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Abstract—The envisaged de-carbonization of power systems
poses unprecedented challenges enhancing the potential of flexible
demand. However, the incorporation of the latter in system
planning has yet to be comprehensively investigated. This paper
proposes a novel planning model that allows co-optimizing the
investment and operating costs of conventional generation assets
and demand flexibility, in the form of smart-charging/discharging
electric vehicles (EV). The model includes a detailed represen-
tation of EV operational constraints along with the generation
technical characteristics, and accounts for the costs required to
enable demand flexibility. Computational tractability is achieved
through clustering generation units and EV, which allows mas-
sively reducing the number of decision variables and constraints,
and avoiding non-linearities. Case studies in the context of the
UK demonstrate the economic value of EV flexibility in reducing
peak demand levels and absorbing wind generation variability,
and the dependence of this value on the required enabling cost
and users’ traveling patterns.

Index Terms—Demand flexibility, electric vehicles, generation
expansion planning, mixed-integer programming, unit commit-
ment, vehicle-to-grid.

NOMENCLATURE

A. Indices, Sets and Sub-sets

i ∈ I Generation technology types.
l ∈ L Piecewise linear heat consumption function seg-

ments.
n ∈ N Weeks.
t ∈ T Hours.
v ∈ V Electric vehicle (EV) types.
IMR

⊆ I Sub-set of must-run generation technologies.
ISPR

⊆ I Sub-set of generation technologies that can pro-
vide spinning reserve.

T ed
⊆ T Sub-set of last hour of each day.

T gc
v ⊆ T Sub-set of hours during which each EV of type

v is plugged into the grid.
ΩDV Set of all discrete decision variables.
ΩCV Set of all continuous decision variables.

B. Parameters

τ Time resolution.
Φn Weighting factor of week n.
πCO2 CO2 price.
πLC Load curtailment price.

Manuscript received MONTH dd, yyyy; revised MONTH dd, yyyy.
The authors are with the Department of Electrical and Electronic Engi-

neering, Imperial College London, UK (e-mail: pramirez10@imperial.ac.uk,
d.papadaskalopoulos08@imperial.ac.uk and g.strbac@imperial.ac.uk).

Digital Object Identifier XXXXXXXXXXXXXX

πGC Conventional generation curtailment price.
πWC Wind generation curtailment price.
SEI System-wide CO2 emissions intensity limit.
RRU

nt System-wide upward spinning reserve require-
ment at week n and hour t.

RRD
nt System-wide downward spinning reserve re-

quirement at week n and hour t.
Lnt Non-EV system demand at week n and hour t.
PW-pwr
nt Wind power available at week n and hour t.
σWFE-4h
nt 4-hours wind forecast error at week n and hour

t.
FCi Fixed costs of a generation unit of technology i.
Ki Capacity of a generation unit of technology i.
πO&M
i Variable O&M cost of a generation unit of tech-

nology i.
πfuel
i Fuel cost of a generation unit of technology i.
πSU
i Start-up cost of a generation unit of technology

i.
πSD
i Shut-down cost of a generation unit of technol-

ogy i.
NLH0

il Hypothetical no-load heat usage at zero power
output of a generation unit of technology i at
segment l of the piecewise linear heat consump-
tion function.

HRinc
il Incremental heat rate of a generation unit of

technology i at segment l of the piecewise linear
heat consumption function.

EFCO2

i CO2 emissions factor of a generation unit of
technology i.

HSU
i Heat consumed during the start-up event of a

generation unit of technology i.
HSD
i Heat consumed during the shut-down event of a

generation unit of technology i.
ERCCS

i CO2 emissions reduction factor due to a CCS
system in a generation unit of technology i.

pmin
i Minimum stable power output of a generation

unit of technology i.
pMax
i Maximum power output of a generation unit of

technology i.
∆U
i Ramp-up rate limit of a generation unit of tech-

nology i.
∆D
i Ramp-down rate limit of a generation unit of

technology i.
MTU

i Minimum up time of a generation unit of tech-
nology i.

MTD
i Minimum down time of a generation unit of

technology i.
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RMax-U
i Maximum upward spinning reserve deployment

of a generation unit of technology i.
RMax-D
i Maximum downward spinning reserve deploy-

ment of a generation unit of technology i.
N I-Max
i Upper bound for N I

i .
NEV
v Total number of EV of type v.

FCEV+

v EV flexibility enabling cost per EV of type v.
cbat
v Battery cost of each EV of type v.
dEV−

ntv Electricity demand of an inflexible EV of type v
at week n and hour t.

ηchg
v Charging efficiency of each EV of type v (bat-

tery’s and grid connection power electronics’
charging efficiency).

ηdis
v Discharging efficiency of each EV of type v

(battery’s and grid connection power electronics’
discharging efficiency).

ηel
v Self-discharging energy efficiency of the battery

of each EV of type v.
κv Slope of the linear approximation of the battery

life of each EV of type v as a function of
charge/discharge cycles.

ebat-cap
v Energy capacity of the battery of each EV of type

v.
ebat-min
v Minimum state of charge of the battery of each

EV of type v.
ebat-Max
v Maximum state of charge of the battery of each

EV of type v.
pchg-Max
v Maximum charging power rate of the battery of

each EV of type v.
pdis-Max
v Maximum discharging power rate of the battery

of each EV of type v.
etr
ntv EV type v user’s energy requirements for travel-

ling purposes at week n and hour t.
eed
v Required energy level in the battery of an EV of

type v at the end of each day.

C. Integer Variables

N I
i Number of installed generation units of technol-

ogy i.
Unti Number of committed generation units of tech-

nology i at week n and hour t.
SU
nti Number of start-up events of generation technol-

ogy i at week n and hour t.
SD
nti Number of shut-down events of generation tech-

nology i at week n and hour t.
NEV+

v Number of flexible EV of type v.

D. Continuous Variables

Pnti Power output of generation technology i at week
n and hour t.

Hnti Heat consumption of generation technology i at
week n and hour t.

EMICO2

nti CO2 emissions of generation technology i at
week n and hour t.

RU
nti Upward spinning reserve provided by generation

technology i at week n and hour t.

RD
nti Downward spinning reserve provided by gener-

ation technology i at week n and hour t.
LC
nt Load curtailment at week n and hour t.

PGC
nt Conventional generation curtailment at week n

and hour t.
PW
nt Wind power dispatched at week n and hour t.
PWC
nt Wind generation curtailment at week n and hour

t.
PEV+-chg
ntv Total power demand of all flexible EV of type v

at week n and hour t.
PEV+-dis
ntv Total power discharged from all flexible EV of

type v at week n and hour t.
χEV+-dis
ntv Total energy drawn from all flexible EV of type

v at week n and hour t due to V2G.
EEV+

ntv Total battery energy level of all flexible EV of
type v at week n and hour t.

RU-EV+-chg
ntv Total upward spinning reserve provided by all

flexible EV of type v at week n and hour t
through reduced charging.

RU-EV+-dis
ntv Total upward spinning reserve provided by all

flexible EV of type v at week n and hour t
through increased discharging.

RD-EV+-chg
ntv Total downward spinning reserve provided by all

flexible EV of type v at week n and hour t
through increased charging.

RD-EV+-dis
ntv Total downward spinning reserve provided by all

flexible EV of type v at week n and hour t
through reduced discharging.

I. INTRODUCTION

ENVIRONMENTAL and energy security concerns have
paved the way for the wide de-carbonisation of energy

systems through the large-scale integration of renewable gener-
ation and the electrification of transport and heat sectors. How-
ever, this paradigm change introduces significant challenges
to the operation and development of modern power systems.
The limited controllability and predictability of renewable
generation is expected to require large volumes of flexible
generation, implying adverse economic effects. Furthermore,
the electrification of transport and heat sectors will lead to dis-
proportionately larger demand peaks–and subsequently higher
generation and network costs–than the increase in the total
electrical energy consumption, due to the temporal patterns of
users’ driving and heating requirements [1].

In this context, flexible demand technologies attract great
interest due to their ability to redistribute users’ demand
requirements in time, through the use of different types of
storage [2]. Smart coordination of such demand flexibility
could reduce the requirements for flexible generation capacity
and limit peak demand levels, improving significantly the
economic efficiency of future low-carbon power systems.
Despite the significant potential and great interest in flexible
demand, its incorporation into system planning has yet to be
analyzed in depth and with sufficient detail.

In [3], flexible demand is incorporated in generation expan-
sion planning (GEP) as an equivalent peak generator without
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inter-temporal operational constraints, while authors in [4]–
[6], represent it through the concept of self-price elasticity.
However, the temporal redistributing capability of flexible
demand is not captured in any of the above approaches. In
[7] and [8], flexible demand is modeled through both self-
price and cross-price elasticities, allowing a more accurate
representation of its inter-temporal characteristics. Although
this representation expresses the main properties of manually-
facilitated flexible demand participation, it fails in the char-
acterization of the inherent technology-specific operational
complexity and dynamics of different flexible loads, which are
likely to be automatically controlled in future power systems.

Amongst such loads, electric vehicles (EV) exhibit a par-
ticularly significant flexibility potential due to their inherent
ability to store electrical energy in their batteries, their sta-
tionary character (parked for more than 90% of the time in
average [9]), their low energy consumption requirements with
respect to the significant capacity of their batteries [9]–[11],
and the Vehicle-to-Grid (V2G) capability which enables the
EV to inject stored energy in their battery into the grid [12],
[13]. The impact of EV on GEP is analyzed in [14] and
[15], but both studies underestimate the value of EV demand
flexibility since they use a set of pre-defined fixed EV charging
profiles, disregarding the capability of optimally scheduling
EV demand.

Apart from the significant limitations of the employed
flexible demand modeling approaches, all the above papers
consider fixed flexible demand penetrations and do not account
for the cost of introducing and coordinating flexibility at the
demand side. In reality, the realization of the flexible demand
potential involves the installation and operation of suitable
metering, control and communication infrastructure. The ben-
efits of flexible demand in system development can only
be accurately captured by an integrated investment planning
model which takes into account the costs of such enabling
infrastructure, and determines the optimal number of flexible
loads along with the optimal portfolio of generation assets.

This paper develops a novel planning model in which
the investment and operating costs of generation assets and
demand flexibility, in the form of smart-charging EV with
or without V2G capability, are co-optimized. Along with
the full set of different generation technologies’ technical
characteristics, the capability of optimally scheduling EV
demand and V2G injections, according to a detailed model
of the EV operational constraints, is explicitly incorporated
into the model. Furthermore, the costs required to introduce
and coordinate such EV flexibility, as well as those related to
the degradation of the EV battery due to V2G, are accounted
for and balanced against generation investment and operating
costs, in order to determine the optimal number of flexible EV.

The model is formulated as a large-scale mixed-integer
linear optimization problem in which generation units and EV
of similar characteristics are clustered, in order to reduce the
number of decision variables and constraints, and to avoid
non-linearities in the objective function and constraints. Case
studies in the context of the UK demonstrate the economic
value of EV flexibility in reducing peak demand levels and
absorbing wind generation variability, and reveal that this

value is enhanced with an increasing electrification of the
transport sector and increasing wind generation capacity lev-
els. The results also analyze and illustrate the dependence of
this value on the required enabling cost, the place of charging,
the deployment of V2G capability, and EV users’ traveling
patterns, with EV plugged into the grid during demand peak
periods and EV with larger traveling distances yielding higher
system benefits when becoming flexible.

The rest of this paper is organized as follows. Section II
details the properties, assumptions and mathematical formula-
tion of the proposed optimization model. Section III presents
the examined case studies and provides illustrative results
regarding the impact of EV flexibility and the computational
performance of the model. Finally, Section IV discusses con-
clusions and future extensions of this work.

II. PROPOSED OPTIMIZATION MODEL

A. Key Properties and Assumptions

The proposed model is based on a deterministic long-run
equilibrium approach, where the total system cost is minimized
by a central planner. In order to capture the diversity of
system conditions in a computationally manageable fashion,
an approach based on the definition of typical weeks is used
[16].

Flexible demand involves EV with smart (controllable)
charging and V2G capabilities. Although the total EV pen-
etration constitutes a fixed input for the model, the proportion
of flexible EV is a decision variable. The demand and V2G
injections of flexible EV are optimally scheduled in the
operational timescale and constitute decision variables for the
model, whilst the demand of inflexible EV is a fixed input and
is derived by assuming that they start charging their batteries
immediately after they are plugged into the grid and until
they are fully charged [11]. It is assumed that only day-
ahead information will be employed for the coordination of
flexible EV in the operational timescale and thus the energy
requirements of flexible EV can only be redistributed on an
intraday basis. The realization and coordination of flexible
EV operation requires certain enabling costs (associated with
metering, control and communication infrastructure) per EV,
while the exercise of the V2G capability yields additional
costs associated with the accelerated degradation of the EV
battery. The EV battery degradation cost is modeled as a
function of the energy drawn from the battery due to V2G
injections, following the approach adopted in [17]. The total
EV population is categorized into different types according
to the EV users’ driving requirements, and the operational
properties of EV batteries and grid connections.

Generation units are also grouped into different technology
types, each characterized by their specific technical char-
acteristics. The installed wind generation capacity is given
as fixed input for the model, determined by the national
and international targets for renewable energy integration and
carbon emissions reduction.

The model is formulated as a large-scale mixed-integer
linear optimization program (MIP) [18], which can be solved
using commercially available software [19]. The optimization
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model’s objective function, decision variables and constraints
are presented in the following section.

B. Model Formulation

Minimize
ΩDV,ΩCV

⎧
⎪⎪
⎨
⎪⎪
⎩

∑

i∈I

FCiKiN
I
i + ∑

n∈N

∑

t∈T

Φn

⎡
⎢
⎢
⎢
⎢
⎣

∑

i∈I

(πSU
i SU

nti

+ τπO&M
i Pnti + τπ

fuel
i Hnti + τπ

CO2EMICO2

nti + πSD
i SD

nti)

+ τπLCLC
nt + τπ

GCPGC
nt + τπWCPWC

nt

⎤
⎥
⎥
⎥
⎥
⎦

+ ∑

v∈V

FCEV+

v NEV+

v + ∑

n∈N

∑

t∈T

∑

v∈V

Φn ∣

κv
100

∣

χEV+-dis
ntv

ebat-cap
v

cbat
v

⎫
⎪⎪
⎬
⎪⎪
⎭

,

(1)

subject to:

∑

i∈I

Pnti + P
W
nt + ∑

v∈V

ηdis
v PEV+-dis

ntv +LC
nt − P

GC
nt = Lnt

+ ∑

v∈V

PEV+-chg
ntv + ∑

v∈V

[NEV
v −NEV+

v ]dEV−

ntv , ∀n,∀t, (2)

∑

i∈ISPR

RU
nti + ∑

v∈V

RU-EV+-chg
ntv

+ ∑

v∈V

ηdis
v RU-EV+-dis

ntv ≥ RRU
nt, ∀n,∀t, (3)

∑

i∈ISPR

RD
nti + ∑

v∈V

RD-EV+-chg
ntv

+ ∑

v∈V

ηdis
v RD-EV+-dis

ntv ≥ RRD
nt, ∀n,∀t, (4)

∑

n∈N

∑

t∈T

∑

i∈I

ΦnEMICO2

nti ≤ SEI ⋅ ∑
n∈N

∑

t∈T

Φn

⎧
⎪⎪
⎨
⎪⎪
⎩

∑

i∈I

Pnti + P
W
nt

+ ∑

v∈V

ηdis
v PEV+-dis

ntv

⎫
⎪⎪
⎬
⎪⎪
⎭

, (5)

Hnti ≥ NLH0
ilUnti +HRinc

il Pnti, ∀n,∀t,∀i, (6)

EMICO2

nti = EFCO2

i [HSU
i SU

nti +Hnti

+HSD
i SD

nti] ⋅ (1 −ERCCS
i ), ∀n,∀t,∀i (7)

Untip
min
i ≤ Pnti ≤ Untip

Max
i , ∀n,∀t,∀i, (8)

Pnti − Pn(t−1)i ≤ [Unti − S
U
nti] τ∆U

i − S
D
ntip

min
i

+ SU
ntimax{pmin

i , τ∆U
i } , ∀n,∀t,∀i, (9)

Pn(t−1)i − Pnti ≤ [Unti − S
U
nti] τ∆D

i − S
U
ntip

min
i

+ SD
ntimax{pmin

i , τ∆D
i } , ∀n,∀t,∀i, (10)

Unti ≥
t

∑

t̂=t−(MTU
i /τ)+1

SU
nt̂i
, ∀n,∀t,∀i, (11)

N I
i −Unti ≥

t

∑

t̂=t−(MTD
i /τ)+1

SD
nt̂i
, ∀n,∀t,∀i, (12)

RU
nti ≤ min{Untip

Max
i − Pnti, UntiR

Max-U
i } ,

∀n,∀t,∀i ∈ ISPR, (13)

RD
nti ≤ min{Pnti −Untip

min
i , UntiR

Max-D
i } ,

∀n,∀t,∀ i ∈ ISPR, (14)

Unti = Un(t−1)i + S
U
nti − S

D
nti, ∀n,∀t,∀i, (15)

Unti ≤ N
I
i , ∀n,∀t,∀i ∈ I ∖ IMR, (16)

Unti = N
I
i , ∀n,∀t,∀i ∈ IMR, (17)

PW
nt + P

WC
nt = PW-pwr

nt , ∀n,∀t, (18)

EEV+

ntv = ηelec
v EEV+

n(t−1)v + (ηchg
v PEV+-chg

ntv − PEV+-dis
ntv ) τ

−NEV+

v etr
ntv, ∀n,∀t,∀v, (19)

NEV+

v ebat-min
v ≤ EEV+

ntv ≤ NEV+

v ebat-Max
v , ∀n,∀t,∀v, (20)

χEV+-dis
ntv = max{0,EEV+

n(t−1)v −E
EV+

ntv } , ∀n,∀t,∀v, (21)

PEV+-chg
ntv ≤

⎧
⎪⎪
⎨
⎪⎪
⎩

NEV+

v pchg-Max
v

ηchgv
, ∀t ∈ T gc

v

0, ∀t ∈ T ∖ T gc
v

⎫
⎪⎪
⎬
⎪⎪
⎭

, ∀n,∀v,

(22)

PEV+-dis
ntv ≤ {

NEV+

v pdis-Max
v , ∀t ∈ T gc

v

0, ∀t ∈ T ∖ T gc
v

} , ∀n,∀v,

(23)

RU-EV+-chg
ntv ≤ PEV+-chg

ntv , ∀n,∀t ∈ T gc
v ,∀v, (24)

RU-EV+-dis
ntv ≤ NEV+

v pdis-Max
v − PEV+-dis

ntv ,

∀n,∀t ∈ T gc
v ,∀v, (25)

RU-EV+-dis
ntv ≤

(ηelec
v EEV+

n(t−1)v −N
EV+

v ebat-min
v )

τ
− PEV+-dis

ntv ,

∀n,∀t ∈ T gc
v ,∀v, (26)

RD-EV+-chg
ntv ≤

NEV+

v pchg-Max
v

ηchg
v

− PEV+-chg
ntv ,

∀n,∀t ∈ T gc
v ,∀v, (27)
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RD-EV+-chg
ntv ≤

(NEV+

v ebat-Max
v − ηelec

v EEV+

n(t−1)v)

τηchg
v

−PEV+-chg
ntv ,

∀n,∀t ∈ T gc
v ,∀v, (28)

RD-EV+-dis
ntv ≤ PEV+-dis

ntv , ∀n,∀t ∈ T gc
v ,∀v, (29)

EEV+

ntv = NEV+

v eed
v , ∀n,∀t ∈ T ed,∀v, (30)

N I
i ≤ N I-Max

i , ∀i, (31)

NEV+

v ≤ NEV
v , ∀v, (32)

ΩDV
= {N I

i , Unti, S
U
nti, S

D
nti,N

EV+

v } ∈ Z≥0,

∀n,∀t,∀i,∀v, (33)

ΩCV
= {Pnti, Fnti,EMICO2

nti ,R
U
nti,R

D
nti,

RU-EV+−chg
ntv ,RU-EV+−dis

ntv ,RD-EV+−chg
ntv ,RD-EV+−dis

ntv ,

χEV+−dis
ntv ,EEV+

ntv , P
EV+-chg
ntv , PEV+-dis

ntv ,

PGC
nt , L

C
nt, P

W
nt , P

WC
nt } ∈ R≥0, ∀n,∀t,∀i,∀v. (34)

The objective function (1) is the total system cost that
includes: (a) the conventional generation investment cost (1st

term); (b) the conventional generation operating cost, which
is given by the summation of start-up, O&M, fuel, CO2

and shut-down costs (2nd to 6th term respectively); (c) the
load, conventional generation and wind generation curtailment
costs (7th to 9th term respectively); (d) the EV flexibility
investment cost, which corresponds to the metering, control
and communication infrastructure costs required to enable and
coordinate flexible EV operation (10th term); and, (e) the cost
associated with the degradation of the EV batteries due to
V2G (11th term). Constraints (2) to (5) are system-wide and
correspond to the demand-supply balance equations, upward
and downward spinning reserve requirements, and the CO2

emissions restriction respectively.
The operational constraints of conventional generation are

given by equations (6) to (17). Constraints (6) correspond
to the piecewise linear heat consumption function. The CO2

emissions are expressed by equalities (7). Constraints (8) ex-
press the minimum stable and maximum power output limits,
while constraints (9) and (10) establish limits for upward and
downward ramping capabilities respectively. The minimum up
and down times are enforced by constraints (11) and (12)
respectively. Constraints (13) and (14) establish limits for the
upward and downward spinning reserve provision. Equalities
(15) correspond to the unit commitment status equations,
while constraints (16) and (17) correspond to unit commitment
restrictions of non-must-run and must-run generation technolo-
gies respectively. The power balance of wind generation is
enforced by equalities (18).

The operational constraints of smart-charging/discharging
EV are given by equations (19) to (30). Constraints (19)

express the energy balance in the EV battery considering
the charging losses of the battery and the grid connection’s
power electronics, the self-discharging energy losses of the
battery, the power discharge due to V2G, and the EV users’
traveling energy requirements. The energy level of the EV
battery is bounded by the maximum depth of discharge and
maximum state of charge of the battery, which are enforced
by constraints (20). The energy drawn from the EV battery
when V2G capability is exercised is expressed by equalities
(21). Constraints (22) and (23) express the maximum charg-
ing/discharging power rate of the EV battery and the grid
connection’s power electronics, and the inability of the EV
to charge/discharge their batteries when they are not plugged
into the grid respectively. The upward and downward spinning
reserve provision of EV are limited by constraints (24) to
(26), and (27) to (29), respectively. The energy neutrality
constraints (30) establish that the EV battery’s energy level at
the end of each day must be equal to a common pre-defined
level; these constraints express the assumption that the energy
requirements of flexible EV can only be redistributed on an
intraday basis.

Constraints (31) and (32) limit the investment in conven-
tional generation and EV flexibility. The former constraints
establish an upper bound for the number of generation units
of each technology type to be installed in order to confine the
problem’s solution space. The latter constraints, on the other
hand, ensure that the number of flexible EV of each type is
bounded by the total number of EV of the respective type.

The model uses integer instead of binary decision variables
for the generation investment and commitment decisions (33),
following a similar methodology to the one proposed in
[20]. The use of integer variables makes the inclusion of
unit commitment constraints into the GEP problem tractable
because it allows clustering generation units by technology
types, avoiding the use of binary variables to decide on
both the investment and the on/off commitment status of
a set of candidate generation units. This translates into a
massive reduction of the problem in terms of the number of
decision variables and constraints, as well as in the required
computational time, as quantitatively explored in Section III-C.
The model employs a similar clustering technique for flexible
EV. The total electrical power demand and V2G injection,
as well as the battery energy level of all flexible EV of the
same type–instead of the respective quantities of a single
flexible EV–are defined as decision variables, in order to avoid
non-linear terms (products of number of flexible EV of each
type times the power demand/injection or the spinning reserve
provision of a single EV of the respective type) in the objective
function (1) and system-wide constraints (2) to (5). This is also
a key feature of the proposed model, which greatly improves
the computational performance of the model, as quantitatively
explored in Section III-C.

III. CASE STUDIES

A. Scenarios Definition and Input Data

The examined case studies involve the application of the
proposed model in the context of the UK, considering different
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Table I
COST AND TECHNICAL PARAMETERS OF GENERATION SIDE

Generation FCi πO&M
i πfuel

i πSU
i

(a) Ki NLH0
il HRinc

il HSU
i EFCO2

i ERCCS
i

Technology (£/kW-yr) (£/MWh) (£/MBTU) (k£/SU) (MW) (MTBU/h) (MBTU/MWh) (MBTU/SU) (tCO2/MBTU) (pu)

Nuclear 503 2.00 0.41 N/A 1,500 4,756 10.4 N/A 0.0000 0.0
Coal large 290 2.40 4.47 26.53 525 266 8.8 2,102 0.0965 0.0
Coal small 333 2.40 4.47 12.64 250 138 9.6 1,001 0.0965 0.0
Coal-CCS 336 3.80 4.47 15.67 650 330 12.0 2,602 0.0965 0.9

CCGT large 86 2.20 7.02 22.54 750 759 6.4 1,105 0.0531 0.0
CCGT small 107 2.20 7.02 10.52 350 409 7.1 516 0.0531 0.0
CCGT-CCS 171 3.20 7.02 9.75 380 525 7.5 582 0.0531 0.9

OCGT 69 5.85 7.02 4.80 150 137 9.7 134 0.0531 0.0
Oil 147 6.31 15.81 0.14 50 33 11.0 0 0.0871 0.0

Generation pmin
i pMax

i ∆U
i ∆D

i MTU
i MTD

i RMax-U
i RMax-D

i IMR ISPR
Technology (MW) (MW) (MW/h) (MW/h) (h) (h) (MW/h) (MW/h)

Nuclear 1,200 1,500 150 150 N/A N/A 0 0 ✓
Coal large 263 525 158 158 24 12 26 26 ✓
Coal small 125 250 75 75 24 12 13 13 ✓
Coal-CCS 325 650 195 195 24 12 33 33 ✓

CCGT large 225 750 750 750 6 12 128 128 ✓
CCGT small 105 350 350 350 6 12 60 60 ✓
CCGT-CCS 114 380 380 380 6 12 65 65 ✓

OCGT 38 150 150 150 0 0 150 150 ✓
Oil 13 50 50 50 0 0 50 50 ✓

aShut-down costs are assumed to be negligible.

scenarios for EV penetration (10%, 50% and 100%) and
wind generation capacity (10GW, 30GW and 50GW) levels.1

According to the authors’ best knowledge, there are no studies
in the literature comprehensively quantifying the value of EV
flexibility enabling costs, i.e. FCEV+

v . For this reason, we have
decided to follow a sensitivity analysis approach in the case
studies, investigating the impact of different values of FCEV+

v ;
specifically, the set of values used in this sensitivity analysis
is {0,50,100,200,400,800,1600,3200,6400} [£/EV-yr].

Five typical weeks representing the four seasons plus an
extreme winter week are used in the case studies. The load
demand profile was generated using historical data obtained
from UK National Grid Electricity Transmission (NGET) web-
site [21]. The employed wind generation profile was produced
based on the model developed in [22], and has a load factor of
30%. The conventional generation portfolio includes nuclear,
coal, gas and oil technologies, whose economic and technical
parameters are presented in Table I [23]–[25].

Data regarding the UK vehicle fleet size and average driving
patterns was extracted from [26] and [27]. Based on this data,
each EV is assumed to carry out two journeys per day, and a
set of different types of EV was produced, each defined by the
combination of the start time, end time, and electrical energy
requirements of each of its two daily journeys. Two different
scenarios regarding the place of charging are investigated.
Under the first one, referred to as “home charging” scenario
hereinafter and deemed as the most plausible one in the
literature [28], EV are assumed connected to the grid during
the period between the end of their second journey and the
start of their first journey next day. Under the second one,
referred to as “home+work charging” scenario hereinafter, EV
are assumed connected to the grid whenever they are parked.

1EV penetration level is defined as the percentage of UK light to medium-
sized vehicles that are assumed to be electric, and wind generation capacity
level as the amount of wind generation capacity installed in the system.

The values of the rest of EV parameters have been assumed
identical for the different EV types and are shown in Table
II. The remaining parameters used in the case studies are
summarized in Table III.

Table II
EV BATTERY PARAMETERS

Parameters Value Units Parameter Value Units

ebat-capv 15 kWh ηelecv 100 %
ebat-min
v 3 kWh ηchgv 93 %
ebat-Max
v 15 kWh ηdisv 93 %
eedv 7.5 kWh κv 0.0154 %
pchg-Max
v 3 kWh cbatv 350 £/kWh
pdis-Max
v 3 kWh

Table III
GENERAL PARAMETERS

Parameter Value Units Parameter Value Units

τ 1 h πCO2 76 £/tCO2

Φ(average-Winter) 16.75 # πLC 10 k£/MWh
Φ(extreme-Winter) 0.25 # πGC 1,000 k£/MWh
Φ(average-Spring) 9 # SEI 50 gCO2/kWh
Φ(average-Summer) 13 # RRU

nt
(b) 3.5σWFE-4h

nt MW/h
Φ(average-Autumn) 13 # σWFE-4h

nt 7%PW-pwr
nt MW

max{Lnt} 60.84 GW NI-Max
i 500 #

bUpward and downward spinning reserve requirements are assumed to be equal.

B. Impact of EV Flexibility

We firstly investigate the home charging scenario, i.e. when
EV are charged while being parked at home, assuming that
V2G capability is not available. When EV flexibility can be
deployed without cost, i.e. when FCEV+

v is equal to £0/EV-
yr, all EV in the system become flexible as shown in the
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fourth row of Fig. 2. As this cost increases, the proportion
of flexible EV is decreased. Beyond a flexibility enabling
cost of £3,200/EV-yr, deployment of EV flexibility is not
economically justifiable in any of the examined scenarios. On
the other hand, a significant deployment of flexible EV (more
that 10% of the total EV population) would require a flexibility
cost lower than £400/EV-yr.
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Fig. 1. Load duration curves comparison under home charging scenario and
30GW wind generation capacity.

Given the assumed home charging scenario, in combination
with the fact that most users return home during evening
hours (17:00-20:00), inflexible EV demand coincides with the
non-EV system demand peak. This results in increased peak
demand levels as shown in Fig. 1, where a comparison of
the normalized net-of-wind load duration curves2 is made for
fully inflexible and fully flexible EV operation (FCEV+

v equal
to 6,400 and £0/EV-yr respectively).

The larger peak demand levels under inflexible EV opera-
tion result into larger requirements for mid-merit and peaking
generation, i.e. CCGT and OCGT, and into reduced require-
ments for baseload generation, i.e. nuclear, as it becomes a
less cost-effective option given the increased net-demand vari-
ability. The reduction of nuclear generation capacity translates
into larger shares of CCGT-CCS, required to satisfy the CO2

emissions constraint. This is shown in the top row of Fig. 2,
where the optimal generation mix composition is depicted for
different values of FCEV+

v , and different EV penetration (left
column) and wind generation capacity levels (right column).
The ratio of baseload generation is also reduced as the installed
wind capacity increases, since more flexible generation is
required to absorb the increased variability introduced by
wind generation and provide the higher reserve requirements.
Given that mid-merit and peaking generation are characterized
by higher operational and lower investment costs, increased
inflexible EV penetrations and wind generation capacity levels
yield systems of larger operation cost proportions, as shown
in the second row of Fig. 2.

On the other hand, under flexible EV operation EV demand
is optimally rescheduled towards off-peak hours, which allows
reducing peak demand levels and significantly flattening net-
demand, as shown in Fig. 1. The reduced net-demand variabil-
ity translates into larger requirements for nuclear generation
with respect to inflexible EV operation, reduced requirements
for mid-merit and peaking generation, and subsequently into

2Non-EV system demand minus wind power dispatched plus EV power
demand, normalized by the peak non-EV system demand, i.e. max{Lnt}.

systems of higher investment cost proportions, as shown in
the second row of Fig. 2. Additionally, larger shares of
nuclear generation allow satisfying the CO2 emissions con-
straint without requiring CCS enabled generation, and even
more, allow reducing CO2 emissions below the system-wide
limit of 50 [gCO2/kWh], which is binding in the inflexible
EV operation scenario, as shown in the bottom row of Fig.
2. These effects are enhanced as the enabling cost of EV
flexibility decreases, since a higher number of flexible EV are
cost-effectively integrated into the system, and thus a more
significant flattening of net-demand is achieved.

The third row of Fig. 2 illustrates the total system cost re-
duction (saving), when the option of EV flexibility deployment
is available for different values of FCEV+

v , with respect to a
case where this option is not available (all EV are inflexible).
As the enabling cost of EV flexibility decreases, the number
of flexible EV is increased as shown in the fourth row of Fig.
2, and therefore the net-value of EV in terms of total costs
saving is enhanced.

From an environmental perspective, larger shares of flex-
ible EV allow increasing the share of inflexible carbon-
free baseload generation and, at the same time, improve the
integration of wind generation, which results into significant
reductions of CO2 emissions as shown in the bottom row of
Fig. 2. These two effects highlight the relevance of flexible
demand for the efficient integration of renewables, and also for
the achievement of future carbon emissions reduction targets.

For the same value of FCEV+

v , the value of EV flexibility
is higher as the wind penetration increases. This is justified
by the fact that the increased variability introduced by wind
generation enhances the value of EV flexibility in absorbing
such variability, and avoiding the alternative employment of
flexible yet more expensive mid-merit and peaking generation.
Furthermore, for FCEV+

v up to about £400/EV-yr, the value of
EV flexibility increases with an increasing EV penetration,
as the economic implications of inflexible EV operation–
in terms of employment of peaking generation with high
operational costs–are aggravated. These two effects highlight
the increased potential of flexible demand in a future with
wide de-carbonization of demand and power generation.

Interesting conclusions are also drawn by analyzing the
types of EV that are selected by the optimization model to
become flexible. For the sake of this analysis, the different
EV are categorized according to: a) the time they get plugged
into the grid (after the end of their second journey); and b) the
daily distance of their journeys (two categories are considered,
i.e. EV with short and long journeys, which group the EV with
daily traveled distances smaller and larger than 30 kilometers
respectively). Tables IV and V present the minimum value of
FCEV+

v , for which flexibility is not deployed in each of the
previously defined categories (none of the EV of the respective
category is selected to become flexible) in a scenario with
100% EV penetration and 50GW of wind generation capacity.

Table IV demonstrates that the threshold value of FCEV+

v

is very large for EV that are plugged-in at peak demand
times (18:00-20:00) and gradually decreases as we move to
plug-in times away from this peak period. This result reveals
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Fig. 2. Optimal conventional generation mix composition (top row), total system cost composition (second row), total system cost reduction with respect to
the fully inflexible EV operation scenario (third row), percentage of flexible EV (fourth row), and CO2 emissions intensity reduction with respect to the fully
inflexible EV operation scenario (bottom row).
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the increased value of flexibility deployment in EV whose
plug-in time coincides with peak demand, as their inflexible
operation would aggravate the economic implications of peaks.
Furthermore, the value of flexibility deployment is higher
for EV with larger traveling distances as shown in Table V,
since their total electric energy requirements are higher, and
therefore they offer a higher amount of redistributable energy
to the system when they become flexible.

Table IV
FLEXIBILITY DEPLOYMENT THRESHOLD WRT PLUG-IN TIME

Plug-in FCEV+

v Plug-in FCEV+

v
time (£/EV-yr) time (£/EV-yr)

10:00 100 17:00 800
11:00 100 18:00 1,600
12:00 100 19:00 3,200
13:00 200 20:00 3,200
14:00 200 21:00 200
15:00 200 22:00 50
16:00 400 23:00 50

Table V
FLEXIBILITY DEPLOYMENT THRESHOLD WRT JOURNEYS’ LENGTH

Journeys’ FCEV+

v
length (£/EV-yr)

Short 800
Long 1,600

Finally, the impact of the charging place and the V2G
capability is analyzed, considering a scenario with 100% EV
penetration and 30GW of wind generation capacity. When
EV are allowed to charge both at home and work, the peak
demand levels under inflexible EV operation are significantly
reduced, as part of the required energy is acquired during the
off-peak hours that the EV are parked at the work place (Fig.
3). As a result, the value of EV flexibility is lower than in
the home charging scenario, as shown in the top plot of Fig.
4. With V2G capability available, as shown in the top plot
of Fig. 4, the value of flexible EV operation is increased
despite the additional degradation cost, as flexible EV can
inject power into the grid during peak demand periods and
provide increased volumes of spinning reserve, resulting in
a reduction of the required peaking generation capacity. This
additional value comes despite the fact that a smaller number
of EV become flexible, as shown in the bottom plot of Fig. 4,
since the benefits brought by each flexible EV are enhanced.

C. Computational Performance of Proposed Model

The proposed optimization model has been implemented
using FICOTM Xpress [19], and all the simulations presented in
this paper have been carried out on a Windows-based desktop
computer, with a 3.33GHz Intel(R) Xeon(R) processor and
12GB of RAM.

The computational performance of the proposed model was
tested against an equivalent formulation without clustering
generation units, i.e. a formulation that uses binary variables
for generation investment and unit commitment decisions.
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Fig. 3. EV demand profiles under inflexible operation.
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Fig. 4. Total system cost reduction with respect to the fully inflexible EV
operation scenario (top) and percentage of flexible EV (bottom).

Investment decision variables have been initially bounded to
500 units per generation technology in the integer formulation,
which translates into a full set of 4,500 candidate generation
units for the binary model (Binary–4500 in Table VI). The
latter was not manageable by the desktop computer due to the
RAM memory limitation, so in another test, the size of the set
of candidate generation units in the binary formulation was
reduced to 536 units (Binary–536 in Table VI), based on the
optimal solution of the integer model.

Table VI shows a comparison between the binary (with
and without the candidate units set reduction) and integer
formulations in terms of the number of generation-related
discrete decision variables and constraints, the solution time,
and the optimal value of the objective function, obtained
after running the above models for 100% EV penetration,
30GW wind generation capacity, FCEV+

v equal to £200/EV-
yr, home charging and V2G capability available. Even with
a reduced set of candidate generation units, the binary model
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involves a very large number of decision variables and con-
straints, exhibiting a prohibitive computational requirement
for practical applications. With the integer formulation, the
numbers of decision variables and constraints, as well as the
required computational time, are dramatically reduced without
compromising the model’s results accuracy, as indicated by the
small difference between the optimal values of the objective
function in Table VI.

The integer model was also tested without the proposed EV
clustering technique, resulting in a non-linear MIP problem
(Section II-B), which failed to converge after 6 ⋅ 105 s.

IV. CONCLUSIONS

A novel planning model is proposed in this paper which
allows co-optimizing investment and operation costs of con-
ventional generation assets and demand flexibility in the form
of smart-charging EV with and without V2G capability. Along
with the full set of different generation technologies’ technical
characteristics, the capability of optimally scheduling EV
demand and V2G injections–according to a detailed model of
their users’ traveling requirements and batteries/grid connec-
tions’ technical properties–is considered. In contrast to previ-
ous works, the enabling costs for introducing and coordinating
such flexibility–associated with the relevant metering, control
and communication infrastructure–and those related to the
degradation of the EV battery due to V2G are accounted for,
and the optimal number of flexible EV is determined along
with the optimal portfolio of generation assets.

The developed model is formulated as a large-scale mixed-
integer linear optimization problem. Clustering of generation
units (following the approach proposed in [20]) and EV
(adopting a new approach) of similar characteristics limits
the computational requirements of the model, by reducing the
number of decision variables and constraints, and avoiding
non-linearities.

Case studies in the context of the UK demonstrate that
EV flexibility significantly flattens net-demand by reducing
peak demand levels and absorbing the variability introduced by
wind generation, and subsequently impacts the optimal gener-
ation mix by allowing the cost-effective integration of a larger
proportion of baseload generation. The value of EV flexibility
in terms of total system cost saving is shown to increase
with an increasing electrification of the transport sector and
increasing wind generation capacity levels, highlighting the
enhanced potential of flexible demand in a future with wide de-
carbonization of demand and power generation. Furthermore,
the results illustrate the dependency of the optimal number
of flexible EV and the net-value of EV flexibility on the
cost of the enabling infrastructure, the place of charging and
the deployment of V2G capability. Finally, the value of EV
flexibility is shown to depend on the traveling patterns of EV
users, with EV plugged into the grid during demand peak
periods and EV with larger traveling distances yielding higher
system benefits when becoming flexible.

Future work will incorporate other promising flexible de-
mand technologies into the model, such as electric heat pumps
and deferrable domestic appliances, and will compare their

impacts on system planning under different values of their
enabling costs. Although this paper addresses the planning
problem from the perspective of a central planner seeking
to minimize total system cost, in the existing market-based
environment, investment and operating decisions of generation
and demand participants are taken in a decentralized fashion,
according to the individual participants’ profit-maximizing
objectives. The derivation of suitable market mechanisms for
the realization of the cost-minimizing solution in a deregulated
environment is thus an essential area of future work. As
part of this work, suitable incentives should be developed
for consumers with favorable demand patterns, as the ones
identified in this paper.
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