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Abstract

In this paper a Hadamard’s type inequality of s–convex function
in first sense and s–convex function of 2–variables on the co–ordinates
are given. A monotonic nondecreasing mapping connected with the
Hadamard’s inequality for Lipschitzian s–convex mapping in the first
sense of one variable is established.
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1 Introduction

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real
numbers and a, b ∈ I, with a < b. The following double inequality:

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

2
(1)

is known in the literature as Hadamard’s inequality for convex mappings.

1First author: alomari@math.com
2Corresponding author: maslina@pkrisc.cc.ukm.my
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In [9], Orlicz introduced two definitions of s–convexity of real valued func-
tions. A function f : R+ → R, where R+ = [0,∞), is said to be s–convex in
the first sense if

f (αx + βy) ≤ αsf (x) + βsf (y) (2)

for all x, y ∈ [0,∞), α, β ≥ 0 with αs + βs = 1 and for some fixed s ∈ (0, 1].
We denote this class of functions by K1

s .

Also, a function f : R+ → R, where R+ = [0,∞), is said to be s–convex
in the second sense if

f (αx + βy) ≤ αsf (x) + βsf (y) (3)

for all x, y ∈ [0,∞), α, β ≥ 0 with α + β = 1 and for some fixed s ∈ (0, 1]. We
denote this class of functions by K2

s .

These definitions of s–convexity, for so called ϕ–functions, was introduced
by Orlicz in [9] and was used in the theory of Orlicz spaces (see [7], [8], [10]).
A function f : R+ → R+ is said to be ϕ–function if f (0) = 0 and f is non–
decreasing and continuous. Its easily to check that the both s–convexity mean
just the convexity when s = 1.

In [4], Hudzik and Maligrada considered among others the class of functions
which are s–convex in the first sense. This class is defined in the following way:

A function f : [0,∞) → R is said to be s–convex in the first sense if

f (αx + βy) ≤ αsf (x) + βsf (y) (4)

holds for all x, y ∈ [0,∞), α, β ≥ 0 with αs + βs = 1 and for some fixed
s ∈ (0, 1]. It can be easily seen that every 1–convex function is convex.

Also, in [4], Hudzik and Maligrada proved a variant properties of s–convex
function in the first and in the second sense, let us take the following theorem.

Theorem 1.1 Let 0 < s ≤ 1. If f ∈ K2
s and f (0) = 0 then f ∈ K1

s .

In [5] Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality
which holds for s–convex functions in the first sense.
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Theorem 1.2 Suppose that f : [0,∞) → [0,∞) is an s–convex function in
the first sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1],
then the following inequalities hold:

f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + sf (b)

s + 1
. (5)

The above inequalities are sharp.

Also, in [5], Dragomir and Fitzpatrick proved a variant of Hadamard’s inequal-
ity which holds for s–convex functions in the second sense.

Theorem 1.3 Suppose that f : [0,∞) → [0,∞) is an s–convex function in
the second sense, where s ∈ (0, 1) and let a, b ∈ [0,∞), a < b. If f ∈ L1 [0, 1],
then the following inequalities hold:

2s−1f

(
a + b

2

)
≤ 1

b − a

b∫
a

f (x) dx ≤ f (a) + f (b)

s + 1
(6)

the constant k = 1
s+1

is the best possible in the second inequality in (1.3). The
above inequalities are sharp.

After that, in [6], Dragomir established the following similar inequality of
Hadamard’s type for co-ordinated convex mapping on a rectangle from the
plane R2.

Theorem 1.4 Suppose that f : Δ → R is co-ordinated convex on Δ. Then
one has the inequalities

f

(
a + b

2
,
c + d

2

)
≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx

≤ f (a, c) + f (a, d) + f (b, c) + f (b, d)

4
(7)

The above inequalities are sharp.

In this paper we will point out a Hadamard–type inequality of s–convex func-
tion in first sense and s–convex functions of 2–variables on the co–ordinates. A
monotonic nondecreasing mapping connected with the Hadamard’s inequality
for Lipschitzian s–convex mapping in the first sense of one variable is given.

For refinements, counterparts, generalizations and new Hadamard’s–type
inequalities see [1–6].
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2 Hadamard’s Inequality

In [2], Alomari and Darus established the definition of s–convex function in the
second sense on co–ordinates. Similarly, one can define the s–convex function
in the first sense on co–ordinates, as follows:

Definition 2.1 Consider the bidimensional interval Δ := [a, b] × [c, d] in
[0,∞)2 with a < b and c < d. The mapping f : Δ → R is s–convex in the first
sense on Δ if

f (αx + βz, αy + βw) ≤ αsf (x, y) + βsf (z, w) ,

holds for all (x, y), (z, w) ∈ Δ with α, β ≥ 0 with αs + βs = 1 and for some
fixed s ∈ (0, 1].

Therefore, one can talk about co–ordinated s–convex function in the first sense,
as follows:

A function f : Δ → R is s–convex in the first sense on Δ is called co–
ordinated s–convex in the first sense on Δ if the partial mappings fy : [a, b] →
R, fy (u) = f (u, y) and fx : [c, d] → R, fx (v) = f (x, v), are s–convex in the
first sense for all y ∈ [c, d] and x ∈ [a, b] such that s ∈ (0, 1], i.e, the partial
mappings fy and fx s–convex with same fixed s ∈ (0, 1].

The following inequalities is considered the Hadamard–type inequalities for
s–convex function in the first sense on the co–ordinates.

Theorem 2.2 Suppose that f : Δ = [a, b] × [c, d] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates in the first sense on Δ. Then one has
the inequalities:

f

(
a + b

2
,
c + d

2

)

≤ 1

2

⎡
⎣ 1

b − a

b∫
a

f

(
x,

c + d

2

)
dx +

1

d − c

d∫
c

f

(
a + b

2
, y

)
dy

⎤
⎦

≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (8)

≤ 1

2 (s + 1)

⎡
⎣ 1

b − a

b∫
a

f (x, c) dx +
s

b − a

b∫
a

f (x, d) dx

+
1

d − c

d∫
c

f (a, y) dy +
s

d − c

d∫
c

f (b, y) dy

⎤
⎦

≤ f (a, c) + sf (b, c) + sf (a, d) + s2f (b, d)

(s + 1)2 .
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The above inequalities are sharp.

Proof. Since f : Δ → R is co–ordinated s–convex in first sense on Δ it
follows that the mapping gx : [c, d] → [0,∞), gx (y) = f (x, y) is s–convex on
[c, d] for all x ∈ [a, b]. Then by s–Hadamard’s inequality (5) one has:

gx

(
c + d

2

)
≤ 1

d − c

d∫
c

gx (y)dy ≤ gx (c) + sgx (d)

s + 1
, ∀x ∈ [a, b] .

That is,

f

(
x,

c + d

2

)
≤ 1

d − c

d∫
c

f (x, y) dy ≤ f (x, c) + sf (x, d)

s + 1
, ∀x ∈ [a, b] .

Integrating this inequality on [a, b], we have

1

b − a

b∫
a

f

(
x,

c + d

2

)
dx ≤ 1

(b − a) (d − c)

b∫
a

d∫
c

f (x, y) dydx (9)

≤ 1

s + 1

⎡
⎣ 1

b − a

b∫
a

f (x, c) dx +
s

b − a

b∫
a

f (x, d) dx

⎤
⎦ .

A similar arguments applied for the mapping gy : [a, b] → [0,∞), gy (x) =
f (x, y), we get

1

d − c

d∫
c

f

(
a + b

2
, y

)
dy ≤ 1

(d − c) (b − a)

d∫
c

b∫
a

f (x, y) dxdy (10)

≤ 1

s + 1

⎡
⎣ 1

d − c

d∫
c

f (a, y) dy +
s

d − c

d∫
c

f (b, y) dy

⎤
⎦ .

Summing the inequalities (9) and (10), we get the second and the third in-
equalities in (8).

Therefore, by s–Hadamard’s inequality (5), we also have:

f

(
a + b

2
,
c + d

2

)
≤ 1

d − c

d∫
c

f

(
a + b

2
, y

)
dy (11)

and

f

(
a + b

2
,
c + d

2

)
≤ 1

b − a

b∫
a

f

(
x,

c + d

2

)
dx (12)
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which give, by addition the first inequality in (8).

Finally, by the same inequality we can also state:

1

b − a

b∫
a

f (x, c) dx ≤ f (a, c) + sf (b, c)

s + 1

1

b − a

b∫
a

f (x, d) dx ≤ f (a, d) + sf (b, d)

s + 1

1

d − c

d∫
c

f (a, y) dy ≤ f (a, c) + sf (a, d)

s + 1

and

1

d − c

d∫
c

f (b, y) dy ≤ f (b, c) + sf (b, d)

s + 1

which give, by addition the last inequality in (8).

Remark 2.3 In (8) if s = 1 then the inequality reduced to inequality (7).

Corollary 2.4 Suppose that f : Δ = [a, b] × [a, b] ⊆ [0,∞)2 → [0,∞) is
s–convex function on the co–ordinates in the first sense on Δ. Then one has
the inequalities:

f

(
a + b

2
,
a + b

2

)

≤ 1

2 (b − a)

b∫
a

{
f

(
x,

a + b

2

)
+ f

(
a + b

2
, x

)}
dx

≤ 1

(b − a)2

b∫
a

b∫
a

f (x, y) dydx (13)

≤ 1

(s + 1) (b − a)

b∫
a

{f (x, a) + f (a, x) + s [f (x, b) + f (b, x)]} dx

≤ f (a, a) + sf (b, a) + sf (a, b) + s2f (b, b)

(s + 1)2 .

The above inequalities are sharp.
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Corollary 2.5 In Corollary 2.4 if in addition f is symmetric, i.e, f (x, y) =
f (y, x) for all (x, y) ∈ [a, b] × [a, b], we have

f

(
a + b

2
,
a + b

2

)

≤ 1

(b − a)

b∫
a

f

(
x,

a + b

2

)
dx

≤ 1

(b − a)2

b∫
a

b∫
a

f (x, y) dydx (14)

≤ 2

(s + 1) (b − a)

b∫
a

{f (x, a) + sf (x, b)} dx

≤ f (a, a) + 2sf (a, b) + s2f (b, b)

(s + 1)2 .

The above inequalities are sharp.

Now, the following inequality is considered the mapping connected with the
inequalities in (5) and (6), as follows:

Theorem 2.6 Let f : [a, b] ⊆ [0,∞) → [0,∞) be s–convex function in the
second sense on [a, b] and f (0) = 0. Define a function H : [0, 1] → R be such
that

H (t) =

⎧⎪⎨
⎪⎩

1
s+1

[f (tb + (1 − t) a) + sf (ta + (1 − t) b)] , 0 ≤ t ≤ s

1
s+1

[f (tb + (1 − t) a) + f (a)] , s ≤ t ≤ 1 .

Then,

(1) H is s–convex in the first sense on [0, 1].

(2) H is non–decreasing function on [0, 1].

(3) We have the bounds:

inf
t∈[0,1]

H (t) =
f (a) + sf (b)

s + 1
= H (0) ≤ H (t)

≤ H (1) =
f (a) + f (b)

s + 1
= sup

t∈[0,1]
H (t) .

Proof. Suppose that f : [a, b] ⊆ [0,∞) → [0,∞) be s–convex function in
the second sense on [a, b] and f (0) = 0. Then by Theorem 1.1 f is s–convex
function in the first sense on [a, b].
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1. Let t1, t2 ∈ [0, 1] and α, β ≥ 0 with αs + βs = 1. To show that H is
s–convex we have three non-trivial cases:

(a) For t1, t2 ∈ [0, s]

H (αt1 + βt2)

=
1

s + 1
[f ((αt1 + βt2) b + (1 − αt1 + βt2) a)

+sf ((αt1 + βt2) a + (1 − αt1 + βt2) b)]

=
1

s + 1
[f (α (t1b + (1 − t1) a) + β (t2b + (1 − t2) a))

+sf (α (t1a + (1 − t1) b) + β (t2a + (1 − t2) b))]

≤ 1

s + 1
[αsf (t1b + (1 − t1) a) + βsf (t2b + (1 − t2) a)

+s (αsf (t1a + (1 − t1) b) + βsf (t2a + (1 − t2) b))]

= αsf (t1b + (1 − t1) a) + sf (t1a + (1 − t1) b)

s + 1

+βsf (t2b + (1 − t2) a) + sf (t2a + (1 − t2) b)

s + 1
= αsH (t1) + βsH (t2)

(b) For t1, t2 ∈ [s, 1]

H (αt1 + βt2)

=
1

s + 1
[f ((αt1 + βt2) b + (1 − αt1 + βt2) a) +f (a)]

=
1

s + 1
[f (α (t1b + (1 − t1) a) + β (t2b + (1 − t2) a)) +f (a)]

≤ 1

s + 1
[αsf (t1b + (1 − t1) a) + βsf (t2b + (1 − t2) a) +f (a)]

= αsf (t1b + (1 − t1) a) + f (a)

s + 1
+ βsf (t2b + (1 − t2) a) + f (a)

s + 1
= αsH (t1) + βsH (t2)

(c) Without loss of generality, assume that t1 ∈ [0, s] and t2 ∈ [s, 1].
Now, since 0 ≤ t1 ≤ s and s ≤ t2 ≤ 1, then 0 ≤ αt1 ≤ αs and
βs ≤ βt2 ≤ β, therefore, βs ≤ s ≤ αt1 + βt2 ≤ αs + β. Hence,
αt1 + βt2 ∈ [s, 1] and by case (b) above we obtain

H (αt1 + βt2) ≤ αsH (t1) + βsH (t2)

which shows that H is s–convex in the first sense on [0, 1].
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2. Let t1, t2 ∈ [0, 1] and without loss of generality assume that 0 ≤ t1 ≤ t2.
Since f is s–convex in the first sense then f is non–decreasing on (0,∞).

Now, If 0 ≤ t1 ≤ t2 ≤ s, then it’s easy to see that H (t1) ≤ H (t2). Also,
if s ≤ t1 ≤ t2 ≤ 1, then one can see that H (t1) ≤ H (t2).

It remains to check t1 ≤ s ≤ t2, to get that, it suffices to show that the
function g (s) = f (a) + sf (sa + (1 − s) b) is non–decreasing on [t1, t2].
Therefore,

g (t1) = f (a)+t1f (t1a + (1 − t1) b) ≤ f (a)+t2f (t2a + (1 − t2) b) = g (t2) ,

with g (t1 = 0) = f (a) and g (t2 = 1) = 2f (a), which shows that H is
non–decreasing on [0, 1].

3. It follows from (2) that, for all t ∈ [0, 1],

H (0) =
f (a) + sf (b)

s + 1
≤ H (t) ≤ f (a) + f (b)

s + 1
= H (1) .

This completes the proof.

Corollary 2.7 If f : [a, b] ⊆ [0,∞) → [0,∞) be s–convex function in the
first sense on [a, b]. Then, the result above in Theorem 2.6 holds.

Theorem 2.8 Let f : [a, b] → R satisfy Lipschitzian conditions. That is,
for all t1, t2 ∈ [0, 1], we have

|f (t1) − f (t2)| ≤ L |t1 − t2|
where, L is positive constant. Then

|H (t1) − H (t2)| ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

L (b − a) |t1 − t2| , 0 ≤ t1 ≤ t2 ≤ s ≤ 1

L(b−a)
s+1

|t1 − t2| , 0 < s ≤ t1 ≤ t2 ≤ 1

L(b−a)
s+1

(|t1 − t2| + |1 − t1|) , 0 ≤ t1 ≤ s ≤ t2 ≤ 1

(15)

Proof. For t1, t2 ∈ [0, 1], we have two cases:

1. If 0 ≤ t1 ≤ t2 ≤ s ≤ 1, then

|H (t1) − H (t2)| =
1

s + 1
|f (t1b + (1 − t1) a) + sf (t1a + (1 − t1) b)

− [f (t2b + (1 − t2) a) + sf (t2a + (1 − t2) b)] |
≤ 1

s + 1
|f (t1b + (1 − t1) a) − f (t2b + (1 − t2) a)|

+
s

s + 1
|f (t1a + (1 − t1) b) − f (t2a + (1 − t2) b)|

≤ L (b − a) |t1 − t2|



1566 M. Alomari and M. Darus

2. If 0 < s ≤ t1 ≤ t2 ≤ 1, then

|H (t1) − H (t2)| =
1

s + 1
|f (t1b + (1 − t1) a) + f (a)

− [f (t2b + (1 − t2) a) + f (a)]|
≤ 1

s + 1
|f (t1b + (1 − t1) a) − f (t2b + (1 − t2) a)|

≤ L

s + 1
(b − a) |t1 − t2|

3. Without loss of generality, if 0 ≤ t1 ≤ s and s ≤ t2 ≤ 1, then

|H (t1) − H (t2)| =
1

s + 1
|f (t1b + (1 − t1) a) + sf (t1a + (1 − t1) b)

− [f (t2b + (1 − t2) a) + f (a)]|
≤ 1

s + 1
|f (t1b + (1 − t1) a) − f (t2b + (1 − t2) a)|

+
1

s + 1
|sf (t1a + (1 − t1) b) − f (a)|

≤ L

s + 1
(b − a) |t1 − t2| + 1

s + 1
|f (t1a + (1 − t1) b) − f (a)|

≤ L

s + 1
(b − a) |t1 − t2| + L

s + 1
(b − a) |1 − t1|

≤ L

s + 1
(b − a) (|t1 − t2| + |1 − t1|)

This completes the proof.

Remark 2.9 In (15) if we take t1 = 1 and t2 = 0, then (15) reduce to

|H (1) − H (0)| = |f (b)| ≤ L (b − a)

1 − s
(16)

where, 0 < s < 1.

The inequality (16) is the s–Hadamard–type inequality for Lipschitzian s–
convex mapping in the first sense of one variable.
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