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SUMMARY

Formation flying of multiple spacecraft is an enabling technology for many future space science missions.
However, the co-ordination and control of these instruments poses many difficult design challenges. This
paper presents fuel/time-optimal control algorithms for a co-ordination and control architecture that was
designed for a fleet of spacecraft. This architecture includes low-level formation-keeping algorithms and a
high-level fleet planner that creates trajectories to re-size or re-target the formation. The trajectory and
formation-keeping optimization algorithms are based on the solutions of linear and integer programming
problems. The result is a very flexible optimization framework that can be used off-line to analyse various
aspects of the mission design and in real time as part of an onboard autonomous formation flying control
system. The overall control approach is demonstrated using a nonlinear simulation environment that
includes realistic measurement noises, disturbances, and actuator nonlinearities. Copyright # 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Formation flying of multiple spacecraft is an enabling technology for many future space science
missions including enhanced stellar optical interferometers and virtual platforms for earth
observations. This approach will use a distributed array of simple but highly co-ordinated
microsatellites to form a ‘virtual satellite bus’ that replaces the standard monoliths used today
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[1,2]. Strong interest in the formation flying concept has led to several planned and proposed
space missions including: ST-3 and Terrestrial Planet Finder [3], EO-1 [4], TechSat-21
[5], and Orion-Emerald [6]. However, to achieve the goals of these future missions,
many guidance, navigation and control challenges must be addressed. For example, very tight
co-ordination, control, and monitoring of the distributed vehicles in the cluster will be
required to achieve the stringent payload pointing requirements for a radar mission such as
TechSat-21 [5].

Some of the key challenges in this problem are in the design of a fleet control architecture that
can perform the high-level (mission management and planning to enable resource allocation
across the fleet) and low-level (onboard sensing, autonomous closed-loop relative navigation,
and attitude determination) tasks. The primary difficulties are that: (1) with a large fleet, the
computational aspects of the sensing and control are complicated by the large information flow
and amount of processing required; (2) the vehicles must work cooperatively to perform the
science observations; (3) the differential disturbance environment and nonlinear actuator
operations could be uncertain; and (4) the fleet must undergo both resizing and configuration
change maneuvers.

The primary focus of most of the formation flying research to date has been to develop fuel-
efficient methods of performing scientifically useful observations. In particular, much of the
research for cluster dynamic modelling and control has focused on the design of passive
apertures, which are (typically short baseline) periodic formation configurations that provide
good, distributed, Earth imaging and reduce the tendency of the vehicles to drift apart [7]. These
passive apertures can be designed using closed-form solutions provided by linearized orbital
equations (e.g. Hill’s equations for a circular reference orbit) [7–10]. A key aspect of the
formation control in LEO is to maneuver the vehicles in the fleet to specified positions in one of
these aperture, which is essentially a trajectory design and tracking problem. Of course, the goal
is to optimize these trajectories so that the vehicles are accurately initialized in a reasonable
amount of time using the least amount of fuel possible. With disturbance modelling errors,
sensor noise, and actuator nonlinearities, this initialization will typically be imperfect, which will
eventually cause the cluster to disperse. Thus, a combination of both feedforward and feedback
control will be required to correct for these errors. Fuel optimized formation-keeping control
will also be required to maintain the vehicles within a specified tolerance of their desired
aperture locations.

The primary purpose of this paper is to present fuel-optimal control algorithms that can be
used in the co-ordination and control architecture to address these trajectory design issues.
These algorithms build on a core of real-time optimization based on the solution of several
linear programming (LP) trajectory planning problems [11,12]. The approach uses the linearized
orbital dynamics, which have been analysed to show that they provide precise models for short
baseline formations (on the order of a few hundred meters) [7]. The LP approaches to
formation-keeping, trajectory design, and fleet co-ordination are demonstrated using a
commercially available, high-fidelity nonlinear orbit propagation tool [13]. The simulations
include realistic disturbance models, measurement errors, and typical propulsion system
nonlinearities such as finite thrust and minimum impulse bit. The simulation results indicate
that noise in the relative velocity measurements could play a crucial role in the fleet performance
and/or fuel cost. This paper provides a very flexible optimization framework that can be used
before launch to analyse various aspects of the mission design and during flight as part of an
onboard autonomous formation flying control system.
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2. RELATIVE FORMATION DYNAMICS

The following presents the dynamics for the relative motion of a satellite with respect to a
reference satellite on an eccentric orbit. These dynamics are later used in modelling multiple
spacecraft co-ordination problems. Our brief but precise development of the equations of
motion follows Reference [14], and the full details are available in References [15,16]. The
location of each spacecraft within a formation is given by

Rj ¼ Rfc þ qj ð1Þ

where Rfc and qj correspond to the location of the formation centre and the relative
position of the jth spacecraft with respect to that point. The formation centre can either be fixed
to an orbiting satellite, or just a local point that provides a convenient reference for
linearization. The reference orbit in the earth centered inertial (ECI) reference frame is
represented by the standard orbital elements ða; e; i;O;o; yÞ, which correspond to the semi-major
axis, eccentricity, inclination, right ascension of the ascending node, argument of periapsis and
true anomaly.

With the assumption that jqj j5jRfcj, the equations of motion of the jth spacecraft under the
gravitational attraction of a main body

i
.RRj ¼ �

m

jRj j3
Rj þ f j ð2Þ

can be linearized around the formation centre to give

i .qqj ¼ �
m

jRfcj
3

qj �
3Rfc � qj
jRfcj

2
Rfc

� �
þ f j ð3Þ

where the accelerations associated with other attraction fields, disturbances or control inputs are
included in f j. The derivatives in the ECI reference frame are identified by the preceding
subscript i. A natural basis for inertial measurements and scientific observations is the orbiting
(non-inertial) reference frame Sc, fixed to the formation centre (see Figure 1). Using kinematics,
the relative acceleration observed in the inertial reference frame i .qqj can be related to the
measurements in the orbiting reference frame

i .qqj ¼ c .qqj þ 2i ’HH� c ’qqj þ i
’HH� ði ’HH� qjÞ þ ði .HH� qjÞ ð4Þ

where i
’HH and i

.HH correspond to the angular velocity and acceleration of this orbiting reference
frame. The fundamental vectors ðqj ;Rfc;i

’HHÞ in Equations (3) and (4) can be expressed in Sc as

qj ¼ xj #kkx þ yj #kky þ zj #kkz ð5Þ

Rfc ¼ Rfc
#kkx ð6Þ

i
’HH ¼ ’yy #kkz ð7Þ

where the unit vector #kkx points radially outward from Earth’s centre (anti-nadir pointing)
and #kky is in the in-track direction along increasing true anomaly. This right-handed
reference frame is completed with #kkz, pointing in the cross-track direction. All of the
proceeding vectors and their time rate of changes are expressed in the orbiting reference
frame Sc.
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Combining Equations (3) and (4) to obtain an expression for c .qqj, and using Equations (5)–(7),
it is clear that the linearized relative dynamics with respect to an eccentric orbit can be expressed
via a unique set of elements and their time rate of change. This set consists of the relative states
½xj ; yj ; zj� of each satellite, the radius Rfc and the angular velocity ’yy of the formation centre.
Using fundamental orbital mechanics describing planetary motion [17,18], the radius and
angular velocity of the formation centre can be written as

jRfcj ¼
að1� e2Þ
1þ e cos y

and ’yy ¼
nð1þ e cos yÞ2

ð1� e2Þ3=2
ð8Þ

where n ¼
ffiffiffiffiffiffiffiffiffiffi
m=a3

p
is the natural frequency of the reference orbit. These expressions can be

substituted into the equation for c .qqj to obtain the relative motion of the jth satellite in the
orbiting formation reference frame

d

dt
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2
64

3
75
j

¼ �2

0 �’yy 0

’yy 0 0

0 0 0

2
64

3
75

’xx

’yy

’zz

2
64

3
75
j

�

�’yy
2

0 0

0 �’yy
2

0

0 0 0

2
664

3
775

x

y

z

2
64

3
75
j

�

0 �.yy 0

.yy 0 0

0 0 0

2
64

3
75

x

y

z

2
64

3
75
j

þn2
1þ e cos y
1� e2

� �3 2x

�y

�z

2
64

3
75
j

þ

fx

fy

fz

2
64

3
75
j

ð9Þ

The terms on the right-hand side of this equation correspond to the Coriolis acceleration,
centripetal acceleration, accelerating rotation of the reference frame, and the virtual gravity
gradient terms with respect to the formation reference. The right-hand side also includes the
combination of other external and control accelerations in f j. These terms can be explicitly
presented for each spacecraft as

fx

fy

fz

2
64
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75
j

¼
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75
j

þ

wx

wy

wz

2
64

3
75
j

ð10Þ

Figure 1. Relative motion in formation reference frame.
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where u ¼ ½uxðtÞ uyðtÞ uzðtÞ�T : R ! R3 represents the control inputs and w ¼ ½wxðtÞ wyðtÞ
wzðtÞ�T : R ! R3 represents the combination of other external accelerations, such as dis
turbances.

Note that care must be taken when interpreting and using the equations of motion and the
relative states in a nonlinear analysis. The difficulty results from the linearization process, which
maps the curvilinear space to a rectangular one via a small curvature approximation. In this
case, a relative separation in the in-track direction in the linearized equations actually
corresponds to an incremental phase difference in true anomaly, y.

Although Equation (9) is expressed in the time domain, monotonically increasing true
anomaly (y) of the reference orbit provides a natural basis for parameterizing the fleet time and
motion. This observation is based on the fact that the angular velocity and the radius describing
the orbital motion are functions of the true anomaly [17]. Using y as the free variable, the
equations of motion can be transformed using the relationships

ð’��Þ ¼ ð�Þ0 ’yy and ð.��Þ ¼ ð�Þ00 ’yy
2
þ ’yy’yy

0
ð�Þ0 ð11Þ

With these transformations, the set of linear time-varying (LTV) equations describing the
relative motion in an eccentric orbit can be written as

d

dy

x0

x
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y

2
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3
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1þe cos y

3þe cos y
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ð12Þ

d
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z0

z

" #
¼

2e sin y
1þe cos y
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1þe cos y

1 0

" #
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" #
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As shown, the in-plane (x; y) and out-of-plane (z) motions are decoupled (except where the
disturbance models can create coupling) and can be expressed separately.

For a circular reference orbit, e ¼ 0, substituting ’yy ¼ n0; .yy ¼ 0, and transforming
Equations (12) and (13) to time-domain results in the well-known Clohessy–Wiltshire
or Hill’s equations

d

dt
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Equations (12) and (13) can easily be transformed to time domain using the relationships in
Equations (11). These new equations can be compactly represented as a general linear time-
varying state-space model

’xx ¼ AðtÞxðtÞ þ BðtÞuðtÞ þ BdðtÞwðtÞ ð15Þ

These LTV equations will be used for the numerical analysis of the optimization algorithms.
The key reason for using the linear time-varying equations (Equations (12) and (13)),

which are extensions of the standard Hill’s equations, is described in detail in previous
work [14]. In particular, Reference [14] shows through various analytic approximations and
numerical simulations that the modelling errors associated with a circular reference
orbit assumption can be a dominant error source when compared to other distur-
bances (such as differential J2), even for orbits with low eccentricity, such as e ¼ 0:005,
which is typical of shuttle orbits. In addition, a key observation was that simple control systems
that do not model the effects of eccentricity, process this error as a differential disturbance and
thus work against the natural motion. This causes the controllers to continuously use fuel to
correct for the modelling errors. However, accounting for these errors using the initialization
method for eccentric orbits (as shown in Reference [10]) results in a considerable reduction in
fuel cost.

The general state-space model given in Equation (15) can be discretized using the well-known
technique of approximately integrating the dynamics in Equations (12), (13) or (14) over one
sample period, Ts. Here Ak;Bk correspond to AðkTsÞ and BðkTsÞ for approximate integration. In
the case of the Hill’s equations, Ak ¼ A which is constant and Bk ¼ B which is constant. With
the inclusion of the desired output and the direct transition matrices, the discretized relative
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dynamics take the form [19]

xðkþ 1Þ � eAkTsxðkÞ þ
Z Ts

0

eAkx dx BkuðkÞ þ
Z Ts

0

eAkx dx BdkwðkÞ

) xðkþ 1Þ ¼ FkxðkÞ þ GkuðkÞ þMkwðkÞ ð16Þ

yðkÞ ¼ HkxðkÞ þ JkuðkÞ þ PkwðkÞ; t ¼ kTs ð17Þ

where the state transition and input matrices for control and disturbances correspond to

Fk ¼ eAkTs ; Gk ¼
Z Ts

0

eAkx dx Bk; Mk ¼
Z Ts

0

eAkx dx Bdk ð18Þ

These equations are the basis of the control and co-ordination design in the following sections.
This analysis will focuses on the relative states, i.e. relative position and velocities of the vehicles.
Thus typically Jk ¼ 0, Pk ¼ 0, and Hk is of the form

Hk ¼

½1 � � � � � �� � � � ½�1 � � � � � �� 0 0 0

½1 � � � � � �� � � � ½0 � 1 � � �� 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

½0 1 � � �� � � � ½0 � 1 � � �� 0 0 0

..

. ..
. ..

. ..
. ..

. ..
.

2
666666664

3
777777775

ð19Þ

which extracts and differences specific parts of the position and velocity states associated with
the N vehicles in the fleet. The next section gives the computational form of these dynamic
equations that will be used in the optimization.

Remark 1
The time-step, Ts, is typically chosen to be small (i.e. on the order of 5:4 s so that there are 1000
points per orbit) to obtain an accurate discretization. However, this results in a large number of
inputs and constraints for the trajectory optimization, which can take several minutes to solve.
One method to reduce these computational times for a real-time implementation is to only allow
inputs every m-(integer) time-steps and/or only enforcing the constraints every p-(integer) time-
steps. For example, with m ¼ p ¼ 10, this greatly reduces the size of the optimization problem,
resulting in solution times on the order of seconds. This decreased solution time is obtained at
the expense of system performance because the control inputs are allowed less often (reduces
efficiency) and the position constraints are only tested at certain time-steps (violations are
possible at intermediate time-steps). However, as discussed in more detail in Reference [20],
these m and p parameters provide a direct means for tuning the system to trade-off performance
for reduced computational effort.

3. GENERAL SYSTEM DESCRIPTION

The previous section presented the linearized relative spacecraft dynamics in a linear
time-varying form (see Equations (16) and (17)) where xðkÞ 2 Rn are the states, uðkÞ 2 Rm
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are control inputs, and wðkÞ 2 Rp are the differential disturbances acting on the vehicles.
The disturbances are typically modelled as acting on each spacecraft as differential with
respect to the formation centre represented either by another vehicle or a general point on the
reference orbit. The vector yðkÞ 2 Rl corresponds to the measured outputs or the variables of
interest to the control design. The output yðkÞ can be calculated using discrete convolution of
the form

yðkÞ ¼ HkF
ðk;kÞxð0Þ þ ½JkuðkÞ þ PkwðkÞ�

þ
Xk�1

i¼0

HkF
ðk�i�1;kÞ½GiuðiÞ þMiwðiÞ�; k51 ð20Þ

where F ðj;kÞ corresponds to

F ðj;kÞ ¼

Fðk�1Þ � � �Fðk�jþ1ÞFðk�jÞ; 24j4k

Fðk�1Þ; j ¼ 1

I ; j ¼ 0

8><
>: ð21Þ

Note that if the fleet has a circular reference orbit, then the system matrices ðFk;Gk;Hk; Jk;Mk;
PkÞ will be independent of time and F ðk�i�1;kÞ simply corresponds to Fk�i�1. Equation (20) has
the simple matrix representation

yðkÞ ¼ AðkÞUk þ bðkÞ ð22Þ

where AðkÞ and bðkÞ are given by

AðkÞ ¼ ½HkF
ðk�1;kÞG0 HkF

ðk�2;kÞG1 . . . HkF
ð0;kÞGk�1 Jk� ð23Þ

bðkÞ ¼ ½HkF
ðk�1;kÞM0 HkF

ðk�2;kÞM1 � � � HkF
ð0;kÞMk�1 Pk�

wð0Þ

wð1Þ

..

.

wðkÞ

2
666664

3
777775

þ HkF
ðk;kÞxð0Þ ð24Þ

HkF
ðk�i;kÞG0 is the pulse response of the system, and

Uk ¼ ½uð0ÞT uð1ÞT . . . . . . uðk� 1ÞT uðkÞT�T ð25Þ

This affine plant description is the basis of the following trajectory and control design. The
next section introduces unique system limitations, such as state-space constraints, actuator
saturation and slew rates to the formation co-ordination problem. These will ensure that the
optimal control schemes are feasible for each element of the distributed system.
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4. BASIC FORMATION PLANNING

This section presents the formulation of the basic trajectory planning problem as an LP
optimization [21,22]. There are two primary trajectory design problems of interest for formation
flying spacecraft:

1. Formation initialization or reconfiguration problem.
2. Formation-keeping problem.

Based on the affine system model in Equation (22), the general formation initialization or
reconfiguration control problem is to locate the N vehicles in the fleet at the desired relative
positions with the desired relative velocities after n time-steps, while minimizing a weighted sum
ðcj50Þ of the jj � jj1 norm of the control inputs by each spacecraft. The objective statement is

min
Un

Xm
j¼1

cj jjuj jj1 subject to yðnÞ ¼ ydesðnÞ ð26Þ

where uj ¼ ½ujð0Þ ujð1Þ . . . ujðnÞ�T is the fuel used by the jth thruster on the spacecraft. Equation
(26) is the cost function used to design trajectories for a single spacecraft. Note that the
trajectory design could be performed simultaneously for the entire fleet by extending the cost in
Equation (26) to include all control inputs for all spacecraft. The fleet-level trajectory
optimization is discussed in detail in Section 5.

The objective of the formation-keeping control problem is to use the minimum control effort
necessary to maintain the vehicle to within some tolerance of a specified desired set of co-
ordinates at each time-step k. The performance specification is represented by a ‘slab’,

jyjðkÞ � yjdesðkÞj4ej ; ej50

) �ej4yjðkÞ � yjdesðkÞ4ej 8j ¼ 1; . . . ; l
ð27Þ

where ej is the error bound associated with each co-ordinate yj. For example, these
bounds are specified by the error box, e.g. separation of �10 m in-track, �5 m radial,
and �10 m cross-track. Formation-keeping under differential disturbances is achieved by
placing constraints on the position of the spacecraft relative to the desired co-ordinates,
which corresponds to the centre of the error box. Note that the centre of each error box is
referenced to the formation centre, which could be a set of reference orbital elements or another
spacecraft.

Remark 2
ydesðnÞ in Equation (26) can represent the states xðnÞ directly or any affine relat-
ionship between the states, such as the constraint SðnÞydesðnÞ4TðnÞ. This more general
form can be used to place constraints on only part of the system state. For example, one
important problem [10] is to control a group of spacecraft so that they have the same energy
level, which tends to reduce the rate that they will drift apart. This type of energy constraint can
be written as

’yyj þ 2noxj ¼ c; 8j spacecraft

where c is an arbitrary, but common, constant. Note that this process does not specify any fixed
values for the relative states such as radial position, xj or in-track velocity, ’yyj.
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4.1. Additional constraints

Equation (26) is the basic form of the general formation control problems, but other constraints
must be included to address the following issues:

1. The formation-keeping requires that the state variables (co-ordinates) be constrained at
each time-step to ensure that the vehicles stay with a specified tolerance of the desired
location.

2. The thrust levels of each actuator on each spacecraft typically have unique
bounds that must be correctly addressed in the optimization to obtain precise formation
flying.

3. For spacecraft utilizing micro-propulsion, large maneuvers require long periods of thruster
firings and an impulsive DV assumption does not hold for these transfers.

4. Some actuation methods have a very slow slew rate (such as drag panels), and this must be
accounted for in the control design.

This section demonstrates how to include these constraints and presents solutions to several
other problems typically encountered in formation co-ordination and control (see Section 6 for
details and examples).

The different aspects observed in these examples can be structured into a standard format that
can easily be included in the basic optimization problem given previously:

* State-space constraints are described via

SðkÞyðkÞ4TðkÞ 8k 2 f0; 1; . . . ; ng ð28Þ

which can be written as a function of the control input sequence using Equation (22)

½SðkÞAðkÞ�UðkÞ4½TðkÞ � SðkÞbðkÞ� 8k 2 f0; 1; . . . ; ng ð29Þ

These equations can be combined into the general inequality

%SSUn4 %TT ð30Þ

* Control input saturation is described via

umin
j ðiÞ4ujðiÞ4umax

j ðiÞ ð31Þ

which can be written in a compact form for n steps using the previous definition
of Un

I

�I

" #
Un4

Umax
n

�Umin
n

" #
ð32Þ

Note that typically umin ¼ �umax.
* Actuator rate limits described as

rmin
j ðiÞ4ujði þ 1Þ � ujðiÞ4rmax

j ðiÞ ð33Þ
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also can be expressed in the compact form

nn
�nn

" #
Un4

Rmax
n

�Rmin
n

" #
ð34Þ

where

nn ¼

�1 � � � 1 � � � � � � � � �

�1 � � � 1

. .
. . .

.

� � � � � � � � � �1 � � � 1

2
666664

3
777775 ð35Þ

The inequality constraints involving the control input set Un can be combined with state-space
constraints to form the inequality

I

�I

nn
�nn
%SS

2
6666664

3
7777775
Un4

Umax
n

�Umin
n

Rmax
n

�Rmin
n

%TT

2
66666664

3
77777775

or GnUn4bn ð36Þ

With the addition of these constraints, the formation initialization control problem in Equation
(26) can be written as

J
$

sp ¼ min
Un

Xm
j¼1

cj jjuj jj1 ð37Þ

subject to
ydesðnÞ ¼ AðnÞUn þ bðnÞ

GnUn4bn
ð38Þ

4.2. Linear program formulation

To rewrite the formation control problem as a linear program, two slack variables are
introduced that define the positive and negative parts of the control [21,22] input

Un ¼ Uþ
n �U�

n ; Uþ
n 50; U�

n 50 ð39Þ

Using cij as the weight for the input from the jth actuator at the ith time-step, define CT ¼
½c00 c01 . . . cnm c00 c01 . . . cnm� as the weights (typically all set to 1) on each of the positive and
negative parts of the control inputs.
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The formation initialization and reconfiguration problem can then be rewritten as the
standard linear program

J*sp2lp ¼ min
#UUn

CT #UUn ð40Þ

subject to

½AðnÞ � AðnÞ� #UUn ¼ ydesðnÞ � bðnÞ

Gn �Gn

�I 0

0 �I

2
64

3
75 #UUn4

bn
0

0

2
64

3
75

#UUn ¼
Uþ

n

U�
n

" #

8>>>>>>>>><
>>>>>>>>>:

ð41Þ

As given in the structure of the problem, the information necessary to complete the co-
ordination problem are the initial states x0, the desired goal yðnÞ, and the system limitations
embedded in the inequality constraints.

Remark 3
The formation-keeping control problem is formulated by replacing the terminal equality
constraint with inequality constraints at each time-step k to constrain the state to be within
some tolerance, ytol

AðkÞ �AðkÞ

�AðkÞ AðkÞ

" #
#UUk4

ydesðkÞ � bðkÞ þ ytol

�ydesðkÞ þ bðkÞ þ ytol

" #
ð42Þ

The equality constraint given in Equation (41) can also readily be replaced with an inequality
constraint of this form with k ¼ n.

Remark 4
It can easily be shown that the LP cost in Equation (40) is equivalent to the jj � jj1 in Equation
(37). For example, given an optimal command u

$

k at the kth time-step, the LP problem
essentially solves the following optimization:

min
uþ
k
;u�

k

uþk þ u�k ; subject to uþk � u�k ¼ u
$

k ; uþk 50; u�k 50 ð43Þ

The optimal answer to this problem is (i) uþk ¼ u
$

k , u
�
k ¼ 0 if u

$

k50 or (ii) uþk ¼ 0, u�k ¼ �u
$

k if
u

$

k50. Thus the cost function uþk þ u�k is equivalent to ju$

k j, as specified in the standard
optimization in Equation (37). Of course, the LP optimization actually solves for uþk , u

�
k not u

$

k .

The LP in Equations (40) and (41) can be solved very efficiently using many free and
commercially available optimization programs [23–25]. The convexity of the LP problem
essentially means that, if it exists, the solution result will be the global optimum. Thus, under
these given dynamics, constraints, and cost assumptions, no other co-ordination or control
method will outperform the LP solution. Another benefit of the LP approach is that the solution
time increases slowly as the number of variables grows, which is true for all convex optimization
problems.
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4.3. Effects of initial state uncertainty}robust LP approach

As a result of estimation process associated with the relative navigation [26,27], it is expected
that there will be an uncertainty associated with the current positions and velocities (initial states
in the trajectory optimization). A key question that arises for any trajectory generation process
is the effect of uncertainty in the initial state knowledge on the optimal plan. This subsection
presents a simple technique to add robustness in the planning process to these uncertainties.

Uncertainty in the initial conditions can be addressed by developing a trajectory design that is
robust to errors in xð0Þ. Based on the ‘multiple-model’ techniques successfully used for robust
feedback control design [28,29], one approach to increasing robustness in the trajectory planner
is to design the input sequence to simultaneously satisfy the constraints for several (mic) initial
conditions. Note that, as shown in Equation (24), the initial condition only enters the problem
though the righthand side bðkÞ. Thus in the general formulation given in Equations (26), the first
constraint would be written in the form

½�AðkÞ AðkÞ�½ #UUn�4ydesðkÞ � biðkÞ 8i ¼ 1; . . . ;mic ð44Þ

where biðkÞ from Equation (24) captures the response associated with each of the initial
conditions xið0Þ.

To avoid adding a large number of constraints to the LP problem, these mic constraints can be
replaced with a single constraint

½�AðkÞ AðkÞ�½ #UUn�4ydesðkÞ � bmaxðkÞ ð45Þ

where bmax is formed using the following. Form the matrix B

B ¼ ½b1 � � � bmic
� ð46Þ

whose columns are the bi vectors associated with each initial condition. Then determine the
vector bmax, the ith element of which is given by

bmaxðiÞ ¼ max
j

Bij ; 8i ¼ 1; . . . ;N ð47Þ

Because the approach typically only considers several (mic ¼ 1–10) perturbed initial conditions,
it is not guaranteed to provide an input sequence that will not violate the specified constraints.
However, as with the robust feedback control design, experience indicates that the results from
this approach are much less sensitive to errors in the initial conditions. This reduced sensitivity is
clearly demonstrated in the examples presented in Section 6.2.1. Additional analysis of the
effects of sensor noise on the LP control approach is available in Reference [30]. Future work
will compare this ‘multiple-model’ approach to robustness with the guaranteed techniques in
Reference [31].

4.4. Soft constraints}always feasible solutions

One difficulty that arises in using the LP approach to solve the spacecraft control problems is
that the optimization might determine that the solution is infeasible. This most often occurs
when, for the given system characteristics, the desired goals cannot be satisfied in the n steps of
the plan. Another form of infeasibility arises due to the uncertainty in the initial conditions. For
a given uncertainty and plan length, the objective of the control in this case is to maintain a
desired position to within some tolerance. However, the variation in the plans developed for the
initial conditions considered (see Section 4.3) could exceed the maximum tolerance, thereby
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resulting in an infeasible solution. A bisection algorithm can be used to check feasibility for
various time lengths, which will find a feasible solution, if it exists. However for real-time
applications, it is important that the technique be capable of always providing feasible solutions
to the problem.

An alternative approach is to include a tolerance, ytol, on the terminal constraint for the
reconfiguration problem, or state tolerance constraint for formation-keeping problem, and a
scaling variable yscale in the LP formulation such that

jyðkÞ � ydesðkÞj4ytolyscale 8k ¼ 1; . . . ; n ð48Þ

The modified problem formulation is then as follows:

J*sc2lp ¼ min½CT f�
#UUn

yscale

" #
ð49Þ

subject to

AðkÞ �AðkÞ �ytol

�AðkÞ AðkÞ �ytol

" #
#UUk

yscale

" #
4

ydesðkÞ � bðkÞ

�ydesðkÞ þ bðkÞ

" #
8k ¼ 1; . . . ; n

�I 0 0

0 �I 0

0 0 �I

2
64

3
75 #UUn

yscale

" #
4

0

0

�1

2
64

3
75

#UUn ¼
Uþ

n

U�
n

" #

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð50Þ

where k represents each time-step and k ¼ n for the terminal time. The scaling variable,
yscale51, is heavily weighted in the cost function by f41 to prevent increasing the error box to
achieve a solution with zero control inputs. Thus yscale would only be increased to scale the error
box if necessary to obtain a feasible solution. The scaling variable is also constrained to be
greater than one to prevent reducing the position tolerance below the original size in an attempt
to minimize the heavily weighted scaling variable at the expense of increasing the control input.

The relaxation process can also be used in a more general form for the inequality constraints
GnUn4bn in Equation (36) by introducing a set of vectors vn so that

GnUn � bn4vn ð51Þ

where vn ¼ vþn � v�n with vþn 50, v�n 50. Here the inequality constraints are relaxed when the
vn50, so only the positive part of vn, v

þ
n , is required. The error in the inequality constraints is

added to the cost function with a weight vector c > 0 on vþn . The optimization for the terminal
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constraint then takes the following form:

J*scg2lp ¼ min½CT f c�

#UUn

yscale

vþn

2
64

3
75 ð52Þ

subject to

AðkÞ �AðkÞ �ytol 0

�AðkÞ AðkÞ �ytol 0

" # #UUn

yscale

vþn

2
64

3
754 ydesðkÞ � bðkÞ

�ydesðkÞ þ bðkÞ

" #

8k ¼ 1; . . . ; n

Gn �Gn 0 �I

�I 0 0 0

0 �I 0 0

0 0 �I 0

0 0 0 �I

2
6666664

3
7777775
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2
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n
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n

" #

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

ð53Þ

Note that the dimension of the error vector could be reduced in this formulation because most
problems are only concerned with the l1 norm of the error vector. Within the general structure
presented above, this corresponds to replacing the vector variable vn in Equation (52) with just a
scalar v. In this case the inequalities are bounded by the worst case errors described v. The
methods of creating always feasible solutions presented in Equations (50) and (52) can also be
combined with a weighting in the cost function to balance the relaxation of the various
constraints.

The LP problem formulation combined with the additional constraints, robustness, and
feasibility methods provides an effective means of producing fuel-optimal trajectories for
spacecraft. The LP problem can be solved independently for each spacecraft, allowing
distribution of the computational load. However, the following section describes a method of
co-ordinating the trajectory optimizations for the spacecraft to improve the fuel cost for the
fleet.

5. CO-ORDINATION ALGORITHMS

With a large number of vehicles, the computational aspects of the fleet trajectory planning are
complicated by the large information flow and the amount of processing required. This
computational load can be balanced by distributing the effort over the fleet using a bidding
process [32,33]. For example, in a typical formation flying scenario [2,7], the vehicles will be
arranged as part of a passive aperture. These apertures provide relatively stable configurations
that do not require as much fuel to perform the science observations. But changing the viewing
mode of the fleet could require that the formation change configuration, moving from one
aperture to another. In this case it is essential to find fuel- and time-efficient ways to move each
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spacecraft to their locations in the new aperture, which is a challenging optimization problem
with many possible final configurations.

The following describes a distributed solution to this problem, which builds on the results of
References [32,33]. The approach partially alleviates the computational difficulties associated
with solving the aperture optimization problem by distributing the effort over the entire fleet,
and then using a co-ordinator to recombine the results. In this approach, the satellites analyse
the possible final locations in a discrete set of global configurations and associate a cost with
each. The linear programming tools in Section 4 are used to compute the fuel costs (and
trajectories) to move each spacecraft from their current location to each possible final location.
These simple calculations can be done in parallel by each spacecraft. The result is a list of
predicted fuel costs for every possible final location (called a DV map), which are used to
generate the fuel cost to move the fleet to each global configuration. These costs are based on
fuel usage, but they could include other factors, such as the vehicle health.

Note that, in the placement of the formation around the passive aperture, the only
requirement is that the vehicles be evenly spaced. Because the spacecraft are assumed to be
identical, their ordering around the aperture is not important, so this corresponds to an
assignment problem. In addition, the rotation of the entire formation around the aperture is not
important. Each rotation angle of the formation around the ellipse corresponds to what is called
a ‘global configuration’. To consider only a discrete set of configurations, the aperture is
typically discretized at 58 intervals. The DV maps are given to a centralized co-ordinator to
perform the assignment process, which can be done in a number of ways.

To consider this assignment process in more detail, start by selecting one of the possible
locations on the closed-form aperture, and then the N � 1 equally spaced locations from that
point. The N columns corresponding to these locations are then extracted from the overall DV
map to form the N �N matrix

F ¼

f11 f12 � � � f1N

f21 f22 � � � f2N

..

. . .
.

fN1 � � � � � � fNN

2
666664

3
777775 ¼ ½f1 f2 � � � fN � ð54Þ

the elements (fij) of which are the fuel cost for the ith satellite to relocate to the jth position.
The following heuristic, which is based on the results of numerous examples, provides one

way to solve the co-ordinator’s assignment problem. The approach is to determine which
position, on average, would require the most fuel to fill. This fuel cost is calculated by simply
summing the DVs for each position. The location with the highest fuel total is then filled first by
selecting the vehicle that requires the minimum amount of fuel to reach that position. The
procedure is repeated until all positions are filled.

Algorithm
Initialize I ¼ ½1 � � � N� and J ¼ ½1 � � � N�
Step 1: Find j

$ ¼ arg maxj2J
P

i2I fij
Step 2: Find i

$ ¼ arg mini2I fij $

Step 3: Remove i
$

from I and j
$

from J: I ! I\fi $g; J ! J\fj $g.
Step 4: Remove the i

$

row and j
$

column from F and return to step 1.
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This heuristic algorithm is typically used to reduce the problem until only three satellites (and
three positions) remain. The six remaining scenarios can easily be examined to determine the
best-possible configuration. This heuristic algorithm can be computed very quickly, but it
typically does not provide the optimal solution. However, experience has shown that it is very
good at avoiding poor configurations, and thus provides a viable solution approach.

The co-ordinator’s assignment problem can also be solved using integer programming (IP)
techniques [34–37]. Define the N �N matrix Y , the elements yij of which are binary and can be
used to include logical conditions in the optimization. For example, yij ¼ 1 would correspond to
the ith satellite being located at the jth position on the aperture (and yij ¼ 0 would mean that it
is not):

Y ¼

y11 y12 � � � y1N

y21 y22 � � � y2N

..

. . .
.

yN1 � � � � � � yNN

2
666664

3
777775 ¼ ½y1 y2 � � � yN � ð55Þ

With the vectors

*FF ¼ ½ f T1 f T2 � � � f TN �; *YY ¼

y1

..

.

yN

2
664

3
775 ð56Þ

then the assignment problem for the co-ordinator can be written as

J
$

co2ord ¼ min
*YY

*FF *YY ð57Þ

subject to

PN
i¼1 yij ¼ 1; 8j ¼ 1; . . . ;NPN
j¼1 yij ¼ 1; 8i ¼ 1; . . . ;N

yij 2 f0; 1g 8i; j

ð58Þ

Note that *FF *YY calculates the fuel cost associated with each configuration, and the co-ordinator
selects the configuration that minimizes the total fuel cost for the fleet. The two summation
constraints ensure that each satellite is given a location and that only one vehicle is placed at
each location (an exclusive or condition) [34–37]. The selection algorithm can be modified to
include the initial fuel conditions of each vehicle by simply adding the initial fuel state to the
corresponding row of the DV map. Fuel balancing across the fleet can be addressed by
weighting each row of the DV map by a factor ai ¼ DVi0=DVavg0, where DVi0 is the initial fuel
used by the ith spacecraft and DVavg0 is the average initial fuel used by the entire fleet. By design
ai > 1 for vehicles that have used more fuel than the average, which tends to penalize their
additional fuel expenditures more heavily.

The formation co-ordinator approach was applied to a reconfiguration example with eight
vehicles. The vehicles start on one aperture (100 m semi-major axis) and recombine on a second
one (200 m semi-major axis), see Figure 2. The maneuver also changes the orientation of the
cross-track motion. The only hard constraint on the planning process is that the vehicles be
placed with equal phasing on the new aperture. The cost maps for the satellites are based on
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their predicted fuel usage vs aperture location, and are shown in Figure 3. The circles in the
figure show which location each vehicle was given in the fleet-optimal configuration. As is
evident from the figure, all of the spacecraft received solutions that are close to the locations that
would minimize their predicted fuel cost (all spacecraft are within 4 per cent of their minima,
and four are within 2 per cent). However, it is also clear that two of the vehicles (#1 and #5) are
forced to expend more fuel than the others, and two others (#2 and #6) are forced to select
locations that are much higher compared to their fuel-optimal choices (4 per cent above). This is
an example of a case where the team objectives and individual control objectives are in conflict,
and sacrifices by some team members are required to obtain better overall performance.

For this example, the integer optimization takes approximately 1 s to solve using Matlab code
[38] on a Pentium III (500 MHz). The heuristic algorithm takes significantly less time (40:1 s),
and in this case, gave the same answer. Note that Reference [39] shows that the linear
assignment problem can also be solved using linear programming with equality constraints,
which in this example takes approximately 0:17 s. Figure 4 compares the fuel cost associated
with the ð360=5Þ=8 ¼ 9 best configurations (there is an N-fold symmetry in the selection
process). The (^)’s show the costs associated with 800 other cases that were investigated for
each configuration. These results show that some aperture configurations have a fuel cost that is
33 per cent higher than the optimal one given above.

With the discretization of the target aperture, this process is not guaranteed to be globally
optimal, but this hierarchical approach offers some key benefits in that it:

1. Distributes the computational effort of the reconfiguration optimization since most
calculations are done in parallel on much smaller-sized (LP and IP) problems.

2. Provides a simple method of finding optimized solutions that are consistent with the global
constraints since the centralized co-ordinator determines the final solution.

Figure 2. Hill’s frame showing the optimized trajectories followed by the spacecraft to reconfigure the
aperture.
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Figure 3. Associated predictions of the DV fuel cost to move to each location on the target aperture. Uses
a 58 discretization of the target ellipse.

Figure 4. Comparison of the nine best alternative fleet configurations. The final design is #1. The (^)
symbols show 800 alternatives for each possible configuration.
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3. Allows the vehicles to include individual decision models (e.g. bidding highly for a
maneuver that requires less reorientation if there is a reaction wheel failure).

While the heuristic approach is faster to compute on this simple example, the advantage of the
integer optimization approach to the co-ordination is that it enables the trajectory design and
target aperture assignment to be combined into one centralized algorithm [36, 37]. This allows
the co-ordinator to explicitly include additional constraints, such as collision avoidance and
plume impingement, in the optimization. The technique has been demonstrated on small fleets
(e.g. N ¼ 3), and further extensions are under investigation.

6. SIMULATIONS

The satellite formation control problem consists of two types of maneuvers, a formation
initialization or reconfiguration maneuver and a formation-keeping maneuver. Each of these
types of maneuvers has two primary issues in the control problem. The first issue involves the
selection of the dynamics used to determine the desired relative state of each satellite within the
formation. The second issue is to determine how to control the satellite to achieve and maintain
the specified desired state. Both parts of the control problem are discussed below.

The first issue is what relative dynamics and initialization procedure should be used to specify
the desired state for obtaining or maintaining a passive aperture. For the formation
initialization or reconfiguration maneuver, the desired state represents the terminal constraint
in the control problem. For the formation-keeping maneuver the desired state is the position
and velocity the satellite must maintain throughout the maneuvers. The desired state can be
something as simple as an in-track separation or a more complicated case, such as a time-
varying position on a passive aperture. Figure 5 shows an example of this second case}the
desired state is given by the diamond and the position on the reference orbit is given by the
circle. The reference orbit can be specified by one satellite in the formation, the formation
centre, or a virtual satellite that is propagated with the formation. Typical periodic relative
motion for a passive aperture in the absence of disturbances is also shown in Figure 5. The
appropriate method for determining the desired relative state for passive apertures involves
using the time-varying relative dynamics for eccentric orbits first presented by Lawden [15] and
applied to passive formation initialization in References [9,10]. The small correction for
eccentricity is critical in determining the desired state to maintain periodic motion. It is clear
from the figure that the desired state changes with time as the satellite formation orbits around
the earth. Details of passive aperture initialization and desired state propagation for elliptical
orbits are in References [10, 14].

The second issue in the formation control problem is which relative dynamics to use in the
linear programming formulation. For the formation initialization maneuver, the dynamics are
relative to the reference orbit used to determine the desired terminal state. The control problem
is to determine the fuel-optimal control inputs and trajectory to achieve the desired terminal
state at a fixed time. For formation-keeping, the dynamics are relative to a desired state that is
changing with time, and an error box that represents the position tolerance for the formation-
keeping is centred on the desired state (see Figure 5). In the case of a passive aperture design, the
desired state and error box revolve around the reference orbit on the elliptical shape defined by
the periodic relative motion. Reference [10] analyses the linear programming control approach
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using both the time-varying relative dynamics for eccentric orbits by Lawden and the time-
invariant dynamics in Hill’s equations. Note that the time-varying dynamics do not increase the
actual size of the LP problem, but more computation is involved in the problem formulation.
The nonlinear simulations in Reference [10] demonstrated that, for small eccentricities, the time-
invariant Hill’s relative dynamics could be used in the LP control problem with minimal increase
in fuel cost. Hill’s dynamics are sufficient because the control problems take place over short
time scales, typically less than an orbit.

Several nonlinear simulations were performed using FreeFlyerTM orbit simulator [13] in order
to demonstrate the effectiveness of the LP control method for determining fuel optimal control
for each of these particular maneuvers. The FreeFlyerTM orbit simulator propagates the
absolute states of both satellites. The simulator allows the option of including or excluding
disturbances such as drag, lift, solar radiation pressure, and J2. The simulator software
interfaces with MATLABTM, where the control calculations are performed.

The simulation presented in the following sections involves a three satellite formation. The
reference orbit, represented by a virtual satellite with properties similar to the average of the
fleet, has a semi-major axis of 6900 km, inclination 358, and eccentricity 0.005. The spacecraft
begin with an initial in-track separation of 250 m. A formation initialization maneuver is
executed to achieve a passive aperture formation that projects a 400� 200 m ellipse on the
orbital plane and oscillates with an amplitude of 100 m in the crosstrack direction. This aperture
is maintained through formation-keeping for two days then the formation reconfigures to a
second passive aperture with a projected in-plane ellipse of 1200� 600 m and crosstrack
amplitude of 300 m. The crosstrack motion is phased by 908 which causes the plane of the
formation to rotate 908 from the previous aperture. All disturbances (J2, drag, solar radiation

Figure 5. Motion of satellite relative to a reference orbit. The current position of the reference orbit is
denoted with a circle, and the current desired relative position is denoted with a diamond. An error box is

centred on the diamond.
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pressure, etc.) were included in all simulations, however, only differential drag was included in
the LP control formulation.

Each satellite is modelled as an Orion spacecraft based on current specifications for the
Orion–Emerald mission [6,40]. Each satellite has a mass of 45 kg, but they have slightly different
ballistic coefficients, resulting in a differential drag disturbance. The satellite thrusters are
restricted to provide a maximum acceleration of 0:003 m=s2 and a minimum of 5� 10�6 m=s2.
The maximum thrust corresponds to turning on the thruster for the full time-step. The minimum
thrust is determined from a minimum impulse bit of 10 ms during the time-step. The relative
dynamics for the satellites are discretized on a 5:4 s time-step. Lawden’s time-varying equations
are used to determine the desired state for each spacecraft, however Hill’s equations are used in
LP problem.

During each time-step in the dynamics the following sequence of events occur in FreeFlyerTM

and MATLABTM. The current absolute state in the ECI frame is passed from FreeFlyer to
MATLAB. The states of each satellite are then converted from the ECI frame used by FreeFlyer
to the local reference frame (radial, in-track, crosstrack) used in the control implementation.
Each satellite has a position and velocity relative to the virtual satellite representing the
reference orbit. The desired relative state of the each satellite is then determined based on the
virtual satellite’s true anomaly, eccentricity, and semi-major axis, and the individual satellite’s
formation phasing. These calculations use the homogenous solutions to the time-varying
relative dynamics of Lawden (see Reference [10]). Depending on the type of maneuver in
progress, any pre-existing plans, and the error state of the satellite, either the current step in an
existing plan is implemented or a new plan is developed using linear programming. Further
details on the appropriate control and plan development logic for each maneuver type are
provided in the following sections. The control inputs from the plan, if required, are converted
to small displacements and velocity changes using the time-changing dynamics. These relative
state variables are transformed into the ECI frame and passed back to FreeFlyer. They are then
added to the absolute state vector of the satellite after the input-free state propagation is
performed by the FreeFlyerTM software to give the state of each satellite at the beginning of the
next time-step. The result is a real-time linear control in a complex nonlinear simulation
environment.

To simplify the following discussion, the simulation details and results are discussed by
maneuver type. The formation initialization and reconfiguration maneuvers are discussed first
followed by the formation-keeping maneuvers. The discussion of each maneuver type includes
details on the control problem formulation and implementation. This is followed by a discussion
of the effects of sensor noise on each controller performance and methods of improving control.

6.1. Formation initialization and reconfiguration maneuvers

The formation initialization and reconfiguration control problem is to determine the fuel-
optimal trajectory and required control inputs to move a fleet of spacecraft from the current
states to some desired terminal states over a fixed time interval. Several quantities must be
determined for the spacecraft maneuvers.

First, a desired final state must be determined. The desired final state is usually on a passive
aperture that results in periodic relative motion between the satellites in the formation. The
phasing between the satellites on the aperture is usually constrained, however the actual
initialized position is not. In order to consider various final positions, the desired aperture is

M. TILLERSON, G. INALHAN AND J. P. HOW228

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:207–242



discretized into a finite number of terminal positions. Each possible final formation can be
described by a formation anomaly, which is a phasing from 08 to the first satellite on the ellipse
and a formation order. The formation is the ordering of the satellites around the aperture from
the 08 phase angle. The costs for each satellite to achieve each final state are combined to form a
cost matrix which is used to determine the fuel-optimal configuration for the fleet. Details of the
co-ordinator formulation are in Section 5. Discussion and simulation results for each part of the
initialization or reconfiguration problem follow.

6.1.1. Fuel vs formation maneuver time (Figure 6)
As discussed in Section 4, the LP problem provides an efficient solution to the fuel optimization
problem with a fixed end-time. However, the selection of this end-time can have a significant
effect on the total fuel used. Consider the initialization maneuver described in Section 6 wherein
the group of satellites start with an along track separation on a reference orbit and transfer to a
closed-form aperture centred on the same reference orbit. In this optimization, the starting and
terminal positions and velocities for each vehicle are known, and the optimal solution can be
readily found using LP for a given end-time. Figure 6 plots the fuel used vs maneuver time for
one of the spacecraft in the fleet. As shown, the fuel usage can be reduced by a factor of
approximately two if the transfer time is increased from a quarter of an orbit to one orbit.
However, increasing the maneuver time beyond one orbit does not further reduce the fuel usage.

The maneuver time can also be selected to minimize an auxiliary cost function that describes
the desired weighting on the fuel/time trade-off,

Jaux ¼ jjujj1 þ ltf ð59Þ

Figure 6. Fuel vs maneuver time for maneuver from a line to an aperture (200 m semi-major axis). With a
relative weighting of l � 0:18, the best maneuver time would be � 0:75 orbits.
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The lowest value of J
$

aux corresponds to the point with the normal, RN ¼ ½�l;�1�T. Of course,
there are typically many constraints on the length of the transfer/reconfiguration maneuvers.
However, these LP optimizations provide an efficient means of investigating the impact of basic
mission design questions such as the selection of an appropriate maneuver time for the
formation reconfiguration.

6.1.2. Formation co-ordination
The formation co-ordinator discussed in Section 5 is used to determine the fuel-optimal
trajectories for the initial maneuver from an in-track separation to a passive aperture. The
formation co-ordination results in an optimum satellite order of Io1 ¼ ½3 2 1� with a formation
anomaly of 608 and a predicted DV ¼ 0:520 m=s. The result of using a simple choice for the final
formation order (I1 ¼ ½1 2 3� with a 08 anomaly, i.e. vehicle 1 moves to location 1 on the target
ellipse) is DV ¼ 0:580 m=s (a 10 per cent increase from the optimal solution case). Additional
possible configurations could result in an increased fuel cost as high as 20 per cent.

Similar results were developed for the second formation maneuver. Maneuvering the
formation into the same I1 ¼ ½1 2 3� configuration has a cost of DV ¼ 2:743 m=s. The co-
ordination process was performed for the second maneuver to determine that a formation
configuration of Io2 ¼ ½2 3 1� (anomaly of 308) has a slightly lower fuel cost of DV ¼ 2:537 m=s
(� 8 per cent less fuel than the I1 case). An analysis of all possible configurations indicates that
selecting a non-optimized final configuration for the fleet could result in fuel costs that are 5–25
per cent higher than the optimal for maneuvers of this type.

6.1.3. Simulation results (Figures 7–10)
No measurement noise}The first simulation implements the control scheme assuming
knowledge of the satellite positions and velocities without noise/uncertainty. This corresponds
to the ideal case and is used to demonstrate the extent to which LP can be used to generate fuel-
optimal trajectories. Figures 7 and 8 show the initial maneuver to a closed-form ellipse and the
second maneuver from one ellipse to another. The fuel used by each satellite for the maneuvers
are shown in Table I. The actual fuel use in FreeFlyer agrees with the predictions by the co-
ordinator for the initial maneuver (0:520 m=s), but differs slightly for the second maneuver
(2:560 m=s). This small difference is a result of the satellite’s deviation from the initial position
and velocity that was used by the co-ordinator in the trajectory optimization.

Noise}A simulation was also performed to implement the control scheme with measurement
noise included to add uncertainty in the knowledge of the relative positions and velocities of the
satellites. The noise is modelled in the simulations as the true state vector plus a white noise
component. An estimator is currently not used. The noise is restricted to a maximum amplitude
of 2 cm for position and 1 mm=s for velocity as per current studies in GPS measurement noise
[26,27]. Because the formation reconfiguration maneuvers are based on initial conditions that
are uncertain, the satellite will not follow the desired trajectories.

Noise: LQR feedback control}One method of ensuring the satellite continues on the
trajectory is to use feedback control to force the satellites to track the desired trajectory for the
maneuvers. The desired position and velocity during the formation maneuver is determined for
each satellite by simulating the response to the LP designed inputs. An error box is centred on
the desired position for each satellite at each time-step during the maneuver. If the satellite is
within the error box, no feedback control is applied, otherwise a simple linear quadratic
regulator (LQR) is used to drive the satellite position to the desired position and hence back into
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the error box. The LQR control is used until the position state of the satellite returns back inside
the error box. This feedback control is only applied when there are no scheduled feedforward
control inputs.

Figure 7. Reconfiguration from a line (250 m separation) to an aperture (200 m semi-major axis) followed
by two days of formation-keeping. Feedforward control only.

Figure 8. After 2 days (32 orbits) of formation-keeping, the fleet reconfigures to a new non-coplanar
aperture (600 m semi-major axis). The fleet resumes formation-keeping at the new configuration.
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Figure 9. Total fuel (DV) used for the first reconfiguration maneuver. The total DV ¼ 0:641 m=s.

Figure 10. Total fuel (DV) comparison of using feedforward, feedforward/feedback LQR, and replanning
for first reconfiguration maneuver. Total change in DV ¼ 0:310 m=s for feedback LQR and DV ¼

0:121 m=s for replanning.
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In this case, the results of the formation reconfiguration maneuvers are essentially the same as
those shown in Figures 7 and 8. The fuel results are summarized in Table I. With errors in the
initial conditions, the initial maneuver requires a DV ¼ 0:830 m=s, which corresponds to an
extra 0:310 m=s (60 per cent increase) due to feedback control. The second maneuver requires an
extra 0:360 m=s (15 per cent increase) for feedback control.

Noise: replan}Another method of completing the formation reconfiguration in the presence
of measurement noise is by replanning over a reduced horizon during the maneuver. For this
method, the desired position for the satellite during the maneuver is simulated using the
designed inputs from the LP problem. An error box is centred on the desired position at each
time-step. However, now when the error in position of the satellite exceeds the error box, a new
plan is determined based on the current state. The new plan occurs over a plan length that is
reduced by the number of time-steps executed up to that point. One advantage of this method is
that, rather than tracking a trajectory based on incorrect initial conditions, a new trajectory is
determined based on the current knowledge of the satellite state.

The simulations results for this method are summarized in Table I. Using the replanning
method, the fuel cost with initial condition uncertainty for the initialization maneuver is only
increased by 0:121 m=s (23 per cent increase) from the no noise case (approximately one-third of
the fuel increase using LQR). The fuel increase for the formation reconfiguration is 0:074 m=s (3
per cent increase), which is again a significant improvement over the LQR result. A comparison
of combined formation fuel cost for the initialization maneuver with and without uncertainty
using the two methods described above is shown in Figure 10.

6.2. Formation-keeping maneuvers

For the formation-keeping maneuvers, the control is relative to the desired state for
each spacecraft rather than the reference orbit. The desired relative state is differenced with
the true relative state of the satellite to obtain the current error state. An error box that
is centred on the desired position is used to determine if control action is required. The size of
the error box is determined by the position tolerances permitted for the mission objective.

Table I. Fuel summary for reconfiguration maneuvers.

Maneuver Fuel cost Sat 1 Sat 2 Sat 3 Total

Initial move Predicted 0:520 m=s
No uncertainty 0:173 m=s 0:173 m=s 0:173 m=s 0:520 m=s
Uncertainty-LQR 0:336 m=s 0:174 m=s 0:320 m=s 0:830 m=s
Difference 0:310 m=s
Uncertainty-replan 0:212 m=s 0:184 m=s 0:244 m=s 0:641 m=s
Difference 0:121 m=s

Second move Predicted 2:536 m=s
No uncertainty 0:917 m=s 0:820 m=s 0:821 m=s 2:559 m=s
Uncertainty-LQR 1:004 m=s 0:881 m=s 0:945 m=s 2:862 m=s
Difference 0:303 m=s
Uncertainty-replan 0:920 m=s 0:857 m=s 0:837 m=s 2:614 m=s
Difference 0:055 m=s
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Based on the position tolerance of 10 per cent of the baseline (100 m) specified by the TechSat-
21 mission objectives [5], a 10 m in-track, 5 m radial, and 5 m out-of-plane box is used in these
simulations.

In a typical implementation, each satellite is constrained to remain close (specified by the
error box) to a desired location in the formation. When the satellite reaches the edge of
the error box, the LP approach is used to design a trajectory that moves the satellite to a final
position (e.g. near the centre or the far end of the box) while remaining within the error box
and using a minimum amount of fuel. The terminal constraint is specified as in Equation (41).
Figure 11 shows a trajectory that moves the satellite to within 1 m of the centre of the error
box at the end of four orbits. Note that the satellite begins near the centre and drifts to the
right under the differential drag. Figure 12 shows the control inputs used to generate
the trajectory. Only inputs in the in-track direction were required to complete the maneuver, and
all inputs occur at the beginning of the maneuver. Disturbances such as differential
drag and differential J2 can be included as additional inputs to the system dynamics as in
Equation (22). With these inputs, the LP approach can be used to generate fuel-
optimal trajectories for long-term formation-keeping that account for these disturbances.
Differential drag can be modelled as a constant or sinusoidal input for each satellite, and its
effect will depend on whether the satellite’s drag is more or less than the average drag of the
entire fleet (i.e. the satellite will tend to drift ahead or lag behind). The differential drag in this
LP is modelled as a constant �0:5� 10�7 m=s2 acceleration. This acceleration depends
on the difference between the drag coefficient for each satellite and the average drag coefficient
for the fleet.

Figure 11. Planned trajectory for four orbits when initial conditions are known.
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6.2.1. Robust LP for initial condition uncertainty (Figures 13–15)
Any planned trajectory will rely heavily on the knowledge of the satellite’s initial conditions.
However, the initial relative positions and velocities must be measured and will be noisy. Note
that a velocity uncertainty of 2 mm=s in the in-track direction results in approximately 30 m in-
track position error after only one orbit. To examine this point further, consider a velocity
uncertainty of �2 mm=s in the system described in the previous section. Figure 11 shows the
trajectory for the control inputs designed for the nominal case. The inputs keep the satellite
within the error box for four orbits and the path terminates near the centre. However, Figure 13
shows the response with perturbed velocity initial conditions (�2 mm=s in-track, �2 mm=s
radial). In this case, three of the trajectories violate the constraint box and two of the paths leave
the box and never return.

Section 4.3 presents a modification to the LP algorithm that reduces sensitivity to the initial
condition uncertainty by considering several different initial conditions. However, due to the
large impact of the initial velocity errors, the length of the planning horizon must be reduced or
the error box size must be increased. For the examples considered in this paper, the horizon was
reduced to approximately one-quarter of an orbit and the terminal constraint was removed.
Figure 14 shows the response to the four perturbed velocity initial conditions (and two
additional cases) for a quarter orbit plan that was based on the nominal case. Note that four of
the paths exit the error box. This is not surprising, as the LP was only designed for the nominal
case. The control inputs from the robust LP were applied to the same set of initial conditions to
generate the trajectories in Figure 15. Only four of these initial conditions were included in the

Figure 12. Control inputs for trajectory in Figure 11. No radial inputs were required.
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Figure 13. Trajectory followed using a nominal plan designed for four orbits without considering the
initial condition uncertainties. The trajectories for �2 mm=s in-track error had final position errors of

approximately �130 m.

Figure 14. Trajectories for each of the five possible initial conditions using plan for nominal case. The
pentagon and hexagon represent two additional cases within the uncertainty ellipsoid but not considered in

the plan.
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LP design (labelled ones). However, as shown, all six trajectories remain within the box during
this first quarter orbit.

The robustness to the initial condition uncertainty can be improved by considering many
more initial conditions. This step is accomplished at the expense of calculating more b vectors,
but the LP problem remains unchanged. The simulations in Section 6.2.2 consider 12 possible
values of the initial conditions. However, when more initial velocity conditions are considered in
the design, it can become very difficult to find feasible solutions to the LP problems. Further
analysis of the effects of sensor noise on the formation-keeping control are available in
Reference [30].

6.2.2. Simulation results (Figures 16–20)
No measurement noise}The position of one of the vehicles within the error box for formation-
keeping is shown in Figure 16. An LP was used to generate inputs to maintain the satellite
within the error box for half orbit time intervals and end within 1 m of the centre of the error
box. Because the dynamics modelled in the LP are not exactly the same as those in the FreeFlyer
simulation and J2 was not included in the LP model, a shorter plan interval was required than
when the plant dynamics are exactly known. The fuel use for formation-keeping during 32 orbits
is shown in Figure 17. The formation-keeping for one satellite requires approximately DV ¼
12 mm=s per orbit.

Noise: robust LP}A second simulation implements the control scheme with measurement
noise included to add uncertainty in the knowledge of the relative positions and velocities of the
satellites. The robust LP generates inputs that will keep the trajectory associated with the ‘worst

Figure 15. Trajectory followed using robust plan for each initial condition using robustified plan. The
pentagon and hexagon represent two additional cases within the uncertainty ellipsoid but not considered in

the plan.
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Figure 16. Typical in-plane error box motion of the spacecraft. No measurement noise used in the 2 day
(32 orbit) simulation.

Figure 17. Fuel used to stay inside the error box for 2 days (32 orbits). LP plans designed for half an orbit.

M. TILLERSON, G. INALHAN AND J. P. HOW238

Copyright # 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:207–242



Figure 18. Typical in-plane error box motion of the spacecraft for 2 days (32 orbits).

Figure 19. Fuel used for formation-keeping within the error box for 2 days (32 orbits). Robust LP plans
designed for quarter orbit.
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case’ initial condition within the error box for the design horizon (one quarter of an orbit for
these simulations). One example of the satellite position relative to the centre of the error box is
shown in Figure 18 (compare with Figure 16). Note that, due to the initial condition
uncertainty, the robust control input often applies DV commands in the opposite direction to
the motion of the satellite, which results in abrupt changes of direction. As shown in the figure,
the satellite always remains inside the error box despite only considering a finite number of
possible initial conditions. The fuel use for the robust LP formation-keeping is shown in
Figure 19. Formation-keeping using the robust LP requires approximately DV ¼ 34 mm=s per
orbit for each satellite.

For comparison, a second simulation with the same noise level was performed using the
standard LP approach (i.e. non-robust) to generate inputs for a quarter orbit. In this case, the
formation-keeping required a DV ¼ 70 mm=s per orbit for one satellite. The increase in fuel is
due to the inability of the non-robust plan to keep the satellite within the error box, which
results in more frequent constraint violations and the need to replan more often. In fact, in this
second simulation, the satellite exited the error box several times. A comparison of fuel cost for
formation-keeping using LP with no uncertainty, the robust LP with uncertainty, and a non-
robust LP with uncertainty is shown in Figure 20.

7. CONCLUSIONS

This paper presents fuel/time-optimal algorithms for a co-ordination and control architecture
developed for distributed spacecraft systems. This architecture includes both the low-level

Figure 20. Comparison of fuel used for each type of formation-keeping control.
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formation-keeping control and a high-level co-ordinator that designs trajectories to reconfigure
the formation. The trajectory and formation-keeping optimization algorithms are based on the
solutions of linear and integer programming problems. The result is a very flexible optimization
framework that can be used off-line to analyse various aspects of the mission design and in real
time as part of an onboard autonomous formation flying control system. The overall control
approach is demonstrated using a realistic nonlinear simulation environment. The simulation
results indicate that noise in the relative velocity measurements could play a crucial role in the
fleet performance and/or fuel cost.
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