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Abstract: This study aimed to explore the co-removal effect and mechanism of Cr(VI) and Cd(II)
with an optimized synthetic material. The toxicity and accumulation characteristics of Cr(VI) and
Cd(II) encountered in wastewater treatment areas present significant challenges. In this work, a
rational assembly of sulfide-modified nanoscale zero-valent iron (SnZVI) was introduced into a
biochar (BC), and a Cr(VI)–Cd(II) binary system adsorbent with high efficiency was synthesized.
When the preparation temperature of the BC was 600 ◦C, the molar ratio of S/Fe was 0.3, the mass
ratio of BC/SnZVI was 1, and the best adsorption capacities of BC-SnZVI for Cr(VI) and Cd(II)
in the binary system were 58.87 mg/g and 32.55 mg/g, respectively. In addition, the adsorption
mechanism of BC-SnZVI on the Cr(VI)-Cd(II) binary system was revealed in depth by co-removal
experiments, indicating that the coexistence of Cd(II) could promote the removal of Cr(VI) by 9.20%,
while the coexistence of Cr(VI) could inhibit the removal of Cd(II) by 43.47%. This work provides a
new pathway for the adsorption of Cr(VI) and Cd(II) in binary systems, suggesting that BC-SnZVI
shows great potential for the co-removal of Cr(VI) and Cd(II) in wastewater.

Keywords: BC-SnZVI; Cd(II); Cr(VI); co-removal; mechanisms

1. Introduction

Heavy metal ion pollution is one of the most serious environmental problems in the
field of wastewater treatment, and it has been attracting great attention [1]. Among others,
Cr(VI) and Cd(II) are listed as priority pollutants by the US Environmental Protection
Agency (EPA) due to their significant toxicity and accumulation properties, which pose
a serious threat to ecosystems [2]. In addition, the coexistence of Cr(VI) and Cd(II) in
water is a problematic contamination phenomenon, and may cause greater synergistic
toxic effects on organisms [3]. Technologies for the removal of heavy metals from water
have been explored deeply by researchers, including chemical precipitation, reduction,
electrochemistry, and membrane separation [4]. Among them, metal adsorption is more
popular and practical, mainly due to its easy operation, low cost, high efficiency, and
recyclability [5]. However, Cr(VI) and Cd(II) are different kinds of ions with different
charges, so it is not easy for general adsorbents to co-remove these two ions. The co-
removal of two different kinds of ions is still a pressing and difficult issue.

Biochar (BC), as a common adsorbent, has caused widespread concern due to its high
carbon content, large specific surface area, high cation-exchange capacity, and stable struc-
ture [6,7]. Using crop straws such as corn straw as the substrate of biochar is beneficial for
waste recycling and green sustainable development [8,9]. However, the limited porosity
and functional groups of BC restrict its efficiency for pollutant removal [10,11]. Currently,
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researchers have found that controlling the preparation process (temperature or ash con-
tent) of BC and developing BC-based composites can effectively improve its remediation
efficiency. Zhao et al. (2018) found that BC produced from wheat straw at relatively lower
pyrolysis showed higher specific surface area, more micropore structures, and higher ad-
sorption capability [12]. Shen et al. (2019) found that magnesium oxide (MgO)-coated
corncob BC significantly improved lead removal—from 23.00% to 74.00%—and the surface
area of the BC was significantly enhanced from 0.07 to 26.56 m2/g after MgO coating [13]. In
conclusion, the adsorption capacity of BC could be significantly enhanced by modification.

Sulfide-modified nanoscale zero-valent iron (SnZVI) is a typical nanoscale iron mate-
rial. It has a core–shell structure and unique physicochemical properties, showing higher
electron transfer efficiency compared with nanoscale zero-valent iron (nZVI) [14,15]. How-
ever, SnZVI still faces some challenges, such as easy oxidation, agglomeration, and deacti-
vation. BC has a good spatial structure, which could be used as a carrier of SnZVI to prevent
the aggregation and oxidation processes. Although several studies on the remediation of
heavy metals by BC-SnZVI in water have been conducted [16,17], most studies focused on
the removal of heavy metals by BC-SnZVI. There are few studies on the optimization of
BC-SnZVI synthesis conditions for better removal efficiency. In addition, some influencing
factors in the water environment—such as the coexistence of various ions—also affect the
removal of heavy metals by materials. Deng et al. (2020) showed that coexisting anions
such as PO4

3− and NO3
− inhibited the removal of Cr(VI) [16], but the effect of cations on

the removal of heavy metals still needs to be investigated. Importantly, the current research
is mainly focused on the removal of single heavy metals [18,19], while only a few studies
concern the co-removal of two metals—especially for anionic Cr(VI) and cationic Cd(II).
Generally, adsorbents have different removal mechanisms for cations and anions, due to
their different charges. For example, the removal mechanism of cationic Cd(II) is generally
coordination adsorption [20], while that of anionic Cr(VI) is mainly electrostatic adsorption
and reduction [21]. Therefore, specific adsorbents are usually selected for different heavy
metals. Furthermore, an antagonistic or synergistic effect between anions and cations could
be occur during the co-removal process [22,23]. Based on this, research on the removal of
two different types of heavy metal ions by a single adsorbent is a major challenge. Recently,
Ahmad et al. (2017) studied the co-removal effect of Cr(VI) and Cd(II) by a chitosan-grafted
polyaniline–OMMT nanocomposite [24], but did not address the deep removal mechanism.
At present, there is still a lack of research on the co-removal effect and mechanism of anionic
Cr(VI) and cationic Cd(II) by BC-SnZVI.

The objectives of this study were to (1) prepare BC-SnZVI with high adsorption effi-
ciency by optimizing the synthesis conditions, (2) explore the removal effect and influencing
factors of Cr(VI) and Cd(II), and (3) evaluate co-removal mechanisms of Cr(VI) and Cd(II).

2. Materials and Methods
2.1. Materials

Corn straws were harvested from local farms. Ferric sulfate (Fe2(SO4)3), sodium
borohydride (NaBH4), ferrous chloride (FeCl2), ferric chloride (FeCl3), sodium hydrox-
ide (NaOH), and nitric acid (HNO3) were purchased from Shanghai Aladdin Bio-Chem
Technology Co., Ltd. (Shanghai, China). All reagents were of analytical grade.

2.2. Preparation of BC, BC-SnZVI

The corn straw was pyrolyzed in a muffle furnace (Nabertherm, Frankfurt, Germany)
under oxygen-limited conditions, maintained at temperatures of 400, 500, 600, and 700 ◦C
for 4 h, and cooled to room temperature; then, each feedstock was air-dried and milled
to pass through a 0.25 mm sieve for further analysis. The BCs produced at different
temperatures were named BC400, BC500, BC600, and BC700, respectively.

BC-SnZVI was prepared using the modified method of Zhang [25]. Briefly, 1.89 g of
BC produced at 600 ◦C was mixed with 8.00 g of FeSO4·7H2O in deionized water, and the
mixture was stirred for 30 min. Then, the freshly prepared solution containing excessive
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NaBH4 and 0.75 g of Na2S2O4 was added to the mixture with vigorous stirring under
a nitrogen atmosphere for another 1 h. The precipitate was collected and washed with
deionized water and ethanol three times. Finally, the resulting precipitate was vacuum-
dried at 70 ◦C. For the BC-SnZVI sample, the molar ratio of S/Fe was 0.3:1, and the mass
ratio of SnZVI/BC was 1:1. To optimize the molar ratio of S/Fe and the mass ratio of
SnZVI/BC, the molar ratio of S/Fe was varied from 0.2:1 to 0.4:1, and the mass ratio of
SnZVI/BC was varied from 1:3 to 3:1.

2.3. Batch Adsorption
2.3.1. Screening of Potential Adsorbents

A total of 0.10 g of BC produced at different temperatures or BC-SnZVI was added to
100 mL of K2Cr2O7 or CdCl2 solution with a pH of 5.0. The initial concentrations (C0) for
Cr(VI) and Cd(II) were both 50 mg/L. Subsequently, the flasks were shaken at 25 ◦C and
160 rpm for 24 h. Then, the samples were filtered through a 0.22 µm membrane filter and
characterized. The removal rate of metal ions was calculated by mass balance, as expressed
in Equation (1):

Removal rate (%) = 100(C0 − Ce)/Ce (1)

where C0 and Ce are the initial and equilibrium concentrations (mg/L) of metal ions in
solution, respectively.

2.3.2. Adsorption in Single and Binary Systems

To investigate the adsorption capacities of screening BC-SnZVI for Cr(VI) and Cd(II)
in single and binary systems, 0.10 g of BC-SnZVI was placed in 100 mL of K2CrO4 or
CdCl2 solution with a pH of 5.0 and an initial concentration (C0) of 10–50 mg/L for both
Cr(VI) and Cd(II). The experimental data were analyzed using Langmuir sorption isotherm
models according to the method of Sathish et al. (2007) [26].

2.3.3. Effects of the Concentrations of Heavy Metals

To study the effect of metal concentration on competitive adsorption, the concentration of
either Cr(VI) or Cd(II) was set to 50 mg/L, while that of the other metal was set to 10–50 mg/L,
in a binary system.

2.3.4. Effects of Coexisting Heavy Metals

To investigate the effects of coexisting metal ions (e.g., Pb, Hg, As), BC-SnZVI was
added to a 100 mL mixed solution of CdCl2, K2CrO4, and different metal ions, with an
initial pH of 5.0. The concentration of every heavy metal was set to 50 mg/L.

2.4. Characterization

Scanning electron microscopy (SEM) images were obtained with a ZEISS Merlin
scanning electron microscope (Carl Zeiss, Jena, Germany). X-ray diffraction (XRD) spectra
of the materials were recorded between 10◦ and 80◦ (2θ), at a step size of 0.02◦, using a
Bruker D8 Advance diffractometer with 40 kV voltage and a 40 mA anode current for the
Cu Kα radiation (Bruker AXS, Karlsruhe, Germany). Fourier-transform infrared (FTIR)
spectra were collected on a PerkinElmer 1725X FTIR spectrometer (PerkinElmer, Waltham,
MA, USA). Surface analyses were performed by XPS (ESCALAB250 Xi, Thermo Fisher
Scientific, Waltham, MA, USA) using a monochromated Al Kα source and a spot diameter
of 400 µm.

2.5. Statistical Analysis

Experiments were conducted in triplicate in parallel. The concentrations of Cr(VI)
and Cd(II) were determined by inductively coupled plasma atomic emission spectrometry
(ICP-AES) (IRIS Intrepid II XSP, Thermo Elemental, Waltham, MA, USA). The data were
analyzed by one-way analysis of variance using the SPSS 11.0 software (IB, Armonk, NY,
USA). Significant differences were reported at p < 0.05 according to Fisher’s least significant
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difference (LSD) pairwise multiple comparison test. All of the figures were produced with
Origin 2021 and arranged using Adobe Illustrator 2020.

3. Results and Discussion
3.1. Synthesis and Characterization of Materials
3.1.1. Optimized Synthesis of Materials

The removal rates of Cr(VI) and Cd(II) by BC produced at different temperatures are
shown in Figure 1a. It can be observed that the removal rate of Cd(II) increased gradually
with the increase in temperature for producing BC, but it did not increase significantly after
600 ◦C. The removal rate of Cr(VI) even slightly decreased with the increase in temperature
for producing BC. According to Table S1, the H/C rate representing the aromatization
structure of BC and the O/C rate representing the polarity of BC decreased with increasing
temperature, indicating that higher temperatures could promote the conversion of aliphatic
hydrocarbons to aromatic hydrocarbons. With the increase in temperature, the greater
the aromatization of BC, the stronger the cation π effect [27]. Furthermore, the higher
the temperature, the greater the ash content and specific surface area. These reactions all
increased the adsorption of Cd(II) by BC. With the increase in temperature, the acidic func-
tional group (-OH) decreased and the basic functional group (-C-N-) increased (Figure S1,
Supplementary Materials), which may be one of the reasons for the weakened adsorption
of Cr(VI) by BC [10,28]. Therefore, BC600 was selected as the test material for the next
experiment, according to the removal rate and preparation cost.
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Figure 1. The removal rates of Cd(II) and Cr(VI) by (a) BC and (b) BC-SnZVI. Different letters on bars
indicate significant differences at p < 0.05 within the same heavy metal (Cd(II) or Cr(VI)) treatments.

For BC-SnZVI, the removal rates of Cr(VI) and Cd(II) increased with the increase in
the S/Fe molar ratio from 0.2 to 0.3, but decreased slightly with the increase in the S/Fe
molar ratio from 0.3 to 0.4 (Figure 1b). This phenomenon could be explained by the fact
that the sulfur modification significantly improved electronic selectivity and enhanced
the efficiency of electron transfer. However, as the molar ratio of S/Fe further increased
to 0.4, the thick iron sulfide layer covering nZVI particle surfaces may have hindered the
co-precipitation and adsorption process of heavy metals [15]. The removal rates of Cr(VI)
and Cd(II) were the highest when the mass ratio of SnZVI/BC was 1, which could be
attributed to the fact that less SnZVI produced an insufficient effect, while more SnZVI
would affect the effectiveness of the BC [15,29,30]. When the mass ratio of SnZVI/BC
was 1 and the molar ratio of S/Fe was 0.3, the removal rates of Cd(II) and Cr(VI) could
reach 80.53% and 54.66%, respectively. The above control conditions were selected for the
following study.
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3.1.2. Characterization of BC and BC-SnZVI

The morphologies of BC produced at 600 ◦C and of BC-SnZVI are shown in
Figure 2a,b,d,e. It can be seen that BC has pore structures to which SnZVI could be
attached. It was reported that the SnZVI paraparticles were initially nanoscale, but they
were easily aggregated to at least a micrometer scale without surfactants or carriers [16].
According to the SEM images of BC-SnZVI, SnZVI can be dispersed on the surface or pores
of BC after loading, and the diameter of SnZVI was less than 100 nm.
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Figure 2. The SEM images of (a,b) BC and (d,e) BC-SnZVI; the EDS survey for (c) BC and
(f) BC-SnZVI.

The elemental distribution of BC and BC-SnZVI is shown in Figure 2c,f, respectively.
Fe and S appeared after loading SnZVI, which also indicated that SnZVI was successfully
loaded on the BC. The weight proportions of iron and sulfur in BC-SnZVI were 52.34% and
0.77%, respectively. The atomic proportions of iron and sulfur in BC-SnZVI were 21.24%
and 0.55%, respectively.

The XRD patterns of BC and BC-SnZVI are shown in Figure 3. The spectra of BC
showed identical spectra with broad diffraction peaks at 2θ = 24◦, which were attributed to
the presence of the -OH, O=C-O, and C-O groups [31]. We also found that the sharp 2θ peaks
at 28.34◦, 40.50◦, and 50.16◦ were assigned to KCl (JCPDS No. 41-1476), which was perhaps
because with the increase in temperature, a large amount of salt was dehydrated and
precipitated [32]. An Fe0 (JCPDS No. 50-1275) peak appeared at 44.66◦ in BC-SnZVI [18],
indicating that ferric or ferrous iron was reduced. The peak of FeS (JCPDS No. 37-0477)
was detected at 64.38◦ [33], suggesting that FeS was synthesized in the loading process.
The appearance of Fe0 and FeS indicated that SnZVI was successfully synthesized and
loaded on BC, which was consistent with the results of SEM. However, the peak of FeS was
weak, probably because of the low content and poor crystallinity of FeS [34]. In addition, an
Fe2O3 (JCPDS No. 33-0664) peak also appeared at 35.61◦ [35], indicating that the zero-valent
iron was partially oxidized. The XRD results showed that the synthesized BC-SnZVI was
composed of Fe0, FeS, and iron oxides.
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3.2. Isothermal Adsorption in Single and Binary Systems

In order to study the adsorption efficiency of BC-SnZVI, the adsorption isotherms
of Cr(VI) and Cd(II) in single or binary systems were evaluated, as shown in Figure 4.
The results showed that the maximum adsorption capacities of BC-SnZVI for Cd(II) were
48.65 mg/g in the single system and 32.55 mg/g in the binary system, while for Cr(VI), the
maximum adsorption capacities were 42.14 mg/g in the single system and 58.87 mg/g in
the binary system. Therefore, Cr(VI) could inhibit the adsorption of Cd(II), while Cd(II)
could promote the adsorption of Cr(VI) in the binary system. Chen’s research was partly
supportive of this result, finding that Cr(VI) and Cd(II) had a synergistic removal effect in
aqueous solution [36]. However, Chen used chitosan and vermiculite as adsorbents, which
have different adsorption mechanisms compared to BC-SnZVI. Some studies have shown
that when two ions coexist, they compete for the adsorption site of the material, resulting
in a decrease in the adsorption efficiency for each ion [37,38]. Zheng et al. (2021) found that
coexisting ions have obvious competitive adsorption behavior on chitosan–EDTA-modified
magnetic BC when the metal concentration is beyond 20 mg/L [39]. However, some studies
also showed that the cations in the solution may increase the positive charge density of the
adsorbents, resulting in enhanced electrostatic adsorption capacity for anions which, in
turn, increases the removal rate of anions [40,41]. In short, many factors could affect the
removal rates of Cr(VI) and Cd(II), which may be related to the structure and functional
groups of the material, the concentration of heavy metals, or the type of heavy metal ions.
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3.3. Effects of Heavy Metal Concentration on Adsorption

As shown in Figure 5, with the increase in the initial Cr(VI) concentration, the re-
moval rate of Cd(II) gradually decreased. This indicated that the Cd(II) adsorption to
BC-SnZVI was inhibited by Cr(VI), and the inhibition rate reached 43.47% when Cr was
50 mg/L. However, with the increase in the initial Cd(II) concentration, the removal rate of
Cr(VI) gradually increased, showing that the removal of Cr(II) by BC-sZVI was promoted
(by 9.20%). The above phenomenon was mainly due to the different adsorption mecha-
nisms of Cr(VI) and Cd(II) by BC-SnZVI. The adsorption mechanisms generally included
electrostatic adsorption, redox reactions, coordination adsorption, and precipitation reac-
tions [42–44]. The specific reasons should be further discussed with the characterization
of materials.
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3.4. Effects of Other Coexisting Metal Ions

There are many coexisting heavy metals that could affect the removal of Cr(VI) and Cd(II)
in actual environments [45,46]. Therefore, the effects of other heavy metals on Cr(VI)–Cd(II)
removal in binary systems were investigated. As shown in Figure 6, the removal rate of Cd(II)
could be promoted by the coexistence of As(III) (by 24.22%), but inhibited by the coexistence
of Hg(II) and Zn(II) (42.01%, 37.66%). Interestingly, the coexistence of other metals showed
the opposite effects to Cr(VI). The removal rate of Cr(VI) was promoted by the coexistence
of Hg(II) and Zn(II), and the promotion rates were 13.40% and 6.30%, respectively, while
the coexistence of As(III) inhibited Cr(VI) removal by 20.68%. The results showed that there
was a competitive adsorption between As(III) and Cr(VI), which may have been due to the
site occupation of As(III) to Cr(VI). In addition, the presence of As(III) might reduce the
positive charge density of BC-SnZVI, resulting in the decrease in electrostatic adsorption
capacity for Cr(VI). Competitive adsorption between Hg(II), Zn(II), and Cd(II) was also
found, and the order of competitiveness was Hg(II) > Zn(II). This was mainly attributed to
the affinity of these heavy metal ions for BC-SnZVI [46,47].

3.5. Comparison with Other Adsorbents

The adsorption capacities of BC-SnZVI and other reported adsorbents were compared,
as shown in Table S2. Some adsorbents—such as magnetite NPs, sunflower head carbon,
and sunflower stem carbon—could simultaneously remove Cr(VI) and Cd(II) [38,48], but
BC-SnZVI had a higher adsorption capacity than these absorbents. Although some adsor-
bents had better adsorption capacity for Cr(VI) or Cd(II) in single systems, most of them
were still lower than that of BC-SnZVI. The results indicate that the optimized BC-SnZVI
has a great adsorption effect on Cr(VI) and Cd(II), and show the potential of BC-SnZVI in
practical application.
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3.6. Mechanisms of Cd(II)-Cr(VI) Co-Removal
3.6.1. Effects of Functional Groups

Studies have shown that BC loaded with SnZVI forms a special C-O-Fe structure, in
addition to the common functional groups such as -COOH and -OH. In addition, some
iron ions formed iron oxide compounds (yFe2O3), and some formed Fe-R-COOH and
Fe-R-OH functional groups with BC surface groups [49,50]. The assignment of vibrational
bands in the FTIR spectra in this study is shown in Table S3. In this study, the peaks of
various functional groups of BC-SnZVI changed slightly after Cr(VI) and Cd(II) adsorption
(Figure 7). These changes illustrate that various functional groups played important roles
in the heavy metal adsorption process. The peak at 3440 cm−1 in BC-SnZVI was attributed
to the -OH stretching vibration [51], and the peak position was offset after adsorption. The
peak at 1383 cm−1 was associated with -COOH stretching vibration [52], and the peak
vibration was enhanced after adsorption. This indicates the existence of strong interactions
between -OH and -COOH groups with Cr(VI) and Cd(II) ions, which is consistent with
previous studies [19,25,30]. The change in carboxyl groups was primarily concerned with
the reduction of Cr(VI) and the coordination of Cd(II). Hydroxyl groups provided electrons
for the reduction of Cr(VI); meanwhile, they were oxidized to carboxyl groups [46,47,53].
Xue et al. (2012) also pointed out that the -COOH functional group played an important role
in the adsorption process through coordination adsorption [54]. Meanwhile, the C-O group
at 1119 cm−1 [30], the Fe-O group at 600 cm−1 [19], and the Fe-S group at 473 cm−1 [55] for
BC-SnZVI were shifted or disappeared after Cr(VI) and Cd(II) adsorption, illustrating that
the above groups played a role in the adsorption process.

3.6.2. XPS Analysis

Figure 8 presents the XPS spectra of BC-SnZVI before and after Cr(VI) and Cd(II)
adsorption. From the XPS spectrum of C 1s (Figure 8a), the rate of the O-C=O peak
ascended after Cr(VI) and Cd(II) adsorption. Especially in Cr-laden BC-SnZVI and Cr–Cd-
laden BC-SnZVI systems, the rate of the O-C=O peak ascended from 5.34% to 10.14% and
11.82%, respectively. However, the C-O peak decreased from 28.70% (BC-SnZVI) to 22.90%,
20.11%, and 20.12% for Cd-laden BC-SnZVI, Cr-laden BC-SnZVI, and Cr–Cd-laden BC-
SnZVI, respectively. This was mainly due to the combined results of redox and adsorption.
Firstly, the hydroxyl groups were oxidized to carboxyl groups by Cr(VI), resulting in an
increase in the rate of the O-C=O peak, which was the same as that reflected in the FTIR.
Moreover, it is noteworthy that in the binary system, the rate of the O-C=O peak was larger,
indicating that the coexistence of Cd(II) might further promote Cr(VI) reduction. Secondly,
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oxygen-containing functional groups could coordinate with Cd(II) and Cr(III), resulting in
a decrease in the C-O peak rate [56].
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From the XPS spectrum of Fe 2p (Figure 8b), BC-SnZVI had an Fe0 peak, but the
Fe0 peak disappeared after ion adsorption. Moreover, the rate of the FeS peak decreased
and the rate of the Fe(III) and FeOOH peaks ascended after ion adsorption. This clearly
indicated that the redox reaction occurred, and that Fe0 and Fe(II) were oxidized after ion
adsorption. From the XPS spectrum of Cr 2p (Figure 8c), a part of Cr(VI) was reduced
to Cr(III) by BC-SnZVI, and the rate of the Cr(III) peak was higher than that of Cr(VI),
indicating that reduction was an important factor for Cr(VI) removal. In addition, the ratio
of Cr(III) to total adsorbed Cr was 67.69% in a binary system, which was 9.00% higher than
that in a single system. This demonstrates that the coexistence of Cd(II) enhanced Cr(VI)
reduction, which is consistent with the results of C 1s. From the XPS spectrum of Cd 3d
(Figure 8d), the two peaks of the Cd 3d spectrum did not change noticeably in either single
or binary systems, indicating that redox reaction was not the main factor for Cd removal.
This was mainly because the standard reduction potential of Cd2+ was close to that of Fe2+,
so the reduction of Cd2+ did not occur during the reaction [57].

3.6.3. Simulated Mechanisms

The co-removal mechanism of Cr(VI) and Cd(II) is shown in Figure 9. The removal
of Cr(VI) was a multiple-reaction process. Firstly, Cr(VI) was adsorbed on the surface of
BC-SnZVI by electrostatic adsorption due to the positive surface charge of BC-SnZVI. In
addition, the coexistence of Cd(II) improved the positive charge density of BC-SnZVI, and
promoted the effect of electrostatic adsorption. Secondly, Cr(VI) was reduced to Cr(III) by
Fe0, FeS, and the -OH functional group, and the coexistence of Cd(II) further promoted the
reduction of Cr(VI). Finally, a part of Cr(III) could form Cr2S3 precipitation with S2−, and a
part of Cr(III) could generate coordination adsorption with oxygen-containing functional
groups. Therefore, the coexistence of Cd(II) promoted the removal of Cr(VI) in the binary
system. Conversely, Cd(II) was mainly removed by coordination adsorption and precipita-
tion reactions, since redox reactions were not involved. On the one hand, Cd(II) could form
CdS precipitation with S2−. On the other hand, it could generate coordination adsorption
with oxygen-containing functional groups. However, the coordination adsorption and
precipitation of Cd(II) was weakened due to site competition from Cr(III). Therefore, the
coexistence of Cr(VI) could inhibit the removal of Cd(II) in the binary system, and the
inhibition was positively related to Cr(VI) content.
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4. Conclusions and Future Perspectives

This study explored the effectiveness, influencing factors, and mechanisms for the
co-removal of Cr(VI) and Cd(II) by BC-SnZVI. The results showed that optimized BC-SnZVI
had great effectiveness in the co-removal of Cr(VI) and Cd(II). The adsorption capacity of
Cd(II) and Cr(VI) was 32.55 mg/g and 58.87 mg/g, respectively, in the binary system. The
coexistence of Cd(II) could promote the removal of Cr(VI) by 9.20%, while the coexistence
of Cr(VI) inhibited the removal of Cd(II) by 43.47%. Moreover, the coexistence of As(III)
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promoted the removal of Cd(II) but inhibited Cr(VI) removal, while the coexistence of Hg(II)
and Zn(II) promoted the removal of Cr(VI) but inhibited Cd(II) removal. By exploring the
potential mechanisms, the coexistence of Cd(II) promoted the electrostatic adsorption of
Cr(VI) by improving the positive charge density of BC-SnZVI. In addition, the reduction of
Cr(VI) was also promoted, enhancing the removal of Cr(VI). Meanwhile, the coordination
adsorption and precipitation of Cd(II) were weakened due to the site competition of Cr(III).
This study could provide theoretical guidance for the co-removal of different types of heavy
metal ions in wastewater.

Future research should be carried out from the following perspectives: (1) the co-
removal effect of heavy metals can be further enhanced by introducing some functional
groups, such as sulfhydryl groups; (2) other substances that have an impact on heavy metal
removal should be investigated, including emerging pollutants such as microplastics and
antibiotics; and (3) the co-removal effects or mechanisms of other different types of heavy
metals should be further studied.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/molecules27154742/s1, Figure S1: FTIR spectra of BC
produced at different temperatures; Table S1: Elemental analysis of BC produced at different tempera-
tures; Table S2: Comparison of the adsorption capacities of Cr(VI) and Cd(II) by different adsorbents;
Table S3: Assignment of the vibrational bands in the FTIR spectra. References [58–62] are cited in
Supplementary Materials.
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