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CO-SCREEN CONFORMAL HALF LIGHTLIKE SUBMANIFOLDS

YANING WANG AND XIMIN LIU

Abstract. In this paper, we introduce and study the geometry of half lightlike subman-

ifold M of a semi-Riemannian manifold M satisfying that the shape operator of screen

transversal bundle is conformal to the shape operator of lightlike transversal bundle of

M . Using this geometric condition we obtain some results to characterize the unique ex-

istence of screen distribution of M , also, we present some sufficient conditions for the

induced Ricci curvature tensor of M to be symmetric.

1. Introduction

It is well known that the intersection of the normal bundle and the tangent bundle of a

submanifold of a semi-Riemannian manifold may be not trivial, it is more difficult and in-

teresting to study the geometry of lightlike submanifolds than non-degenerate submanifolds.

The two standard methods to deal with the above difficulties were developed by Kupeli [11]

and Duggal-Bejancu [3, 7] respectively. However, unlike the Riemannian case the geometry

of lightlike submanifolds depends on the choice of the screen distribution. So it is impor-

tant to look for natural geometric condition to make the screen distribution exists uniquely.

Also, the induced Ricci curvature tensor of a lightlike submanifold from ambient space may

be not symmetric. If the Ricci curvature tensor is not symmetric, then it has no physical and

geometric meaning and the scalar curvature of lightlike submanifold has no way to study.

It is obvious to see that there are two cases of codimension 2 lightlike submanifolds M of

a semi-Riemannian manifold, since for this type the dimension of their radical distribution

is either 1 or 2. A codimension 2 lightlike submanifold is called half lightlike submanifold [2]

if dim(Rad(TM))=1. For more results about half lightlike submanifolds, we refer the reader to

[8, 9, 10].

Duggal [2] obtained a theorem to characterize the unique existence of screen distribution

of half lightlike submanifold by a reasonable geometric condition, that is, the subbundle F of
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D⊥ admits a covariant constant non-null vector field and the first derivative S coincides with

screen distribution. Also, by the definition of screen conformal half lightlike submanifold [2,

7] the other theorems to characterize the unique existence of screen distribution are obtained.

Using the screen conformal condition, some geometric objects like the induced symmetric

Ricci curvature tensor [2, 6, 7] and Einstein half lightlike submanifold [8] were investigated.

In this paper, we mainly discuss the properties of half lightlike submanifolds of semi-

Riemannian manifolds with a condition that the shape operator of screen transversal distri-

bution and the shape operator of lightlike transversal distribution are conformal. By using this

reasonable geometric condition we obtain some new theorems to characterize the unique ex-

istence of screen distribution and induced symmetric Ricci curvature tensor.

2. Preliminaries

In this section, we follow [2, 7] due to K.L. Duggal and D.H. Jin for the notations and

fundamental equations on half lightlike submanifolds of semi-Riemannian manifolds.

A submanifold (M , g ) of dimension m immersed in a semi-Riemannian manifold (M , g )

of dimension (m +n) is called a lightlike submanifold if the metric g induced from ambient

space is degenerate and radical distribution Rad (T M ) is of rank r , where m ≥ 2 and 1 ≤ r ≤ n.

In particular, (M , g ) is called a half lightlike submanifold if n = 2 and r = 1. It is well known

that the radical distribution Rad (T M ) = T M ∩T M⊥, where T M⊥ is called normal bundle

of M in M . Thus there exist two non-degenerate complementary distributions S(T M ) and

S(T M⊥) of Rad (T M ) in T M and T M⊥ respectively, which are called the screen and screen

transversal distribution on M respectively. Thus we have

T M = Rad (T M )⊕orth S(T M ) (2.1)

and

T M⊥
= Rad (T M )⊕orth S(T M⊥), (2.2)

where ⊕orth denotes the orthogonal direct sum.

Considering the orthogonal complementary distribution S(T M )⊥ to S(T M ) in T M , it is

easy to see that T M⊥ is a subbundle of S(T M )⊥. As S(T M⊥) is a non-degenerate subbundle of

S(T M )⊥, the orthogonal complementary distribution S(T M⊥)⊥ to S(T M⊥) in S(T M )⊥ is also

a non-degenerate distribution. Clearly Rad (T M ) is a subbundle of S(T M⊥)⊥. Choose L ∈

Γ(S(T M⊥)) as a unit vector field with g (L,L) = ǫ = ±1. For any null section ξ ∈ Γ(Rad (T M )),

there exists a unique null vector field N ∈Γ(S(T M⊥)⊥) satisfying

g (ξ, N ) = 1, g (N , N )= g (N , X )= g (N ,L)= 0, ∀X ∈Γ(S(T M )).
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Denote by l t r (T M ) the vector subbundle of S(T M⊥)⊥ locally spanned by N . Then we have

that S(T M⊥)⊥ = Rad (T M )⊕ l t r (T M ). Let t r (T M ) = S(T M⊥)⊕orth l t r (T M ). We call N ,

l t r (T M ) and t r (T M ) the lightlike transversal vector field, lightlike transversal vector bundle

and transversal vector bundle of M with respect to the chosen screen distribution S(T M )

respectively. Then T M is decomposed as following

T M = T M ⊕ t r (T M )= Rad (T M )⊕ t r (T M )⊕orth S(T M )

= Rad (T M )⊕ l t r (T M )⊕orth S(T M )⊕orth S(T M⊥). (2.3)

Let P be the projection morphism of T M on S(T M ) with respect to the decomposition

(2.1). For any X ,Y ∈ Γ(T M ), N ∈ Γ(l t r (T M )), ξ ∈ Γ(Rad (T M )) and L ∈ Γ(S(T M )⊥), the Gauss

and Weingarten formulas of M and S(T M ) are given by

∇X Y = ∇X Y +D1(X ,Y )N +D2(X ,Y )L, (2.4)

∇X N = −AN X +ρ1(X )N +ρ2(X )L, (2.5)

∇X L = −AL X +ε1(X )N +ε2(X )L, (2.6)

∇X PY = ∇
∗
X Y +E (X ,PY )ξ, (2.7)

∇X ξ = −A∗
ξ X +u1(X )ξ, (2.8)

respectively, where ∇ and ∇∗ are induced connection on T M and S(T M ) respectively, D1 and

D2 are called local second fundamental forms of M , E is called the local second fundamental

form of S(T M ). AN , A∗
ξ

and AL are linear shape operators on T M of lightlike transversal

bundle, radical bundle and screen transversal bundle respectively. ρ1, ρ2, ε1, ε2 and u1 are

1-forms on M . Noticing that the following equation holds

(∇X g )(Y , Z )= D1(X ,Y )η(Z )+D1(X , Z )η(Y ), (2.9)

for all X ,Y , Z ∈ Γ(T M ), where η(X ) = g (X , N ). So the induced connection ∇ on M is torsion

free but is not a metric tensor, it is easy to verify that the induced connection ∇∗ on S(T M ) is

metric. D1 and D2 are both symmetric tensors on Γ(T M ).

From the above statements it is easy to check ε2 = 0 and the following equations:

D1(X ,ξ) = 0, D1(X ,PY ) = g (A∗
ξ X ,PY ), g (A∗

ξ X , N )= 0, (2.10)

ǫD2(X ,Y ) = g (AL X ,Y )−ε1(X )η(Y ), g (AL X , N )= ǫρ2(X ), (2.11)

E (X ,PY ) = g (AN X ,PY ), g (AN X , N )= 0, u1(X ) =−ρ1(X ) (2.12)
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for any X ∈Γ(T M ) and N ∈Γ(l t r (T M )). From the above equations we also see that A∗
ξ

and AN

are Γ(S(T M ))-valued shape operators related to D1 and D2 respectively and A∗
ξ

is self-adjoint

on M and satisfies

A∗
ξξ= 0. (2.13)

Denote by R and R the curvature tensor of semi-Riemannian connection ∇ of M and the

induced connection ∇ of M respectively, we obtain the following Gauss-Codazzi equations

for M and S(T M ).

g (R(X ,Y )Z ,PW ) = g (R(X ,Y )Z ,PW )+D1(X , Z )E (Y ,PW )−D1(Y , Z )E (X ,PW )

+ǫD2(X , Z )D2(Y ,PW )−ǫD2(Y , Z )D2(X ,PW ), (2.14)

g (R(X ,Y )Z , N ) = g (R(X ,Y )Z , N )+ǫρ2(Y )D2(X , Z )−ǫρ2(X )D2(Y , Z ), (2.15)

g (R(X ,Y )Z ,ξ) = g (R(X ,Y )Z ,ξ)+ε1(X )D2(Y ,P Z )−ε1(Y )D2(X ,P Z ), (2.16)

g (R(X ,Y )P Z ,u) = ǫ
(

(∇X D2)(Y ,P Z )− (∇X D2)(Y ,P Z )
)

+ρ2(X )D1(Y ,P Z )−ρ2(Y )D1(X ,P Z ) (2.17)

for any X ,Y , Z ,W ∈Γ(T M ), N ∈Γ(l t r (T M )) and ξ ∈Γ(Rad (T M )).

The Ricci curvature tensor of M denoted by Ric is defined by

Ric(X ,Y ) = trace{Z → R(X , Z )Y }, (2.18)

where R(X ,Y , Z ,W ) = g (R(X ,Y )Z ,W ). Locally, Ric(X ,Y ) is given by

Ric(X ,Y ) =
∑

i

ǫi g (R(X ,Ei )Y ,Ei ), (2.19)

where {E1,E2, · · · ,Em+2} is a local semi-orthonormal frame fields of T M and g (Ei ,Ei ) = ǫi . In

particular, if Ric(X ,Y ) = k g (X ,Y ) for any X ,Y ∈Γ(T M ), then M is called an Einstein manifold,

where k is a smooth function on M .

3. Co-screen conformal half lightlike submanifolds

In this section, we consider a class of half lightlike submanifolds with co-screen confor-

mal geometric condition defined as following.

Definition 3.1. Let M be a half lightlike submanifold of a semi-Riemannian manifold, M

is called co-screen locally (resp. globally) conformal if on any coordinate neighborhood U

(r esp. U = M ) there exists a non-zero smooth function φ such that for any null transversal

vector field N ∈Γ(l t r (T M )) the relation

AN X =φAL X , ∀X ∈Γ(T M ) (3.1)

holds, where L is a unit vector field of screen transversal bundle of M .



CO-SCREEN CONFORMAL HALF LIGHTLIKE SUBMANIFOLDS 435

In the sequel, by co-screen conformal we shall mean co-screen globally conformal unless

otherwise specified. From (2.12) we know the shape operator AN is S(T M )-valued, thus for a

co-screen conformal half lightlike submanifold we have ρ2 = 0 following from (2.11). Also, we

have the following theorem to characterize co-screen conformal.

Theorem 3.2. Let M be a half lightlike submanifold of a semi-Riemannian manifold, then M

is co-screen conformal if and only if

E (X ,PY ) = ǫφD2(X ,PY ) and ρ2(X ) = 0, ∀X ,Y ∈Γ(T M ),

where φ is a non-zero smooth function on M.

Proof. If M is a co-screen conformal half lightlike submanifold, then it follows from (2.11) and

(2.12) that

E (X ,PY )= g (AN X ,PY ) =φg (AL X ,PY ) = ǫφD2(X ,PY ).

Conversely, from (2.11) we know that if ρ2(X ) = ǫg (AL X , N ) = 0, the shape operator AL is

S(T M )-valued. Then E (X ,PY ) = ǫφD2(X ,PY ) implies that AN = φAL , as S(T M ) is a non-

degenerate distribution. Which completes the proof. ���

Denote by S the first derivative of a screen distribution S(T M ) given by [4]

S = Span
{

[X ,Y ]x , Xx ,Yx ∈ S(T Mx), x ∈ M
}

, (3.2)

where [ , ] denotes the Lie-bracket. If S(T M ) is integrable, then S is sub-bundle of S(T M ).

Then we have the following lemma.

Lemma 3.3. Let (M , g ,S(T M )) be a half lightlike submanifold of a semi-Riemannian manifold

M
m+2

with m > 1. Suppose the sub-bundle F of D⊥ admits a covariant constant non-null vec-

tor field. Then, with respect to a section ξ of Rad (T M ), M admits an integrable screen S(T M ).

Moreover, if the first derivative S defined by (3.2) coincides with an integral screen distribu-

tion S(T M ), then, S(T M ) is a unique screen of M, up to an orthogonal transformation with a

unique lightlike transversal vector bundle and invariant screen second fundamental form.

Let M be a co-screen conformal half lightlike submanifold, from (2.7) we have

∇X PY =∇
∗
X PY +ǫφD2(X ,PY )ξ, ∀X ,Y ∈Γ(T M ). (3.3)

Since the induced connection ∇ on M is torsion-free, it follows from (2.4) and (3.3) that

g ([X ,Y ], N ) = g (∇X Y , N )− g (∇Y X , N )

= ǫφD2(X ,Y )g (ξ, N )−ǫφD2(Y , X )g (ξ, N )
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= ǫφ
(

D2(X ,Y )−D2(Y , X )
)

, ∀X ,Y ∈Γ(S(T M )). (3.4)

Noticing that D2 is symmetric, from (3.4) we know g ([X ,Y ], N ) = 0 for any X ,Y ∈ Γ(S(T M )).

Hence S(T M ) is integrable. Now, by Lemma 3.3 we show that a co-screen conformal half

lightlike submanifold admits a unique screen distribution.

Theorem 3.4. Let (M , g ,S(T M )) be a co-screen conformal half lightlike submanifold of a semi-

Riemannian manifold (M
m+2

, g ). Then, any screen distribution S(T M ) of M is integrable.

Moreover, if the first derivative S defined by (3.2) coincides with S(T M ), then S(T M ) is a

unique screen of M, up to an orthogonal transformation with a unique lightlike transversal

vector bundle and invariant screen second fundamental form.

Definition 3.5 ([6]). Let (M , g ,S(T M )) be a half lightlike submanifold of a semi-Riemannian

manifold M , then M is said to be totally umbilical if there exist smooth functions H1 and H2

on M such that

D1(X ,Y ) = H1g (X ,Y ), D2(X ,Y ) = H2g (X ,Y ), ∀X ,Y ∈Γ(T M ).

In particular, if H1 = 0 and H2 = 0, M is said to be totally geodesic.

Definition 3.6 ([6]). Let (M , g ,S(T M )) be a half lightlike submanifold of a semi-Riemannian

manifold M , then M is said to be minimal if the trace of the second fundamental form of M

restricted on S(T M ) vanishes and ε1(ξ) = 0.

By the above two definitions, we obtain some relationships between the geometry of

S(T M ) and M as following.

Theorem 3.7. Let (M , g ,S(T M )) be a co-screen conformal half lightlike submanifold of a semi-

Riemannian manifold (M
m+2

, g ) with a leaf M ′ of S(T M ). Then

1. M is totally geodesic,

2. M is totally umbilical,

3. M is minimal,

if and only if M ′ is so immersed as a submanifold of M and ǫ1 vanishes on M.

Proof. Suppose that M is co-screen conformal, from (2.4) and (2.7) we know

∇X Y =∇
∗
X Y +ǫφD2(X ,Y )ξ+D1(X ,Y )N +D2(X ,Y )L, (3.5)

for any X ,Y ∈ Γ(T M ′). We see from Theorem 3.4 that a co-screen half lightlike submanifold

has an integrable screen distribution, then a leaf of S(T M ) is a semi-Riemannian submani-

fold. Thus, from (3.5) we have

∇X Y =∇
′
X Y +h′(X ,Y ), (3.6)
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where ∇′ and h′ denote the second fundamental form and the Levi-Civita connection of M ′

in M respectively. Also, from (3.5) and (3.6) we have

h′(X ,Y )= (ǫφξ+L)D2(X ,Y )+D1(X ,Y )N . (3.7)

1. If M is totally geodesic, which means that D1 = 0 and D2 = 0. Then we know that M ′ is

geodesic in M from (3.7). Conversely, if h′(X ,Y ) = 0 for any X ,Y ∈ Γ(T M ′) then we have

D1 = D2 = 0, as {ξ, N ,u} are linearly independent.

2. If M is totally umbilical, by the Definition 3.5 we have that h′(X ,Y ) = (ǫφξ+L)D2(X ,Y )+

D1(X ,Y )N = g (X ,Y )H∗, where H∗ := αξ+βN +γL is mean curvature vector field of M ′

in M . Therefor, we get D1(X ,Y ) = βg (X ,Y ) and D2(X ,Y ) = γg (X ,Y ). Conversely, if M

is totally umbilical in M , then we have D1(X ,Y ) = H1g (X ,Y ) and D2(X ,Y ) = H2g (X ,Y ).

Thus, from (3.7) it is easy to see that M is umbilical in M .

3. If M is minimal, noticing that D1(ξ, X ) = 0 for any X ∈ Γ(T M ) we have tr|S(T M)D1 =

tr|S(T M)D2 = 0 and ε1(ξ) = 0, so it is easy to get tr|S(T M)h′ = 0 following from (3.7). Con-

versely, M ′ is minimal in M implies that tr|S(T M)h′ = 0, together with the equivalence

ε1(X ) = 0 ⇔ D2(ξ,P X ) = D2(P X ,ξ) = D2(ξ,ξ) = 0, then we know M is minimal in M .

Which completes the proof. ���

Definition 3.8 ([1]). A lightlike submanifold M is said to be irrotational if ∇X ξ ∈ Γ(T M ) for

any X ∈Γ(T M ), where ξ ∈Γ(Rad (T M )).

For a half lightlike submanifold M , it follows from (2.10) that the above definition is

equivalent to D2(X ,ξ) = −ǫε1(X ) = 0 for any X ∈ Γ(T M ). Using Theorem 3.7, then we have

the following result.

Corollary 3.9. Let (M , g ,S(T M )) be an irrotational co-screen conformal half lightlike subman-

ifold of a semi-Riemannian manifold (M
m+2

, g ) with a leaf M ′ of S(T M ). Then

1. M is totally geodesic,

2. M is totally umbilical,

3. M is minimal,

if and only if M ′ is so immersed as a submanifold of M.

Theorem 3.10. Let (M , g ,S(T M )) be a co-screen conformal half lightlike submanifold of semi-

Riemannian manifold (M
m+2

, g ). Then the following assertions are equivalent.

(1) Any leaf of S(T M ) is totally geodesic on M.
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(2) M is a lightlike product manifold of M ′ and F , where M ′ is a leaf of S(T M ) and F is a null

curve of M.

(3) D2 vanishes identically on S(T M ).

Proof. It follows from Theorem 4.4.9 of [7] that

g (∇ξξ, X )= 0, ∀X ∈Γ(S(T M ). (3.8)

Since ∇ is a metric connection on M , from (2.4) and (2.5) we have that

g (∇X Y , N ) = g (∇X Y , N )=∇X g (Y , N )− g (Y ,∇X N )

= −g (Y ,−AN X +ρ1(X )N )

= g (AN X ,Y )= ǫφD2(X ,Y ), ∀X ,Y ∈Γ(S(T M ). (3.9)

Thus, the equivalence between (1) and (2) follows from (2.8) and (3.9). If M is a lightlike

product manifold of M ′ and F , then any leaf of S(T M ) is parallel. So D2(X ,Y ) = 0 for any

X ,Y ∈ Γ(S(T M )) following from (3.9). Conversely, if D2 vanishes identically on S(T M ), by us-

ing (3.9) we know that a leaf of S(T M ) is parallel, and from (2.8) we obtain (2). Which proves

the proof. ���

4. Induced Ricci curvature tensor

Let M be a (m +1)-dimensional co-screen conformal half lightlike submanifold of semi-

Riemannian space form M(c) and S(T M )= span{e1,e2, . . . ,em}, where {ei } is a locally orthog-

onal frame fields of Γ(S(T M )) and g (ei ,ei ) = ǫi . Then from the Gauss-Codazzi equations we

have

g (R(X ,ei )Y ,ei ) = g (R(X ,ei )Y ,ei )+ǫφD1(X ,Y )D2(ei ,ei )−ǫφD1(ei ,Y )D2(ei , X )

+ǫD2(X ,Y )D2(ei ,ei )−ǫD2(ei ,Y )D2(ei , X ), (4.1)

and

g (R(X ,ξ)Y , N ) = g (R(X ,ξ)Y , N ). (4.2)

By the above equations and the definition of Ricci curvature tensor, we have

Ric(X ,Y ) =
∑

i

ǫi g (R(X ,ei )Y ,ei )+ g (R(X ,ξ)Y , N )

=
∑

i

ǫi g (R(X ,ei )Y ,ei )+ g (R(X ,ξ)Y , N )−ǫφD1(X ,Y )D2(ei ,ei )

+ǫφD1(ei ,Y )D2(ei , X )−ǫD2(X ,Y )D2(ei ,ei )+ǫD2(ei ,Y )D2(ei , X )

= (1−m)cg (X ,Y )−ǫφD1(X ,Y )D2(ei ,ei )+ǫφD1(ei ,Y )D2(ei , X )

−ǫD2(X ,Y )D2(ei ,ei )+ǫD2(ei ,Y )D2(ei , X ). (4.3)

Noticing that D1 and D2 are symmetric on Γ(T M ), so we have the following theorem.
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Theorem 4.1. Let M be a (m+1)-dimensional co-screen conformal half lightlike submanifold

of semi-Riemannian space form M(c), then the induced Ricci curvature tensor of M is symmet-

ric.

In particular, we have the following corollary to characterize the Einstein half lightlike

surface.

Corollary 4.2. Let M be an irrotational co-screen conformal half lightlike surface of 4-dimen-

sional semi-Riemannian space form M(c), then the induced Ricci curvature tensor is symmet-

ric. Moreover, the surface is an Einstein surface.

Proof. From (4.3) we know that

Ric(X ,Y ) = −cg (X ,Y )+ǫφ
(

D1(e,PY )D2(e,P X )−D1(P X ,PY )D2(e,e)
)

+ǫ
(

D2(e,PY )D2(e,P X )−D2(P X ,PY )D2(e,e)
)

= −cg (X ,Y ), (4.4)

where e is a unit vector field of S(T M ). Which proves the corollary. ���

Recall the following notion of null sectional curvature [11, 7]. Let x ∈ M and ξ be a null

vector of Tx M . A plane H of Tx M is called a null plane directed by ξ if it contains ξ, gx (ξ,W ) =

0 for any W ∈ H and there exists Wo ∈ H such that gx (Wo ,Wo) 6= 0. Thus the null sectional

curvature of H with respective to ξ and the induced connection ∇ of M , is defined as a real

number

Kξ(H ) =
gx (R(W,ξ)ξ,W )

gx (W,W )
,

where W 6= 0 is any vector in H independent with ξ. Note from [12] that an n(n ≥ 3)-dimen-

sional Lorentzian manifold is of constant curvature if and only if its null sectional curvatures

are everywhere zero.

Theorem 4.3. Let M be a co-screen conformal half lightlike submanifold of semi-Riemannian

space form M (c), then the null sectional curvature of M is given by

Kξ(H )= ǫ
(

D2(ξ,ξ)D2(PW,PW )−D2(ξ,PW )2
)

.

Proof. It follows from (2.14) that

Kξ(H ) = g (R(W,ξ)ξ,W )+ǫφD1(ξ,ξ)D2(W,PW )−ǫφD1(W,ξ)D2(ξ,PW )

+ǫD2(ξ,ξ)D2(W,PW )−ǫD2(W,ξ)D2(ξ,PW )

= ǫ
(

D2(ξ,ξ)D2(PW,PW )−D2(ξ,PW )2
)

. (4.5)

Then the proof is completed. ���

From Theorem 4.3 it is easy to get the following corollary.
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Corollary 4.4. Let M be co-screen conformal half lightlike submanifold of semi-Riemannian

space form M(c), then the null sectional curvature of M vanishes if D2 vanishes on M.

Theorem 4.5. Let (M , g ,S(T M )) be a co-screen conformal half lightlike submanifold of M(c)

with D2 = 0. Then M is flat if and only if a leaf M ′ of S(T M ) is flat and c = 0.

Proof. Suppose that M is flat, which means the induced semi-Riemannian curvature tensor

vanishes on M . It follows from (2.15) that

g (R(X ,Y )P Z , N ) = g (R(X ,Y )P Z , N )

= cg (Y ,P Z )g (X , N )−cg (X ,P Z )g (Y , N )= 0, ∀X ,Y , Z ∈Γ(T M ). (4.6)

Thus, for X = ξ in (4.6) we derive cg (Y ,P Z ) = 0 for any Y , Z ∈ Γ(T M ) and hence c = 0. Also, it

follows from (2.4), (2.7) and Theorem 3.2 that

g (R(X ,Y )P Z ,PW ) = g (R∗(X ,Y )P Z ,PW )+ǫφD1(Y ,PW )D2(X ,P Z )

−ǫφD1(X ,PW )D2(Y ,PW ). (4.7)

Together with D2 = 0 and R = 0 in (4.7), then we have R∗ = 0.

Conversely, if c = 0 then from (4.6) we know that R(X ,Y )P Z ∈ Γ(S(T M )). Noting that M ′

is flat and D1 = 0, then from (4.7) we obtain g (R(X ,Y )P Z ,PW ) = 0. Thus, we get R(X ,Y )P Z =

0 for any X ,Y , Z ∈Γ(T M ). Similarly, it follows from (2.15) that g (R(X ,Y )ξ, N )= g (R(X ,Y )ξ, N )

= 0. Which means that R(X ,Y )ξ ∈Γ(S(T M )).

On the other hand, from (2.14) and c = 0 we have

g (R(X ,Y )ξ,PW ) = g (R(X ,Y )ξ,PW )+ǫφD1(Y ,ξ)D2(X ,PW )−ǫφD1(X ,ξ)D2(Y ,PW )

+ǫD2(Y ,ξ)D2(X ,PW )−ǫD2(X ,ξ)D2(Y ,PW )

= ǫD2(Y ,ξ)D2(X ,PW )−ǫD2(X ,ξ)D2(Y ,PW ). (4.8)

Using D2 = 0, we get R(X ,Y )ξ= 0 following from (4.8). Which proves the proof. ���

5. Totally umbilical submanifolds

For a co-screen conformal half lightlike submanifold M , it follows from Theorem 3.4 that

S(T M ) is integrable. Then for a leaf M ′ of S(T M ), it is easy to see that M ′ is totally umbilical if

and only if

D2(X ,PY ) =
ǫ

φ
g (X ,PY ), ∀X ,Y ∈ Γ(T M ). (5.1)
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Theorem 5.1. Let M be a co-screen conformal half lightlike submanifold of semi-Riemannian

manifold space form (M(c), g ). Suppose that S(T M ) is integral and a leaf M ′ of S(T M ) is totally

umbilical, then

D1(X ,Y ) =−
ξ(φ)

φ
g (X ,Y ), ∀X ,Y ∈Γ(T M ). (5.2)

Proof. Taking a differentiation on both sides of (5.1), we have

(∇X D2)(Y ,P Z )=
ǫ

φ
(∇X g )(Y ,P Z )+ǫX (

1

φ
)g (Y ,P Z ). (5.3)

Noticing that M is a space form and using Theorem 3.2, it follows from (2.17) that

(∇X D2)(Y ,P Z )− (∇X D2)(Y ,P Z ) = 0. (5.4)

Substituting (5.4) into (5.3) and using (2.9), we have

D1(X , Z )η(Y )−D1(Y , Z )η(X )=φY (
1

φ
)g (X , Z )−φX (

1

φ
)g (Y , Z ). (5.5)

Replacing Y by ξ in the above equation and using (2.10), we have

D1(X , Z )=φξ(
1

φ
)g (X , Z ), ∀X , Z ∈Γ(T M ). (5.6)

Which proves the theorem. ���

Theorem 5.2. Let M be an irrotational half lightlike submanifold of semi-Riemannian mani-

fold M with ρ2 = 0. Suppose that S(T M ) is integral and any leaf M ′ of S(T M ) is totally umbil-

ical immersed in M as a co-dimensional 3 non-degenerate submanifold with αγ 6= 0. Then M

is co-screen conformal if and only if E (ξ,P X ) = 0 for ξ ∈ Γ(Rad (T M )) and X ∈ Γ(T M ), where

α and γ are components of the mean curvature vector of the leaf, in the direction to ξ and u

respectively.

Proof. Denote by M ′ a leaf of S(T M ), then from (2.4) and (2.7) we have that

∇X Y =∇
∗
X Y +E (X ,Y )ξ+D1(X ,Y )N +D2(X ,Y )L, ∀X ,Y ∈ Γ(T M ′). (5.7)

Suppose that the mean curvature vector field H∗ of M ′ in M is H∗ =αξ+βN +γL. Since

M ′ is totally umbilical in M , we have

E (X ,Y )ξ+D1(X ,Y )N +D2(X ,Y )L = g (X ,Y )(αξ+βN +γL). (5.8)

As ξ, N , L are linearly independent, then (5.8) is equivalent to the following equations.

E (X ,Y ) =αg (X ,Y ), D1(X ,Y ) =βg (X ,Y ), D2(X ,Y )= γg (X ,Y ). (5.9)
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Therefore we get E (X ,Y ) = α
γ D2(X ,Y ) for any X ,Y ∈ Γ(T M ′). On the other hand, with the

definition of irrotational submanifold we see E (ξ,P X ) = D2(ξ,P X ) = 0 for any X ∈ Γ(T M ).

It follows from Theorem 3.2 that M is co-screen conformal. Conversely, if M is co-screen

conformal, then from Theorem 3.2 we have E (X ,PY ) = ǫφD2(X ,PY ). So E (ξ,P X ) = 0 follows

from the Definition 3.8. Which proves the proof. ���

Theorem 5.3. Let M be a co-screen conformal half lightlike submanifold of semi-Riemannian

manifold M. Then M is totally umbilical if and only if

P(A∗
ξ X ) = H1P X and ε1(X ) = 0, ∀X ∈ Γ(T M ), (5.10)

and a leaf M ′ of S(T M ) is totally umbilical in M.

Proof. Suppose that M is umbilical, then we have D1(X ,Y ) = H1g (X ,Y ) and D2(X ,Y ) =

H2g (X ,Y ). Noticing Theorem 3.2, we have

E (X ,PY ) = ǫφD2(X ,PY )= ǫφH2g (X ,Y ), ∀X ,Y ∈ Γ(T M ). (5.11)

Which means that M ′ is totally umbilical in M . On the other hand, it follows from (2.9) that

D1(X ,Y ) = g (A∗
ξ X ,Y ) = H1g (X ,Y ), ∀X ,Y ∈Γ(T M ). (5.12)

Then we have A∗
ξ
= H1P X as A∗

ξ
is S(T M )-valued. Conversely, if M ′ is umbilical in M . Then

we have E (X ,Y ) = H3g (X ,Y ) for any X ,Y ∈ Γ(T M ′), where H3 is a smooth function on M ′.

By (5.11) we have D2(X ,Y ) =
ǫH3

φ g (X ,Y ) for any X ,Y ∈ Γ(T M ′). Using (2.11) we see ε1(X ) =

D2(ξ, X ) = 0. Thus, we have D2(X ,Y ) = ǫH3

φ g (X ,Y ) for any X ,Y ∈Γ(T M ). It follows from (5.12)

that M is umbilical in M . Which proves the theorem. ���

Corollary 5.4. Let M be an irrotational co-screen conformal half lightlike submanifold of semi-

Riemannian manifold M. Then M is totally umbilical if and only if

P(A∗
ξ X )= H1P X , ∀X ∈Γ(T M ) (5.13)

and a leaf M ′ of S(T M ) is totally umbilical in M.

Theorem 5.5. Let M be an irrotational co-screen conformal totally umbilical half lightlike

submanifold of semi-Riemannian manifold M. Suppose that M ′ is a leaf of S(T M ), then

1. M ′ is totally umbilical in M.

2. M is totally geodesic if and only if M ′ is totally geodesic immersed in M.
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Proof. Since M is co-screen conformal, then S(T M ) is integrable. For a leaf M ′ of S(T M ),

from (2.4) and (2.7) we have that

∇X Y =∇
∗
X Y +ǫφD2(X ,Y )ξ+D1(X ,Y )N +D2(X ,Y )L, (5.14)

where X ,Y ∈ Γ(T M ′). By Theorem 3.2 we have E (X ,Y ) = ǫφD2(X ,Y ) = ǫφH2g (X ,Y ) for any

X ,Y ∈Γ(T M ′), which means that M ′ is totally umbilical in M .

As ξ, N and L are linearly independent, then ǫφD2(X ,Y )ξ+D1(X ,Y )N +D2(X ,Y )L = 0

for any X ,Y ∈ Γ(T M ′) is equivalent to D1(X ,Y ) = D2(X ,Y ) = 0 for any X ,Y ∈ Γ(T M ′). Also,

from (2.10) we know that D1(ξ, X ) = 0 for any X ∈ Γ(T M ). Noticing Definition 3.8, we have

D1(X ,Y ) = D2(X ,Y )= 0 for any X ,Y ∈Γ(T M ). Which completes the proof. ���

Theorem 5.6. Let (M , g ,S(T M )) be a co-screen conformal totally umbilical half lightlike sub-

manifold of a semi-Riemannian space form M(c) and M ′ be a leaf of S(T M ). If di m(M ′) > 2,

then M ′ is a semi-Riemannian space form if and only if φ is a constant.

Proof. It follows from (2.14) and Theorem 3.2 that

g (R(X ,Y )Z ,PW ) = g (R(X ,Y )Z ,PW )+ǫφD1(Y , Z )D2(X ,PW )−ǫφD1(X , Z )D2(Y ,PW )

+ǫD2(Y , Z )D2(X ,PW )−ǫD2(X , Z )D2(Y ,PW )

= (c +ǫφH1H2 +ǫH 2
2 )

(

g (Y , Z )g (X ,W )− g (X , Z )g (Y ,W )
)

, (5.15)

where X ,Y , Z ,W ∈ Γ(T M ). On the other hand, it follows from (2.7) and Theorem 3.2 that

g (R(X ,Y )P Z ,PW ) = g (R∗(X ,Y )P Z ,PW )+E (X ,P Z )D1(Y ,PW )−E (Y ,P Z )D1(X ,PW )

= g (R∗(X ,Y )P Z ,PW )+ǫφH1H2

(

g (X , Z )g (Y ,W )−g (Y , Z )g (X ,W )
)

,(5.16)

where X ,Y , Z ,W ∈ Γ(T M ). Thus from (5.16) and (5.17) we obtain

g (R∗(X ,Y )Z ,W ) = (c +2ǫφH1H2 +ǫH 2
2 )

(

g (X , Z )g (Y ,W )− g (Y , Z )g (X ,W )
)

, (5.17)

where Z ,W ∈Γ(S(T M )). Which completes the proof. ���
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