ''a = 9''. After the execution of the 

next statement, the value of "b" is therefore = 81, after the execution of 

the last statement, the value of ''a'' is =b561, the value of ''b'' is still= 81. 

In the previous example the procedure mechanism was essentially introduced 

as a means for abreviation, a means for avoiding to have to write down the 

"body" three times, although we could ~ave done so quite easily: 

"begin integer a, b; 

L: a:= 3 * 3; b:= a * a; a:= b * b 

end". 

When the body is much more complicated than in this example, a program 

along the latter lines tends indeed to be much more lengthy. 
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This technique of 11 substituting for the call the appropriate version 

of the body'' is, however, ~a longer possible as so~n as the procedure is a 

so-called recursive one, i.e. may call itself. It is then, that the procedure 

really enlarges the expressive power of the programming language. 

A simple example might illustrate the recursive procedure. T~e greatest 

common divisor of two given natural numbers is 

1) if they ~ave the same value equal to this value 

2) if they have different values equal to the greatest common divisor of the 

smallest of the two and their difference. 

In other words, if the greatest common divisor is not t~ivial (first case) 

the problem is replaced by finding the greatest common divisor of two 

smaller numbers. 

(In the following program the insertion "value v, w;" can be skipped by the 

reader as being irrelevant for our present purposes; it indicates that for 

the parameters listed the body is only interested in the numerical value 

of the actual parameter, as supplied by the call.) 

"begin integer a; 

procedure GCD(u, v, w); value v, w; integer u, v, w; 

begin if v ::::: w then u:::::: v 

else 

begin if v < w then GCD(u, v, w - v) 

else GCD(u, v - w, w) 

end· __ , 
GCD(a, 12, 33) 

end If 

(In this example the more elaborate form of the conditional statement 

is used, viz.: 

''if condition then statement 1 else statement 2"· 

meaning that if "condition" is satisfied,"statement 1" will be executed and 

11 statement 2" will be skipped, and that if "condition" is not satisfied, 

"statement 1" will be skipped and "statement 2" will be executed.) 

The reader is invited to follow the pattern of calls of GCD and to 

see, how the variable "a'' becomes ::::: 3; he is also invited to convince 



himself of the fact that the (dynamic) pattern of calls depends on the 

parameters supolied and that the substitution technique -replace call by 

body- as applied in t0e previous example wculd lead to difficulties here. 

We shall now write a program to perform a matrix * vector ~ultiplication 

i:l which 

1) the order of the~ scalar* scalar products to be summed is indeed 

prescribed (the rows of the matrix will be scanned from left to right) 

2) the N rows of the matrix can be processed in parallel. 

(1.~here we do not wish to impose the restriction of purely integer values, 

we have used to declarator 11 real 11 instead of the declarator 11 inteqer 11
; fur

thermore we \--·ave introduced an array with two subscipts in a, we hope, 

obvious manner.) 

It is assumed that, upon entry of this block of program, the integers 

"~" and "N" have positive values. 

"begin ~ array matrix[ 1 

real array vector[1 

N, 1 

M]; 

end" 

real array product[ 1 : N]; 

procedure rowmult(k); value k; integer k; 

begin if k > 0 then 

rowmult(N); 

parbegin 

begin real s; integer j; 

s:o: 0; 

end; 

for j ::= 1 step 1 until M do 

s:o: s + matrix[k, j] * vector[j]; 

product[ k] := s 

rowmult(k - 1) 

parend 
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3. The Mutual Exclusion Problem Revisited. 

We return to the problem of mutual exclusion in time of critical sectior.<:;,, 

~s introduced in sectio~ 2.1 and generalized in section 2.2. This section 

deals with a more efficient tecl-nique for solving- this problem; only after 

having done so, we have adequate means for the description of examples, with 

which I hope to convince the reader cf the rathe:· ~undamental importance 

of ti-e mutual exclusion problem. In other wcras, I must appeal to the patier;ce 

of the wondering reader (suffering, as I am, from the sequential nature of 

human communication!) 

3.1. The Need for a More Realistic Solution. 

The solution given in sec~ion 2.2 is interesting in as far as it shows 

that the restricted means of communication provided are, from a theoretical 

point of view, sufficient to solve the problem. From other paints of view, 

which are just as dear to my heart, it is hopelessly inadequate. 

To start with, it gives rise to a rather c~mbersome description of the 

individual processes, in which it is all but transpcrent that the overall 

behaviour is in accordance with the conceptually so simple requirement of 

tre mutual exclusion. In other words, in some way or another this solution 

is a tremendous mystification. Let us try to isolate in our minds in which 

respect this so2.ution represents indeed a mystification, for this investigatior 

could give the clue .~to improvement. 

Let us take the period af time during which one of the processes is in 

its critical section. We all know, that during that period, no other processes 

can enter their critical section and that, if they want to do so, they have to 

wait until the current critical section execution has been completed. For the 

remainder of that period hardly any activity is required from them: they have 

to wait anyllow, and as far as we are concerned 11 they could go to sleep 11
• 

Our solution does nat reflect this at all: we keep the processes busy 

setting and inspecting common variables all the time, as if no price has to 

be paid for this activity. But if our implementation -i.e. the ways in which 

or the means by which these processes are carried out- is such, that "sleeping" 
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is a less expensive activity than this busy way of waiting, then we are 

fully justified (now also from an economic point of view) to call our 

solution misleading. 

In present day computers, there are at least two ways in which this 

active way of waiting can be very expensive. Let me sketch them briefly. 

These computers have two distinct parts, usually called "the processor'' and 

"the store". The processor is the active part, in which the arithmetic and 

logical operations are performed, it is "active and small"; in the store, 

which is "passive and large" resides at any moment the information, which 

is not processed at that very moment but only kept there for future reference. 

In the total computational process information is transported from store to 

processor as soon as it has to play an active role, the information in store 

can be changed by transportation in the inverse direction4 

Such a computer is a very flexible tool for the implementation of 

sequential processes. Even a computer with only one single processor can 

be used to implement a number of concurrent sequential processes. From 

a macroscopic point of view it will seem, as though all these processes 

are carried out simultaneously, a more closer inspection will reveal, 

however, that at any "microscopic" moment the processor helps along only 

one single program, and the overall picture only results, because at 

well chosen moments the processor will switch over from one process to 

another. In such an implementation the different processes share the same 

processor and activity of one of the processes (i.e4 a non-zero speed) will 

imply a zero speed for the others and it is then undesirable, that precious 

processor time is consumed by processes, which cannot go on anyhow4 

Apart from processor sharing, the store sharing could make the unnecessary 

activity of a waiting process undesirable. Let us assume that inspection of 

or assignment to a "common variable 11 implies the access to an information 

unit -a so-called "word"- in a ferrite core store. Access to a word in a 

core store takes a finite time and for technical reasons only one word can 

be accessed at a time4 When mo~e than one active process may wish access to 

words of the same core store, the usual arrangement is that in the case of 

immanent coincidence, the storage access requests from the different active 

processes are granted according to a built in priority rule: the lower 

priority process is automatically held up4 (The literature refers to this 
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situation when it describes "a communication channel stealing a memory 

cycle from the processor.) The result is that frequent inspection of 

common variables may slow down H~e process, the local quantities of which 

are stored in the same core store. 

3.2. The Synchronizing Primitives. 

The origin of the complications, which lead to such intricate solutions 

as the one described in section 2.2 is the fact that the indivisible accesses 

to common variables are always "one-way information traffic": an individual 

process can either assign a new value or inspect a current value. Such an 

inspection itself, however, leaves no trace for t~e other processes and the 

consequence is that, when a process want to react to the current value of a 

common variable, its value may be changed by the other processes between 

the moment of its inspection and the following effectuation of the reaction 

to it. In other words: the previous set of communication facilities must be 

regarded as inadequate for the problem at hand and we should look for better 

adapted alternatives. 

Such an alternative is given by introducing 

a) among the common variables special purpose integers, which we shall call 

"semaphores". 

b) among the repertoire of actions, from which the individual processes have 

to be constructed, two new primitives, which we call the 11 P-operation 11 

and the "V-operation" respectively. The latter operations always operate 

upon a semaphore and represent the only way in which the concurrent processes 

may access the semaphores. 

The semaphores are essentially non-negative integers; when only used 

to solve the mutual exclusion problem, the range of their values will even 

be restricted to "0" and "1 ". It is the merit of the Dutch physicist and 

computer designer Drs.C.S.Scholten to have demonstrated a considerable field 

of applicability for semaphores that can also take on larger values. When 

there is a need for distinction, we shall talk about ''binary semaphores" and 

"general semaphores" respectively. The definition of the P- and V-operation 
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that I shall give ~ow, is insensitive to tr.is distiction. 

Definition. The V-operatian is an operation with one argument, which must 

be the identification of a semaphore. (If "51 11 and "52 11 denote semaphores, 

we can write "V(S1)" and "V(S2) 11
.) Its function is to increase the value of 

its argument semaphore by 1; this increase is to be regarded as an indivisible 

operation. 

Note, that this last sentence makes 11 V(51 )" inequivalent to 11 51 ::::.:- 51 + 1''. 

For suppose, that two processes A and B both contain the statement "V(51)" 

and that both should like to perform this statement at a moment when, say, 

11 51 = 6". Excluding interference with 51 from other processes, A and B will 

perform their V-operations in an unspecified order -at least: outside our 

control- and after the completion of the second V-operation the final value 

of 51 will be ~ 8. If 51 had not been a semaphore but just an ordinary common 

integer, and if processes A and E had contained the statement ''51:~ 51 + 1'' 

instead of the V-operation on 51, then the following could happen. Process 

A evaluates "51 + 1" and computes "7"; before effecting, however, the assignment 

of this new value, process B has reached the same stage and also evaluates 

11 51 + 1 ", computing "711
• Thereafter both processes assign the value ''7" to 

51 and one of the desired increases has been lost. The requirement of the 

"indivisible operation" is meant to exclude this occurrence, when the V

operation is used. 

Definition. The P-operation is an operation with one argument, which must 

be the identification of a semaphore. (If "51" and "52" denote semaphores, 

we can write "P(51 )" and "P(S2) 11
.) Its function is to decrease the value of 

its argument semaphore by 1 as soon as the resulting value would be non

negative. The completion of the P-operation -i.e. the decision that this is 

the appropriate moment to effectuate the decrease and the subsequent decrease 

itself- is to be regarded as an indivisible operation. 

It is the P-operation, which represents the potential delay, viz. when 

a process initiates a P-operation on a semaphore, that at that moment is 

= 0, in that case this P-operation cannot be completed until another process 

has performed a V-operation on the same semaphore and has given it the value 

11 1 11
• At that moment, more than one process may have initiated a P-operation 
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on that very same semaphore. The clause that completion of a P-ooeration is 

an indivisible action means that wf--en the semaphore :,as got the value "1 '', 

only one of t~e initiated P-operations on it is allowed to be completed. 

INhich one, again, is left unspecified, i.e. at least outside our control. 

At the present stage of our discussions we shall take the implementability 

of the P-and v-operations for granted. 

3.3. The Synchronizing Primitives Applied to the Mutual Exclusion Problem. 

The solution of the N processes, each with a critical section, the 

executions of which nust exclude one another in time (see section 2.2) is 

now trivial. It can be done with the aid of a single binary semaphore, say 

"free". The value of "free" equals the number of processes allowed to enter 

their critical section now, or: 

11 free 

"free 

1" means: none of the processes is engaged in its critical section 

0" means: one of the processes is engaged in its critical section. 

The overall structure of the solution becomes: 

"begin integer free; free:= 1; 

parbegin 

end" 

process 1: begin ••••••••.•••••• end; 

process 2: begin ••••••.•••••.. -~; 

process N: begi.,, .............. end; 

parend 

with the i-th process of the form: 

"process i: begin 

Li: P(free); critical section i; V(free); 

remainder of cycle i; goto Li 

end" 



4. The General Semaphore. 

4.1. Typical Uses of the General Semaphore. 

We consider two processes, whic'l are called the 11 producer 11 and the 

11 consumer 11 respectively. The producer is a cyclic process and each time it 

goes through its cycle it produces a certain portion of information, that 

has to be processed by the consumer. The consumer is also a cyclic process 

and each time it goes through its cycle, it can process the next portion of 

information, as has been produced by the producer. A si~ple example is given 

by a computing process, producing as "portions of ir,formation 11 punched cards 

images to be punched out by a card punch, w'rich plays the role of tre 

consumer. 

The producer - consumer relation implies a one-way communication channel 

between the two processes, along which the portions of information can be 

transmitted. We assume the two processes to be connected for this purpose 

via a buffer with unbounded capacity, i.e. the portions produced need not 

to be consumed immediately, but they may queue in the buffer. Tre fact that 

no upper bound has been given for the capacity of the buffer makes this 

example slightly unrealistic, but this should not trouble us too mucr now. 

(The origin of the name "buffer" becomes understandable as soon as we 

investigate the ccnsequences of its absence, viz. when the producer can only 

offer its next portion after the previous portion has been actually consumed. 

In the computer - card punch example, we may assume that the card punch can 

punch cards at a constant speed, say 4 cards per second. Let us assume, that 

this output speed is well matched with the production speed, i.e. that the 

computer can perform the card image production process with the same average 

speed. If the connection between computing process and card punch is unbuffered, 

then the couole will only work continuously at full speed when the card pro

duction process produces a card every quarter of a second. If, however, the 

nature of the computing process is such, tha~ after one or two seconds vigorous 

computing it produces 4 to 8 card images in a single burst, then unbuffered 

connection will result in a period of time, in which the punch will stand 

idle (for lack of information), followed by a period in which the computing 

process has to stand idle, because it cannot get rid of the next card image 
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before the preceding one has been actually pu~ched. Such irregularities in 

production speed, however, can be smoothed out by a buffer of sufficient 

size and that is, why suet~ a queuing device is called "a buffer".) 

In this section we shall not deal with the various techniques of imple

menting a buffer. It must be able to contain successive portions of infor~atian, 

it must therefore be a suitable storage medium, accessible to both processes. 

Furthermore, it must not only contain the portions themselves, it must also 

represent their lineair ordering. (In the literature two well-known techniques 

are described by "cyclic buffering" and "chaining" respectively.) When the 

producer has prepared its next portion to be added to "':he buffer, "'e shall 

indicate this action simply by "add portion to buffer 11
, without going into 

further details; similarly, the consumer will "take portion from buffer", 

where it is understood that it will be the oldest portion, still in the 

buffer. (Another name of a buffer is a "First- In-F irst-Dut-Memory.) 

Omitting in the outermost block any declarations for the buffer, we 

can now construct the two processes with the aid of a single general semaphore, 

called "number of queuing portions". 

"begin integer number of queuing portions; 

number of queuing portions:= 0; 

parbegin 

end'1 

producer: begin 

again 1: produce the next portion; 

add portion to buffer; 

V(number of queuing portions); 

goto again 1 

end; 

consumer: begin 

par end 

again 2: P(number of queui~g portions); 

take portion from buffer; 

process portion taken; 

end 
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The first lin= of the producer represents the coding of the process 

which forms the next portion of information; it can be conceived -it has a 

meaning- quite {~dependent of the buffer for w~ich this portion is interded; when 

it has been executed t~e next portion has been succesfully completed, the 

completion of its construction can no longer be dependent on other (unmentioned) 

conditions. The second line of coding represents the actions, which define 

the finished portions as the next one in the buffer; after its execution 

the new portion has been added completely to the buffer, apart from the fact 

that tre consumer does not know it yet. The V-operation finally confirms its 

presence, i.e. signals it to the consumer. Note, that it is absolutely essen

tial, that the V-operation is precede by the compl "'te addi tior, of tre portion. 

About the structure of the consumer analogous remarks can be made. 

Particularly in the case of buffer imple;nertation by mea:~s o-F chaining 

it is not unusual that the operations ''add portion to buffer'' and ''take 

portion from buffer" -operating as they are on the same clerical status 

information of the buffer- could interfere with each other in a most unde

sirable fashion, unless we see to it, that they exclude each other in time. 

This can be catered for by a binary semaphore, called "buffer manipulation", 

the values of which mean: 

0 either adding to or taking from the buffer is taki~g place 

neither adding to nor taking from the buffer is taking place. 

The program is as follows: 
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"begin integer number of queuing portions, buffer manipulation; 

number of queuing portions:~ 0; 

end" 

buffer man-ipulation:= 1; 

parbegin 

producer: begin 

again 1: oroduce next portion; 

end; 

co~ sumer: begin 

P(buffer manipulation); 

add portion to buffer; 

v( buffer manipulation); 

V(number of queuing oortions); 

goto again 1 

again 2: P(number of aueing portions); 

P(buffer manipulation); 

end 

parend 

take portion from buffer; 

V(buffer manipulation); 

process portion taken; 

goto again 2 

The reader is requested to convince himself that 

a) the order of the two \/-operations in the producer is 

b) the order of the two P-operations in the consumer is 

immaterial 

essential. 

Remark. The presence of the binary semaphore "buffer manipulationn 

has another consequence. We have given the program for one producer and 

one consumer, but now the extension to more producers and/or more consumers 

is straightforward: the same semaphore sees to it that two or more additions 

of·new portions will never get mixed up and the same applies to two or more 

takings of a portion by different consumers. The reader is requested to 

verify that the order of the two V-operations in the producer is still 

immaterial. 
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4.2. The Superfluity of the General Semaphore. 

In this section we shall show the superfluity of the general semaphore 

and we s~all do so by rewriting the last program of the previous section, 

using binary semaphores only. (Intentionally I have written 11 we shall show 11 

and not 11 we shall prove the superfluity". We do not have at our disposal 

the mathematical apparatus that would be needed to give such a proof and 

do not feel inclined to develop such mathematical apparatus now. Nevertheless 

I hope that my show will be convincing!) We shall first give a solution and 

postpone the discussion till afterwards. 

11 begin integer numqueupor, buffer manipulation, consumer delay; 

numqueupor:~ 0; buffer manipulation:= 1; consumer delay:= 0; 

par begin 

end" 

producer: begin 

again 1: produce next portion; 

P(buffer manipulation); 

end; 

add portion to buffer; 

numqueupor:= numqueupor + 1; 

if numqueupor = 1 then V(consumer delay); 

V(buffer manipulation); 

goto again 1 

consumer: begin integer oldnumqueupor; 

wait: P( consumer delay); 

parend 

go on: P(buffer manipulation); 

end 

take portion from buffer; 

numqueupor:= numqueupor - 1; 

oldnumqueupor:= numquepor; 

V(buffer manipulation); 

process portion taken; 

if oldnumqueupor = 0 then goto wait else goto go on 

Relevant in the dynamic behaviour of this program are the periods of time 
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during whicr the buffer is empty. (As long as the buffer is not empty, t~e 

consumer can go on happily at its 'Tlaxirnum speed.) Suer, a period can only be 

initiated by the consumer (by taking the last portion present from tf-le buffer), 

it can only be terminated by the producer (by adding a portion to an empty 

buffer). These two events can be detected unambiguously, thanks to the 

binary semaphore 11 buffer manipulatian 11
, that guarantees the mutual exclusion 

necessary for this detection. Each such pe::riod is accompanied by a P- and a 

\}-operation on the new binary semaphore "consumer delay 11
• Finally we draw 

attention to the local variable "oldnumqueupor 11 of the consumer: its value 

is set during the taking of the portion and fixes, whether it was the 

last portion then present. (The more expert ALGOL readers will be aware that 

we only need to store a single bit of information, viz. whether the decrease 

of numqueupor resulted in a value~ 0; we could have used a local variable 

of type Boolean for this purpose.) When the consumer decides to go to 

"wait", i.e. finds "oldnumqueupor ~ 0 11 , at that moment "numqueupor 11 itself 

could already be greater than zero again! 

In the previous program the relevant occurrence was the period with 

empty buffer. One can remark that emptiness is, in itself, rather irrelevant: 

it only matters, when the consumer should like to take a next portion, which 

is still absent. We shall program this version as well. In its dynamic 

behaviour we may expect less P- and V-operations on "consumer delay", viz. 

not when the buffer has been empty for a short while, but is filled again 

in time to make delay of the consumer unnecessary. Again we shall first 

give the program and then its discussion. 
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"begin integer numqueupor, buffer manipulation, consumer delay; 

nu~queupor:= 0; buffer manipulation:= 1; consumer delay:= O; 

parbegin 

endn 

producer: ~ 

again 1: produce next portion; 

P(buffer manipulation); 

add portion to buffer; 

numqueupor:= numqueupor + 1; 

if numqueupor = 0 then 

begin V(buffer manipulation); 

v( consumer delay) end 

else 

V(buffer manipulation); 

goto again 1 

end; 

consumer: begin 

parend 

again 2: P(buffer manipulation); 

numqueupor:= numqueupor - 1; 

if numqueupor = - 1 then 

end 

begin V(buffer manipulation); 

P(consumer delay); 

P(buffer manipulation) end; 

take portion from buffer; 

V(buffer manipulation); 

process portion taken; 

gota again 2 

Again, the semaphore "buffer manipulation'' caters for the mutual 

exclusion of critical sections. The last six lines of the producer could 

have been formulated as follows: 

11 if numqueupor = 0 then v(consumer delay); 

V(buffer manipulation); goto again 1 n 
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In not doing so I ~ave followed a personal taste, viz. to avoid P- and 

V-operations within critical sections; a personal taste to wf-·icr the 

reader should not pay tao ~uch attention. 

The range of possible values of ''numqueupar'' has been extended with 

the value "-1'', meaning (outside critical section execution) ''the buffer 

is not only empty, but its emptyness has already been detected by the 

consumer, which has decided to wait". This fact can be detected by the 

producer when, after the addition of one, "numqueupor = 0" holds. 

Note how, in the case of "nurnqueupor = - 1 ", the critical section of 

the consumer is dynamically broken into two parts: this is most essential, 

far ot~erwise the producer would never get the opportunity to add the 

portion tr,at is already so much wan ted by the consumer. 

(The program just described is known as "The Sleeping Barber". There is 

a barbershop with a separate waiting room. The waiting room has an entry 

and next to it an exit to the room with the barber's chair, entry and 

exit sharing the same sliding door which always closes one of them; furthermore 

the entry is so small that only one customer can enter it at a time, thus 

fixing their order of entry. The mutual exclusions are thus guaranteed. 

~ Barber's ---- +~------i~l 
Waiting room . 

Chair 

When the barber has finished a haircut, he opens the door to the 

waiting room and inspects it. If the waiting room is not empty, he invites 

the next customer, otherwise he goes to sleep in one of the chairs in the 

waiting room. The complementary behaviour of the customers is as follows: 

when they find zero or more customers in the waiting room, they just wait 

their turn, when they find, however, the Sleeping Barber -"numqueupor = - 1 "-

they wake him up.) 
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The two programs given present a strong hint ~o the concl~sion that 

the general semaphore is, indeed, superfluous. Nevertheless we shaal not 

try to abolish the general semaphore: the one-sided synchronisation 

r~striction expressible by it is a very common one and comparison of the 

solutions with and without general semaphore shows convincingly that it 

s~ould be regarded as an adequate tool. 

4.3. The Bounded Buffer. 

I shall g~ve a last simple example to illustrate the use of the 

general semaphore. In section 4.1 we have studied a producer and a consumer 

coupled via a buffer with unbounded capacity. This is a typically one-sided 

restriction: the producer can be arbitrarily far ahead of the consumer, on 

the other hand the consumer can never be ahaed of the producer. The relation 

becomes symmetric, if the two are coupled via a buffer of finite size, say 

N portions. We give the program without any further discussion; we ask the 

reader to convince himself of the complete symmetry. ("The consumer produces 

and the producer consumes empty positions in the buffer".) The value N, 

as the buffer, is supposed to be defined in the surrounding universe into 

which the following program should be embedded. 

"begin integer number of queuing portions, number of empty positions, 

end" 

buffer manipulation; 

number of queuing portions:= 0; 

number of empty positions:= N; 

buffer manipulation:= 1; 

parbegin 

producer: begin 

again 1: produce next portion; 

P(number of empty positions); 

P(buffer manipulation); 

add portion to buffer; 

V(buffer manipulation); 

V(number of queuing portions); go to again 1 end; 

consumer: begin 

par end 

again 2: P(number of queuing portions); 

P(buffer manipulation); 

take portion from buffer; 

V(buffer manipulation); 

V(number of empty positions); 

process portion taken; goto again 2 end 



5. Cooperation via Status Variables. 

In sections 4.1 and 4.3 we have illustrated the use of the general 

semaphore. It proved an adequate tool, be it as implementation of a rather 

trivial form of interaction. The rules for the consumer are very simple: if 

there is something in the buffer, consume it. They are of the same simplicity 

as the behaviour rules of the wage earner who spends all his money as soon 

as he has been paid and is broke until the next pay day, 

In other words: when a group of cooperating sequential processes have 

to be constructed and the overall behaviour of these processes combined 

has to satisfy more elaborate requirements -the community, formed by them, 

has, as a whole, to be well-behaved in some sense- we can only expect to 

be able to do so, if the individual processes themselves and the ways in 

which they can interact will get more refined. We can no longer expect 

a ready made solution as the general semaphore to do the job. In general, 

we need the flexibility as can be expressed in a program for a general 

purpose computer. 

We now have the raw material, we can define the individual processes, 

they can communicate with each other via the common variables and finally 

we have the synchronizing primitives. How we can compose from it what we 

might want is, however, by no means obvious. We must now train ourselves to 

use the tools, we must develop a style of programming, a style of "parallel 

programmirrg 11 I might say. 

In advance I should like to stress two points. 

We shall be faced with a great amount of freedom. Interaction may 

imply decisions bearing upon more than one process and it is not always 

obvious, which of the processes should do it. If we cannot find a guiding 

priciple (e.g. efficiency considerations), then we must have the courage 

to impose some rule in the name of clarity. 

Secondly, if we are interested in systems that really work, we should 

be able to convince ourselves and anybody else who takes the trouble to 

doubt, of the correctness of our constructions. In uniprogramming one is 
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already faced with the task of program verification -a task, the difficulty 

of which is often underestimated- but there one can hope to debug by testing 

of the actual program. In our case the system will often have to work 

under irreproducible circumstances and from field tests we can hardly expect 

any serious help. The duty of verification should concern us right from the 

start. 

We shall attack a more complicated example in the hope that this will 

give us so~e of the experience which might be used as guiding principle. 

5.1. An Example of a Priority Rule. 

In section 4.3 we have used the general semaphore to couple a producer 

and a consumer via a bounded buffer. The solution given there is extendable 

to more producers and/or more consumers; it is applicable when the 11 portion" 

is at the same time a convenient unit of information, i.e. when we can regard 

the different portions as all being of the same size. 

In the present problem we consider producers that offer portions of 

different sizes; we assume the size of these portions to be expressed in 

portions units. The consumers, again, will process the successive portions 

from the buffer and will, therefore, have to be able to process portions, 

the size of which is not given a priori. A maximum portion size, however, 

will be known. 

The size of the portions is given in information-.units, we assume also 

that the maximum capacity of the buffer is given in information units: the 

question whether the buffer will be able to accomodate the next portion 

will therefore depend on the size of the portion offered. The requirement, 

that 11 adding a portion to" and "taking a portion from the buffer" are still 

conceivable operations implies that the size of the buffer is not less 

than the maximum portion size. 

We have a bounded buffer and therefore a producer may have to wait 



before it can offer a portion. With fixed size portions this could only 

occur when the buffer was full to the brim, now it can happen, because 

free space in the buffer, although present, is insufficient for tr.e portion 

concerned. 

Furthermore, when we have more than one producer and one of them is 

waiting, then the other ones may go on and reach the state that they wish 

to offer a portion. Such a portion from a next producer may also be too 

large or it may be smaller and it may fit in the available free space of 

the buffer. 

Somewhat arbitrarily, we impose on our solution the requirement, 

that the producer wishing to offer the larger oortion gets priority over 

the producer wishing to offer the smaller portion to the buffer. (When 

two or more producers are offering portions that happer~ to be of 'the same 

size, we just don't care.) 

When a producer has to wait, because the buffer cannot accomodate 

its portion, no other producers can therefore add their portions until 

further notice: they cannot when the new portion is larger (for then it 

will also not fit), they may not when the r~ew portion is smaller, for then 

they have a lower priority and must leave the buffer for the earlier request. 

Suppose at a moment a completely filled buffer and three producers, 

waiting to offer portions of 1, 2 and 3 units respectively. When a consumer 

now consumes a five-unit portion, the priority rule implies that the pro

ducers with the 2-unit portion and the 3-unit portion respectively will get 

the opportunity to go on and not the one offering the 1-unit portion. It is 

not meant to imply, that then the 3-unit portion will actually be offered 

before the 2-unit portion! 

We shall now try to introduce so-called "status variables 11 for the 

different components of the system, with the aid of which we can characterize 

the state of the system at any moment. let us try. 
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For each producer we introduce a variable named ''desire''; this variable 

will denote the number of buffer units needed for the portion it could not 

add to the buffer. As this number is always positive, we can attach to 

"desire = 0" the meaning, that no request from this buffer is pendi'lg. 

Furthermore we shall introduce for each producer a private binary "producer 

semaphore". 

For the buffer we introduce the binary semaphore "bufman'', which takes 

care of the mutual exclusion of buffer manipulations in the widest sense 

(i.e. not only the adding to and taking from the buffer, but also inspection 

and modification of the status variables concerned.) 

Next we need a mechanism to signal the presence of a next portion to 

the consumers. As soon as a next portion is in the buffer, it can be consumed 

and as we do not care, which of the consumers takes it, we can ~ope, that 

a general semaphore "number of queuing portions" will do the job. (Note, 

that it counts portions queuing in the buffer and not number of filled 

information units in the buffer.) 

Freecoming buffer space must be signalled back to the producers, but 

the possible consequences of free coming buffer space are more intricate and 

we cannot expect that a general semaphore will be adequate. Tentatively we 

introduce an integer status variable "number of free buffer units". Note, 

that this variable counts units and not portions. 

Remark. The value of "number of free buffer units" will at most be 

equal to the size of the buffer diminished by the total size of the portions 

counted in "number of queuing portions", but it may be less! I refer to the 

program given in section 4.3; there the sum 

"number of queuing portions + number of empty positions" 

is initially (and usually)= N, but it may be= N- 1, because the P-operation 

on one of the semaphores always precedes the V-operation on the other. (Verify, 

that in the program of section 4.3 the sum can even be = N - 2 and that this 

value can even be lower, when we have more producers and/or consumers.) Here 

we may expect the same phenomenon: the semaphore 11 number of queuing portians 11 
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will count the portions actually and completely filled and still unnoticed 

by the consumers, "number of free buffer units" will count the completely 

free, unallocated units ir the buffer. But the units which have been reserved 

for filling, which have been granted to a (waiting) producer, without already 

being filled, will not be counted in either of them. 

Finally we introduce the integer "buffer blocking", the value of which 

equals the number of quantities "desire 11 ? that are positive. Obviously, 

this variable is superfluous; it has been introduced as a recognition of one 

of our earlier remarks, that as soon as one of the desires is positive, no 

further additions to the buffer can be made, until further notice. At the 

same time this variable may act as a warning to tre consumers, that such 

a "further notice" is wanted. 

We now propose the following program, written for N producers and M 

consumers. ("N 11
, 

11M11
, 

11 Buffer size" and all that concerns the buffer is 

assumed to be declared in the surroundings of this program.) 

"begin integer array desire, producer semaphore [ 1 : N]; 

integer number of queuing portions, number of free buffer units, 

buffer blocking, bufman, loop; 

for .loop:= 1 ~ 1 until N do 

begin desire[ loop]::::::: 0; producer semaphore[ loop]:= 0 end; 

number of queuing portions:= 0; 

number of free buffer units:= Buffer size; 

buffer blocking:= 0; bufman:= 1; 

par begin 

producer 1 : be~ in ••••••••••••••••••••••••• ~; 

producer n: begin integer portion size; 

again n: produce next portion and set portior size; 

P( bufman); 

if buffer blocking 0 and 

number of free buffer units> portion size 

then 



end" 

end· 
-.-' 

El<D123 - 45 

number of free buffer units:~ 

number of free buffer units - portion size 

else 

begin buffer blockin:~ buffer blocking - 1; 

desire[ n J :~ portion size j v( bufman) j 

P(producer semaphore[n]); P(bufman) end; 

add portion to buffer; V(bufman); 

V(number of queuing portions); qoto again n 

producer N: begin ••••••••••••••••• end; 

cof"lsumer 1: b;gin ................. end; 

consumer m: begin integer portion size, n, max, nmax; 

again m: P(number of queuing portions); P(bwfman); 

test: 

end· -.-· 

take portion from buffer and set portion size; 

number of free buffer units:= 

number of free buffer units + portion size; 

if buffer blocking > 0 ~ 

begin max:::::: 0; 

end; 

for n :::::::: 1 step 1 until N do 

begin if max < desire[ n] ~ 

begin max:::::: desire[n]; nmax::::::: n end~; 

if max~ number of free buffer units then 

begin number of free buffer units:::::: 

number of free buffer units - max; 

desire[nmax]::::::: 0; 

buffer blocking:= buffer blocking- 1; 

V(producer semaphore[nmax]); goto test 

V(bufman); process portion taken; goto again m 

consumer M: begin ••••••••••••••••• end 

par end 
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In the outermost block the common variables are declared and initialized; 

I hope -and trust that this pa~t of the program presents no difficulties to 

the reader that has followed me until here. 

Let us first try to under5tand the behaviour of the producer. When it 

wishes to add a new portion to the buffer, there are essentially two cases: 

either it can do so directly, or not. It can add directly under the combined 

condition: 

"buffer blocking ::::: 0 and numbei of fTee buffeT units::=:: portion size"; 

if so, it will decrease "number of free buffer Lmits" and -dynamically 

speaking in the same critical section- it will add the portion to the buffer. 

The two following V-operatians (the order of which is immaterial) close the 

critical section and signal the presence of the next portion to the combined 

consumers. If it cannot add directly, i.e. if (either) 

"buffer blocking > 0 £E. number of free buffer units< portion size" 

(or both), then the producer decides to wait, "to go to sleep", and delegates 

to the combined consumers the task to wake it up again in due time. The fact 

that it is waiting is coded by ''desire[ n J > 011 , "buffer blocking" is increased 

by 1 accordingly. After all clerical operations on the common variables have 

been ca1:1:ied out, the cTit.ical section is left \by "'V\bufman)") and the 

producer initiates a P-operation on its private semaphore. When it has completed 

this P-operation, it reenters the critical section, merges dynamically with 

the first case and adds the portion to the buffer. (See also the consumer in 

the second program of section 4.2, where we have already met the cutting 

open of a critical section.) Note that in the case of waiting, the producer 

has skipped tile dec:rease of ,.number of free buffer units". Note also, that 

the producer initiates the P-operation on its private semaphore at a moment, 

that the latter may already be= 1, i.e. this P-operation, again, is only 

a potential delay. 

Let us now inspect, whether the combined consumers fulfill the tasks 

delegated to them. The p:resence of a next portion is co:rrectly signalled to 

them via the general semaphore "number of queuing portions" and as the 

P-operation on it occurs outside any critical section, there is no danger 

of consumers not initiating it. After this P-operation, the consumer enters 
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its critical section, takes a portion and increases the number of free 

buffer units. If ''buffer blocking= ou holds, the following compound statement 

is skipped completely and the critical section is left immediately; this is 

correct, for "buffer blocking = 0 11 means that none of the quantities "desire" 

is positive, i.e. that none of the producers is waiting for the free space 

just created in the buffer. If, however, it finds "buffer blocking > 0", 

it knows that at least one of the producers has gone to sleep and it will 

inspect, whether one or more producers ~ave to be woken up. It looks for 

the maximum value of ''desire''· If this is not too large, it decides, that 

the corresponding producer has to go on. This decision has three effects: 

the ''number of free buffer units'' is decreased by the number of units 

desired. Thus we guarantee that the same free space in the buffer cannot be 

granted to mare than one producer. Furthermore this decrease is in accordance 

with the producer behaviour. 

"desire" of the producer in question is set to zero; this is correct, 

far its request has-now been granted; buffer blocking is decreased by 1 

accordingly. 

a V-operation on the producer semaphore concerned wakes the sleeping 

producer. 

After that, control of the consumer returns to "test" to inspect, 

whether more sleeping producers should be woken up. The inspection process 

can end in one of two ways: either there are no sleeping producers anymore 

("buffer blocking = 0) or there are still sleeping processes, but the free 

space is insufficient to accommodate tre maximum desire. The final value of 

"buffer blocking" is correct in both cases. After the waking up of the 

producers is done, the critical section is left. 



5.2. An Example of Conversations. 

In this section we shall discuss a more complicated example, in which 

one of the cooperating processes is not a machine but a human being, the 

"operator". 

The operator is connected with the processes via a so-called "semi-duplex 

channel'' (say ''telex connection''). It is called a duplex channel because it 

conveys information in either direction: the operator can use a keyboard to 

type in a message for the processes, the processes can use the teleprinter 

to type out ~message for the operator. It is called a semi-duplex channel, 

because it can only transmit information in one direction at a time. 

Let us now consider the requirements to the total construction. (I admit, 

that they are somewhat simplified. I hope, that they are sufficiently 

complicated to pose to us a real problem, yet sufficiently simple as not 

to drown the basic pattern of our solution in a host of inessential 

details. The trees should not prevent us from seeing the forest!) 

We have N identical processes (numbered from 1 through N) and essentially 

they can ask a single question, called "Q1", meaning "How shall 1 go on?", to 

which the operator may give one of two possible answers, called "A1" and "A2". 

We assume, that the operator must know, which of the processes is asking the 

question -as his answer might depend on this knowledge- and we therefore 

specify, that the i-th process identifies itself when posing the question; 

we indicate this by saying that it transmits the question 11 Q1(i)". In a sense 

this is a consequence of the fact, that all N processes use the same commu

nication channel. 

A next consequence of this channel sharing between the different processes 

is that no two processes can ask their question simultaneously: behind the 

scenes some form of mutual exclusion must see to this. If only Q1-questions 

are mutually exclusive, the operator may meet the following situation: a 

question -say "Q1 (3)- is posed, but before he has decided how to answer it, 

a next question -say"Q1 (7)"- is put to him. Then the single answer "A1" is 

no longer sufficient, because now it is no longer clear, whether this answer 

is intended for "process 7" or for "process 3"· This could be overcome by 
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adding to the answers the identification of the process concerned, say, 

''A1(i)'' and ''A2(i)'' with the appropriate val~e of i. 

But this is only one way of doing it: an alternative solution is to 

make the question, fallowed by its answer, together a critical occurence: 

it relieves the operator from the task to identify the process and we 

therefore select the latter arrangement. Sa we stick to the answers ''A1'' and 

"A2". We have two kinds of conversations "01(i), A1'1 and "Q1(i), A2" and the 

next conversation can only be initiated when the previous one has been 

completed. 

We shall now complicate the requirements threefold. 

Firstly, the individual processes may wish to use the communication 

channel for single-shot messages -"M(i)" say- which do not require any 

answer from the operator. 

Secondly, we wish to give the operator the possibility to postpone an 

answer. Of course, he can do so by just not answering, but this would have 

the undesirable effect,that the communication channel remains blocked for 

the other N - 1 processes. We introduce a next answer "A3", meaning: "The 

channel becomes free again, but the conversation wi~h the process concerned 

remains unfinished." Obviously, the operator :nust have the opportunity to 

reopen the conversation again. He can do so via 11 A4(i) 11 or "A5(i)", where 

11 i 11 runs from 1 through N and identifies the process concerned, where "A4" 

indicates that the process should continue in the same way as after 11 A1", 

while 11 A5 11 prescribes the reaction as to "A2". Possible forms of conversation 

are now: 

a) "Q1(i), A1" 

b) "Q1(i), A2" 

c) "01 (i)' A3" "A4(i)" 

d) "Q1(i), A3" "A5(i)" 

As far as process i is concerned a) iS equivalent with c) and b) is equivalent 

with d). 

The second requirement has a profound influence: without it -i.e. only 
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11 A1tt and "A2" permissible answers- the process of incoming message interpre

tation can always be subordinate to one of the N processes, viz. the one, 

that has put the question: this can wait for an answer and can act accordingly. 

We do not know beforehand, however, when the message "A4(i)" or 11 A5(i)" comes 

and we cannot delegate the interpretation of it to the i-th process, because 

the discovery that this incoming message is concerned with the i-th process 

is part of the message interpretation itself! 

Thirdly, A4- and A5-messages must have priority over Q1- and M-messages, 

i.e. while the communication channel is occupied (in a Q1- or M-message), 

processes might reach the state, that they want to use the channel, but also 

the operator might come to this conclusion. As soon as the channel becomes 

available, we wish, that the operator can use it and that it won 1 t be snatched 

away by one of the processes. This implies that the operator has a means to 

express this desire -a rudimentary form of input- even if the channel 

itself is engaged in output. 

We assume that 

a) the operator can give externally a 

"V(incoming message)", 

which he can use to announce a message (A 1 , A2, A3, A4, or A5) 

b) can detect by the machines reaction, whether the message is accepted or 

ignored. 

Remark. The situation is not unlike the school teacher shouting "Now 

children, listen! 11
• If this is regarded as a normal message, it is nonsensical: 

either the children are listening and it is therefore superfluous, or they are 

not listening, and therefore they do not hear it. It is, in fact a kind of 

"meta-message", which only tells, that a normal message is coming and which 

should also penetrate if the children are not listening (talking, for instance). 

This priority rule may make the communication channel reserved for an 

announced A4 - or A5 message. By the time that the operator gets the opportunity 

to give it, the situation or his mood may have changed, and therefore we exte~d 

the list of answers with 11 A6 11 -the dummy opening- which enables the operator 
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to withhold, upon further consideration, the A4 or A5. 

A final feature of the message interpreter is the applicability test. 

The operator is a human being and we may be sure that he will make mistakes. 

The states of the message interpreter are such that at any moment, not all 

incoming messages are applicable; when a message has been rejected as non

applicable, the interpreter should return to such a state that the operator 

can now give the correct version. 

Our attack will be along the following lines: 

1) Besides theN processes we introduce another process, called "message 

interpreter"; this is done because it is difficult to make the interpretation 

of the messages "A4 11
, "A5 11 and 11 A6 11 subordinate to one of the N processes .. 

2) Interpretation of a message always implies, besides the message itself, 

a state of the interpretsr.(In the trivial case this is a constant state, 

viz. the willingness to understand the message.) We have seen that not all 

incoming messages are always acceptable, so our message interpreter will be 

in different states. We shall code them via the (common) state variable 

11 comvar 11
• The private semaphore, which can delay the action of the message 

interpreter, is the semaphore "incoming message", already mentioned. 

3) For the N processes we shall introduce an array "procsem" of private 

semaphores and an array 11 procvar 11 of state variables, through which the 

the different processes can communicate with each other, with the message 

interpreter and vice versa. 

4) Finally we introduce a single binary semaphore "mutex 11 whicb caters 

for the mutual exclusion during inspection and/or modification of the 

common variables. 

5) We shall use the binary semaphore 11 mutex 11 only for the purpose just 

described and never, say, will 11 mutex ::::::: Qrt be used to code, that the channel 

is occupied4 Such a convention would be a dead alley in the sense that the 

technique used would fall into pieces as soon as the N processes would have 

two channels (and two operators) at their disposal. We aim to make the 

critical sections, governed by 11 mutex 11 rather short and we won't shed a tear 

if same critical section is shorter than necessary. 

Well, the above five points, articles of faith, I might say, are of some 

help and I hope that in view of our previous experiences they seem a set of 

reasonable principles. I do one part of my job if I present a solution along 



the lines just given and show that it is correct. I would do a better job 

if I could show as well, how such a solution is found. Admittedly by trial 

and error, but even so, we could try to make the then prevailing guiding 

priciple (in mathematics usually called "The feeling of the genius") 

somewhat more explicit. For we are still faced with problems: 

a) what structure should we give to the N + 1 processes? 

b) what states should we introduce (i.e. how ~any possible values should 

the state variables have and what should be their meanings)? 

The problem (both in constructing and in presenting the solution) is, 

that the two poin~s just mentioned are interdependent. For the values of 

the state variables have only an unambiguous, describable meaning, when 

"mutex""' 1" holds, j.e. rone of the processes is inside a critical section, 

in which they are subject to change. In other words: the conditions under 

which tr.e meaning of ti-e state variotll" valt':::s should te a1=.r.l :..cable is 

on~y known, when the programs are finished, but we can only make tre programs 

if we know "'':hat inspections of and operations on tl-,e state variables are 

to be performed. In my experience one starts with a rough picture of both 

programs and state variables, one t~en starts to enumerate the different 

states and then tries to build the programs. Then two different things 

may happen: either one finds that one has irtroduced too many states or 

one finds that -having overlooked a need for cutting a critical section 

into parts- one has not introduced enough of them. One modifies the states 

and then the program and with luck and care the design process converges. 

Usually I found myself content with a working solution and I did not bother 

to minimize the number of states introduced. 

In my experience it is easier to conceive first the states (being 

statically interpretable) and then the programs. In conceiving the states 

we have to bear three points in mind. 

a) State variables should have a meaning when mutex is = 0; on the other 

hand a process must leave the critical section before it starts to wait for 

a private semaphore. We must be very keen on all those points where a process 

may have to wait for something more complicated than permission to complete 

"P(mutex)", 
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b) The combined state variables specify the total state of the system. 

Nevertheless it helps a great deal if we can regard some state variable as 

''belonging to that and that process''· If some aspect of the total state 

increases linearly with N, it is easier to conceive that part as equally 

divided among the N processes. 

c) If a process decides to wait on account of a certain (partial) state, 

each process, that makes the system leave this partial state should inspect 

whether on account of this change, some waiting process should go on. (This 

is only a generalization of the principle, already illustrated in The Sleeping 

Barber.) 

The first two points are mainly helpful in the conception of the different 

states, the last one is an aid, to make the programs correct. 

Let us now try to find a set of appropriate states. We starts with the 

element 11 procvar[i]", describing the state of process i. 

procvar[ i) = 0 

This we call ''the homing position". It will indicate that none of the 

following situations applies, that process i does not require any special 

service from either the message interpreter or one of the other processes. 

procvar[i) = 1 

"On account of non-availability of the communication channel, process 

i has decided to wait on its private semaphore." This decision can be taken 

independently in each process, it is therefore reasonable to represent it 

in the state of the process. Up till now there is no obvious reason to 

distinguish between waiting upon availability for a M-message and for a 

Q1-question, so let us try to do it without this distinction. 

procvar[ i] = 2 

"Question "01 (i) 11 has been answered by 11 A3", viz .. with respect to 

process i the operator has postponed his final decision." The fact of the 

postponement must be represented because it can hold far an undefinitely 

long period of time (observation a); it should be regarded as a state variable 
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of the process in question as it can hold in N-fold (observation b). Simul

taneously, "procva:r[i] ::: 2" will act as applicability criterion for the 

operator messages "A4[ i ]" and 11 A5[ i ]n. 

procvar[i] = 3 

""Q1[i]" has been answered by "A1" or by 11 A3"--- "A4[i] 11 • 11 

procvar[ i] = 4 

'
1 11 Q1 [ i ]" has been answered by "A2" or by "A3 11

- - -
11 A5[ i ]"." 

First of all we remark, that it is of no concern to the individual 

process, whether the operator has postponed his final answer or not. The 

reader may wonder, however, that the answer given is coded in "procvar", while 

only one answer is given at a time. The reason is that we do not know how 

long it will take the individual process to react to this answer: before it 

has done so, a next process may have received its final answer to the Q1-

question. 

Let us now try to list the possible states of the communication 

organisation. We introduce a single variable, called 11 comvar 11 to distinguish 

between these states. We have to bear in mind three different aspects 

1) availability of the communication possibility forM-messages, Q1-questions 

and the spontaneous message of the operator. 

2) acceptability -more general: interpretability- of the incoming messages. 

3) operator priority for incoming messages. 

In order not to complicate matters immediately too much, we shall start 

by ignoring the third point. Without operator priority we can see the 

following states. 

comvar = 0 

"The communication facility is idle", i.e. equally available for both 

processes and operator. For the processes 11 comvar = 0" means that the commu

nication facility is available, for the message interpreter it means that 

an incoming message need not be ignored, but must be of type A4, A5 or A6. 

comvar = 1 

"The communication facility is used for a M-message or a 0.1-question". 
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In this period of time the value of "comvar" must be 1- 0, because tr:e 

communication facility is not available for the processes; for the message 

interpreter it means, that incoming messages have to be ignored. 

comvar = 2 

"The communication facility is rsserved far an A1-,A2- or A3-answer." 

When the M-message has been finished, the communication facility becomes 

available again, after a Q1-question, however, it must remain reserved. During 

this period, characterized by 11 comvar = 2'1 , the message interpreter must 

know to which process the operator answer applies. At the end of the answer, 

the communication facility becomes again available. 

Let us now take the third requirement into consideration. This will lead 

to a duplication of (certain) states. When 11 comvar == 0" holds, an incoming 

message is accepted, when ncomvar = 1 11 , an incoming message must be ignored, 

This occurence must be noted down, because at the end of this occupation 

of the communication facility, the operator must get his priority. We can 

introduce a new state: 

comvar = 3 

11 As 11 comvar 1 11 with operator priority requested." 

When the transition to 11 comvar = 3" occurred during a M-message, the 

operator could get his opportunity immediately at the end of it; if, however, 

the transition to 11 comvar = 311 took place during a Q1-question, the priority 

can only be given to the operator after the answer to the Q1-question. Therefore, 

also state 2 is duplicated: 

comvar = 4 

11 As "comvar 2", with operator priority requested." 

Finally we have the state: 

comvar = 5 

"The communication facility is reserved for, or used upon instigation of 

the operator," For the processes this means non-availability, for the message 

interpreter the acceptability of the incoming messages of type A4, A5 and A6. 
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Usually, these messages will be announced to the message interpreter while 

11 comvar 11 is :::=:: 0. If we do nat wish that the entire collection and interpre

tation of these messages is done within the same critical section, the message 

interpreter can break it open. It is then necessary, that "comvar'' is I 0. 1-de 

may try to use the same value 5 for this purpose: for the processes it just 

means non-availability, while the control of the message interpreter knows 

very well, whether it is waiting for a spontaneous operator message (i.e. 

11 reserved for •• ") or interpreting such a message (i.e. "used upon instigation 

of.."). 

Before starting to try to make the program, we must bear in mind point 

c: remembering that availability of the communication facility is the great 

(and only) bottleneck, we must see to it, that every process that ends a 

communication facility occupation decides upon its future usage. This is 

ln the processes at the end of the M-message (and not so much at the end of 

the Q1-question, for then the communication facility remains reserved for 

the answer) and in the message interpreter at the end of each message inter

pretation. 

The proof of the pudding is the eating, let us try, whether we can 

make the program. (In the program, the sequence of characters starting 

with "comment" and up to and including the first semicolon are inserted 

for explanatory purposes only. In ALGOL 60, such a comment is only admitted 

only immediately after "begin" but I do not promise, to respect this 

(superfluous) restriction. The following program should be interpreted to 

be embedded in a universe in which the operator, the communication facility 

and the semaphore ''incoming message" -initially = o- are defined. 

begin integer mutex, comvar, asknum, loop; 

comment The integer 11 asknum11 is a state variable of the message 

interpreter, primarily during interpretation of the answers A1, A2 

and A3. It is a common variable, as its value is set by the asking 

process.; 

integer array procvar, procsem [ 1 N]; 
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for loop:::::: 1 step 1 until N ~ 

begin procvar[ loop]::::: 0; procsem[ loop}= 0 end; 

comvar:= 0; mwtex:= 1; 

par begin 

process 1: be~in •••••••••••••••••••• end; 

process r;: begin integer i; comment The integer "i 11 is a local variable, 

very much like "loop 11
.; 

M message:P(mutex); 

if comvar = 0 then 

begin comment When the communication facility is available, 

it is taken.; 

comvar:= 1; V(mutex) end 

else 

begin comment Otherwise the process books itself as sleeping 

and goes to sleep.; 

procvar[n]:= 1; V(mutex); P(procsem[n]) 

comment At the completion of this P-operation, 

"procsem[n]" will again be 0, but comvar -still 

untouched by this process- will be =1 or =3·; end; 

send M message; 

comment Now the process has to analyse, whether the operator 

(first!) or one of the other processes should get the commu

nication facility or not.; P(mutex); 

if comvar :::: 3 then comvar::::: 5 

~ 

begin comment Otherwise 11 comvar == 1" will hold and process n 

~ 

has to look whether one of the other processes is waiting. 

Note that 11 procvar[n] -== 0" holds.; 

.f:g_£ i::::: 1 ~ 1 ~ N ..9E. 

begin .if. procvar[i] = 1 then 

begin procvar[i]::::: 0; V(procsem[i]); goto ready 

end 

end; 

comvar:= 0 

ready: V(mutex); 
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Q1 Question: P(mutex); 

end· -.-· 

if comvar ::::: 0 then 

begin comvar:~ 1; V(mutex) end 

else 

begin procvar[n]::::: 1; V(mutex); P(pracsem[n]) ~; 

comment This entry is identical to that of the M message. 

Note that we are out of the critical section, nevertheless 

this process will set 11 asknum". It can do so safely, for no 

other process, nor the message interpreter, will access 

11 asknum11 as long as 11 comvar :::: 1" holds.; 

asknum::::: n; send question Q1(n); 

P(mutex); 

comment "camvar" will be = 1 or :::: 3.; 

if comvar::::: 1 then comvar::::: 2 else comvar::::: 4; 

V(mutex); P(procsem[n]); 

comment After completion of this P-operation, procvar[n] 

will be ::::: 3 or = 4. This process can now inspect and reset 

its procvar, although we are outside a critical section.; 

if procvar[n] ~ 3 then Reaction 1 else Reaction 2; 

procvar[n]:= 0; 

comment This last assignment is superfluous.; 

process N: begin •••••••••••••••••••• end; 

message interpreter: 

begin integer i; 

wait: P(incoming message); 

P( mutex); 

if comvar 

if comvar 

1 ~ comvar:= 3; 

3 then 

begin comment The message interpreter ignores the incoming 

message, but in due time the operator will get the 

opportunity.; 

V(mutex); go to wait ~; 
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if comvar "" 2 £E_ comvar :::::: 4 then 

begin comment Only A1t A2 and A3 are admissible. The inter

pretation of the message need not be done inside a 

critical section; 

v( mutex); 

interpretation of the message coming in; 

if message= A1 then 

begin procvar[asknum]:= 3; v(procsem[asknum]); 

goto after correct answer end; 

if message = A2 then 

begin procvar[=sknum]:= 4; v(procsem[asknum]); 

goto after correct answer end; 

if message = A3 then 

begin procvar[asknum]:::::: 2; goto after correct answer end; 

comment The operator has given an erroneous answer 

and should repeat the message; goto wait; 

after correct answer: P(mutex); 

if comvar = 4 then 

begin comment The operator should now get his opportunity; 

comvar:::::: 5; V(mutex); goto wait end; 

perhaps comvar to zero: for i:= 1 step 1 until N do 

begin if procvar[ i] = 1 ~ 

begin procvar[i]:= 0; comvar:::::: 1; 

V(procsem[i]); goto ready end 

end; 

comvar:= 0; 

ready: V(mutex); goto wait 

end; 

comment The cases 11 comvar = 0" and "comvar ~ 5 11 remain~ 

Messages A4, A5 and A6 are admissiblea; 

if comvar = 0 then comvar:= 5; 

comment See Remark 1 after the programa; 

V(mutex); 

interpretation of the message coming in; 



wrong message: 

end 

parend 

end 

P(mutex); 

if message A4Lproces5 number] then 

begin i::::::: 11 process number given in the message 11 ; 

if procvar[ i] = 2 then 

end; 

begin procvar[i]:~ 3; V(procsem[i]); 

goto perhaps comvar to zero end; 

comment Otherwise process not waiting for postponed 

answer.; go to wrong message 

if message A5[process number] then 

begin i::::::: "process number given in the message"; 

if procvar[ i] = 2 then 

end; 

begin procvar[i]::::::: 4; V(procsem[i]); 

goto perhaps comvar to zero end; 

comment Otherwise process not waiting for postponed 

answer.; goto wrong message 

if message = A6 then got a perhaps comvar to zero; 

comment"comvar = 511 holds, giving priority to the operator 

to repeat his message.; 

V ( mutex) ; go to wait 

Remark 1. If the operator, while "comvar = 0 11 or "comvar = 511 

originally holds, gives an uninterpretable (or inappropriate) message, the 

communication facility will remain reserved for his next trial. 

Remark 2. The final interpretation of the A4 and A5 messages is 

done within the critical section, as their admissibility depends on the state 

of the process concerned. If we have only one communication channel and one 

operator, this precaution is rather superfluous. 
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Remark 3. The for-loops in the program scan tre processes in 

order, starting by process 1; by scanning them cyclically, starting at an 

arbitrary process (selected by means of a (pseudo) random number generator) 

we could have made the solution more sy~metrical in theN ~rocesses. 

Remark 4. In this section we have first given a rather thorough 

exploration of the possible states and then the program. The reader might 

be interested to know that this is the true picture -"a life recording"

of the birth of this solution. When I started to write this section, the 

problem posed was for me as new as for the reader: the program given is 

my first version, constructed on account of the considerations and 

explorations given. I hope that this section may thus give a ~int as how 

one may find such solutions. 

5.2.1. Improvements of the Previous Program. 

In section 5.2 we have given a first version of the program; this 

version has been included in the text, not because we are content with it, 

but because its inclusion completes the picture of the birth of a solution. 

Let us now try to embellish, in the name of greater conciseness, clarity and, 

may be, efficiency. Let us try to discover in what respects we have made a 

mess of it. 

Let us compare the information flows from a process to the message 

interpreter and vice versa. In the one direction we have the common variable 

"asknum" to tell the message interpreter, which process is asking the 

question. The setting arid the inspection of "asknum'' can safely take place 

outside the critical sections, governed by "mutex", because at any moment 

at most one of the N + 1 processes will try to access "asknum". In the inverse 

information flowt where the message interpreter has to signal back to the 

i-th process the nature of the final operator answer, this answer is coded 

in "procvar". This is mixing things up, as is shown 

a) by the "procvar"-inspection (whether procvar is = 3 or 4), which is 



suddenly allowed to take place outside a critical section 

b) by the superfluity of its being reset to zero. 

The suggestion is to introduce a new 

"integer array operanswer[1 :N]" 
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the elements of which will be used in a similar fashion as "asknum". (An 

attractive consequence is that the number of possible values of 11 procvar" 

-the more fundamental quantity(see below)- does not increase any more, if 

the number of possible answers to the question Q1 is increased .. ) 

I should like to investigate whether w~ can achieve a greater clarity 

by separating the common variables into two (or perhaps more?) distinct 

groups, in order to reflect an observable hierarchy in the way in which they 

are used. Let us try to order them in terms of "basicness 11 • 

The semaphore "incoming message" seems at first sight a fairly basic 

one, being defined by the surrounding universe. This is, howevert an illusion: 

within the parallel compound we should have programmed (as N + 2nd process) 

the operator himself, and the semaphore "incoming message" is the private 

semaphore for the message interpreter just as ttprocsem[i]" is for the i-th 

process.) 

Thus the most basic quantity is the semaphore "mutex" taking care of the 

mutual exclusion of the critical sections. 

Then come the state variables "comvar" and "procvar" which are inspected 

and can be modified within the critical sections. 

The quantities just mentioned share the property that their values 

must be set before entering the parallel compound. This property is also 

shared by the semaphores "procsem" (and "incoming message", see above), if 

we stick to the rules that parallel statements will access common-semaphores 

via P- and V-operations exclusively. 

(Without this restriction, request for the communication facility 

by process n could start with: 



"P(mutex); 

if comvar ~ 0 then 

begin comvar:~ 1; V(mutex) end 

else 

begin procvar[n]:~ 1; procsem[n]:~ 0; 

V(mutex); P(procsem[n ]) end" 
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We reject this solution on the further observation, that the assignment 

"procsem[n]" is void, except for the first time that it is executed; the 

initialization of procsem 1 s outside the parallel compound seems therefore 

appropriate). 

For the common variables, listed thus far I should like to reserve the 

name "status variables", to distinguish them from the remaining ones, 

"asknum" and "operanswer", which I should like to call !!transmission variables". 

I call the latter "transmission variables" because, whenever one of 

the processes assigns a value to such a variable, the information just stored 

is destinated for a well known ''receiving party". They are used to transmit 

information between well-known parties. 

Let us now turn our attention from the common variables towards the 

programs. Within the programs we have learnt to distinguish the so-called 

"critical sections", for which the semaphore_ 11 mutex" caters for the mutual 

exclusion. Besides these, we can distinguish regions, in which relevant 

actions occur, such as: 

in the i-th process: 

Region 1 : sending an M-message 

Region 2: sending a Q1(i)-question 

Region 3: reacting to operanswer[i] (this region is somewhat open~ended) 

and in the message interpreter: 

Region 4: ignoring incoming messages 

Region 5: expecting A1, A2 or A3 

Region 6: expecting A4(i), A5(i) or A6 
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We come now to the following picture. 1n the programs we have critical 

sections, mutually excluded by the semaphore 11 mutex". The purpose of the 

critical sections is to resolve any ambiguity in the inspection and modification 

of the remaining state variables, inspectio~ and modification performed for 

the purpose of more intricate ~'sequencing patterns'~ of the regions, sequencing 

patterns, that make the unambiguous use of the transmission variables possible. 

(If one process has to transmit information to another, it can now do 50 

via a transmission variable, provided that the execution of the assigning 

region is always followed by that of the inspecting region before that of the 

next assigning region!) 

In the embellished version of the program we shall stick to the rule 

that the true state variables will only be accessed in critical sections 

(if they are not semaphores) or via P- and V-operations (if they are sema

phores), while the transmission variables will only be accessed in the 

regions. (In more complicated examples this rule might prove too rigid and 

duplication might be avoided by allowing transmission variables at least 

to be inspected within the critical section. In this example, however, 

we shall stick to it.) 

The remaining progra~ improvements are less fundamental. 

Coding goes more smoothly if we represent the fact of requested 

operator priority not in additional values of 11 comvar" but in an additional 

two-valued state variable: 

"Boolean operator priority" 

(Quantities of type 11 Boolean 11 can take on the two values denoted by 11 true" 

and "false 11 respe~tively, viz. the same domain as 11 conditions" such as we 

have met in the if-clause.) 

Furthermore we shall introduce two procedures; they are declared 

outside the compound and therefore at the disposal of the different 

constituents of the parallel compound. 

We shall first give a short description of the new meanings of the 

values:_ of the state variables "procvar11 and "comvar": 
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procvar[i] 0 homing position 

procvar[ i] waiting for availability of the communication facility 

for M or Q1 (i) 

procvar[i] 2 waiting for the answer "A4(i)" or "A5(i)". 

cornvar 0 homing position (communication facility free) 

comvar communication facility for M or Q1 

comvar 2 commun-ication facility for A1 , A2 or A3 

comvar 3 communication facility for A4, A5 or A6. 

We give the program without comments and shall do it in twa stages: 

first the program outside the parallel compound and then the constituents 

of the parallel compound. 

begin integer mutext comvar, asknum, loop; 

Boolean operator priority; 

integer array pracvar, procsem, operanswer[ 1 :N]; 

procedure M or Q entry(u); value u; integer u; 

begin P(mutex); 

if comvar ~ 0 then 

begin comvar:= 1; V(mutex) end 

else 

begin procvar[u]:~ 1; V(mutex); P(pracsem[u]) end 

end; 

procedure select new camvar value; 

begin integer i; 

if operator priority then 

begin operator priority:= false; comvar:= 3 end 

else 

begin ..!£:. i ::::::: 1 step 1 until N do 

begin if procvar[i] = 1 ~ 

ready: end 

end; 

begin procvar[i]:= 0; camvar:= 1; 

V(procsem[i]); goto ready end 

comvar:::;:: 0; 



end 

for loop:= 1 ~ 1 ~ N ~ 

begin procvar[loop]:~ 0; procsem[loop]:~ 0 end; 

comvar:= 0; mutex:= 1; operator priority:= false; 

parbeqin 

process 1: be9in •.•••.•••••••••••••. end; 

process N • begin •••••••.•••••....••• end; 

message interpreter: 

begin •••••••••••••••••••• end 

parend 

Here the n-th process will be of the form 

process n: be9in 

M message: M or Q entry(n); 

Region 1: send M message; 

P(mutex); select new comvar value; V(mutex); 

Q1 question:M or Q entry(n); 

Region 2: asknum:~ n; 

send Q1 (n); 

P(mutex); camvar:= 2; V(mutex); P(procsem[n]); 

Region 3: if operanswer[n] ~ then Reaction 

else Reaction 2; 

end 

When the message interpreter decides to enter Region 6 it copies, before 

doing so, the array 11 procvartt: if an answer A4(i) should be acceptable, 

then "procvar[i] ~ 2" should already hold at the moment of announcement of 

the answer .. 
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message interpreter: 

begin integer i; integer array pvcopy[ 1: N J; 
wait: P(incoming message); P(mutex); 

if comvar = 1 then 

Region 4: begin operator priority:= true; 

leave: V(mutex); goto wait end; 

if comvar ~ 2 then goto Region 6; 

Region 5: V(mutex); collect message; 

if message ~ A1 and message ~ A2 and message /:. A3 then qoto wait; 

i:= asknum; 

if message 

if message 

P(mutex); 

A1 then operanswer[i]:= 1 else 

A2 then operanswer[i]:= 2; 

if message = A3 then procvar[i]:::::: 2 else 

signal to i: V(procsem[i]); 

preleave: select new comvar value; goto leave; 

Region 6: if comvar = 0 ~ comvar:= 3; 

end 

for i:= 1 step 1 until N ~ pvcopy[i]:= procvar[i]; 

V(mutex); collect message; 

if message A6 ~ begin P(mutex); goto preleave end; 

if message /:. A4(process number) and message /:. A5(process number) then 

goto wait; 

i:= ''process number given in the message''; 

if pvcopy[i] /= 2 then goto wait; 

operanswer[i]:= if message = A4 then 1 else 2; 

P(mutex); procvar[i]:= 0; goto signal to i 

As an exercise we leave to the reader the version, where pending requests 

for Q1-questions have priority over those for M-messages. As a next extension 

we suggest a two console configuration with the additional restriction that 

an A4- or A5-message is only acceptable via the console over which the conver

sation has been initiated. (Otherwise we have to exclude simultaneous, contra

dicting messages 1'A4(i)" and "A5(i)" via the two different consoles. The solution 

without this restriction is left for the really fascinated reader.) 
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5.2.2. Proving the Correctness. 

!'l this section title I have used the word "proving 11 in an informal way. 

have not defined what formal conditions must be satisfied by a "legal 

proof" and I do not intend to do so. When I can find a way to discuss the 

program of section 5.2.1, by which I can convince myself -and hopefully 

anybody else that takes the trouble to doubt!- of the correctness of the 

overall performance of this aggregate of processes, I am content. 

In the following "state picture 11 we make a diagram of al the states in 

which a process may fi,.,d itself "for any length of time 1
', i.e. outside 

sections, critical to mutex. In arrows we describe the transitions taking 

place within the critical sections; accompanying these arrows, we give the 

modifications of comvar or the conditions, under which the transition 

from one state to another is made. 

Calling the neutral region of a process before entry into a Region 1 

or Region 2: ;1Region 0", we can give the state picture 

Region 0 

procvar == 0 

comvar 0 -- 1 comvar /= 0 

Leaving Region 

I 

comvar 1 -3 

operator 

priority 

I 

Region 1 or 2 

procvar == 0 

comvar - 1 

1 can be pictured as: 

Region 1' procvar 0 J 
1 - 1 

pracvar all procvar /=. 0 
1-0 

Region o, procvar 0 
i 



Leaving Region 2, with t~e possibility of a delayed a~swer, can be pictured 

as: 

Region 2, procvar 0 

-2 

I waiting for answer, procvar 0 / 

A1, A2 A3 

comvar 2- 3, 1, 0 comvar 2- 3, 1, 0 

1 

j waiting for answer, procvar 2 I 
' 

comvar 0,3 - 0,1 

A4, A5 
\ 

Region 3, procvar = 0 

Reaction to the answer 

Region 0, procvar 0 

We can try to do the same for the message inte.rpreter. Here we indicate 

along the arrows the relevant occurrences, such as changes of a procvar 

and the kind of message. We use "WIM" as abreviation for "Waiting for 

Incoming Message''· 



I 

I 
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"mo~:::moo" I' Region 0 -- 1 , 2 

WIM 
· Region o- WIM 

comvar = 1 comvar = 0 
no priority Region 1 ' 2 no priority 

1 -1 ~sage,[ejected 
I messaqe 

Region 

Region 0 

r Region 4 I 

WIM 

comvar = 1 

priority 

I '-- Region 1 end of Regior 2 end of Region 2 
Region 0 

'WIM 

comvar = 2 

no priority 

mes' age 

Region 5 
comvar = 2 

no priority 

I 

A1, A2, A3 
I wrong ' 

Region 2- message 

2, 3 

" IN!M 

comvar = 2 

priority 

"'" sage 

Region 5 
comvar = 2 

priority 

A1 , I wrong 

A2, message 

A3, 

~ '" 
WIM 

comvar = 3 
no priority 

message 

Region 6 

comvar = 3 
no priority 

I wrong 

message 

A4, A5 (Region 2- 3, procvar 2- 0) 

or A6 

! 

' 

I 

-
I 
! 

I 



These schemes, of course, teach us nothing new, but they may be a 

powerful aid iro the program inspection. 

We verify first, that "comvar = 0" represents indeed the homing 

position of the communication facility, i.e. available for either entrance 

into Region 1 or Region 2 (by one of the processes) or entrance into 

Region 6 (by the message interpreter, as result of an incoming message 

for which it is waiting). 

If comvar = 0 and one of the processes wants to enter Region 1 or 

Region 2, or a message comes from the operator, Region 1, 2 or 6 is entered; 

furthermore this entrance is accompanied by either "comvar:= 1" or "comvar::::: 3" 

and in this way care is taken of the mutual exclusion of the Regions 1 , 2 

and 6. 

The mutual exclusion implies that processes may fail to enter Region 

1 or 2 immediately, or that an incoming message must be rejected, coming 

at an inacceptable moment. In the first case, the process sets "procvar::::: 1 ", 

in the second case (in Region 4) the message interpreter sets "operator 

priority::::: true". 

These assignments are only performed unde-r the condition "comvar ~ 0"; 

furthermore the assignment "comvar::::: 0 11 -only occurring in the procedure 

"select new comvar value 11
- is only performed provided "non operator priority 

and all procvar /: 1". From these two observations and the initial values, 

we can conclude: 

"comvar :::: 0 11 excludes "operator priority" as well as the occurrence of one 

or more 11 procvar :::: 1 11 • 

As all ends of occupation of the communication facility (i.e. the 

end of Region 1, 5 and 6) call "select new comvar value" we have established 

a) that entrance into the Region 1 , 2 and 6 is only delayed when necessary 

b) that such a delay is guaranteed to be resolved at the earliest opportunity. 

The structure of the message interpreter shows clearly that 
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a) it can execute Region 5 only if "comvar 2" 

b) it can only execute Region 5 if "comvar 2" 

c) executior. of Region 5 is the only way to make comvar agai:1 f 2. 

The only assignment "comvar:= 211 occurs at the end of Region 2. As 

a result each Region 2 can only be followed by a Region 5 and, conversely, 

each Region 5 must be preceded by a Region 2. This sequencing allows us 

to use the transmission variable "asknum 11
, which is set in Region 2 and 

inspected in Region 5. 

For the uses of the transmission variables "operanswer 11 an an2logous 

analysis can be made. Region 2 will be followed by Regiof"l 5 (see above); 

if here the final answer (A1 or A2) is interpreted, operanswer[i] is set 

before 11 V(procsem[i])", so that the transmission variable f-) as been set 

properly before the process can (and will) enter Region 3, where its 

"operanswer" will be inspected. If in Region 5 the answer A3 is detected, 

the message interpreter set for this process "procvar[i]::::: 2 11
, thus allowing 

once in Region 6. the answer A4 or A5 for this process. Again 11 V(procsem[i])n 

is only performed after the assignment to operanswer. Thus we have verified 

that 

a) operanswer is only set once by the message interpreter after a request 

in Region 2. 

b) this operanswer will only be inspected in the following Region 3 after 

the request to set it has been fulfilled (in Region 5 or Region 6). 

This completes the soundness of the use of the transmission variables 

"aperanswer". 

Inspection of the message interpreter (particularly the scheme of its 

states) shows 

a) that a rejected message (Region 4) sooner or later is bound to give 

rise to Region 6 

b) that wrong messages are ignored, giving the operator the opportunity 

to correct. 

By the above analysis we hope to have created sufficient confidence 
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in the correctness of our construction. The analysis followed the steps 

already hinted at in section 5.2.1: after creation of the critical sections 

(with the aid of mutex), the latter are used to sequence Regions properly, 

thanks to which sequencing the transmission variables can be used unambiguously. 

6. The Problem of the Deadly Embrace. 

In the introductory part of this section I shall draw attention to a 

rather logical problem that arises in the cooperation between various 

processes, when they have to share the same facilities. We have selected 

this problem for various reasons. Firstly it is a straightforward extension 

of the sound principle that no two persons can use a single compartment of 

a revolving door simultaneously. Seondly, its solution, which I regard as 

non-trivial and that will be given in section 6.1, gives us a nice example 

of more subtle cooperation rules than we have met before. Thirdly. it gives 

us the opportunity to illustrate (in section 6.2) a programming technique 

by which a further gain in clarity can be achieved. 

Let me first give an example of the kind of sharing I have in mind. 

As "processes" we might take 11 programs", describing some computational 

process to be performed by a computer. Execution of such a computational 

process takes time, during which information must be stored in the computer. 

We restrict ourselves to thoses processes of which is known in advance 

1) the maximum demand on storage space and 

2) that the computational process will end, ·provided that storage space 

requested by the process will be put at the disposal of the computational 

process. The ending of the computational process will imply that its demand 

on storage space will reduce to zero. 

We assume that the available store has been subdivided into fixed size 

"pages'1 which, from the paint of view of the programs can be regarded as 

equivalent. 

The actual demand on storage space, needed by a process, may be a function 



varying in time as the process proceeds -subject, of course, to the a priori 

known upper bound. We assume that the individual processes request from 

and return to "available store" in single page units. With 11 equivalence 11 

(see the last word of the previous paragraph) is meant that a process, 

requiring a new page only asks for "a new page 11 but never for a special one 

or one out of a special group. 

We now request that a process, once initiated, will get the opportunity 

-sooner or later- to complete its action and reject any organization in 

which it may happen that a process may have to be killed half way its 

activity, thereby throwing away the computation time already invested in 

it. 

If the computer has to perform the different processes one after the 

other, the only condition that must be satisfied by a process is that its 

maximum demand does not exceed the total storage capacity. 

If, however, the computer can serve more than one process simultaneously, 

one can adhere to the rule that one only admits programs as long as the sum 

of their maximum demands does not exceed the total storage capacity. This 

rule, safe though it is, is unnecessarily restrictive, for it means that 

each process effectively occupies its maximum demand during the complete 

time of its execution. When we consider the following table (in which we 

regard the processes as 11 borrowing" pages from available store) 

process 

P1 

P2 

maximum demand 

00 

60 

available store 100 

present loan 

40 

20 + 

60 40 

further claim 

40 

40 

(a total store of 100 pages is assumed), we have a situation in which is 

still nothing wrong. If, however, both process request their next page and 

they should bpth get it, we should get the following situation: 

process 

P1 

P2 

maximum demand 

00 

60 

available store 100 

present loar 

41 

_ _,2o.:1_ + 

62 38 

further claim 

39 

39 
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This is an unsafe situation, for both processes might want to realize 

their full further claim before returning a single page to available store. 

So each of them may first 11eed a further 39 pages, while there are only 38 

available. 

This situation, when one process can only continue provided tre other 

one is killed first, is called 11 The Deadly Embrace 11
• The problem to be solved 

is: how can we avoid the danger of the Deadly Embrace without being unneces

sarily restrictive. 

6.1. The Banker's Algorithm. 

A banker has a finite capital expressed in florins. He is willing to 

accept customers, that may borrow florins from him on the following conditions. 

1. The customer makes the loan for a transaction that will be completed 

in a finite period of time. 

2. The customer must specify in advance his maximum "need" for florins 

for this transaction. 

3. As long as the "loan" does not exceed the "need" stated in advance, 

the customer can increase or decrease his loan florin wise. 

4. A customer may not complain, if he asks for an increase of the 

current loan and receives from the banker the answer "If I gave you the 

florin you ask for you would not exceed your stated need and therefore you 

are entitled to a next florin. At present, however, it is somewhat inconvenient 

for me to pay you, but I promise to send you the florin in due time." 

5. His guarantee that this moment will indeed arrive is founded on the 

banker's cautiousness 2nd the fact that his co-customers are subjected to 

the same condition as he: that as soon as a customer has got the florin he 

asked for he will proceed with his transactions at a non-zero speed, i.e. 

within a finite period of time he will ask for a next florin or will return 

a florin or will finish the transaction , which implies that his complete 

loan has been returned (florin by florin). 

The primary questions are 

a) under which conditions can the banker make the contract with a new 

customer? 



b) under which conditions can the banker pay a (next) florin to a requesting 

customer without running into the danger of the Deadly Embrace? 

The answer to question a) is simple: :,e can accept any customer, whose 

stated need does not exceed the banker's capital. 

To answer question b) we introduce the following terminology. 

The banker has a fixed "capital" at his disposal; each new customer 

states in advance his maximum ''need" and for each customer will hold 

''need[i] ~ capital'' (for all . ' 
ljo 

The current situation for each customer is characterized by his "loan". 

Eacr loan is initially= 0 and shall satisfy at any instant 

11 0 :::=: laan[i] :::=: need[i]" (for all i). 

A useful quantity to be derived from this is the maximum further "claim", 

given by 
"claim[i] need[i]- loan[i]" (for all i). 

Finally the banker notes the amount in "cash", given by 

"cash capital - sum of the loan's". 

Obviously 
"0 ~ cash < capital" 

has to hold. 

In order to decide, whether a requested florin can be paid to the 

customer, the banker essentially inspects the situation that would arise 

if he had paid it. If this situation is "safe", then he pays the florin, 

if the situation is not "safe", he has to say: "Sorry, but you have to wait.". 

Inspection, whether a situation is safe amounts to inspection, whether 

all customer transactions can be guaranteed to be able to finish. The algorithm 

starts to investigate whether at least one customer has a claim not exceeding 

cash. If so, this customer can complete his transactions and therefore the 

algorithm investigates the remaining customers as if the first one had finished 

and returned its complete loan. Safety of the situation means, that all 

transactions can be finished, i.e. that the banker sees a way of getting all 
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f-ris money back. 

If the customers are numbered from 1 through N, the routine inspecting 

a situation can be written as follows: 

11 integer free money; Boolean safe; Boolean array finish daubtful[1 :N]; 

free money:= cash; 

far i::::; 

for i::o:::: 

step until N do finish doubtful[i]:= true; 

~1~Ndo 

begin if finish doubtful[i] and claim[i) =::free money then 

begin finish doubtful[i]:= false; 

free money:= free money + loan[i]; gato L 

end 

end; 

if free money ·capital~ safe::::c: true else safe::::::: false'' 

The above routine inspects any situation. An improvement of the 

Algorithm has been given by L .Zwanenburg, who takes into account that the 

only situations to be investigated are those, where, starting from a safe 

situation, a florin has been tentatively given to customer[j]. As soon as 

"finish doubtful[j ]:::::: false" can be executed the algorithm can decide 

directly on safety of the situation, for apparently this te~pted payment 

was reversible! This short cut will be implemented in the program in the 

next section. 

6.2. The Banker's Algorithm Applied. 

In this example, the florins are processes as well. (Each florin, say, 

represents the use of a magnetic tape deck; the loan of a florin is then the 

permission to use one of the tape decks.) 

We assume, that the customers are numbered from 1 through N and that the 

florins are numbered from 1 through M. Each customer has a variable "florin 

number" in which, after each granting of a florin, it can find the number of 

the florin it has just borrowed; also each florin has a variable "customer 

number" in which it can find by which customer it has been borrowed. 
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Each customer has a state variable 11 cusvar", where "cusvar = 1 11 means 

"I am anxious to borrow.'' (otherwise 11 cusvar = 0); each florin ~as a state 

variable "flovar", where 11 flovar = 1" means "I am anxious to get borrowed, 

i.e. I am in cash.'' (otherwise "flovar = 0"). Each customer has a binary 

semaphore "cussem", each florin has a binary semaphore 11 flosem 11
, which 

will be used in the usual manner. 

We assume that each florin is borrowed and returned upon customer indi

cation, but that he cannot finish the loan of a florin immediately. After the 

customer has indicated that he has no further use for this florin, the florin 

may not be instantaneously available for a next use. It is, as if the 

customer can say to a borrowed florin "run home to the banker". The actual 

loan will on·ly be ended after the florin has indeed returned into cash: of its 

return into the banker's cash it will signal the customer from which it came 

via a customer semaphore "florin returned". A P-operation on this semaphore 

should guard the customer for an inconscious overdraft. Before each florin 

request the customer will perform a P-ope ration on its "florin returned"; the 

initial value of ''florin returned" will be "= need". 

We assume that the constant integers "N" and "M'' (=capital) and the 

constant integer array "need" are declared and defined in the universe in 

which the following program is embedded. 

The procedure "try to give to" is made into a Boolean procedure, the 

value of which indicates whether a delayed request for a florin has been 

granted. In the florin program it is exploited that returning a florin may 

at most give rise to a single delayed request now being granted. (If more than 

one type of facility is shared under control of the banker, this will no longer 

hold. Jumping out of the for loop to the statement labeled ''leave" at the 

end of the florin program is then not permissible.) 
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begin integer array loan, claim, cussem, cusvar, florin number, florin 

returned[ 1 : N], 

L2: 

flosem, flovar, customer number[1:M]; 

integer mutex, cash, k; 

Boolean procedure try to give to (j); value j; integer j; 

begin if cusvar[j] = 1 then 

end• __ , 

begin integer i, free money; 

LO: 

er'!d; 

Boolean array finish doubtful[ 1 :N]; 

free money:= cash - 1; 

claim[j]:= claim[j]- 1; loan[j]:= loan[j] + 1; 

for i::::::: 

for i:= 

until N do finish doubtful[i]:= true; 

until N do 

begin if finish doubtful[i] and claim[i] :S" free money then 

begin if i ,j j then 

end 

end; 

begin finish doubtful[i]:= false; 

free money:= free money + loan[i]; 

goto LO 

end 

else 

begin comment Here more sophisticated ways for 

selecting a free florin may be implemented; 

L1: 

end 

i:= 0; 

i:= i + 1; if flovar[i] 

florin number[j]:= i; 

customer number[i]:= j; 

cusvar[j]:= 0; flovar[i]:= 0: 

cash:= cash - 1; 

try to give to:= true; 

V(cussem[j]); V(flosem[i]); goto L2 

claim[j J:= claim[j] + 1; loan[j J:= loan[j] - 1 

try to give to:= false; 
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mutex:= 1; cash:= M; 

for k:= 1 ~ 1 until N do 

begin loan[k]:= 0; cussem[k]:= 0; cusvar[k]:= 0; clai~[k]:= need[k]; 

florin returned[k]:= need[k] 

end; 

for k:= 1 step 1 until M !1£. 

begin flosem[k]:= 0; flovar[k]:= 

parbeqin 

customer 1: be~ in •••• ••• ••••••••••••• end; 

customer N: begin •••••••••••••••••••• end; 

florin 1 : begin •••••••••••••••••••• end; 

florin M: begin •••••••••••••••••••• end 

parend 

end 

end; 

In customer ''n", the request for a new florin consists of the following 

sequence of statements: 

"P( florin returned[ n ]) ; 

P(mutex); 

cusvar[n]:= 1; try to give to (n); 

V(mutex); 

P(cussem[n])" 

after completion of the last statement "florin number[n]" gives the identity 

of the florin just borrowed, the customer has the opportunity to use it and 

the duty to return it in due time to the banker. 
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The structure of a florin is as follows: 

florin m: 

begin integer h; 

start:P(flosem[m]); 

"Now "customer number[m]" identifies the customer that has borrowed it. 

The florin can serve that customer until it has finished the task 

required from it during this loan. To return itself to the cosh, the 

florin proceeds as follows:" 

claim[ customer number[m]]:= claim[ customer number[m]] + 1; 

loan[customer number[m]]:= loan[ customer number[m]] - 1; 

flavar[m]:= 1; cash:= cash + 1; 

V(florin returned[customer number[m]]); 

for h:= 1 ~ 1 until N do 

begin if try to give to(h) then gato leave end; 

leave:V(mutex); 

gota start 

end 

Remark. Roughly speaking a succesful loan can only take place when two 

conditions are satisfied: the florin must be requested and the florin must 

be available. In this program the mechanism of cusvar and cussem is also 

used (by the customer), when the requested florin is immediately available, 

likewise the mechanism of flovar and flosem is also used (by the florin) 

if, after its return to cash, it can immediately be borrowed again by a 

waiting customer. This programming technique has been suggested by C.Ligtmans 

and P.A.Voorhoeve, and I mention it because in the case of more intricate 

rules of cooperation it has given rise to a simplification that proved to 

be indispensable. The underlying cause of this increase in simplicity it 

that the dynamic way tnrough the topological structure of the program no 

longer distinguishes between an actual delay or not, just as in the case 

of the P-operation itself. 
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7. Conludinq Remarks. 

In the literature one sometimes finds a sharp distinction between 

"concurrent programming" -more than one central processor operating on the 

same job- and "multiprogramming" -a single processor dividing its time 

between different jobs-. I have always felt that this distinction was 

rather artificial and therefore confusing. In both cases we have, macros

copically speaking, a number of sequential processes that have to cooperate 

with each other and our discussions on this cooperation apply equally well 

to "concurrent programming" as to ''multiprogramming" or any mixture of the 

two. What in concurrent programming is spread C'Jt in space (c.q. equipment) 

is in multiprogramming spread out i~ time: the two present themselves as 

different implementations of the same logical structure and I regard the 

development of a tool to describe and form such structures themselves, i.e. 

independent of these implementational differences, as one of the major 

contributions of the work from which this monograph has been born. As a 

specific example of this unifying train of thought I should like to mention 

-for those that are only meekly interested in multiprocessors, multiprogram

ming and the like- the complete symmetry between a normal sequential computer 

on the one hand and its periferal gear on the other (as displayed, for instance, 

in Section 4.3: "The Bounded Bufferu). 

Finally I should like to express, once more, my concern about the 

correctness of programs, because I am not too sure, whether all of it is 

duly reflected in what I have written. 

If I suggest methods by which we could try to attain a greater security, 

then this is of course more psychology than, say, mathematics. I have the 

feeling that for the Human Mind it is just terribly hard to think in terms 

of processing evolving in time and that our greatest aid in controling them 

is by attaching meanings to the values of identified quantities. For instance, 

in the program section 

LO: 

"i:= 10; 

x:= sqrt(x); i:= i - 1; 

if i > 0 then gato LO" 
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we conclude tt-,at the operation "x::::::sqrt(x)" is repeated ten times, but I 

have t~e impression trat we can do so by attaching to "i" the meaning of 

''the number of times that the operation "x:=sqrt(x)'' still has to be re

peated". (I know that in discussing program verification, Dr .P .Naur has 

i'ltroduced the term "the general snapshot"; in all probability we have here 

a trivial example of it.) But we should be aware of the fact that such a 

timeless meaning (a statement of fact or relation) is not permanently 

correct: immediately after the execution of "x:=sqrt(x)" but before that of 

the subsequent "i:= i - 1" the value of "i" is "one more than the number of 

times that the operation 11 x:= sqrt(x)" still has to be repeated". In other 

words: we have to specify a~ what stages of the process such a meaning is 

applicable and, of course, it must be applicable in every situation where 

we rely on this meaning in the reasoning that convinces us of the desired 

overall performance of the program. 

In purely sequential programming, as in the above example, the regions 

of applicability of such meanings are usually closely connected with places 

in the program text (if not, we have just a tricky and probably messy program). 

In multiprogramming we have seen -in particular in Section 5.2.1- that it is 

a worth-while effort to create such regions of applicabili~y of meaning very 

consciously. The recognition of the hierarchical difference between the 

presence of a message and the message itself, here forced upon us, might give 

a clue even to clearer uniprogramming. 

For example. if I am married to one out of ten wives, numbered from 

through 10, this fact may be represented by the value of a variable "wife 

number 11
, associated with me. If I may also be single, it is a commonly used 

programmer 1 s device to code the state of the bachelor as an eleventh value, 

say "wife number = 0 11 • The meaning of the value of this variable then becomes 

11 If my wife number is = 0, then I am single, otherwise it gives the number 

of my wife~" The moral is that the introduction of a separate Boolean variable 

"married" might have been more honest. 

We know that the von Neumann type machine derives its power and flexibility 

from the fact that it treats all words in store on the same footing. It is 

often insufficiently realized that, thereby, it gives the user the duty to 
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impose structure wherever recognizable. 

Sometimes it is. It ~as often been quoted as The Great Feature of the 

von Neumann type machine that it can modify its own instructions, but most 

modern algorithmic translators, however, create an object program that 

remains in its entire execution fase just as constant as the original 

source text. Instead of chaotically modifying its awn instructions just 

before or after their execution, creation of instructions and execution of 

these instructions now occur in different sequenced regions: the translation 

fase and the execution fase. And this for the benefit of us all. 

It is my firm belief that in each process of some complexity the 

variables occurring in it admit analogous hierarchical orderings and that, 

when these hierarchies are clearly recognizable in the program text, the 

gain in clarity of the program and in efficiency of the implementation 

will be considerable. If this monograph gives any reader a clearer indication 

of what kind of hierarchical ordering can be expected to be relevant, I 

have reached one of my dearest goals. And may we not hope, that a confron

tation with the intricacies of Multiprogramming gives us a clearer under

standing of what Uniprogramming is all about? 


