Int. J. Contemp. Math. Sciences, Vol. 3, 2008, no. 32, 1557-1567

Co-ordinated s-Convex Function in the First Sense with Some Hadamard-Type Inequalities

Mohammad Alomari ${ }^{1}$ and Maslina Darus ${ }^{2}$

School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor, Malaysia

Abstract

In this paper a Hadamard's type inequality of s-convex function in first sense and s-convex function of 2 -variables on the co-ordinates are given. A monotonic nondecreasing mapping connected with the Hadamard's inequality for Lipschitzian s-convex mapping in the first sense of one variable is established.

Keywords: Hadamard's inequality, s-Convex function, Co-ordinated $s-$ convex function.

1 Introduction

Let $f: I \subseteq \mathbf{R} \rightarrow \mathbf{R}$ be a convex mapping defined on the interval I of real numbers and $a, b \in I$, with $a<b$. The following double inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1}
\end{equation*}
$$

is known in the literature as Hadamard's inequality for convex mappings.

[^0]In [9], Orlicz introduced two definitions of s-convexity of real valued functions. A function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$, where $\mathbf{R}^{+}=[0, \infty)$, is said to be s-convex in the first sense if

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y) \tag{2}
\end{equation*}
$$

for all $x, y \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ and for some fixed $s \in(0,1]$. We denote this class of functions by K_{s}^{1}.

Also, a function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}$, where $\mathbf{R}^{+}=[0, \infty)$, is said to be s-convex in the second sense if

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y) \tag{3}
\end{equation*}
$$

for all $x, y \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha+\beta=1$ and for some fixed $s \in(0,1]$. We denote this class of functions by K_{s}^{2}.

These definitions of s-convexity, for so called φ-functions, was introduced by Orlicz in [9] and was used in the theory of Orlicz spaces (see [7], [8], [10]). A function $f: \mathbf{R}^{+} \rightarrow \mathbf{R}^{+}$is said to be φ-function if $f(0)=0$ and f is nondecreasing and continuous. Its easily to check that the both s-convexity mean just the convexity when $s=1$.

In [4], Hudzik and Maligrada considered among others the class of functions which are s-convex in the first sense. This class is defined in the following way:

A function $f:[0, \infty) \rightarrow \mathbf{R}$ is said to be s-convex in the first sense if

$$
\begin{equation*}
f(\alpha x+\beta y) \leq \alpha^{s} f(x)+\beta^{s} f(y) \tag{4}
\end{equation*}
$$

holds for all $x, y \in[0, \infty), \alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ and for some fixed $s \in(0,1]$. It can be easily seen that every 1 -convex function is convex.

Also, in [4], Hudzik and Maligrada proved a variant properties of s-convex function in the first and in the second sense, let us take the following theorem.

Theorem 1.1 Let $0<s \leq 1$. If $f \in K_{s}^{2}$ and $f(0)=0$ then $f \in K_{s}^{1}$.

In [5] Dragomir and Fitzpatrick proved a variant of Hadamard's inequality which holds for s-convex functions in the first sense.

Theorem 1.2 Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the first sense, where $s \in(0,1)$ and let $a, b \in[0, \infty), a<b$. If $f \in L^{1}[0,1]$, then the following inequalities hold:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+s f(b)}{s+1} \tag{5}
\end{equation*}
$$

The above inequalities are sharp.
Also, in [5], Dragomir and Fitzpatrick proved a variant of Hadamard's inequality which holds for s-convex functions in the second sense.

Theorem 1.3 Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the second sense, where $s \in(0,1)$ and let $a, b \in[0, \infty), a<b$. If $f \in L^{1}[0,1]$, then the following inequalities hold:

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1} \tag{6}
\end{equation*}
$$

the constant $k=\frac{1}{s+1}$ is the best possible in the second inequality in (1.3). The above inequalities are sharp.

After that, in [6], Dragomir established the following similar inequality of Hadamard's type for co-ordinated convex mapping on a rectangle from the plane \mathbf{R}^{2}.

Theorem 1.4 Suppose that $f: \Delta \rightarrow \boldsymbol{R}$ is co-ordinated convex on Δ. Then one has the inequalities

$$
\begin{align*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& \leq \frac{f(a, c)+f(a, d)+f(b, c)+f(b, d)}{4} \tag{7}
\end{align*}
$$

The above inequalities are sharp.
In this paper we will point out a Hadamard-type inequality of s-convex function in first sense and s-convex functions of 2 -variables on the co-ordinates. A monotonic nondecreasing mapping connected with the Hadamard's inequality for Lipschitzian s-convex mapping in the first sense of one variable is given.

For refinements, counterparts, generalizations and new Hadamard's-type inequalities see [1-6].

2 Hadamard's Inequality

In [2], Alomari and Darus established the definition of s-convex function in the second sense on co-ordinates. Similarly, one can define the s-convex function in the first sense on co-ordinates, as follows:

Definition 2.1 Consider the bidimensional interval $\Delta:=[a, b] \times[c, d]$ in $[0, \infty)^{2}$ with $a<b$ and $c<d$. The mapping $f: \Delta \rightarrow \boldsymbol{R}$ is s-convex in the first sense on Δ if

$$
f(\alpha x+\beta z, \alpha y+\beta w) \leq \alpha^{s} f(x, y)+\beta^{s} f(z, w)
$$

holds for all $(x, y),(z, w) \in \Delta$ with $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$ and for some fixed $s \in(0,1]$.

Therefore, one can talk about co-ordinated s-convex function in the first sense, as follows:

A function $f: \Delta \rightarrow \mathbf{R}$ is s-convex in the first sense on Δ is called coordinated s-convex in the first sense on Δ if the partial mappings $f_{y}:[a, b] \rightarrow$ $\mathbf{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathbf{R}, f_{x}(v)=f(x, v)$, are s-convex in the first sense for all $y \in[c, d]$ and $x \in[a, b]$ such that $s \in(0,1]$, i.e, the partial mappings f_{y} and $f_{x} s$-convex with same fixed $s \in(0,1]$.

The following inequalities is considered the Hadamard-type inequalities for s-convex function in the first sense on the co-ordinates.

Theorem 2.2 Suppose that $f: \Delta=[a, b] \times[c, d] \subseteq[0, \infty)^{2} \rightarrow[0, \infty)$ is s-convex function on the co-ordinates in the first sense on Δ. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
\leq & \frac{1}{2}\left[\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x+\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y\right] \\
\leq & \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{8}\\
\leq & \frac{1}{2(s+1)}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{s}{b-a} \int_{a}^{b} f(x, d) d x\right. \\
& \left.+\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{s}{d-c} \int_{c}^{d} f(b, y) d y\right] \\
\leq & \frac{f(a, c)+s f(b, c)+s f(a, d)+s^{2} f(b, d)}{(s+1)^{2}} .
\end{align*}
$$

The above inequalities are sharp.

Proof. Since $f: \Delta \rightarrow \mathbf{R}$ is co-ordinated s-convex in first sense on Δ it follows that the mapping $g_{x}:[c, d] \rightarrow[0, \infty), g_{x}(y)=f(x, y)$ is s-convex on $[c, d]$ for all $x \in[a, b]$. Then by s-Hadamard's inequality (5) one has:

$$
g_{x}\left(\frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} g_{x}(y) d y \leq \frac{g_{x}(c)+s g_{x}(d)}{s+1}, \quad \forall x \in[a, b]
$$

That is,

$$
f\left(x, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(x, y) d y \leq \frac{f(x, c)+s f(x, d)}{s+1}, \quad \forall x \in[a, b]
$$

Integrating this inequality on $[a, b]$, we have

$$
\begin{align*}
\frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x & \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{9}\\
& \leq \frac{1}{s+1}\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) d x+\frac{s}{b-a} \int_{a}^{b} f(x, d) d x\right]
\end{align*}
$$

A similar arguments applied for the mapping $g_{y}:[a, b] \rightarrow[0, \infty), g_{y}(x)=$ $f(x, y)$, we get

$$
\begin{align*}
\frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y & \leq \frac{1}{(d-c)(b-a)} \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y \tag{10}\\
& \leq \frac{1}{s+1}\left[\frac{1}{d-c} \int_{c}^{d} f(a, y) d y+\frac{s}{d-c} \int_{c}^{d} f(b, y) d y\right]
\end{align*}
$$

Summing the inequalities (9) and (10), we get the second and the third inequalities in (8).

Therefore, by s-Hadamard's inequality (5), we also have:

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) d y \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) d x \tag{12}
\end{equation*}
$$

which give, by addition the first inequality in (8).
Finally, by the same inequality we can also state:

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(x, c) d x \leq \frac{f(a, c)+s f(b, c)}{s+1} \\
& \frac{1}{b-a} \int_{a}^{b} f(x, d) d x \leq \frac{f(a, d)+s f(b, d)}{s+1} \\
& \frac{1}{d-c} \int_{c}^{d} f(a, y) d y \leq \frac{f(a, c)+s f(a, d)}{s+1}
\end{aligned}
$$

and

$$
\frac{1}{d-c} \int_{c}^{d} f(b, y) d y \leq \frac{f(b, c)+s f(b, d)}{s+1}
$$

which give, by addition the last inequality in (8).

Remark 2.3 In (8) if $s=1$ then the inequality reduced to inequality (7).
Corollary 2.4 Suppose that $f: \Delta=[a, b] \times[a, b] \subseteq[0, \infty)^{2} \rightarrow[0, \infty)$ is s-convex function on the co-ordinates in the first sense on Δ. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \\
\leq & \frac{1}{2(b-a)} \int_{a}^{b}\left\{f\left(x, \frac{a+b}{2}\right)+f\left(\frac{a+b}{2}, x\right)\right\} d x \\
\leq & \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(x, y) d y d x \tag{13}\\
\leq & \frac{1}{(s+1)(b-a)} \int_{a}^{b}\{f(x, a)+f(a, x)+s[f(x, b)+f(b, x)]\} d x \\
\leq & \frac{f(a, a)+s f(b, a)+s f(a, b)+s^{2} f(b, b)}{(s+1)^{2}} .
\end{align*}
$$

The above inequalities are sharp.

Corollary 2.5 In Corollary 2.4 if in addition f is symmetric, i.e, $f(x, y)=$ $f(y, x)$ for all $(x, y) \in[a, b] \times[a, b]$, we have

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{a+b}{2}\right) \\
\leq & \frac{1}{(b-a)} \int_{a}^{b} f\left(x, \frac{a+b}{2}\right) d x \\
\leq & \frac{1}{(b-a)^{2}} \int_{a}^{b} \int_{a}^{b} f(x, y) d y d x \tag{14}\\
\leq & \frac{2}{(s+1)(b-a)} \int_{a}^{b}\{f(x, a)+s f(x, b)\} d x \\
\leq & \frac{f(a, a)+2 s f(a, b)+s^{2} f(b, b)}{(s+1)^{2}} .
\end{align*}
$$

The above inequalities are sharp.
Now, the following inequality is considered the mapping connected with the inequalities in (5) and (6), as follows:

Theorem 2.6 Let $f:[a, b] \subseteq[0, \infty) \rightarrow[0, \infty)$ be s-convex function in the second sense on $[a, b]$ and $f(0)=0$. Define a function $H:[0,1] \rightarrow \boldsymbol{R}$ be such that

$$
H(t)= \begin{cases}\frac{1}{s+1}[f(t b+(1-t) a)+s f(t a+(1-t) b)], & 0 \leq t \leq s \\ \frac{1}{s+1}[f(t b+(1-t) a)+f(a)], & s \leq t \leq 1\end{cases}
$$

Then,
(1) H is s-convex in the first sense on $[0,1]$.
(2) H is non-decreasing function on $[0,1]$.
(3) We have the bounds:

$$
\begin{aligned}
\inf _{t \in[0,1]} H(t)=\frac{f(a)+s f(b)}{s+1}=H(0) & \leq H(t) \\
& \leq H(1)=\frac{f(a)+f(b)}{s+1}=\sup _{t \in[0,1]} H(t)
\end{aligned}
$$

Proof. Suppose that $f:[a, b] \subseteq[0, \infty) \rightarrow[0, \infty)$ be s-convex function in the second sense on $[a, b]$ and $f(0)=0$. Then by Theorem $1.1 f$ is s-convex function in the first sense on $[a, b]$.

1. Let $t_{1}, t_{2} \in[0,1]$ and $\alpha, \beta \geq 0$ with $\alpha^{s}+\beta^{s}=1$. To show that H is s-convex we have three non-trivial cases:
(a) For $t_{1}, t_{2} \in[0, s]$

$$
\begin{aligned}
& H\left(\alpha t_{1}+\beta t_{2}\right) \\
= & \frac{1}{s+1}\left[f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\alpha t_{1}+\beta t_{2}\right) a\right)\right. \\
& \left.+s f\left(\left(\alpha t_{1}+\beta t_{2}\right) a+\left(1-\alpha t_{1}+\beta t_{2}\right) b\right)\right] \\
= & \frac{1}{s+1}\left[f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) a\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) a\right)\right)\right. \\
& \left.+s f\left(\alpha\left(t_{1} a+\left(1-t_{1}\right) b\right)+\beta\left(t_{2} a+\left(1-t_{2}\right) b\right)\right)\right] \\
\leq & \frac{1}{s+1}\left[\alpha^{s} f\left(t_{1} b+\left(1-t_{1}\right) a\right)+\beta^{s} f\left(t_{2} b+\left(1-t_{2}\right) a\right)\right. \\
& \left.+s\left(\alpha^{s} f\left(t_{1} a+\left(1-t_{1}\right) b\right)+\beta^{s} f\left(t_{2} a+\left(1-t_{2}\right) b\right)\right)\right] \\
= & \alpha^{s} \frac{f\left(t_{1} b+\left(1-t_{1}\right) a\right)+s f\left(t_{1} a+\left(1-t_{1}\right) b\right)}{s+1} \\
& +\beta^{s} \frac{f\left(t_{2} b+\left(1-t_{2}\right) a\right)+s f\left(t_{2} a+\left(1-t_{2}\right) b\right)}{s+1} \\
= & \alpha^{s} H\left(t_{1}\right)+\beta^{s} H\left(t_{2}\right)
\end{aligned}
$$

(b) For $t_{1}, t_{2} \in[s, 1]$

$$
\begin{aligned}
& H\left(\alpha t_{1}+\beta t_{2}\right) \\
= & \frac{1}{s+1}\left[f\left(\left(\alpha t_{1}+\beta t_{2}\right) b+\left(1-\alpha t_{1}+\beta t_{2}\right) a\right)+f(a)\right] \\
= & \frac{1}{s+1}\left[f\left(\alpha\left(t_{1} b+\left(1-t_{1}\right) a\right)+\beta\left(t_{2} b+\left(1-t_{2}\right) a\right)\right)+f(a)\right] \\
\leq & \frac{1}{s+1}\left[\alpha^{s} f\left(t_{1} b+\left(1-t_{1}\right) a\right)+\beta^{s} f\left(t_{2} b+\left(1-t_{2}\right) a\right)+f(a)\right] \\
= & \alpha^{s} \frac{f\left(t_{1} b+\left(1-t_{1}\right) a\right)+f(a)}{s+1}+\beta^{s} \frac{f\left(t_{2} b+\left(1-t_{2}\right) a\right)+f(a)}{s+1} \\
= & \alpha^{s} H\left(t_{1}\right)+\beta^{s} H\left(t_{2}\right)
\end{aligned}
$$

(c) Without loss of generality, assume that $t_{1} \in[0, s]$ and $t_{2} \in[s, 1]$. Now, since $0 \leq t_{1} \leq s$ and $s \leq t_{2} \leq 1$, then $0 \leq \alpha t_{1} \leq \alpha s$ and $\beta s \leq \beta t_{2} \leq \beta$, therefore, $\beta s \leq s \leq \alpha t_{1}+\beta t_{2} \leq \alpha s+\beta$. Hence, $\alpha t_{1}+\beta t_{2} \in[s, 1]$ and by case (b) above we obtain

$$
H\left(\alpha t_{1}+\beta t_{2}\right) \leq \alpha^{s} H\left(t_{1}\right)+\beta^{s} H\left(t_{2}\right)
$$

which shows that H is s-convex in the first sense on $[0,1]$.
2. Let $t_{1}, t_{2} \in[0,1]$ and without loss of generality assume that $0 \leq t_{1} \leq t_{2}$. Since f is s-convex in the first sense then f is non-decreasing on $(0, \infty)$.
Now, If $0 \leq t_{1} \leq t_{2} \leq s$, then it's easy to see that $H\left(t_{1}\right) \leq H\left(t_{2}\right)$. Also, if $s \leq t_{1} \leq t_{2} \leq 1$, then one can see that $H\left(t_{1}\right) \leq H\left(t_{2}\right)$.

It remains to check $t_{1} \leq s \leq t_{2}$, to get that, it suffices to show that the function $g(s)=f(a)+s f(s a+(1-s) b)$ is non-decreasing on $\left[t_{1}, t_{2}\right]$. Therefore,

$$
g\left(t_{1}\right)=f(a)+t_{1} f\left(t_{1} a+\left(1-t_{1}\right) b\right) \leq f(a)+t_{2} f\left(t_{2} a+\left(1-t_{2}\right) b\right)=g\left(t_{2}\right),
$$ with $g\left(t_{1}=0\right)=f(a)$ and $g\left(t_{2}=1\right)=2 f(a)$, which shows that H is non-decreasing on $[0,1]$.

3. It follows from (2) that, for all $t \in[0,1]$,

$$
H(0)=\frac{f(a)+s f(b)}{s+1} \leq H(t) \leq \frac{f(a)+f(b)}{s+1}=H(1) .
$$

This completes the proof.
Corollary 2.7 If $f:[a, b] \subseteq[0, \infty) \rightarrow[0, \infty)$ be s-convex function in the first sense on $[a, b]$. Then, the result above in Theorem 2.6 holds.

Theorem 2.8 Let $f:[a, b] \rightarrow \boldsymbol{R}$ satisfy Lipschitzian conditions. That is, for all $t_{1}, t_{2} \in[0,1]$, we have

$$
\left|f\left(t_{1}\right)-f\left(t_{2}\right)\right| \leq L\left|t_{1}-t_{2}\right|
$$

where, L is positive constant. Then

$$
\left|H\left(t_{1}\right)-H\left(t_{2}\right)\right| \leq \begin{cases}L(b-a)\left|t_{1}-t_{2}\right| & , 0 \leq t_{1} \leq t_{2} \leq s \leq 1 \tag{15}\\ \frac{L(b-a)}{s+1}\left|t_{1}-t_{2}\right| & , 0<s \leq t_{1} \leq t_{2} \leq 1 \\ \frac{L(b-a)}{s+1}\left(\left|t_{1}-t_{2}\right|+\left|1-t_{1}\right|\right) & , 0 \leq t_{1} \leq s \leq t_{2} \leq 1\end{cases}
$$

Proof. For $t_{1}, t_{2} \in[0,1]$, we have two cases:
1 . If $0 \leq t_{1} \leq t_{2} \leq s \leq 1$, then

$$
\begin{aligned}
\left|H\left(t_{1}\right)-H\left(t_{2}\right)\right|= & \left.\frac{1}{s+1} \right\rvert\, f\left(t_{1} b+\left(1-t_{1}\right) a\right)+s f\left(t_{1} a+\left(1-t_{1}\right) b\right) \\
& -\left[f\left(t_{2} b+\left(1-t_{2}\right) a\right)+s f\left(t_{2} a+\left(1-t_{2}\right) b\right)\right] \mid \\
\leq & \frac{1}{s+1}\left|f\left(t_{1} b+\left(1-t_{1}\right) a\right)-f\left(t_{2} b+\left(1-t_{2}\right) a\right)\right| \\
& +\frac{s}{s+1}\left|f\left(t_{1} a+\left(1-t_{1}\right) b\right)-f\left(t_{2} a+\left(1-t_{2}\right) b\right)\right| \\
\leq & L(b-a)\left|t_{1}-t_{2}\right|
\end{aligned}
$$

2. If $0<s \leq t_{1} \leq t_{2} \leq 1$, then

$$
\begin{aligned}
\left|H\left(t_{1}\right)-H\left(t_{2}\right)\right|= & \left.\frac{1}{s+1} \right\rvert\, f\left(t_{1} b+\left(1-t_{1}\right) a\right)+f(a) \\
& -\left[f\left(t_{2} b+\left(1-t_{2}\right) a\right)+f(a)\right] \mid \\
\leq & \frac{1}{s+1}\left|f\left(t_{1} b+\left(1-t_{1}\right) a\right)-f\left(t_{2} b+\left(1-t_{2}\right) a\right)\right| \\
\leq & \frac{L}{s+1}(b-a)\left|t_{1}-t_{2}\right|
\end{aligned}
$$

3. Without loss of generality, if $0 \leq t_{1} \leq s$ and $s \leq t_{2} \leq 1$, then

$$
\begin{aligned}
\left|H\left(t_{1}\right)-H\left(t_{2}\right)\right|= & \left.\frac{1}{s+1} \right\rvert\, f\left(t_{1} b+\left(1-t_{1}\right) a\right)+s f\left(t_{1} a+\left(1-t_{1}\right) b\right) \\
& -\left[f\left(t_{2} b+\left(1-t_{2}\right) a\right)+f(a)\right] \mid \\
\leq & \frac{1}{s+1}\left|f\left(t_{1} b+\left(1-t_{1}\right) a\right)-f\left(t_{2} b+\left(1-t_{2}\right) a\right)\right| \\
& +\frac{1}{s+1}\left|s f\left(t_{1} a+\left(1-t_{1}\right) b\right)-f(a)\right| \\
\leq & \frac{L}{s+1}(b-a)\left|t_{1}-t_{2}\right|+\frac{1}{s+1}\left|f\left(t_{1} a+\left(1-t_{1}\right) b\right)-f(a)\right| \\
\leq & \frac{L}{s+1}(b-a)\left|t_{1}-t_{2}\right|+\frac{L}{s+1}(b-a)\left|1-t_{1}\right| \\
\leq & \frac{L}{s+1}(b-a)\left(\left|t_{1}-t_{2}\right|+\left|1-t_{1}\right|\right)
\end{aligned}
$$

This completes the proof.

Remark 2.9 In (15) if we take $t_{1}=1$ and $t_{2}=0$, then (15) reduce to

$$
\begin{equation*}
|H(1)-H(0)|=|f(b)| \leq \frac{L(b-a)}{1-s} \tag{16}
\end{equation*}
$$

where, $0<s<1$.
The inequality (16) is the s-Hadamard-type inequality for Lipschitzian $s-$ convex mapping in the first sense of one variable.

Acknowledgement. The work here is supported by the Grant: UKM-GUP-TMK-07-02-107.

References

[1] M. Alomari and M. Darus, A mapping connected with Hadamard-type inequalties in 4-variables, Int. Journal of Math. Analysis, 2 (13) (2008), 601-628.
[2] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function of 2-variables On The co-ordinates, Int. Journal of Math. Analysis, 2 (13) (2008), 629-638.
[3] M. Alomari and M. Darus, The Hadamard's inequality for s-convex function, Int. Journal of Math. Analysis, 2 (13) (2008), 639-646.
[4] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.
[5] S.S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687696.
[6] S. S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), 775-788.
[7] W. Matuszewska and W. Orlicz, A note on the theorey of s-normed spaces of φ-integrable functions, studia Math., 21 (1981), 107-115.
[8] J. Musielak, Orlicz soaces and modular spaces, Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, New York / Berlin, 1983.
[9] W. Orlicz, A note on modular spaces, I, Bull. Acad. Polon. Sci. Math. Astronom. Phys., 9 (1961), 157-162.
[10] S. Rolewicz, Metric Linear Spaces, 2nd ed., PW N, Warsaw, 1984.
Received: May 5, 2008

[^0]: ${ }^{1}$ First author: alomari@math.com
 ${ }^{2}$ Corresponding author: maslina@pkrisc.cc.ukm.my

