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Abstract

In this paper a Hadamard’s type inequality of s—convex function
in first sense and s—convex function of 2—variables on the co-ordinates
are given. A monotonic nondecreasing mapping connected with the
Hadamard’s inequality for Lipschitzian s—convex mapping in the first
sense of one variable is established.
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1 Introduction

Let f: I C R — R be a convex mapping defined on the interval I of real
numbers and a, b € I, with a < b. The following double inequality:

f<a+b>§ 1 a/bf(x)dxsw 1)

2 b—a 2

is known in the literature as Hadamard’s inequality for convex mappings.
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In [9], Orlicz introduced two definitions of s—convexity of real valued func-
tions. A function f: Rt — R, where R* = [0, 0), is said to be s—convex in
the first sense if

flaz+ By) <o’ f (z)+ B°f (y) (2)

for all z,y € [0,00), o, 8 > 0 with o® 4+ $* = 1 and for some fixed s € (0, 1].
We denote this class of functions by K.

Also, a function f: RT — R, where Rt = [0, 00), is said to be s—convex
in the second sense if

flaz+By) < a’f(z)+ 8°f (y) (3)

for all x,y € [0,00), a, B > 0 with a+ § = 1 and for some fixed s € (0,1]. We
denote this class of functions by K?2.

These definitions of s—convexity, for so called ¢—functions, was introduced
by Orlicz in [9] and was used in the theory of Orlicz spaces (see [7], [8], [10]).
A function f: RT™ — R is said to be p—function if f(0) = 0 and f is non—
decreasing and continuous. Its easily to check that the both s—convexity mean
just the convexity when s = 1.

In [4], Hudzik and Maligrada considered among others the class of functions
which are s—convex in the first sense. This class is defined in the following way:

A function f :[0,00) — R is said to be s—convex in the first sense if

flaz+By) < a’f(z)+ 8°f (y) (4)

holds for all z,y € [0,00), a, 3 > 0 with a® + #°* = 1 and for some fixed
s € (0,1]. It can be easily seen that every 1-convex function is convex.

Also, in [4], Hudzik and Maligrada proved a variant properties of s—convex
function in the first and in the second sense, let us take the following theorem.

Theorem 1.1 Let 0 < s<1. If f € K? and f (0) =0 then f € K.

In [5] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s—convex functions in the first sense.
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Theorem 1.2 Suppose that f : [0,00) — [0,00) is an s—convex function in
the first sense, where s € (0,1) and let a,b € [0,00), a < b. If f € L']0,1],
then the following inequalities hold:

f(”b)sbiaa/bf(x)dxsw. (5)

2 s+1
The above inequalities are sharp.

Also, in [5], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequal-
ity which holds for s—convex functions in the second sense.

Theorem 1.3 Suppose that f : [0,00) — [0,00) is an s—convex function in
the second sense, where s € (0,1) and let a,b € [0,00), a < b. If f € L*]0,1],
then the following inequalities hold:

the constant k = — is the best possible in the second inequality in (1.3). The

above inequalities are sharp.

After that, in [6], Dragomir established the following similar inequality of
Hadamard’s type for co-ordinated convex mapping on a rectangle from the
plane R?.

Theorem 1.4 Suppose that f : A — R is co-ordinated conver on A. Then
one has the inequalities

a+tb ctd 1 I
f< 5 ' 9 ) < ma/c/f(%y)dydx
(G R (RS IV RY R

The above inequalities are sharp.

In this paper we will point out a Hadamard—type inequality of s—convex func-
tion in first sense and s—convex functions of 2—variables on the co—ordinates. A
monotonic nondecreasing mapping connected with the Hadamard’s inequality
for Lipschitzian s—convex mapping in the first sense of one variable is given.

For refinements, counterparts, generalizations and new Hadamard’s-type
inequalities see [1-6].
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2 Hadamard’s Inequality

In [2], Alomari and Darus established the definition of s—convex function in the
second sense on co-ordinates. Similarly, one can define the s—convex function
in the first sense on co-ordinates, as follows:

Definition 2.1 Consider the bidimensional interval A := [a,b] X [c,d] in
0, 00)2 with a < b and ¢ < d. The mapping f : A — R is s—convex in the first
sense on A if

flaz+ Bz, oy + pw) < o*f (z,y) + B°f (z,0),

holds for all (x,y), (z,w) € A with a, 3 > 0 with o® + ° = 1 and for some
fized s € (0, 1].

Therefore, one can talk about co—ordinated s—convex function in the first sense,
as follows:

A function f : A — R is s—convex in the first sense on A is called co—
ordinated s—convex in the first sense on A if the partial mappings f, : [a,b] —
R, f, (v) = f(u,y) and f, : [e,d] = R, f; (v) = f(x,v), are s—convex in the
first sense for all y € [¢,d] and = € [a,b] such that s € (0, 1], i.e, the partial
mappings f, and f, s-convex with same fixed s € (0, 1].

The following inequalities is considered the Hadamard—type inequalities for
s—convex function in the first sense on the co—ordinates.

Theorem 2.2 Suppose that f : A = [a,b] x [¢,d] C [0,00)° — [0,00) is
s—conver function on the co—ordinates in the first sense on A. Then one has
the inequalities:

f<a+b c+d>
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The above inequalities are sharp.

Proof. Since f : A — R is co-ordinated s—convex in first sense on A it
follows that the mapping g, : [¢,d] — [0,00), ¢, (y) = f (z,y) is s—convex on
lc,d] for all z € [a,b]. Then by s—Hadamard’s inequality (5) one has:

d
o <C+d> < dic/gx(y)dyé gx(c)%—sgx(d)’ V € [a,b].

2 s+1
That is,
d
c+d 1 f@,c)+sf(z,d)
< < .
f(fr, 5 >_d_cc/f(x7y)dy_ ] , Yz € [a,b]

Integrating this inequality on [a, b], we have

b—a/f< vhﬁ : @tzizf;jif@wﬁmm (9)
b— /fxcdx—l——/fxd ]

A similar arguments applied for the mapping g, : [a,b] — [0,00), g, (2) =
f(2,y), we get

R

1

d d
—%;/fmwww+g%;/fmym4.

Summing the inequalities (9) and (10), we get the second and the third in-
equalities in (8).

Therefore, by s—Hadamard’s inequality (5), we also have:

d
b c+d 1 b
f(a; ,C—g )Sd_c/f<a; ,y>dy (11)

and

b
b d 1 d
T e
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which give, by addition the first inequality in (8).

Finally, by the same inequality we can also state:

b

f(a,c)+sf(b,c)

f(z,c)dx <
J s+ 1
b
o dydo < L @D+ 51 (bd)
s+ 1
d
f(a,c) +sf (a,d)
)d
flay)dy < s+1

and

f(b,c) +sf(b,d)
s+1

.
ﬁc/f(bay)dyé

which give, by addition the last inequality in (8).

Remark 2.3 In (8) if s =1 then the inequality reduced to inequality (7).

Corollary 2.4 Suppose that f : A = [a,b] x [a,b] C [0,00)*> — [0,00) is
s—convex function on the co—ordinates in the first sense on A. Then one has
the inequalities:
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W/{f(x,a)+f(a,x)+S[f($7b)+f(b7x)]}dx

f(a,a) +sf(b,a)+ sf (a,b)+ s*f (b, b)

<
- (s—l—l)

The above inequalities are sharp.
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Corollary 2.5 In Corollary 2.4 if in addition f is symmetric, i.e, f (x,y) =
f(y,x) for all (z,y) € [a,b] x [a,b], we have

f<a—2|rb’a—2|—b>
= (bia)jf<x’a;b>dx
gﬁfb/bfxydydx (14)
< oo /{f(w7a)+sf(:r,b)}dw

) 25 0 h) 42

(s +1)°

The above inequalities are sharp.

Now, the following inequality is considered the mapping connected with the
inequalities in (5) and (6), as follows:

Theorem 2.6 Let f : [a,b] C [0,00) — [0,00) be s—convez function in the
second sense on [a,b] and f(0) = 0. Define a function H : [0,1] — R be such
that

H(t){ s+1
b+ (1 —1t)a)+ f(a)] s<t<l1.

fb+ (1 —t)a) +sf(tat+(1—-1)D)], 0<t<s

Then,
(1) H is s—convez in the first sense on [0, 1].
(2) H is non—decreasing function on [0, 1].

(8) We have the bounds:

f(a) + sf (b)
f Ht) =—"———==H < H
nf (1) P 0) < H()
fla) + [ (b)
H(1 = sup H(t
< HO =TT = A
Proof. Suppose that f : [a,b] C [O o0) — [0,00) be s—convex function in
the second sense on [a,b] and f (0) = 0. Then by Theorem 1.1 f is s—convex

(
function in the first sense on [a, b].
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1. Let t1,t, € [0,1] and o, > 0 with a® 4+ 3° = 1. To show that H is
s—convex we have three non-trivial cases:

(a) For ty,ty € [0, s]

H (Odtl + ﬂtg)
= = [F (ot + )b+ (1~ at + 51) 0

+sf ((aty + Bty) a+ (1 — aty + [t2) b)]
_ 5%1 F(a(tb + (1—t1)a)+ B (tab + (1 — t2) )
+sf(a(tia + (1 —11)b) + B (taa + (1 —t2)0))]
34%1 [@®f (t10 + (1 —t1)a) + B°f (tab + (1 —t2) a)
+s(@’f (tra + (1 —t1)b) + B°f (t2a + (1 —t2) b))]

Jtb+ (1 —t)a)+sf(tia +(1—t1)0b)
@ s+ 1
+ﬁsf (t2b 4+ (1 —t3) a) + sf (taa + (1 —12) D)
s+ 1

= &'H (L) + BH (1)

IN

(b) For tq,ts € [s,1]

H (at1 + ﬁtQ)
_ SL [f (aty + Bta) b+ (1 — aty + Bta) a) +f (a)]

+1
= Sil[f(a(tlb—I—(l—tl)a)—i—ﬁ(th—i—(l—tg)a)) +f (a)]
< —[0f (b + (L= 1)) + 5°F (12b + (1= ) a) +7 (a)]
_ pf Wbt fla) , g fd+1—t)a)+ (o)
s+1 s+1

= o’H (t1) + 0°H (t2)
(¢) Without loss of generality, assume that ¢; € [0, s] and t, € [s,1].
Now, since 0 < t; < sand s <ty < 1, then 0 < at; < as and
Bs < [ty < 3, therefore, s < s < at; + [ty < as + 3. Hence,
aty + [ty € [s,1] and by case (b) above we obtain
H (Oétl + /BtQ) S o’H (tl) + ﬁSH (tg)

which shows that H is s—convex in the first sense on [0, 1].
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2. Let 1,19 € [0, 1] and without loss of generality assume that 0 < t; < ts.
Since f is s—convex in the first sense then f is non-decreasing on (0, c0).

Now, If 0 < t; <ty <'s, then it’s easy to see that H (t;) < H (t3). Also,
if s <t; <ty <1, then one can see that H (t;) < H (t5).

It remains to check t; < s < t5, to get that, it suffices to show that the
function ¢ (s) = f(a) + sf (sa+ (1 — s) b) is non—decreasing on [ty, to].
Therefore,
g(t) = fla)+tf(tia+ (1 —t)b) < fa)+taf (t2a+ (1 —t2) b) = g (t2),
with g (t1 =0) = f(a) and g (t2 = 1) = 2f (a), which shows that H is
non—decreasing on [0, 1].

3. It follows from (2) that, for all ¢ € [0, 1],

fla) +sf (b) f(a) + f(b)

H(0) =
(0) s+1 s+1

<H(t) < =H(1) .

This completes the proof.

Corollary 2.7 If f : [a,b] C [0,00) — [0,00) be s—convex function in the
first sense on [a,b]. Then, the result above in Theorem 2.6 holds.

Theorem 2.8 Let f : [a,b] — R satisfy Lipschitzian conditions. That is,
for all t1,ty € 10, 1], we have

|f (t1) = f(t2)] < L|ts — o

where, L 1s positive constant. Then

L(b—&)‘tl—tgy ,O§t1§t2§8§1
|H (1) — H (ta)] < { 22 [t, —ty] L 0<s<t <t, <1 (15)

L(slzr_f) (=t +[1=t]) , 0<t <s<t, <1

Proof. For t1,t, € [0, 1], we have two cases:
1. If0<t; <ty <s<1, then

1
S+_1|f(tlb+(1—tl)a)—l—sf(ha—i—(l—tl)b)

—[f(t2b+ (1 —t3)a) + sf (taa+ (1 —t2) b)] |

< H%]f(tlbjt(l—tl)a)—f(tgb+(1—t2)a)|

+8+Llyf(t1a+(1—t1>b)—f(tza+(1—tz>b)\
< L(b—a)lt1 —to

|H (t1) — H (t2)| =
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2. If0<5§t1§t2§1,then

H ()= H()| = —=|f b+ (= t)a) + f (0

—[f (tab+ (1 = t2) a) + f (a)]]

< H%]f(tlbjt(l—tl)a)—f(tgb+(1—t2)a)|

L
s+ 1

(b—a) [ty — to]

3. Without loss of generality, if 0 <t; < s and s <ty <1, then

H (4) — H ()] = :11 1 (tb+ (1= t1)a) + sf (1 + (1 — t1)b)

—[f b+ (1 =t5)a) + [ (a)]|

< ST |f b+ (1 —t)a) — f(tb+ (1 —12)a)|

+

s/ (hia+ (1 = 12)B) — / (a)

< S—LH(b—a)|t1—t2|+H%|f(t1a+(1_t1)b)_f(a)|
L

L
b— t1 —t — (b — 1-—t¢
S+1( a) |t 2|+8+1( a) | 1

1 0ot — el +[1—t])

This completes the proof.

Remark 2.9 In (15) if we take t; =1 and ty =0, then (15) reduce to

L(b—a)

H (1) = H(0)] =] ) £ 17—

(16)
where, 0 < s < 1.
The inequality (16) is the s—Hadamard—type inequality for Lipschitzian s—

convex mapping in the first sense of one variable.
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