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Abstract-- Currently, there is a national push for a smarter 

electric grid, one that is more controllable and flexible. The full 

control of transmission assets are not currently built into electric 

network optimization models. Optimal transmission switching is 

a straightforward way to leverage grid controllability: to make 

better use of the existing system and meet growing demand with 

existing infrastructure. Previous papers have shown that 

optimizing the network topology improves the dispatch of 

electrical networks. Such optimal topology dispatch can be 

categorized as a smart grid application where there is a co-

optimization of both generators and transmission topology. In 

this paper we present a co-optimization formulation of the 

generation unit commitment and transmission switching problem 

while ensuring $-1 reliability. We show that the optimal topology 

of the network can vary from hour to hour. We also show that 

optimizing the topology can change the optimal unit commitment 

schedule. This problem is large and computationally complex 

even for medium sized systems. We present decomposition and 

computational approaches to solving this problem. Results are 

presented for the IEEE RTS 96 test case.   

 

Index Terms—Generation unit commitment, integer 

programming, power generation dispatch, power system 

economics, power system reliability, power transmission control, 

power transmission economics     

NOMENCLATURE 

Indices 
c: Operating state; c = 0 indicates the no contingency 

state (steady-state); c > 0 is a single contingency state 
g:  Generator 
g(n): Set of generators at node n 
k:  Transmission element (line or transformer) 
k(n,.): Set of transmission assets with n as the ‘to’ node 
k(.,n): Set of transmission assets with n as the ‘from’ node 
m, n: Nodes 
t:  Time period  
 

Parameters 
Bk: Electrical susceptance of transmission element k 

cg: Production cost for generator g 

cSU
g: Startup cost for generator g 
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cSD
g: Shutdown cost for generator g 

dnt:  Real power load at node n for period t 
DTg, UTg:  Minimum down time and min up time for generator g 

Mk:  Big M value for transmission element k 
�1ec: Binary parameter that is 0 when the element e is the 

contingency and c > 0, 1 otherwise 

Pmax
g, P

min
g: Max and min capacity of generator g 

Pmax
kc, P

min
kc: Max and min rating of transmission element k, state c 

R+
g: Maximum ramp up rate for generator g 

R-
g: Maximum ramp down rate for generator g 

RSD
g: Maximum shutdown ramp rate for generator g 

RSU
g: Maximum startup ramp rate for generator g 

T: Number of periods 
θmax, θmin: Max and min bus voltage angle 

 
Variables 

Pgct: Real power supply from generator g at node n for state 
c and period t  

Pkct: Real power flow from node m to n for transmission 
element k, state c, and period t 

ugt: Binary unit commitment variable for generator g and 
period t (0 offline/down, 1 online/operational) 

vgt: Startup variable for generator g and period t (1 for 
startup, 0 otherwise) 

wgt: Shutdown variable for generator g and period t (1 for 
shutdown, 0 otherwise) 

zkt: Binary variable for transmission element k and period 
t (0 open/not in service, 1 closed/in service) 

θnct: Voltage angle at node n for state c and period t 

I. INTRODUCTION 

HE physics that govern electrical networks make them 
unique. It is possible to remove a link and improve the 

efficiency of the system. Traditionally, transmission networks 
for bulk power flow have been modeled as static, except 
during times of forced outages or maintenance. This 
traditional view does not describe them as assets that operators 
have the ability to control. However, switching transmission 
lines is a common practice with a mature technology; circuit 
breakers can open and close transmission lines.  

System operators can and do change the topology of 
systems to improve system performance. Operators switch 
transmission elements to improve voltage profiles or increase 
transfer capacity [1]. For example, it is an accepted practice to 
open light-loaded transmission lines at night for better 
voltages profiles [2]. The Northeast Power Coordinating 
Council includes “switch out internal transmission lines” in 
the list of possible actions to avoid abnormal voltage 
conditions [3] [4]. In PJM, Special Protection Schemes (SPSs) 
allow the operator to disconnect a line during normal 
operations but return it to service during a contingency. These 
decisions are made under a set of prescribed rules by the 
operator, rather than included in the optimization formulation.  
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Transmission switching has been explored as a control 
method for problems such as over or under voltage situations, 
line overloading [5]-[7], loss and/or cost reduction [8] [9], 
system security [10], or a combination of these [11]-[13]. 
Numerous SPSs address specific instances of switching during 
emergency conditions. Some SPSs open lines during 
emergency conditions, demonstrating that it can be beneficial 
to change the topology during emergency conditions. In this 
paper we present the concept of co-optimizing the network 
topology along with unit commitment.  

Optimal transmission switching for economic benefit in a 
market context was investigated by O’Neill et al. [14]. Fisher 
et al. [15] and Hedman et al. [16] present and analyze the 
optimal transmission switching problem on the IEEE 118 bus 
test case and showed that co-optimizing the generation and the 
network topology can result in substantial savings. 
Transmission switching is not by definition incompatible with 
reliable network operations. Hedman et al. [17] demonstrated 
that transmission switching can be beneficial even while 
ensuring an N-1 reliable network.  

New transmission infrastructure can be expensive and hard 
to site [18]. Therefore, optimal use of the existing system and 
optimal expansion should be a priority. The US Energy Policy 
Act of 2005 includes a directive for federal agencies to 
“encourage…deployment of advanced transmission 
technologies,” including “optimized transmission line 
configuration.”1 This research is also in line with FERC Order 
890 – to improve the economic operations of the electric 
transmission grid. It also addresses the items listed in Title 13 
“Smart Grid” of the Energy Independence and Security Act of 
2007: (1) “increased use of… controls technology to improve 
reliability, stability, and efficiency of the grid” and (2) 
“dynamic optimization of grid operations and resources.” 

Optimal transmission switching is a promising option 
because it uses existing hardware to achieve important and 
timely goals: increased grid flexibility and efficiency. In this 
paper, we examine the potential for switching to increase the 
economic efficiency of power system dispatch by co-
optimizing transmission switching decisions and the system 
dispatch model. This creates an N-1 DCOPF multi-period 
generation unit commitment transmission switching model.  

The paper is organized as follows. Section II discusses the 
model formulation, including a discussion on transmission 
switching, unit commitment, minimum up and down time 
constraints, etc. Section III discusses how the general model is 
modified for computational testing. A multi-period generation 
unit commitment optimal transmission switching model with 
N-1 contingency constraints is difficult to solve and, therefore, 
we discuss in section III how we decompose and solve this 
optimization problem. Section IV presents a network overview 
and the results and analysis for the RTS 96 system. Section V 
discusses possible future work and Section VI concludes this 
paper. 

II. MODEL FORMULATION 

This optimization problem is formulated as a Mixed Integer 
Programming (MIP) problem. The use of MIP within the 

                                                        
1 See Sec.1223.a.5 of the US Energy Policy Act of 2005. 

electric industry is growing; PJM has switched from 
Lagrangian Relaxation (LR) to MIP for their generation unit 
commitment software [19] and for their real-time market look-
ahead [1]. These changes are estimated to save PJM over 150 
million dollars per year [1] [19]. Furthermore, most US ISOs 
are testing and planning to switch to MIP in the near future 
[20]. 

A. �-1 DCOPF Optimal Transmission Switching and 

Generation Unit Commitment Formulation 

The Direct Current Optimal Power Flow (DCOPF) is a 
commonly used linear approximation of the Alternating 
Current Optimal Power Flow (ACOPF). Fisher et al. [15] 
showed how the traditional DCOPF can incorporate 
transmission switching into the formulation. Within this paper, 
we are ensuring that the system is N-1 compliant, i.e. the 
system can survive the loss of any single network component 
(generator or transmission element) in the system, except 
radial lines. This formulation also incorporates generation unit 
commitment in order to analyze how transmission switching 
affects unit commitment and vice versa. 

The objective of the optimization problem is to minimize 
total cost, which includes the generator production costs in the 
no contingency case, the startup costs, and the shutdown costs 
(1). Since the demand is perfectly inelastic, minimizing the 
total cost is the same as maximizing the total social welfare. 
This objective is valid for systems where generation dispatch 
is a centralized process in which all operating costs are known. 
For systems where dispatch is determined by a centralized grid 
operator who takes bids, we optimize the bid surplus. In 
further discussion, we assume that bids are marginal costs.  

The constraints represent the traditional power flow 
constraints that follow Kirchhoff’s Laws, except for the 
modifications made to incorporate transmission switching. 
This is a lossless model, which allows us to use only one 
variable to represent a transmission element’s power flow. 
Therefore, the node balance constraints, (3), account for flows 
to bus n (injections) and flows from bus m (withdrawals). If 
this were a lossy model, losses may increase or decrease, see 
[9], as a result of transmission switching. The objective is to 
minimize the total cost so even if losses increase, transmission 
switching can still be of value by decreasing the total cost. 
Constraints (4), (5a), and (5b) are modified to incorporate the 
decision to have a transmission element closed or open in the 
network. Injections into a bus are positive (generator supply, 
power flow to bus n) and withdrawals are negative (load, 
power flow from bus m) 
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B. Contingency Modeling 

Each decision variable has a new value for each state c, 

except for zkt and the variables associated with the unit 

commitment formulation: ugt, vgt, and wgt. State c = 0 

represents the no-contingency, steady-state variables and 

constraints whereas all other states represent single generator 

or (non radial) transmission contingencies.  
We introduce a binary parameter for state c and element e: 

�1ec. �1kc = 0 represents the loss of transmission element k; 

�1gc = 0 represents the loss of generator g. For c = 0, �1e0 = 1 

for all e as this state reflects steady-state operations. There are 

� (transmission element or generator) contingencies. For c > 
0, 

 ec
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The binary parameter �1ec forces the transmission element’s 

flow to be zero within (4) when the transmission element is 
the contingency; the use of �1ec in (6) forces a generator’s 

supply to be zero when the generator is the contingency. 

C. Transmission Switching Modeling 

Constraints (5a) and (5b) ensure that if a transmission 

element is opened, these constraints are satisfied no matter 

what the values are for the corresponding bus angles. The 
transmission element is considered opened if it is the 

contingency, i.e. �1kc=0, or it is chosen to be opened as a 

result of transmission switching, i.e. zkt=0.  

In (5a) and (5b), Mk is often called the “big M” value where 

Mk is large enough to make the constraint nonbinding. Mk 

must be a large number greater than or equal to |Bk(θ
max 

- 

θ
min

)|. When either zkt=0 or �1kc=0, Pkct is zero and the value 

of Mk ensures that (5a) and (5b) are satisfied regardless of the 

difference in the bus angles. Without this adjustment to the 

power flow equations, the buses that were connected to this 

opened transmission element would be forced to have the 

same bus angle. With this adjustment, the solution 
corresponds to the case when the transmission element is open 

in the network, as desired.  

ACOPF formulations include constraints on the angle 

difference between two connected buses; these constraints 

ensure angle stability. However, in a DCOPF model, an angle 

difference constraint would be redundant vis a vis the line 
flow capacity constraint, (4). Restricting the angle difference 

between connected buses is the same as placing a bound on 

the power flow on that line (in our formulation, Pkct in (5a) and 

(5b)). Thus, it is unnecessary to include both bus angle 

difference constraints and power flow constraints in a DCOPF 

formulation; instead, the power flow constraint can implicitly 
contain the limit on angle difference. If the physical limit on 

the angle difference is below a line’s rated flow capacity, then 

the capacity limits can be adjusted to enforce the angle 

constraints. In the formulation presented here, we employ 

limits on each bus angle (2) since it is not redundant and it 
conveniently provides a lower bound on Mk.  

The chosen min and max bus angle values are ±0.6 radians. 

It is computationally better for Mk to be as small as possible, 

which would be |Bk(θ
max 

- θ
min

)| = 1.2|Bk|. A similar MIP 

optimization model (see [21]) is used for transmission 

expansion in which a shortest path problem is formulated to 
determine the minimum Mk value. By using this technique, Mk 

depends on the available paths between buses. Using this 

technique with a transmission switching model like ours 

would substantially increase solution difficulty. Transmission 

switching may remove previous paths between buses; thus, 

this technique would require Mk to be a variable rather than a 
parameter. As a result, it is conducive to model the bus angle 

constraints by (2), making it possible to define Mk as we 

previously stated.  

All solutions from the N-1 DCOPF transmission switching 

problem must satisfy strict N-1 standards. For any 
contingency, the line capacity limits are defined by rate C, or 

the emergency rating; otherwise, the capacity limits are equal 

to the steady-state, no contingency limits. We assume that 

when there is a transmission contingency, the generator 

dispatch levels do not change, which is the reason for the 

formulation presented in (3a). When there is a generator 
contingency, all of the on-line generators are allowed to adjust 

their output while satisfying (6) and ramping constraints (12) 

and (13) in order to survive the contingency. This associated 

re-dispatch cost is not included in the objective because the re-

dispatch occurs in real time, whereas this model determines 

the short-term forward dispatch of the system. Since the 
probability of an outage is small, we are concerned with 

feasibility of surviving a contingency, not the cost. For further 

discussion on the N-1 DCOPF optimal transmission switching 

formulation, see [17].  
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D. Generation Unit Commitment 

Generators are assumed to have linear generation costs, 

startup costs, and shutdown costs (1). We also assume that 
generators have minimum and maximum operating levels, see 

(6), minimum up and down time constraints, see (8) and (9), 

and ramp rate constraints, see (10)-(13).  

The generator’s state is represented by a unit commitment 

variable ugt, which equals one (or zero) when the unit is on (or 

off). Offline generators cannot respond during a contingency. 
The startup binary variable is vgt. When the unit is turned on in 

period t, vgt = 1; otherwise, vgt = 0. The shutdown binary 

variable, wgt, equals one only when the unit is off in period t 

and on for period t-1. By incorporating the startup and 

shutdown variables, we have the relationship in (7). This 

constraint can be found in papers that were published over 
forty years ago, [22]. Based on our chosen formulation, we are 

able to relax the integrality constraints of the startup and 

shutdown variables, which we discuss in the following 

section. Thus, the ugt variables are modeled as binary 

variables, see (16), while the vgt and wgt variables are modeled 

as continuous variables, see (14) and (15). 

E. Startup and Shutdown Binary Variables 

Generator startup and shutdown variables represent binary 

states. However, by carefully formulating the constraints it is 

possible to model them as continuous variables. By including 

the set of constraints (7), (20), and (21), the startup and 
shutdown variables take on binary solutions when the unit 

commitment variables are feasible — specifically, when the u 

variables are binary. This ensures that all feasible solutions for 

the startup and shutdown variables are binary even if they are 

modeled as continuous variables. Constraints (20) and (21) are 

valid inequalities that are dominated by (7), (8), and (9), 
thereby not requiring (20) and (21) to be explicitly listed in the 

formulation. In other words, (7), (8), and (9) are tighter 

inequalities and they always satisfy (20) and (21). Therefore, 

our formulation ensures that all feasible solutions for the 

startup and shutdown variables are binary even though they 

are modeled as continuous variables 
 

 tguv tggt ,,1 1, ∀−≤ −
 (20) 

 tguw tggt ,,1, ∀≤ −
. (21) 

 

Note that with the equality constraint (7), there is no 

requirement to have both startup (v) and shutdown (w) 

variables within the formulation. Our initial formulation 

includes both startup and shutdown variables so that the 

construct of the constraints can be clearly understood. 
However, since only one of these sets of variables is required, 

it is possible to choose a formulation with either the u and v 

variables or the u and w variables. To formulate the problem 

with only u and v (or u and w) variables, (7) can be used to 

replace w (v) wherever w (v) is present. Constraint (7) is then 

replaced with (7’) if the v variables are kept; (7) would be 
replaced by (7’’) if the w variables are kept. If the formulation 

is reduced to include only the u and v (u and w) variables, the 

guarantee that all feasible solutions for v (w) are binary still 

holds; thus, v (w) can still be modeled as continuous variables  
 

 tguuv tggtgt ,  ,1, ∀−≥ −  (7’) 

 tguuw gttggt ,  ,1, ∀−≥ − . (7’’) 

F. Minimum Up and Down Time Constraints 

MIP formulations can be compared based on computational 

results and/or compared by analyzing which formulation 

provides a tighter representation of the minimal convex set of 

the MIP problem. In this section, we compare formulations 
based on which formulation provides a tighter polyhedral 

representation. For information on valid inequalities, facets, 

and the convex hull, refer to [23].  

The minimum up and down time constraints, (8) and (9), 

employ the turn on/off facet defining valid inequalities [24]. 

Hedman et al. [25] investigated the use of valid inequalities 
and facets for the minimum up and down time constraints 

associated with the generation unit commitment problem and 

showed how valid inequalities for the unit commitment 

problem can be analyzed and improved. It also showed how 

constraints in alternative formulations, [26] and [27], can be 

improved.  
With the facets in [24] and other trivial inequalities, we are 

able to generate the convex hull of the u, v projection, i.e. the 

minimal convex set of the u, v projection is completely 

represented by linear inequalities within our formulation. 

Many papers on unit commitment formulations do not employ 

facet defining valid inequalities for their minimum up and 
down time constraints.   

A recent paper on tighter unit commitment formulations, 

[28], which uses only unit commitment, u, variables within 

their formulation, does not use facet defining valid inequalities 

for the minimum up and down time constraints. However, [29] 
has proven that their inequalities, which only involve u 

variables, are facets for the u projection; with their facets they 

are able to define the convex hull for the u projection from the 

overall unit commitment problem. Thus, the formulation from 

[29] provides a tighter formulation than what is presented in 

[28]. We use the facets defined in [24], which are the facets 
that create the convex hull for the u, v projection. The 

inequalities from [29] are not facets for the u, v projection so 

the facets from [24] produce a tighter polyhedral 

representation than the inequalities from [29] when startup 

variables, v, are included.  

One complicating factor with the facets listed in [29] is the 
number of constraints that are required. To deal with this 

problem, [29] proposed an efficient separation algorithm. 

Another option is to introduce startup and/or shutdown 

variables and then use the facets for the u, v projection listed 

in [24]. Adding these binary variables is computationally 
conducive since they can be modeled as continuous variables 

and it is then possible to include the facets defined in [24], 

which are not problematic to generate. By adding these 

continuous variables, it is then possible to generate the convex 

hull (minimal convex set) of the u, v projection; additional 

discussion as well as computational results showing the 
performance of the minimum up and down time formulation 

used in this paper can be found in [24]. 
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G. Ramp Rate Constraints 

We include intertemporal ramp rate constraints, (10) and 

(11), see [30], as well as ramp rate contingency constraints, 
(12) and (13). Constraints (10) and (11) allow for the inclusion 

of startup and shutdown ramp rates, which may be different 

than the ramp rates under continuous operation. Since startup 

and/or shutdown variables are included in this formulation, it 

is preferable to use (10) and (11) over other formulations such 

as (10’) and (11’) below, see [28], because (10) and (11) are 
stronger valid inequalities than (10’) and (11’). It can be easily 

verified that the right hand side of (10) and (11) can be strictly 

less than the right hand side of (10’) and (11’) thereby 

providing a tighter bound on the Pg variables. Since the startup 

and shutdown variables can be modeled as continuous 

variables as previously discussed, it is preferable to use these 
stronger inequalities 
 

 tguRuRPP tg

SU

gtggtgtg ,  ),1( 1,1,1,00 ∀−+≤− −−
+

−
 (10’) 

 tguRuRPP tg

SD

gtggtgtg ,),1( ,,01,0 ∀−+≤− −
−

. (11’) 

 

Since generators receive their unit commitment schedule 
well in advance, they can determine the appropriate time to 
start ramping up (or down) their unit when they turn it on (or 
off) in order to meet their obligated output. However, this 
flexibility may be limited due to their minimum up and down 
time constraints or current operations. It is therefore possible 
for the maximum startup (or shutdown) ramp rate to be equal 
to the unit’s Pmax. We test this model on the RTS 96 system, 
which does not define startup or shutdown ramp rates. We 
therefore assume that the maximum startup and shutdown 
ramp rates are equal to the unit’s Pmax. 

H. Reserve Requirements 

Reserve requirements, such as spinning and non-spinning 
reserve, are typically included in unit commitment models. 
We do not include them within our model since we are 
explicitly enforcing N-1. The primary purpose of spinning and 
non-spinning reserve is to ensure there is enough capacity 
online to survive a contingency; these constraints are used as 
proxies to enforce N-1 since it is typically too computationally 
challenging to explicitly list every contingency.  

Since our primary purpose is to examine the potential of this 
concept, co-optimizing the generation and network topology, 
in order to get more accurate results we chose to study a more 
complex and robust problem where N-1 is enforced versus 
using proxy (reserve) constraints. There is also the issue that 
reserve constraints are constructed based on the network 
configuration, e.g. zones. There is the question as to whether 
reserve constraints can still achieve the necessary reliability 
level if the network topology changes. These proxy constraints 
may work for the original topology but they may not work for 
the new network configuration; simple theoretical examples 
can demonstrate this as a possibility. By explicitly enforcing 
N-1 versus using reserve constraints, this is a much harder 
problem to solve, which we discuss in the next section.  

Spinning reserve may also be used for load forecast error. 
The purpose of regulation reserve is for load following and 
forecast errors; only when regulation reserve cannot address a 
forecast error concern would spinning reserve be called upon 

to address forecast errors. Such a secondary requirement for 
spinning reserve would generally not compare to the stringent 
requirement of N-1; enforcing N-1 already ensures there is 
ample online capacity available to handle load forecast errors. 

III. MODEL MODIFICATIONS FOR COMPUTATIONAL TESTING  

Our problem formulation is a mixed integer linear program. 
The difficulties in solving these specific MIP problems arise in 
two independent ways. First, the treatment of multiple time 
periods with varying load levels make the problem size very 
large due to replications of variables across each load 
condition. Secondly, the choice of settings for the binary 
variables generates a combinatorial number of different 
problems, all of which need to be examined in order to 
guarantee a global solution.  

While the size issues typically result in solution times that 
grow at a quantifiable rate, the combinatorial issues are much 
harder to quantify and can lead to dramatically variable 
solution times. However, relaxing some of the binary 
restrictions can lead to (easier) problems whose solutions 
provide lower bounds on the optimal solution of the 
(minimization) mixed integer program, while feasible 
solutions provide an upper bound on its optimal solution 
value. With these two values in hand, a rigorous optimality 
gap can be calculated that indicates the percentage difference 
between the provided solution and what may be possible. 
While reducing this optimality gap to zero is an interesting 
academic issue, in practice, a feasible solution with a small 
optimality gap is typically adequate, particularly when the 
input data is not known with certainty. In an operational 
setting, proving optimality is less important than improving 
the current solution; we focus here on finding the best feasible 
solution within a given timeframe.  

A. Decomposing the Optimization Problem 

Since the generation unit commitment optimal power flow 
problem is a very difficult problem to solve, it is a common 
practice within the electric industry to decompose it into sub-
problems. We take a similar approach: we separate the 
problem into two sub-problems, the main problem being the 
24-hour unit commitment problem with the N-1 DCOPF 
formulation without transmission switching, i.e. all binary zkt 
variables are fixed to one. Once this optimization problem is 
solved, we move to the secondary sub-problems where we fix 
the unit commitment variables to their solution values from 
the first sub-problem and then solve for zkt.  

For the RTS 96 test case, none of the ramp rate constraints 
are active; thus, this problem can be decomposed into 24 N-1 
DCOPF optimal transmission switching subproblems. Solving 
each period separately will produce the same optimal solution 
as when all periods are solved within one main optimization 
problem since the ramp rate constraints are inactive. If there 
are active ramp rate constraints, the N-1 DCOPF transmission 
switching problem can be decomposed by first initially 
ignoring the ramp rate constraints and solving the 24 
subproblems. Constraint violations are then applied in the next 
iteration. Any periods that are linked by active ramp rate 
constraints are combined into one subproblem and resolved. 
This method will ensure optimality if repeated until no further 
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ramp rate constraints are active. Another method would be to 
remove the ramp rate constraints, solve for the optimal 
network topologies, fix the binary solutions, add the ramp rate 
constraints, and then solve for the generator dispatch variables 
to ensure ramp rate constraints are satisfied. This method 
would be faster but it will not guarantee optimality.   

The process of fixing the unit commitment variables, 
solving for the transmission switching variables, and then 
fixing the transmission switching variables to solve for the 
new unit commitment variables is repeated. This allows us to 
see how the network topology can affect the unit commitment 
solutions and vice versa. This process can be repeated until 
there is no change in the solution or the solution time window 
is exhausted. This approach works well when a good feasible 
solution is needed in a limited time; the drawback is that 
optimality is not guaranteed.     

B. Software Options 

Relaxing the integrality constraint on all the binary values, 
or fixing their values to 0 or 1, results in a linear program 
(LP). Such subproblems arise at the root and every node of a 
branch and bound tree that is explored by the commercial code 
we use, CPLEX; ensuring these solve quickly is critical. The 
default options of CPLEX employ the dual simplex method 
since this is typically effective for restarting a solution process 
from a parent solution in the tree. However, since our 
problems tend to be dual degenerate, extremely large numbers 
of pivots are required even when the objective function is 
close to its optimal value. The barrier method, which has 
better complexity bounds for large scale problems, performs 
much better at solving each subproblem and completely 
mitigates the advantages of the restart process, see [31]. The 
crossover process (that moves from an interior to a basic 
solution) is also ineffective for similar reasons. The use of 
these features can be controlled by an appropriate option file 
for CPLEX. Not only does this improve node solution time, 
but it also allows us to solve the underlying problem with 
fixed unit commitment and transmission switching binary 
variables, and thus provides a feasible starting solution for the 
decomposition process outlined above. 

Since the unit commitment problem with fixed transmission 
binary variables does not decouple over time, it provides a 
distinct computational challenge. CPLEX incorporates a 
number of heuristics to determine appropriate binary values at 
the root node, which appear to work well in this case. It is 
important to ensure CPLEX is configured to look for feasible 
integer solutions and that cutting plane generation is turned off 
(since such cuts are ineffective). Just allowing processing of 
this nature at the root node typically takes 20 hours on a 
desktop workstation but provides a solution for this problem 
with a 1% or better optimality gap. Note that the long 
computation time is because we have a full N-1 DCOPF 
formulation along with the unit commitment problem. Most 
unit commitment models do not impose all N-1 contingencies 
along with an OPF model. Solving the unit commitment 
problem without including an N-1 DCOPF formulation takes 
only ten seconds. In order to better analyze this new concept 
of co-optimization of unit commitment and network topology, 
we chose to have a more robust optimization problem.   

When solving the transmission switching problem, as 
indicated in [15], the techniques for closing the optimality gap, 
specifically improving the lower bound, are largely 
ineffective. To overcome this, further decomposition or 
parallel computation is required. We use the multithreaded 
option of CPLEX, coupled with options that branch based on 
pseudo reduced costs, emphasize finding feasible solutions, 
and spend significant (post processing) time improving the 
solution determined by the branch and bound process. While 
these options are effective at improving the given starting 
solution, several of the resulting transmission switching 
subproblems have optimality gaps that are larger than 4% after 
20 hours of computation on 4 processor desktop machines. 
However, research has shown that heuristic techniques can 
find good feasible transmission switching solutions in 
reasonable timeframes, [16] and [17]. 

CPLEX also has an “indicator constraint” option that uses 
the value of a (binary) variable to indicate whether or not to 
include a specific constraint. The formulation presented for the 
optimal transmission switching problem includes a “big M 
value,” which essentially removes the constraints (5a) and (5b) 
from the formulation whenever zkt = 0 or �1ec = 0. We have 
developed a formulation that does not include the big M 
values but chooses from two sets of constraints based on the 
chosen value for zkt. While this mitigates the use of the big M 
value in constraints (5a) and (5b), the computational results 
are somewhat mixed due to CPLEX having a restricted set of 
options to apply in this problem setting. We remain hopeful 
that the formulation will become more attractive as schemes to 
exploit indicator constraints within CPLEX mature. 

IV. TEST CASE: IEEE 73 BUS (RTS 96) SYSTEM 

A. �etwork Overview 

The IEEE 73-bus network, also known as the three area 
reliability test system 1996 (RTS 96), was created by a 
committee of power systems experts [32]. It is common to 
make modifications to the RTS 96 system. In [33] the authors 
removed line (11-13), shifted 480MW of load from bus 14, 15, 
19, and 20 to bus 13, and made other modifications as well. 
Buses 14, 15, 19, and 20 had an original total load of 820MW; 
the new total load is 340MW. In [34] the authors decrease the 
thermal capacity of line (14-16) to 350MW. For this study, we 
incorporated the changes mentioned above from [33] and 
[34].2 The RTS 96 system has three identical zones; the 
modifications are applied to all zones. 

Table I provides an overview of the RTS 96 system data. 
The generator cost information is an average cost based on the 
heat rate data presented in [35] and the fuel cost (Energy 
Information Administration, 2007 prices) presented in Table 
II. The RTS 96 system includes startup costs; shutdown costs 
are not defined so they are assumed to be zero. There is 
seasonal information for the hydro units within the RTS 96 
system, all of which are assumed capable of producing at their 
full capacity. Table III describes the problem size for this 

                                                        
2 Modifications in [33] included reducing the total load of several buses. To 

determine the new load levels at these buses, we calculated each bus’ initial 
percentage of the original total load among these buses and allocated that bus 
the same percentage of the new total load. 
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study. The RTS 96 system includes a yearly load curve. Table 
IV shows the hourly load levels as percentages of the base 
load levels. The base load levels are defined in Bus Data 
Table-01 from [35] for the RTS 96 system. 

TABLE I 
RTS 96 SYSTEM DATA 

  Capacity (MW) Cost ($/MWh) 

 $o. Total Min Max Min Max 

Transmission  117 44,747 175 722   

Generators  99 10,215 12 400 0.00 219.95 

Base Load  51 8,547 53 745   

 
TABLE II 

FUEL COSTS 

#2 Oil #6 Oil Coal Uranium 

15.17 $/MBtu 8.40 $/MBtu 1.78 $/MBtu 0.60 $/MBtu 

 
TABLE III  

PROBLEM SIZE AND PRESOLVE STATISTICS 

 
LP 

Unit 

Commitment 

Trans.  Switch. and 

Unit Commitment 

Columns 1.8 Million 1.8 Million 1.8 Million 

Rows 3.9 Million 3.9 Million 3.9 Million 

Nonzeroes 10.6 Million 10.6 Million 10.6 Million 

Binary 0 2,376 5,184 

Presolve    

Columns 2.8 Million  1.1 Million  1.0 Million  

Rows 1.0 Million 1.3 Million 2.6 Million 

Nonzeroes 4.9 Million 4.4 Million 9.2 Million 

 
TABLE IV 

HOURLY LOAD PERCENT LEVELS  

HR1 HR2 HR3 HR4 HR5 HR6 HR7 HR8 

67 63 60 59 59 60 74 86 

HR9 HR10 HR11 HR12 HR13 HR14 HR15 HR16 

95 96 96 95 95 95 93 94 

HR17 HR18 HR19 HR20 HR21 HR22 HR23 HR24 

99 100 100 96 91 83 73 63 

B. Results and Analysis 

As previously stated, the main optimization problem that 
includes the generation unit commitment with the optimal 
transmission switching N-1 DCOPF formulation is 
decomposed into two sub-problems. We first solved a 24-
period generation unit commitment problem with an N-1 
DCOPF formulation. For this solution, all transmission 
elements are closed, i.e. zkt = 1 for all k and t. 

The generation unit commitment, N-1 DCOPF sub-problem 
produces a feasible solution with the objective value at: 
$3,245,997; the optimality gap for this sub-problem is 0.33%. 
This solution will be referred to as the “base solution” and it is 
in bold within Table V; the percent savings in Table V are in 
reference to the base solution. Table VI shows the base 
solution’s objective values for each period. 

We then take this generation unit commitment solution, fix 
the ugt, vgt, and wgt variables, and then solve the 24 N-1 
DCOPF optimal transmission switching problems. By 
optimizing the network topology, we receive a solution of 
$3,165,824, which results in a 2.5% savings as compared to 
the base solution when we do not perform transmission 
switching; the optimality gap for this sub-problem is 3%. 

 The first generation unit commitment solution was solved 
when all transmission elements were closed. It is possible that 
the optimal unit commitment schedule may change once the 
network topology changes, and vice versa. Thus, we take this 

first transmission switching solution, fix all transmission 
elements to the resulting zkt values, and then run the unit 
commitment N-1 DCOPF problem again. The results show 
that the optimal unit commitment solution depends on the 
chosen network topology. With the first transmission 
switching solution as the set network topology, we find a new 
unit commitment solution with a total cost of $3,161,354, see 
Table V; the sub-problem optimality gap is 0.66%. 

The second unit commitment schedule would be more 
expensive than the first one if we do not optimize the network 
topology. With all transmission elements in service, the total 
cost for the second unit commitment solution is $3,272,280, 
which is higher than the first unit commitment schedule’s cost 
of $3,245,997 when all transmission elements are closed. 
Once the topology is changed, a previously more expensive 
unit commitment schedule is now the preferred schedule.  

One key difference between the two generation unit 
commitment solutions is that the first solution has three peaker 
units that are committed for only period 10 (see Table VII). 
The second generation unit commitment solution never 
commits these units. The total startup cost for the first unit 
commitment solution is $56,263 versus the second unit 
commitment’s total startup cost of $49,157. The unit 
commitments are displayed in Table VII through Table XI.  

We proceeded by fixing the second unit commitment 
solution and resolving the N-1 DCOPF optimal transmission 
switching problem. We received a different solution than the 
first transmission switching solution, with a cost of $3,125,185 
corresponding to a percent savings of 3.7% over the base case; 
the optimality gap for this sub-problem is 1.9%. However, this 
second transmission switching solution is better than the first 
transmission switching solution combined with either the first 
or the second unit commitment solution. This means that the 
first transmission switching solution was not optimal. The first 
transmission switching solution has a 3% optimality gap, 
indicating that sub-optimality is a possibility; the second 
transmission solution confirms this to be true. 

By decomposing this problem, we found a solution that 
saves 3.7% with a value of $3,125,185. We obtained a lower 
bound of $3,024,989 from the overall unit commitment and 
transmission switching optimization problem. The optimality 
gap is therefore 3.2% for our best found feasible solution. 
Table V presents a summary of the solutions. 

Table VI shows the individual period objective values for 
the base solution, i.e. the first unit commitment solution with 
the original network topology (no switching), the final 
solution, i.e. the second unit commitment solution with the 
second transmission switching solution, and the sub-problem 
optimality gaps for the final solution. Though the final 
solution is cheaper overall, there are some periods where the 
costs have increased; these hours are in bold. The higher costs 
are a result of choosing a different unit commitment schedule. 
This result further emphasizes the benefit of co-optimizing the 
network topology with unit commitment over multiple 
periods.  

The final solution has an overall savings of 3.7% or over 
$120,000 for this single base load day. The RTS 96 test 
system does not compare in size to large ISO networks. If the 
same savings were achieved for every day of the year, the 
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savings would be over $44 million for this medium sized 
IEEE test case.  

TABLE V 
GENERATION UC AND TRANSMISSION SWITCHING SOLUTIONS 

 $o Trans. Switch 1st Switch Sol. 

1st Generation UC $3,245,997 $3,165,824 

Subproblem lower bound $3,235,285 $3,070,581 

% Savings  2.5% 

 1st Switch Sol. 2nd Switch Sol. 

2nd Generation UC  $3,161,354 $3,125,185 

Subproblem lower bound $3,140,588 $3,065,427 

% Savings 2.6% 3.7% 

 

The most expensive units are roughly $220/MWh. Only 
three of these units, units 5, 71, and 72, are ever committed in 
the base solution and they are only committed in period 10, 
see Table VII. For the final solution, all of these units are off, 
see Table X. After these peaker units, the second most 
expensive units are roughly $100/MWh. It may be argued that 
the large spread in generator costs drives the savings. As 
specified, there is only one hour where these most expensive 

units were initially dispatched. If we ignore this single period, 
the savings from the other 23 periods still have a total savings 
of 3.6%. Thus, the spread in costs has an impact, but a very 
minor one for this test case. Table XI shows the changes in 
unit commitment schedules; this demonstrates how changing 
the network topology can alter the unit commitments.   

Table XII lists the second transmission switching solution. 
Transmission elements that are never opened are not listed in 
the table. The results show that the optimal network topology 
may vary as network conditions vary and may be part of 
improved planning protocols. The differences between the two 
transmission switching solutions are shown in Table XIII.  

Transmission switching can have a variety of impacts on 
market participants. As the results have shown, it can alter the 
optimal unit commitment solution by turning off previously 
committed units and committing others. The only conclusion 
that is possible from transmission switching is that the total 
social welfare will not decrease.  
 

 
TABLE VI 

BASE SOLUTION COST, FINAL SOLUTION COST, AND OPTIMALITY GAP 

HR 
Final Solution 

(Optimality Gap) 

Base UC 

Solution 
HR 

Final Solution 

(Optimality Gap) 

Base UC 

Solution 
HR 

Final Solution 

(Optimality Gap) 

Base UC 

Solution 

1 $73,103 (0.17%)  $70,899 9 $196,392 (0.82%) $207,444 17 $193,197 (0.14%) $205,439 

2 $67,159 (0.01%) $64,601 10 $178,792 (0.66%) $189,923 18 $200,193 (0.04%) $213,685 

3 $62,810 (opt) $60,368 11 $185,831 (0.44%) $203,567 19 $200,193 (0.04%) $213,685 

4 $61,364 (opt) $59,130 12 $168,172 (1.94%) $175,941 20 $172,192 (0.35%) $182,528 

5 $61,364 (opt) $59,130 13 $168,172 (1.94%) $175,941 21 $146,328 (6.29%) $152,407 

6 $62,832 (0.03%) $60,368 14 $168,172 (1.94%) $175,941 22 $110,333 (4.05%) $110,372 

7 $84,355 (1.36%) $82,221 15 $158,505 (4.61%) $164,116 23 $67,519 (1.36%) $68,355 

8 $124,346 (13.0%) $129,280 16 $163,351 (3.27%) $169,893 24 $50,509 (0.37%) $50,766 

 
TABLE VII 

FIRST GENERATION UNIT COMMITMENT SOLUTION – ugt SOLUTION 

HR/GE$ 5 9 10 11 12 16 17 18 19 20 22 43 44 46 49 50 51 52 53 71 72 76 79 84 

8           1 1 1 1 1         1 1               1 

9   1 1 1   1 1 1 1 1 1 1 1   1 1  1       1   1 

10 1 1 1 1   1 1 1 1 1 1 1 1   1 1 1 1 1 1 1 1   1 

11   1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     1 1 1 

12   1 1 1 1           1 1 1 1     1 1 1     1 1   

13   1 1 1 1           1 1 1 1     1 1 1     1 1   

14   1 1 1 1           1 1 1 1     1 1 1     1 1   

15   1 1 1 1           1 1 1 1     1 1 1     1 1   

16   1 1 1 1           1 1 1 1     1 1 1     1 1   

17   1 1 1 1           1 1 1 1     1 1 1     1 1   

18   1 1 1 1           1 1 1 1     1 1 1     1 1   

19   1 1 1 1           1 1 1 1     1 1 1     1 1   

20   1 1 1 1           1 1 1 1               1 1   

21   1 1 1 1           1 1 1 1               1 1   

22         1           1 1 1 1               1 1   

 
TABLE VIII 

FIRST GENERATION UNIT COMMITMENT SOLUTION  

Generators Always Off: 1, 2, 6, 13-15, 34, 35, 38, 39, 47, 48, 67, 68, 80-83, 85, 86 

Generators Always On: 23-30, 33, 36, 40, 41, 54-66, 69, 70, 73, 74, 89-99 

Generators Off in HR 24 only 3, 4, 7, 8, 31, 32, 37, 88 

Generators Off in HR 23 and 24 only 42, 75, 77  

Generators Off in HR 22, 23, and 24 only  21, 45, 78, 87 
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TABLE IX 
SECOND GENERATION UNIT COMMITMENT SOLUTION – ugt SOLUTION 

HR/GE$ 9 10 11 12 43 44 49 50 51 52   53 76 77 79 

8       1 1 1  1    

9 1  1  1 1 1 1 1 1 1 1 1  

10 1 1 1  1 1 1 1 1 1 1 1 1  

11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

12 1 1 1 1 1 1    1  1 1 1 

13 1 1 1 1 1 1    1  1 1 1 

14 1 1 1 1 1 1    1  1 1 1 

15 1 1 1 1 1 1    1  1 1 1 

16 1 1 1 1 1 1    1  1 1 1 

17 1 1 1 1 1 1    1  1 1 1 

18 1 1 1 1 1 1    1  1 1 1 

19 1 1 1 1 1 1    1  1 1 1 

20 1   1 1 1      1 1 1 

21    1 1 1      1 1 1 

22    1 1 1      1 1 1 

 
TABLE X 

SECOND GENERATION UNIT COMMITMENT SOLUTION 

Generators Always Off: 1, 2, 5, 6, 13-20, 34, 35, 38, 39, 47, 48, 67, 68, 71, 72, 80-86 

Generators Always On: 23-30, 33, 36, 40, 41, 54-66, 69, 70, 73, 74, 89-99 

Generators Off in HR 24 only 3, 4, 7, 8, 31, 32, 37, 88 

Generators Off in HR 23 and 24 only 22, 42, 46, 75 

Generators Off in HR 22, 23, and 24 only 21, 45, 78, 87 

 
TABLE XI 

GENERATION UNIT COMMITMENT CHANGES BETWEEN SOLUTION 1 AND 2 

Units dispatched in fewer periods Units dispatched in more periods 

 Periods  Periods  Periods 

Generator UC1 UC2 Generator UC1 UC2 Generator UC1 UC2 

5,71,72 10 None 16-20, 84 8-11 None 22 9-22 1-22 

9 9-21 9-20 51, 53 10-19 8-11 46 11-22 1-22 

10 9-21 10-19 77 1-22 9-22    

11 9-21 9-19       

 
TABLE XII 

SECOND TRANSMISSION SWITCHING SOLUTION (LINES NOT LISTED ARE ALWAYS CLOSED) – zkt SOLUTION 

HR/Line 15 20 23 41 54 63 64 69 72 73 75 91 108 109 

1   1     1 1 1 1 1 1 1   1 1 

2 1 1   1 1 1 1   1 1 1   1 1 

3 1 1   1 1 1 1   1 1 1   1 1 

4 1 1   1 1 1 1   1 1 1 1 1 1 

5 1 1   1 1 1 1   1 1 1 1 1 1 

6 1 1   1 1 1 1   1 1 1 1 1 1 

7   1       1 1   1 1 1   1   

8 1 1 1 1 1 1 1   1 1 1       

9   1 1 1 1     1 1 1         

10   1 1 1 1 1 1   1           

11   1   1   1 1   1 1 1   1 1 

12   1 1 1 1     1 1 1         

13   1 1 1 1     1 1 1         

14   1 1 1 1     1 1 1         

15   1 1 1 1 1 1   1 1         

16   1 1 1 1 1 1   1 1         

17   1 1 1 1     1 1 1     1 1 

18   1 1 1 1 1 1 1   1 1   1 1 

19   1 1 1 1 1 1 1   1 1   1 1 

20   1 1 1 1 1 1   1       1   

21   1 1 1 1 1 1   1 1 1       

22 1 1 1   1 1 1   1 1 1 1 1 1 

23 1 1   1   1 1 1 1 1 1 1 1 1 

24 1   1   1 1 1   1 1 1       
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TABLE XIII 
CHANGES BETWEEN THE FIRST AND SECOND TRANSMISSION SWITCHING SOLUTIONS 

HR/Line 1 15 16 18 20 23 31 37 41 54 63 64 69 72 73 75 91 93 100 106 108 109 112 

1             +          + 

2                 * +      

3      *           *     +  

4   +          *           

5    +                    

6 +                       

7  *           *           

8             *        * *  

9           * * +   *     * *  

10  *             * *     * *  

11      *              +    

12      + +   + * * +        *   

13           * *    *     * *  

14           * * +  +     + * *  

15             *   *     * *  

16  *                  + * * + 

17           * *    *   +     

18  *     +      + *      +    

19  *     +      + *      +    

20        +        *     +   

21             *    *    * *  

22         *               

23          *              

24     *            *    * *  

+ Indicates open in the first solution and closed in the second solution; * indicates closed in the first solution and open in the second solution. 
 

V. DISCUSSION AND FUTURE WORK 

Transmission switching has been shown to provide savings 
when solving the network with a generation unit commitment 
N-1 DCOPF problem. Future research could investigate 
dynamic load patterns to research the effects of transmission 
switching in an AC formulation since lines affect reactive 
power profiles differently under different loading patterns. 
There is also the need to research the impacts from 
transmission switching regarding real time operations 
including voltage profiles, reactive power, transient stability, 
etc. This analysis is necessary at varying load levels as well 
since the capacitive component of a transmission element is 
predominant during low load levels whereas the reactive 
component is predominant at higher load levels. Research into 
whether transmission switching would be beneficial for large 
scale, practical networks and whether solutions can be 
obtained within a reasonable timeframe is needed as well. 
Further, research could look into geographic decomposition. 

The RTS 96 system is a standard IEEE test case. It is large 
enough to provide meaningful results but it is considerably 
smaller than the ISO markets. Solving this problem took large, 
specialized computer networks and even with this equipment 
solving the problems took well over 20 hours at each stage. 
The transmission switching problem with a fixed generator 
unit commitment could be run overnight to find a better 
transmission dispatch. For this method to be practically 
implemented, research on how to solve this problem faster for 
larger networks is needed.  

The large computational times do not suggest that this 
approach of co-optimizing transmission topology with 
generation unit commitment and dispatch is not possible. As 
previously mentioned, the main difficulty is that we are 
combining unit commitment with a full N-1 DCOPF 
formulation, something that is not done in a practical setting. 

In operational networks, the operator may use a security 
constrained unit commitment (SCUC) with multiple stages 
that may include network constraints and chosen contingency 
constraints; however, the unit commitment stage still does not 
include a full N-1 OPF formulation. We wish to study a more 
robust formulation in order to obtain stronger, more accurate 
conclusions. Future research should investigate how to best 
decompose this large optimization problem in the same way 
unit commitment is handled within a practical setting today. 
Furthermore, future research should consider whether reserve 
constraints are appropriate proxy constraints for N-1 within 
transmission switching models.  

As more is learned about the network and transmission 
switching, operators will know which transmission elements 
are candidates for switching so that there is no need to 
represent every transmission element within the network with 
a binary decision variable reflecting whether the element will 
be closed or not. Rather, the operator may be able to focus on 
a subset of transmission elements that are key candidates for 
switching, which will greatly reduce the number of binary 
variables in the optimization problem and, thus, reduce the 
computational complexity of the problem. 

While the market surplus increases in the solution process, 
there is no assurance that the load ends up paying less or the 
generators receive more profit under traditional settlement 
rules (see [16] and [17]). Revenue adequacy for FTRs is 
maintained for the static DC network [36], but not guaranteed 
if the network topology changes [37]. Revenue inadequacy as 
a result of transmission switching is possible even though the 
market surplus increases. Even if there is revenue inadequacy, 
since the total surplus is guaranteed not to decrease with 
transmission switching, there is the possibility for Pareto 
improvements for all market participants. This raises the 
question about the settlement rules if revenue inadequacy 
occurs.  
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VI. CONCLUSIONS  

As computing power and optimization techniques improve, 
the multi-trillion dollar electric industry looks for ways to cut 
costs by taking advantage of these improvements. Viewing 
transmission elements as committable assets in an 
optimization framework is relatively new as such analysis was 
not possible in the past due to the complexity this added to an 
already challenging problem. As computing power increases 
and software improves, potential annual savings may be in the 
tens of billion dollars by improving the dispatch and making 
better investments.   

There are concerns with whether transmission switching 
will be a detriment to reliability. We have demonstrated that a 
network can satisfy N-1 standards while cutting costs by co-
optimizing the network topology and the dispatch. We have 
also demonstrated that changing the topology of the network 
can change the optimal unit commitment schedule and it may 
reduce startup costs. This demonstrates that changing the 
topology can replace the need to startup a generator. Our work 
thus far has shown substantial savings from transmission 
switching, with this study showing a $120,000 savings for one 
day. These findings suggest that further research on 
transmission switching is justified for larger networks and 
with more granular modeling, such as an ACOPF.  
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