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Abstract: B-Cell Lymphoma 2 (BCL-2), c-MYC and related proteins are arguably amongst the most

widely studied in all of biology. Every year there are thousands of papers reporting on different

aspects of their biochemistry, cellular and physiological mechanisms and functions. This plethora

of literature can be attributed to both proteins playing essential roles in the normal functioning of a

cell, and by extension a whole organism, but also due to their central role in disease, most notably,

cancer. Many cancers arise due to genetic lesions resulting in deregulation of both proteins, and

indeed the development and survival of tumours is often dependent on co-operativity between

these protein families. In this review we will discuss the individual roles of both proteins in cancer,

describe cancers where co-operativity between them has been well-characterised and finally, some

strategies to target these proteins therapeutically.
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1. The BCL-2 Family of Proteins Regulate Apoptosis

There is a delicate balance within cells that dictates whether they live or die, and this
exigency must be met to maintain a disease-free state. The BCL-2 family is an important
group of proteins that holds tight rein on this counterpoise of whether a cell survives, or
alternatively, is eliminated by the process of apoptosis (Figure 1) [1].

 

Figure 1. The BCL-2-regulated apoptotic pathway. The BH3-only proteins trigger the apoptotic

cascade by either binding the BCL-2-like pro-survival proteins, displacing the BAX/BAK-like proteins,

or alternatively in the case of certain members (e.g., BIM, BID, PUMA), by directly engaging and

activating BAX/BAK. These events lead to BAX/BAK oligomerization followed by mitochondrial

outer membrane permeabilisation, caspase activation and death. Figure created with Biorender.com.
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Within the BCL-2 family, there are proteins that promote cell death and others that
enable cell survival. Of the cell death promoters, there are two sub-families. The first
comprise the “BH3-only” proteins which trigger the apoptotic cascade [1]. Upon receipt
of a death stimulus, these BH3-only proteins are transcriptionally upregulated, or post-
translationally modified, enabling them to act on downstream pro- and anti-apoptotic
family members, thereby initiating the slippery slide to cell death. In mammals, there are
eight main members including BIM, PUMA, BID, NOXA, BID, BAD, BMF and HRK. The
second sub-family of death-promoting molecules are the “BAX/BAK-like” proteins [1].
This family which includes BAX, BAK and BOK are the downstream effectors of the
family. These multi-domain proteins, once activated, oligomerise to form pores resulting
in mitochondrial outer membrane permeabilisation. A consequence of this event is the
release of apoptogenic factors such as cytochrome c from the mitochondria into the cytosol,
leading to activation of the cellular demolitionists, the caspases.

The last faction within the BCL-2 family are the “BCL-2-like” pro-survival proteins [1].
In mammals, there are five members: BCL-2 itself, BCL-XL, BCL-W, MCL-1 and BFL-1. In
healthy cells, pro-survival proteins can be found in heterodimeric complexes with BAX or
BAK preventing their oligomerisation [2]. Alternatively, pro-survival proteins can also bind
to, and inhibit the ability of upstream BH3-only proteins to directly activate and induce
oligomerisation of the BAX/BAK sub-family [2].

The rules of engagement describing the differential binding specificities of the pro-
apoptotic proteins and pro-survival proteins are now well-defined and contribute to the
highly tuned and ordered network of protein–protein interactions that dictate cell sur-
vival [3–5]. Serendipitously, the importance of the natural binding specificities that exist
between the opposing factions of the BCL-2 family proved critical to the design of anti-
cancer therapeutics targeting this pathway, which will be discussed later.

1.1. The Role of Pro-Survival BCL-2-Like Proteins in Tumourigenesis

Resisting cell death is a well-defined hallmark of cancer [6]. It is intuitive to think
that aberrantly high levels of proteins that promote cell survival, or on the other hand,
insufficient pro-death protein activity, can lead to tumourigenesis. In line with this, the
identification of genetic lesions in human cancers [7–9], together with the use of genetically
engineered mouse models [10,11] that lead to both these states, provided convincing
evidence supporting an important role for members of the BCL-2 family in cancer.

The founding member of the BCL-2 family is BCL-2 itself. The gene was first identified
during the heyday of oncogene discovery through the study of chromosomal rearrange-
ments. Indeed, BCL-2 was discovered by mapping a t(14;18) translocation in an acute
B lymphocytic leukaemia (ALL)-derived cell line [8]. The same chromosomal transloca-
tion was later observed in other haematological malignancies including 80% of follicular
B-cell non-Hodgkin’s lymphomas (FL) [12–14], 20% of diffuse large B-cell lymphoma (DL-
BCL) [14], and more rarely in B-cell chronic lymphocytic leukaemia (CLL) (about 2–4% of
cases) [14–16]. The gene for BCL-2 was cloned by three separate groups from FL, DLBCL
and normal cells [8,12,17–19]. It was subsequently discovered through molecular analysis,
that the translocations in these different diseases, though cytogenetically identical, arise
via differing mechanisms [20]. However, despite these molecular differences, the shared
outcome of this translocation event was the placement of the BCL2 gene under the control of
the immunoglobulin heavy (IgH) chain gene enhancer, resulting in the aberrant high-level
constitutive expression of BCL-2.

Importantly, it soon came to light that it was this high level of BCL-2 expression,
and not the presence of the t(14;18) chromosomal translocation, that was important in
tumourigenesis [21,22]. High levels of BCL-2 expression, comparable to that observed
in t(14;18)-containing haematological malignancies, is also seen in FL [23], CLL [24,25],
DLBCL [26], multiple myeloma (MM) [27] and mantle cell lymphoma (MCL) [28] despite
the absence of the t(14;18) translocation. Multiple mechanisms have now been reported
by which deregulation of BCL-2 expression can occur. These include the deregulated
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expression of BCL-2 transcriptional activators [29], somatic mutations in the BCL-2 pro-
moter region [29], loss of microRNAs that negatively regulate BCL-2 [30–33], BCL-2 gene
amplification or its transcriptional upregulation through constitutive activation of the
NF-κB pathway [34]. Notably, this phenomenon is not restricted to just blood cancers
but also extends to solid cancers such as lung [35], prostate [36], liver [37], and breast
carcinomas [38] in which high levels of BCL-2 expression is observed even in the absence
of BCL-2 gene rearrangements.

Accordingly, detection of the t(14;18) translocation has little prognostic significance.
Instead, it is the high levels of BCL-2 protein expression that serves to predict poor progno-
sis, reduced overall and disease-free survival, and recurrence in cancers [39]. For example,
enhanced expression of BCL-2 is associated with the development of androgen-refractory
prostate cancer [40], whilst in CLL, higher expression of BCL-2 is an adverse prognos-
tic feature [41]. High BCL-2 expression also dictates poorer patient outcome following
standard chemotherapy [22,39,42–44]. However, it should be noted that the role of BCL-2
expression as a prognostic marker also does not always hold up [35,45,46] such as in
studies of advanced head and neck carcinoma and bladder cancer [47,48]. In fact, in some
cases, BCL-2 expression correlates with improved clinical outcome, for example in patients
with Estrogen Receptor (ER)- and Progesterone Receptor (PR)-positive breast cancer who
received adjuvant endocrine therapy [49,50].

1.2. BCL-2—Defining a New Class of Oncogenes

It became increasingly evident that overexpression of BCL-2 contributes to tumourige-
nesis. The question then was—how does this occur? The discovery of BCL-2 not only iden-
tified a novel oncogene but perhaps more importantly, defined a paradigm-shift in what
we understood about oncogenes. The landmark study using cytokine (IL-3)-dependent cell
lines in culture demonstrated that, in contrast to all other known oncogenes at that time
which promoted deregulated proliferation, overexpression of BCL-2 instead protected cells
against death by apoptosis following cytokine deprivation [9]. These findings underlined
that it is not just defects in the control of cellular proliferation that can promote tumouri-
genesis, but that defects in cell death leading to unwanted survival, were also important.
Furthermore, the studies on the anti-apoptotic properties of BCL-2 defined for the first
time that distinct genetic programs control cell proliferation versus cell survival. Now,
apoptosis is widely accepted as a prominent tumour-suppressive function and that the
inhibition of this pathway (such as through the overexpression of pro-survival proteins) is
a key hallmark of cancer and drug resistance [6].

Subsequent to the discovery of the function of the first BCL-2 family member, addi-
tional members of the family were identified largely based on sequence conservation of up
to four regions of homology known as Bcl-2 homology (BH) domains. These included four
additional pro-survival members namely BCL-XL, BCL-W, MCL-1 and BFL-1, all of which
have since been shown to contribute to the survival of various cancers.

1.3. Other Pro-Survival Members of the BCL-2 Family and Their Contributions to Tumourigenesis

A comprehensive study examining somatic copy-number alterations (SCNAs) in fre-
quently altered genomic regions in over 3000 cancer specimens, from broadly 26 histological
types, identified key genes with potential causal roles in tumourigenesis [51]. Amongst the
gene families enriched included members of the BCL-2 family. Consistent with the notion
that evasion of cell death is a hallmark of cancer [6], the pro-survival proteins BCL-XL
and MCL-1 were found in amplification peaks when compared to non-cancerous samples,
whilst pro-apoptotic proteins such as BOK and PUMA were identified in deletion peaks.
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1.3.1. MCL-1

The gene for MCL-1 was discovered as an early response gene induced during the
differentiation of a human myeloid leukaemia cell line [52]. Strikingly, one of the most com-
mon focal amplifications (1q21.2) detected (in 10.9% of all cancers) contains the MCL-1 gene.
Amplification of this region has been previously reported in lung adenocarcinoma [53,54],
breast cancer [51], and melanoma [55]. Validation that amplified MCL-1 is the contributing
factor in cancers came when knockdown of MCL-1 led to a significant reduction in cell
growth in MCL-1-amplified cell lines, but not MCL-1-unamplified lines [51]. Like BCL-2,
multiple mechanisms exist to give rise to high levels of MCL-1. These include microRNA
deregulation, where mir-29b downregulation leads to increased MCL-1 expression in CLL
and cholangiocarcinoma [31,56] or upregulation of MCL-1 via deregulated external stimuli
such as through vascular endothelial growth factor (VEGF) or Interleukin-6 signalling in
multiple myeloma and cholangiocarcinoma [57,58]. High levels of MCL-1 are also found in
blood cancers such as CLL, ALL, FL [59–61] and is associated with chemoresistance and
disease severity [59–62].

1.3.2. BCL-XL

Like MCL-1, BCL-XL is one of five genes encompassed in a region of amplification
(on 20q11.21) [51] that has been reported in lung cancer [63], giant-cell tumour of bone [64]
and embryonic stem cell lines [65,66]. Using the same approach by which MCL-1 was
validated as the key survival factor for MCL-1-amplified cancer cells, BCL-XL was knock-
down in cell lines in which BCL-XL was amplified, resulted in a pronounced reduction in
viability [51]. As with most pro-survival members of the BCL-2 family, elevated levels of
BCL-XL have also been found in a number of different blood cancers. High levels of BCL-
XL have been reported in multiple myeloma and correlates with increased chemoresistance,
although BCL-2 appears to feature more prominently in this cancer type [27,67]. However,
its role as a predictor of clinical outcome for multiple myeloma remains debatable [68].
Expression of BCL-XL has also been implicated in the development and chemoresistance of
Bcr/Abl+ chronic myelogenous leukaemia as this pro-survival protein is a transcriptional
target of signal transducer and activator of transcription (STAT) 5 which is involved in
the anti-apoptotic activity induced by Bcr-Abl-mediated leukemogenesis [69]. In a study
using cancer genomics data sets derived from over 5000 tumour samples from 20 cancer
studies to identify cancer types with significant amplification of BCL-XL (The cBio Cancer
Genomics Portal [70]), both colorectal cancer and cervical cancer demonstrated the highest
percentage of BCL-XL gains and amplifications across all cancer types analysed [71]. In
particular, BCL-XL has been identified as a driver in colorectal tumourigenesis and cancer
progression [72].

1.3.3. BFL-1

Unlike its other more well-characterised siblings, the role of BFL-1 (or A1 in mice) in tu-
mourigenesis is perhaps not as far advanced. However, multiple studies are now pointing
to an important role for it in tumour progression. Elevated levels of BFL-1 have been ob-
served in B-cell CLL, AML, MCL and primary mediastinal large B-cell lymphoma [73–76]
and contribute to chemoresistance and disease progression. For example, in B-cell CLL pa-
tients, BFL-1 levels were significantly higher in patients with no response to last chemother-
apy as compared to patients that responded, or who had not required treatment [76].
Likewise, high BFL-1 expression correlated with more severe cases of CLL, indicating a
potential prognostic role for BFL-1 [74]. Aberrant BFL-1 expression has been documented
in various non-haematological malignancies including stomach [77] and breast cancers,
especially in advanced breast cancer suggesting an association with later and more severe
disease stages [78,79]. Overexpression of BFL-1 has also been implicated in melanoma cell
survival although results have varied between studies as to its absolute essentiality for
survival [80–85].
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1.3.4. BCL-W

Perhaps the pro-survival member that has received the least attention in the context
of tumorigenesis is BCL-W. Despite relatively few studies, BCL-W has been found to be
significantly overexpressed in a wide range of human B-cell lymphomas, including Burkitt
Lymphoma (BL), diffuse large B-cell lymphoma (DLBCL) and Hodgkin lymphoma patient
samples and cell lines [86–88]. As with BCL-2 and MCL-1, for which deregulation of the
microRNA control of their expression has been described in cancer, miR-133b deregulation
has been observed in bladder cancer, colorectal carcinoma and lung cancer leading to
BCL-W overexpression in these cancers [89–91].

1.4. Pro-Apoptotic Proteins in Tumourigenesis

Whilst not a key focus of this review, it should also be noted that loss-of-function
or deregulation of pro-apoptotic members of the family have also been implicated in
tumourigenesis. For example, Bak mutations have been reported in human gastric and
colorectal cancers, predisposing those patients to the development of these gastrointestinal
malignancies [92]. Loss-of-function mutations in BAX have been detected in haematological
and colorectal malignancies [93,94] and downregulation of BH3-only proteins such as BIM
due to various mechanisms such as homozygous deletion or promoter hypermethylation
has been observed in MCL, DLBCL and BL [7,95,96].

The oncogenic potential of dysfunctional apoptosis is inarguable. Overexpression of
pro-survival proteins likely promotes tumourigenesis by keeping cells that are otherwise
programmed to die, alive. In so-doing, this enhanced resistance to dying increases their risk
of acquiring additional oncogenic mutations, including ones that deregulate the control of
cellular proliferation such as MYC.

2. MYC: A Master Transcription Factor

MYC refers to a family of three proto-oncogenes (c-MYC, MYC; n-MYC, MYCN, l-MYC,
MYCL) that were first identified by their homology to v-MYC, an avian myelocytomatosis
MC29 retrovirus gene capable of cellular transformation [97–100]. The MYC oncoproteins
are all transcription factors consisting of an N-terminal transregulatory domain and a C-
terminal DNA-binding and dimerisation domain. The N-terminal region is not particularly
well-conserved between family members apart from six short regions of homology (“MYC
boxes”) that enable association with different binding partners, or which can be modified
in different ways, leading to diverse functional outcomes including regulation of MYC
stability/degradation, chromatin remodelling, histone acetylation and enhancing promotor
affinity. The C-terminal region is, in contrast, highly conserved between MYC proteins
and comprises basic (b), helix-loop helix (HLH) and leucine-zipper (ZIP) (collectively
“bHLH-Zip”) subdomains. The HLH and ZIP domain enable MYC to associate with the
related bHLH-Zip protein, MAX, forming obligate heterodimers required for binding to
enhancer-box (E-box) sequences within the promotors of MYC target genes [101–103],
particularly those located proximal to CpG islands [104,105]. However, where MYC-MAX
dimers bind is concentration dependent, and also includes enhancers, degenerate E-boxes,
as well as some sequences without an E-box [106].

Estimates of the number of genes regulated by MYC vary, though is certainly in the
thousands [107–110], and could perhaps include every active gene within a cell [111,112].
This is in part due to the abundance of E-box motifs within the genome, as well as the afore-
mentioned capacity to bind outside of these sites. Not surprisingly, MYC has been impli-
cated in regulating essentially every basic cellular function including cell cycle progression,
differentiation, growth, metabolism, DNA replication and apoptosis as well as more specific
functions which, amongst many others, includes cell adhesion, epithelial-mesenchymal
transition and angiogenesis, all of which are all important in cancer metastasis.
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As the range of these functions and the literature describing them is so vast, we
will confine any detailed discussion on how MYC regulates these processes to just the
one that is most relevant to this review, namely apoptosis, which for obvious reasons is
the predominant role for MYC and its co-operativity with BCL-2 (see Sections 3 and 4
below). Nevertheless, it is informative to first provide some general background on MYC
regulation/deregulation and how it contributes to tumourigenesis.

2.1. Mechanisms of MYC Activation and Its Deregulation in Cancer

MYC is referred to as an “immediate early” gene. The MYC protein, is generally present
at very low levels in normal or quiescent cells but is rapidly induced following mitogenic
signals transduced via multiple cellular pathways including MAPK, WNT, NOTCH, and
PI3K that are also frequently deregulated in cancer [113–119]. MYC-target gene mRNAs, as
well as long non-coding RNAs, tRNAs and microRNAs, are transcribed by all three RNA
polymerases (Pol I, Pol II, Pol III) [120–122].

In cancer, MYC levels are greatly enhanced, and in some cases, by orders of magni-
tude [112]. This is a consequence of a number of distinct possible mechanisms. The first of
these to be discovered was the upregulation of v-MYC by insertion of a retroviral promoter
by another avian (leukosis) retrovirus [123,124]. Importantly, MYC is unlike many, if not
most, other oncogenes in that it does not need to be mutated to unleash its oncogenic
potential. Rather, increased expression alone is sufficient to promote tumorigenesis. Most
common of the mechanisms by which this occurs is gene amplification where increased
MYC copy number can result in increased expression [125]. In some human cancers, the
MYC loci can also be disrupted by chromosomal translocations. This occurs in essentially
all Burkitt’s lymphoma where the MYC gene on chromosome 8 is translocated into one of
several heavy and light chain immunoglobulin loci on chromosome 14 (i.e., t(8:14) translo-
cation), driving high levels of MYC expression [126,127]. Other important mechanisms that
lead to high-level MYC expression include transcriptional upregulation due to deregulated
upstream signalling pathways such as WNT, PI3K and NOTCH [115,116,119], stabilisation
of MYC mRNA [128], increased export of MYC from the nucleus leading to increased MYC
translation [129,130], reduced MYC degradation via loss of the ubiquitin ligases SCFFbw7

and SCFSkp2 or mutations within different regulatory regions, especially at threonine 58
in the MYC degron (an interaction site for SCFFbw7) [128,131–134], or stabilisation of the
protein by phosphorylation (e.g., by ERK or GSK3) [118,135].

2.2. Mechanisms of MYC Deregulation in Promoting Tumourigenesis

Apart from early reports on the cell-transforming capacity of v-MYC, there are multiple
lines of evidence supporting the importance of deregulated MYC expression in driving
tumour development and progression. These have been reviewed extensively over the
years but include indirect observations, as well as direct connections with tumourigenesis
in experimental animal models [136]. For example, as described above, the levels of
MYC are often elevated in tumours relative to non-cancerous tissue of the same origin. In
patients, high MYC levels are often also associated with poor prognosis [137–139]. Cells that
overexpress MYC take on characteristics of tumour cells, proliferating and growing more
rapidly, whilst ablation of MYC results in the opposite effect [140]. Similarly, transgenic
mouse models have shown that MYC overexpression results in increased tumourigenesis,
whilst deletion or reduction in MYC levels, or its inhibition following expression of an
engineered dominant negative mutant, can eliminate tumour development in certain
models [141–143].

Although the combined evidence for the role of MYC in cancer is compelling, the
mechanisms by which high levels of MYC drive tumourigenesis are more contentious [106].
Whilst it is clear increased MYC levels can cause cells to cycle more rapidly and to induce
quiescent cells to renter the cell cycle, even in the absence of growth factors [144–146], MYC
itself is actually a relatively weak transcription factor with expression of many specific
target genes often increasing by less than two-fold [147,148], even when MYC levels are
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significantly upregulated. Furthermore, which specific genes are important for cellular
transformation has yet to be conclusively established though changes in the expression
(upregulation and suppression) of at least 40 MYC target genes have been implicated [149].
It has also been proposed that the increase in global (rather than specific) RNA levels due
to increased genome-wide transcription could lead to oncogenesis. Increased MYC might
also drive the formation of MYC-MAX dimers and increased affinity for, and occupation
of specific gene promoters [150]. More recently, it has also been argued that target gene-
independent functions of MYC associated with its vast interactome, including promotion
of transcription termination upon stalling RNA Polymerase II, and its ability to coordinate
transcriptional elongation with DNA replication and cell cycle progression, are likely
critical factors in the mechanisms by which MYC promotes tumorigenesis [106].

Regardless of the specific details of these mechanisms, one process that has been
inextricably linked to MYC overexpression is the induction of apoptosis. Whilst it might
appear counterintuitive that increased MYC can lead to increased apoptosis in the con-
text of tumourigenesis, the associated upregulation of oncogenic pro-survival proteins
to counter this effect is a prominent feature of the development of some tumours. In
the following section, we will discuss the roles of MYC in inducing apoptosis in more
detail, and then review the mechanisms underlying the co-operativity between these two
important signalling pathways in cancer.

3. MYC—A Driver of Apoptosis

In the early days, the oncogenic potential of MYC was classically attributed its ability
to drive cell-cycle progression and the hyperproliferation of cells. Paradoxically, MYC
expression in late passage fibroblasts is associated with tumours that grow less aggressively
and with decreased ability to metastasise, as compared to for example RAS-expressing
tumours, with cell loss by apoptosis commonly observed [151]. This ability of MYC
to induce or sensitise cells to apoptosis, regardless of the phase of the cell cycle, was
subsequently demonstrated in various cell types including factor-dependent myeloid cells,
fibroblasts and self-reactive T-cells [152–154]. Furthermore, the level of MYC expression
was shown to positively correlate with the extent of apoptosis induced both in vitro and
in vivo [153,155]. Here, careful rheostat-like control of MYC levels demonstrated that a
modest increase of MYC expression enhanced transformation, whilst robust expression led
to significant apoptosis instead [155]. Notably, the domains on MYC that are responsible for
conferring its apoptotic capacity overlap with regions of the protein required for its other
well-accepted roles in transformation, sequence-specific DNA binding, MAX dimerisation
and transcriptional activation [153]. Hence, whether the proliferation or apoptotic program
is engaged is dependent on the operational threshold at which MYC triggers these distinct
outputs, leading to dramatically distinct outcomes. This threshold is seemingly exquisitely
dependent on the internal state of the cell and its microenvironment [155].

3.1. Mechanisms by Which MYC Induces Apoptosis

This latent or intrinsic tumour suppressor function of MYC, mediated by its ability
to induce apoptosis has been heavily investigated. Moreover, the molecular mechanisms
describing the crosstalk between MYC signalling and apoptosis induction is generally well-
understood and can be broadly dichotomised into P53-dependent versus P53-independent
mechanisms (Figure 2).
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Figure 2. The mechanisms by which MYC induces apoptosis. The P53-dependent pathway to MYC-

induced death is primarily mediated by the ARF-MDM-P53 axis following the upregulation of ARF

expression by MYC. This leads to the stabilisation of P53 and the induction of P53 pro-apoptotic

target genes. In contrast, the P53-independent pathway to MYC-induced apoptosis is reliant on the

direct transcription of pro-apoptotic genes or the repression of pro-survival protein expression. Given

the cooperativity between MYC signalling and the BCL-2-regulated apoptotic pathway in promoting

tumourigenesis, combining drugs targeting both arms (e.g., MYC with JQ1, BCL-2 pro-survival

proteins with BH3-mimetics) is a promising therapeutic avenue (see Section 5). Figure created with

Biorender.com.

3.1.1. P53-Dependent MYC-Induced Apoptosis

In a healthy cell, P53 is normally short-lived and found at low levels. However, follow-
ing receipt of a stress stimulus or DNA damage, it is stabilised and accumulates in order
to exert its inhibition on cell cycle progression or cell survival. The tumour suppressive
role of the transcription factor P53 is attributed to its ability to induce apoptosis [156]. This
occurs mostly by direct transcriptional activation of the BH3-only protein PUMA, and to a
lesser extent NOXA [157–161]. In addition, P53 is also thought to regulate BIM expression,
although it is less clear whether this occurs via indirect [162,163] or direct mechanisms
of transcriptional regulation [164–166]. In addition to BH3-only proteins, both BAX and
APAF1 have also been shown to be transcriptional targets of P53, though their participation
in P53-mediated apoptosis is likely cell-type dependent [167–169].

Concurrent with P53 accumulation, expression of the P53-target gene MDM2 is also
induced [170,171] which serves as a negative-feedback loop as MDM2 binds to, and targets
P53 for proteasomal degradation, inhibiting its transcriptional activity [172–174]. Upstream
of this P53/MDM2 node is the tumour suppressor ARF, which is perhaps the second most
commonly deleted or mutated locus in cancer, behind P53. The ARF protein binds to
MDM2, inhibiting MDM2-induced P53 degradation and transactivational silencing, and
can do so as a ternary complex [175–178]. Alternatively, ARF has also been proposed to
inhibit MDM2-mediated nuclear export of P53 into the cytoplasm hence leading to the
stabilisation of the latter [176,179].

The importance of the ARF-MDM2-P53 axis in MYC-induced apoptosis [180] is sup-
ported by several lines of evidence. Overexpression of MYC in cells leads to the induction
of ARF expression and P53-dependent apoptosis, and the loss of ARF or P53 renders cells
highly resistant to the deleterious effects of elevated MYC levels [181]. Consistent with
this, in the face of MYC overexpression, wild-type cells that sustain P53 mutations and
ARF hemizygous cells bearing loss of ARF are conferred a selective advantage enabling
their continuous proliferation [181,182]. Perhaps the most elegant and convincing evidence
was provided by studies carried out in the Eµ-MYC transgenic mouse model. Tumour
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latency in this mouse model is typically six-months prior to the onset of disease, with
high levels of apoptosis detected in the B-lymphocyte compartment consistent with the
induction of apoptosis due to high MYC levels [183]. However, in approximately half of
the spontaneous tumours that do arise this model, inactivation of the ARF-MDM2-P53
axis, through either ARF (biallelic deletion), P53 loss of function (by mutation or biallelic
deletion), or overexpression of MDM2, is observed [182]. In addition, ARF or P53 deletion
markedly accelerated lymphomagenesis in the context of the Eµ-MYC transgenic mouse
model [184]. These and other studies (which due to space limitations have not been in-
cluded in this review) underscore the role of the ARF-MDM2-P53 axis in delivering the
fatal blow induced by MYC overexpression.

3.1.2. P53-Independent MYC-Induced Apoptosis

Intriguingly, high levels of MYC can still kill cells in the absence of P53, strongly
suggesting that P53-dependent signalling is in fact not obligatory for MYC-induced apop-
tosis [185]. Logically, it makes sense that the MYC-induced apoptotic program has in place
P53-independent mechanisms so that even in the context of P53 loss-of-function, which is a
frequent event in oncogenesis, cells still retain the capacity to protect themselves in the face
of deregulated cellular proliferation. Not unexpectedly, though tellingly, the mechanisms
enabling the P53-independent crosstalk between MYC and apoptosis is largely mediated
by members of the BCL-2 family as a consequence of the transcriptional activity of MYC.

A key mediator implicated in MYC-induced apoptosis is the BH3-only protein BIM.
Independent of P53 status, BIM expression is transcriptionally induced following binding
of MYC to the BIM promoter, inducing BIM overexpression [10,186,187]. Perhaps the
most convincing evidence supporting a role for BIM induction in mediating the tumour
suppressive function of MYC was provided in experiments using MYC mutants incapable
of inducing the expression of this pro-apoptotic protein. Here, mice transplanted with
haematological cells expressing these MYC mutants succumbed to lymphomas more
rapidly than their wild-type counterparts [186]. Notably, these mutants had no impact on
the proliferative potential of MYC, further emphasising the importance of the pro-apoptotic
capacity of this oncogene in tumour surveillance. Importantly, this observation has been
seen in human Burkitt’s lymphoma where BIM expression is virtually absent in tumours
carrying mutant MYC [186,188]. The role for BIM as a mediator of MYC-induced apoptosis
extends beyond that seen in lymphomagenesis and has also been observed in multiple
solid tissues [187].

In addition to BIM, MYC can also engage E-boxes in the BAX promoter to upregulate
BAX expression and induce apoptosis [189]. Notably, apoptosis can still ensue following
MYC overexpression in BAX−/− cells, though not to the same extent as in the BAX+/+

control cells, suggesting other mechanisms are also involved in cell killing (e.g., via BIM-
induced BAK activation). MYC has also been shown to repress both mRNA and protein
expression of pro-survival members such as BCL-2 or BCL-XL [190,191], hence inhibiting
the induction of apoptosis directly.

4. Cooperativity between Myc and the Bcl-2-Regulated Apoptotic Program
in Tumourigenesis

4.1. Cooperativity between MYC and Elevated Pro-Survival Proteins

Deregulated MYC expression is a common event in tumour cells indicating that this is
an essential step in tumourigenesis. It therefore makes sense for cells to have developed a
built-in failsafe program to limit the resulting unchecked cell proliferation. The proliferative
advantage conferred by MYC overexpression cannot be disentangled from its ability to
induce apoptosis, and hence its deregulation should be lethal to a cell. It is thus reasonable
to conclude that whilst MYC deregulation is an essential step in tumourigenesis, cells also
need to acquire a secondary block in apoptosis signalling preventing their demise. The
observation that heightened sensitivity to apoptosis caused by ectopic MYC expression is
observed in premalignant cells, but not after malignant transformation provides evidence
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that tumour cells do acquire specific mechanisms to blunt the pro-apoptotic effects of MYC
deregulation [192].

In the same way deregulated MYC alone does not lead to full malignant transforma-
tion, the overexpression of BCL-2 pro-survival proteins alone is also similarly insufficient.
The t(14;18) chromosomal translocation leading to the deregulated expression of BCL-2 is
now a well-established oncogenic hit, particularly in B-cell lymphomas. Landmark studies
using transgenic mice to recapitulate this translocation, where the BCL-2 gene was linked
to the immunoglobulin heavy-chain gene enhancer, resulted in the polyclonal expansion of
B lymphoid cells, in particular immature and mature B cells, as well as Ig-secreting plasma
cells, and enabled their prolonged survival in vitro [193–195]. However, tumour incidence
observed in these mice was unexpectedly low, with only 5–20% progressing through, and
only at an advanced age (one to two years), to a monoclonal lymphoma or plasmacytoma,
instead of recapitulating the follicular lymphoma characteristic of the t(14;18) chromosomal
translocation in humans. In addition, IL-3 dependent myeloid progenitor cells overex-
pressing BCL-2 failed to produce tumours when injected into mice [9,196]. Intriguingly,
this translocation has been detected in healthy individuals with only a small number
expected to develop lymphomas [197]. The slow progression to tumour manifestation
in the Eµ-BCL-2 mice and the existence of the t(14;18) translocation in healthy individu-
als, strongly suggest that the overexpression of BCL-2 as a consequence of this genetic
aberration can occur beyond the context of malignancy and/or hyperplasia and likely
precedes other key oncogenic steps (such as secondary genetic aberrations) required for
full neoplastic transformation.

Consistent with these notions, the progression of follicular lymphoma to a more ag-
gressive intermediate or high-grade lymphoma occurs in the majority of patients where
the transformed lymphomas retain the t(14;18) translocation but also acquire new chro-
mosomal abnormalities [198,199]. Notably, a new translocation of the MYC gene into the
immunoglobulin locus is observed in ~10% of such transformed lymphomas (so-called
“double-hit” lymphomas) [200]. This observation extends to other cancer types too, for
example non-Hodgkin lymphoma [201], germinal centre B-cell lymphoma [202], and acute
lymphoblastic leukaemia [203,204] where concurrent activation of BCL-2 and MYC oc-
curred leading to their elevated levels.

These clinical observations that BCL-2 and MYC cooperate in neoplastic transforma-
tion had in fact already been proven experimentally. Firstly, early in vitro studies demon-
strated that BCL-2 and MYC cooperated to favour the growth of pre-B and B cells [9,205].
Further compelling results were then derived from mouse experimental models. Landmark
studies in mice doubly transgenic for BCL-2 and MYC developed tumours much more
rapidly than mice expressing either transgene alone [11]. In addition, almost 50% of the
high-grade diffuse large-cell immunoblastic lymphomas that arose in the BCL-2 transgenic
mice harboured rearrangements in the MYC gene [206,207]. Validation that a blockade
of apoptosis due to the sustained overexpression of BCL-2 was a required step during
MYC-driven tumourigenesis was shown in a mouse model of lymphoblastic leukaemia
where removal of this BCL-2 reliance using an inducible system led to leukaemia remission
and prolonged survival of the mice [208].

Mechanistically, this cooperativity between MYC and BCL-2 was proven to be due
to the ability of BCL-2 overexpression in mitigating the apoptotic effects of deregulated
MYC expression, without affecting MYC’s mitogenic function [209–211]. This interac-
tion between MYC and BCL-2 described a novel mechanism for oncogene cooperation
that differed from the well-accepted cooperativity between oncogenes such as MYC and
activated RAS.

Since these landmark studies with MYC and BCL-2, cooperativity with MYC in the
promotion of malignant transformation has since been shown to extend beyond BCL-
2 itself, and applies to other pro-survival members of the BCL-2 family. For example,
overexpression of MCL-1 in multiple hematopoietic lineages accelerated MYC-driven
tumourigenesis [212,213] whilst high levels of BCL-XL cooperates with deregulated MYC
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to lead to plasma cell malignancies and highly malignant leukaemia [214–216]. Consistent
with these observations in mice, the most frequent other focal SCNA in human cancers
harbouring an amplification in either MCL-1 or BCL-XL was amplification of the region
carrying MYC (in ~2/3 of these cases) [51].

4.2. Cooperativity between MYC and Endogenous Pro-Survival Proteins

The studies described above convincingly demonstrated that deregulated cell pro-
liferation and impaired cell death are potently synergistic in tumourigenesis. However,
these scenarios all involved the enforced overexpression of the pro-survival protein com-
partment, in particular as a consequence of a chromosomal translocation. The question
therefore remained as to whether endogenous levels of the pro-survival proteins would be
sufficient to sustain the malignant growth and survival of MYC-induced cancers. Intrigu-
ingly, deletion of endogenous BCL-2 itself did not reduce the incidence or delay the onset of
Eµ-MYC lymphomagenesis [217], despite earlier studies demonstrating the critical role of
overexpressed BCL-2 in mediating this oncogenic cooperativity. These findings suggested
that during the genesis of MYC-driven lymphoma, the acquisition of pro-oncogenic hits
takes place at a stage when BCL-2 is dispensable. As the mice bearing an Eµ-Myc/Bcl-2−/−

haematopoietic compartment only showed significant compromise in the survival of the
mature B cell subset [217], this suggested that it is likely the pro-B and/or pre-B cells (or
earlier progenitors) that are responsible.

The pro-survival proteins BCL-XL and MCL-1 were obvious candidates as factors
enabling this sustained tumour growth as they are expressed at several stages of B lym-
phopoiesis and are critical to the survival of B lymphoid progenitors and/or precursors.
It was subsequently shown that BCL-XL is essential for Eµ-MYC-induced lymphoma
growth, but loss of this protein did not significantly impact the sustained growth of such
tumours [218]. Instead, it is MCL-1 which appears to be the key factor driving the sustained
growth of Eµ-MYC lymphoma and even the loss of a single allele was enough to lead to
complete regression in 20% of tumours [219].

There is overwhelming evidence to demonstrate that endogenous or overexpressed
BCL-2 pro-survival proteins contribute to oncogenesis by permitting the survival of nascent
neoplastic cells for long enough such that other advantageous oncogenic mutations, for
example in MYC, can be acquired. Whilst not a focus of this review, loss of effective cellular
pro-apoptotic function (e.g., loss of BIM [10], or BAX [220]) can also lead to cooperativity
with MYC to accelerate tumourigenesis. These studies provide strong evidence that
inhibition of MYC-induced apoptosis is a key enabling feature of the cooperation between
pro-survival BCL-2 proteins and MYC.

5. Therapeutic Strategies Targeting Bcl-2 and MYC

Given the importance of MYC and BCL-2 proteins in cancer, it is unsurprising that
there has been considerable interest in the discovery of drugs that can target both these
proteins. In this section we discuss efforts around the discovery of drugs targeting these
proteins individually, and then how some of these have been applied in combination.

5.1. Drugs Targeting BCL-2 Proteins

Although there was considerable early interest in the development of antisense
oligonucleotide strategies to reduce BCL-2 levels in tumour cells, and some such as
Oblimersen sodium showed some promising activity in clinical trials [221,222], this ap-
proach has now been overtaken with the advent of small molecule direct inhibitors of
BCL-2 proteins. When the first three-dimensional structures of BCL-2 proteins became
available, especially those in complex with their natural ligands, the BH3 domains of
pro-apoptotic proteins, they immediately suggested a potential strategy to develop small
molecule drugs that could induce apoptosis through mimicry of this interaction [223,224].
Subsequent similar structures of all BCL-2 family pro-survival proteins in complex with
BH3 domains revealed a common mode of binding whereby the helical pro-apoptotic
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BH3 domain engaged a long hydrophobic groove containing several small pockets that
accommodated hydrophobic moieties projected from the ligand [225–229].

In 2005, the first small-molecule compound, ABT-737, capable of mimicking this
interaction was reported [230]. This so-called “BH3-mimetic” drug bound to BCL-2, BCL-
XL and BCL-W with low nanomolar affinity and, unlike other putative BCL-2 protein
inhibitors described at that time, was able to potently induce mechanism-based (i.e.,
BAX/BAK-dependent) apoptosis in cell lines, and tumour regression in mouse xenograft
models [230,231]. Subsequently, an orally bioavailable analogue, ABT-263 (“Navitoclax”)
was developed with a similar pro-survival protein binding profile [232,233]. Due to its
promising preclinical in vivo activity, Navitoclax entered clinical trials though the response
rate was relatively low and dose-limiting thrombocytopaenia was observed [234,235]. This
toxicity was an on-target side-effect of Navitoclax having high affinity for BCL-XL, a critical
protein for platelet cell survival [236].

In response to this toxicity, an analogue of Navitoclax, namely ABT-199/Venetoclax
that was more specific for BCL-2 was developed [237]. Venetoclax showed significant
preclinical activity in BCL-2 driven haematological malignancies in vivo and due to its
highly promising results in early phase clinical trials in patients with relapsed or refractory
chronic lymphocytic leukaemia, was fast-tracked for approval in the USA, and subsequently
approved in other countries for use in a variety of blood cancers, either as a single agent,
or combined with other targeted therapies such as Rituximab, where results have been
particularly impressive [238]. Trials of Venetoclax with other agents such as chemotherapy
(e.g., Azacitidine, Decitabine) are also underway [239,240]. In addition, AstraZenca have
developed AZD4320, a dual BCL-2/BCL-XL inhibitor. This is administered intravenously
just once per week, and although some thrombocytopaenia is observed, this is transient
and platelet levels return to normal within a week of administration [241]. More recently,
a dendrimer-conjugated version of AZD4320, AZD0466, was developed resulting in an
improved therapeutic index enabling the progression of this optimised candidate into
clinical development [242]. Hence, this compound has significant potential for use in
BCL-XL-driven cancers.

Following the development of Venetoclax, a number of other pro-survival protein-
specific inhibitors were developed. These include several compounds specific for MCL-1
such as S63845, AZD5991 and AMG 174 [243–245] that show significant efficacy in vitro and
in vivo, and some of these are currently undergoing clinical trials. Despite the dependence
of platelets on BCL-XL, several potent BCL-XL-specific inhibitors have also been developed
including WEHI-539 and A-1331852 [246,247].

The availability of BH3-mimetics targeting most pro-survival proteins (Figure 3) has
been enormously useful for studies determining the pro-survival protein dependency
of many tumour cell types [247,248]. These studies have shown that although some
haematological cancers are dependent only on BCL-2 or MCL-1 for their survival, many
solid cancers are relatively resistant to most BH3-mimetics as single agents. However,
potent killing is achieved when multiple pro-survival proteins are targeted, especially MCL-
1 and BCL-XL [82,247–251]. Unfortunately, administration of compounds targeting both
these proteins (e.g., using S63845 and A-1331852) resulted in acute hepatotoxicity and death
in mice [250], although a recent study in melanoma showed MCL-1 and BCL-XL could be
targeted with S63845 and ABT-263 if the dosing regimen was carefully controlled [251].
However, it is unclear whether such a strategy would ever be suitable for use in humans
due to the potential risks involved. Notably, combinations targeting both MCL-1 and
BCL-2 (e.g., S63845 and Venetoclax) have proven efficacious and safe in clinical trials in
both haematological (e.g., AML, T-cell ALL, MCL) and solid cancers (e.g., melanoma) [252].
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Figure 3. Examples of BH3-mimetics and their BCL-2 pro-survival proteins targets, and BET inhibitors

with their BRD protein targets.

As there are potentially a very large number of solid cancers that could benefit from
dual inhibition of MCL-1 and BCL-XL [248], a number of more tumour-specific approaches
have been investigated. One way is to combine BH3-mimetics targeting one of these pro-
survival proteins with targeted therapies, such as inhibitors of oncogenic kinases that work
by modulating the expression of pro-apoptotic BH3-only proteins. For example, MCL-1
inhibitors (e.g., S63845 or AMG 176) have been combined with inhibitors against MEK, HER-
2, B-RAF or EGFR and shown to induce a cytotoxic response in solid tumours such as breast,
non-small cell lung cancer, lung adenocarcinoma and melanoma cells [243,253]. Perhaps
the novel nanoparticle formulation of AZD0466, currently undergoing phase I clinical trials
in haematological and solid cancers, will also provide a promising alternate means by
which co-administration with an MCL-1 inhibitor can be achieved safely [242]. Another
approach that is likely to have far greater specificity for tumour cells is an antibody-drug
conjugate whereby A-1331852 is coupled to an antibody specific for cell surface proteins
such as the epidermal growth factor (EGF) receptor that are frequently overexpressed in
some cancers. Although such compounds have not yet been published, data available from
patents suggest these molecules could be highly efficacious, though again it is unclear yet
whether they can be safely combined with an MCL-1-specific inhibitor.

In MYC-driven cancers, combinations of BH3-mimetics with drugs that can act on
MYC also have potential, and will be discussed below.

5.2. Drugs Targeting MYC

MYC is frequently referred to as being ‘undruggable’ [254]. This is largely a conse-
quence of its mostly disordered structure which lacks well-defined pockets, grooves or
other features that are usually targeted by small molecule drugs. Concern has also been
raised about the potential unwanted side-effects associated with systemic inhibition of a
transcription factor that regulates so many cellular processes. Although there are currently
no ‘direct’ MYC inhibitors used in clinical practice, multiple approaches have been reported
that can successfully modulate MYC activity in tumour cells, belying the undruggable label.
Strategies that can regulate MYC activity typically fall into two major categories—those
that can indirectly influence MYC levels in a cell and those that directly engage MYC or
MYC/MAX dimers.

Despite the relatively featureless structure of MYC, a number of compounds have
been identified capable of binding to it and inhibiting MYC/MAX dimerisation. Most
of the earlier compounds such as IIA6B17, NY2267, 10058-F4 and 10074-G5 [255–258]
have relatively low affinity for MYC or MYC/MAX dimers (i.e., >20 µM), though were
capable of inhibiting cell growth in vitro, but with poor pharmacokinetic properties for
in vivo application. More potent analogues of 10074-G5 have been developed (JY-3-094,
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3jc48-3) though these have not been proven in vivo. More recently, the compounds Mycro3
and KJ-Pyr-9 were developed with significantly greater in vitro activity and anti-tumour
activity in vivo, though none of these have yet to progress into the clinic. In parallel with
the development of small molecule inhibitors, a peptidic approach has also been used
to inhibit MYC activity. The best example is Omomyc, a mutated miniprotein based on
the MYC bHLH-Zip domain [259,260]. This acts as a dominant negative protein of MYC
and exerts its activity through multiple mechanisms including heterodimerisation with
MAX as well as homodimerising which allows it to occupy E-boxes, but not transcribe
the target genes due to the lack of the transactivation domain [259–263]. Omomyc has
shown impressive anti-tumour activity in a number of transgenic mouse models [264–267]
though it also has intrinsic cell-penetrating activity with in vivo activity in lung cancer
models when administered via different routes (intranasally or intravenous) [268]. Hence,
Omomyc also has significant potential for future clinical development.

A range of compounds that indirectly influence MYC expression in cells have been
evaluated. Indeed, some of these have even advanced into early phase clinical trials. These
include antisense oligonucleotides that degrade MYC mRNA (e.g., INX-3280) or phospho-
rodiamidate morpholino oligomers that inhibit MYC protein expression by preventing
ribosomal assembly (e.g., AVI-4126/Resten-NG) [269,270]. Trials of both approaches were
discontinued for various reasons despite some seemingly positive results. Similarly, siRNA
have also been investigated using a range of nanoparticle formulations to improve siRNA
stability and delivery [271–275]. Some of these have shown in vivo efficacy in different tu-
mour models and a clinical trial of “DCR-MYC” showed some mechanistic activity, though
was abandoned. Major efforts have also gone into development of compounds that can
target and stabilise the G-quadraplex structure in the MYC promoter and its transcription.
Some of these have been tested in clinical trials, though have also been discontinued [276].

Undoubtedly, the indirect approach to regulating MYC that has gained most attention
in recent years is a class of drugs that can target the bromodomains of the bromodomain
and extraterminal (BET) proteins BRD2, 3 and 4 (Figure 3). These compounds inhibit
association of the BET proteins with acetylated histones on active chromatin, preventing
recruitment of transcription factors and, thereby, blocking transcription of target genes,
most notably, MYC [277,278]. Since the first BET inhibitor (BETi) JQ1 was reported, a
number of other similar compounds have been developed, including some that are specific
for particular bromodomains, bivalent BETi and BETi associated with proteolysis-targeting
(i.e., PROTACs) moieties [279–284]. The BETi have shown efficacy in a wide range of
haematological (e.g., AML, multiple myeloma, ALL) and solid cancers (e.g., NUT midline
carcinoma, lung, breast, colon, prostate, brain etc) [285]. Despite evidence for the emergence
of a number of resistance mechanisms to BETi [286–288], a number have undergone or are
undergoing clinical trials, either as single agents or in combinations, for a large number
of cancer types [285]. In general, these drugs have been shown to be tolerated albeit with
some toxicities such as thrombocytopaenia and anaemia, though the outcomes from these
have been mixed. None have yet to progress beyond trials and been approved for use.

5.3. Dual Targeting of MYC and BCL-2 Proteins

Given most cancers have deregulated MYC expression, and as a consequence, BCL-2
pro-survival proteins are often also deregulated to counter the pro-apoptotic effect of
high MYC expression, there is a strong rationale for co-targeting of MYC and BCL-2
proteins in many cancers (Figure 2). This strategy to cancer treatment has gained significant
momentum in the last five years with the advent of the BETi and BH3-mimetics (Figure 3)
which are both suitable for in vivo studies and, moreover, are apparently safe and, in some
cases, showing promising activity in patients.

Indeed, a wide range of BETi have now been tested together with various BH3-
mimetics, though most studies have focussed on Venetoclax where enhanced responses
from combining the drugs have been seen in vitro and in vivo in many haematological
malignancies including T cell lymphoma, CLL, T cell acute lymphoblastic leukaemia,
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and diffuse large B cell lymphoma [289–297], and some solid tumours such as small
cell lung cancer [298]. The dual BCL-XL/BCL-2 inhibitor Navitoclax was also shown
to synergise with BETi in small cell lung cancer, colorectal cancer, glioma and B-cell
lymphomas [299–302], whilst BH3-mimetics targeting MCL-1 enhance BETi activity in
AML and melanoma [292,303].

Although BETi have the potential to act on multiple cellular pathways, their ability to
co-operate with BH3-mimetics is generally associated with their capacity to down-regulate
MYC expression. Nevertheless, several distinct mechanisms have been shown to underlie
the synergy between BETi and BH3-mimetics. Although, BH3-mimetics act to neutralise
any excess pro-survival proteins present within MYC-driven tumours, thereby lowering
the threshold for apoptosis induction, the mechanism by which the drugs co-operate is
somewhat more complicated. For example, BET inhibition has been shown to suppress
miR17-92, a key post-transcriptional repressor of BIM expression [304]. Not surprisingly,
BIM upregulation and the resultant increase in the formation of BCL-2/BIM complexes was
observed in many studies following BETi treatment [290,292,296,298]. This primes cells to
apoptosis, especially that induced by Venetoclax, which can displace any BIM bound to
BCL-2 for activation of BAX and BAK [237]. Levels of BCL-2 are also generally decreased
following BETi treatment [290,292–294,298,305], though notably, other pro-survival proteins
including BCL-XL [292,298], MCL-1 [292] and BFL-1 [295] have been shown to be reduced
in different cancer types, leading to a further reduction in the apoptotic threshold of the cell.
In colorectal cancer cells, BETi treatment led to repression of MYC-driven expression of
miR1271-5p, which in turn led to increased NOXA levels and inhibition of MCL-1, thereby
enabling synergy with ABT-263.

6. Conclusions

Despite the importance of the connection between deregulated MYC and BCL-2
pro-survival protein expression, and that the mechanisms by which they co-operate in
cancer have been known for over two decades, there are still no clinically approved co-
treatments that target both proteins. This is largely due to the fact that it has taken many
years to develop potent compounds capable of inhibiting BCL-2 pro-survival proteins and
MYC. However, recent advances in the development of a number of BH3-mimetics with
various specificities, and the success of Venetoclax in patients, means that one arm of this
co-operativity can now be effectively disarmed. Although the development of similar
directly acting MYC inhibitors has yet to have an impact in the clinic, the BETi that exert
much of their activity by downregulation of MYC provide the most promising approach
to date to tackle this critical second arm driving many tumours. Most encouraging are
the numerous studies described above showing synergy between BETi and BH3-mimetics,
including in clinically relevant patient-derived xenograft models [292,293], which showed
such combinations are also safe. Nevertheless, there has yet to be a clinical trial examining
such combinations. Hence, we expect it is only a matter of time before such combinations
are explored in the clinic, with the hope they can provide benefit for the many cancers that
depend on the co-operativity between MYC and BCL-2 proteins.
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