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Abstract

Modeling and simulation techniques are today extensively used both in industry and science.
Parts of larger systems are, however, typically modeled and simulated by different techniques,
tools, and algorithms. In addition, experts from different disciplines use various modeling
and simulation techniques. Both these facts make it difficult to study coupled heterogeneous
systems.

Co-simulation is an emerging enabling technique, where global simulation of a coupled
system can be achieved by composing the simulations of its parts. Due to its potential and
interdisciplinary nature, co-simulation is being studied in different disciplines but with limited
sharing of findings.

In this survey, we study and survey the state-of-the-art techniques for co-simulation, with
the goal of enhancing future research and highlighting the main challenges.

To study this broad topic, we start by focusing on discrete-event-based co-simulation, follo-
wed by continuous-time-based co-simulation. Finally, we explore the interactions be these two
paradigms, in hybrid co-simulation.

To survey the current techniques, tools, and research challenges, we systematically classify
recently published research literature on co-simulation, and summarize it into a taxonomy. As
a result, we identify the need for finding generic approaches for modular, stable, and accurate,
coupling of simulation units, as well as expressing the adaptations required to ensure that the
coupling is correct.

1 Introduction

1.1 Motivation

Truly complex engineered systems that integrate physical, software, and network aspects are emer-
ging [165][199], posing challenges in their design, operation, and maintenance.

The design of such systems, due to market pressure, has to be concurrent and distributed, that
is, divided between different teams and/or external suppliers, each in its own domain and each with
its own tools. Each participant develops a partial solution to a constituent system that needs to be
integrated with all the other partial solutions. The later in the process the integration is done, the
less optimal it is [248][216].

Innovative and optimal multi-disciplinary solutions can only be achieved through an holistic
development process [258] where the partial solutions developed independently are integrated sooner
and more frequently, as each solution is refined. Furthermore, the traditional activities carried out
at the partial solution level—such as requirements compliance check, or design space exploration—
can be repeated at the global level, and salient properties spanning multiple constituent systems
can be studied.

Modeling and simulation can improve the development of the partial solutions (e.g., see [101][232]),
but falls short in fostering this holistic development process [37]. To understand why, one has to
observe that: (i) models of each partial solution cannot be exchanged or integrated easily, be-
cause these are likely developed by one of the many specialized tools deployed over the past 20
years; (ii) externally supplied models may have Intellectual Property (IP) that cannot be cheaply
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disclosed to system integrators; and (iii) as solutions are refined, the system should be evaluated
by integrating physical prototypes, software components, and even human operators, in what are
denoted as Model/Software/Hardware/Human-in-the-loop simulations [7][185].

Consider now the interaction with, or operation of, a complex system. Such operation requires
training, which, for safety or costs, may have to be conducted in a virtual environment. Developing
a virtual environment is a difficult task [125] and reusing the models used in the development of
the system allows the bulk of the effort to be redirected to where it is essential. Again, due to the
aforementioned reasons, it may be difficult to obtain a single model of the whole system.

A high fidelity model of a system can also be used for maintenance of the system. Advanced
sensory information, collected during the normal operation of the system, can be fed into a simulator
to predict and prevent faults [111].

These are but a small sample of reasons for (and advantages of) being able to accurately compute
the behavior of a coupled system. The fact that it should be carried out from a collection of
interacting behaviors of the individual parts is what makes it a difficult challenge.

1.2 Co-simulation

Co-simulation consists of the theory and techniques to enable global simulation of a coupled system
via the composition of simulators. Each simulator is broadly defined as a black box capable of
exhibiting behaviour, consuming inputs and producing outputs. Examples of simulators include
dynamical systems being integrated by numerical solvers [67], software and its execution platform
[77], dedicated real-time hardware simulators (e.g., [128]), physical test stands (e.g., [276, Fig. 3]),
or human operators (e.g., [70, Fig. 24],[211, Fig. 6]).

An alternative to co-simulation is co-modelling, were models are described in a unified language,
and then simulated. There are advantages to this approach but each domain has its own particula-
rities when it comes to simulation (e.g., see [67][180][267]) making it impractical to find a language
and simulation algorithm that fits all.

As part of the systematic review that led to the current document (see section 6.1 for de-
tails), we took note of the approaches to co-simulation and the publications in applications of
co-simulation. The approaches to co-simulation shaped the taxonomy in section 6.2 and the appli-
cations of co-simulation shows that in the last five years, co-simulation has been applied in many
different engineering domains, as fig. 1 shows. In concrete, the publications are:
Automotive - [4, 26, 28, 32, 42, 49, 75, 81, 89, 144, 168, 181, 231, 258, 280, 286, 288]
Electricity Production and Distribution - [3, 5, 36, 85, 104, 105, 123, 132, 150, 169–171, 176,

223, 244, 264, 269, 277, 289]
HVAC - [80, 95, 124, 202, 207, 272]
IC and SoC Design - [227]
Maritime - [209, 210]
Robotics - [154, 215, 217, 287]
A closer look at the publications shows, however, that the average reported co-simulation scenario
includes only two simulators, each a mock-up of a constituent system from a different domain. While
this gives evidence that co-simulation enhances the development multi-domain systems, it is not
yet up-to-par with the scale of Cyber-Physical Systems (CPSs). The unexplored potential is recog-
nized in a number of completed and ongoing projects that address co-simulation (MODELISAR1,

1https://itea3.org/project/modelisar.html
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DESTECS2, INTO-CPS3, ACOSAR4, ACoRTA5), and is one of the reasons why the Functional
Mock-up Interface (FMI) Standard was created.
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Figure 1: Research publications of co-simulation applications over the past five years.

Contribution. We present a survey and a taxonomy, focused on the enabling techniques of
co-simulation, as an attempt to bridge, relate, and classify the many approaches in the state of the
art.

1.3 Need for the Survey

Despite the growing interest in the benefits and scientific challenges of co-simulation, to the best
of our knowledge, no existing survey attempts to cover the heterogeneous communities in which it
is being studied. The lack of such a survey means that the same techniques are being proposed
independently with limited sharing of findings. To give an example, the use of dead-reckoning
models is a well known technique in discrete event co-simulation [164], but only very recently it was
used in a continuous time co-simulation approach [240]. Our objective is to facilitate the exchange
of solutions and techniques, highlight the essential challenges, and attain a deeper understanding
of co-simulation.

Scientifically, co-simulation —multi-disciplinary by its very nature— mixes the following fields
of research:

1. Numerical analysis – Accuracy and stability of the coupled system have to be studied [10, 56,
71, 118, 119, 121, 140, 214].

2http://www.destecs.org/
3http://into-cps.au.dk/
4https://itea3.org/project/acosar.html
5http://www.v2c2.at/research/ee-software/projects/acorta/

5

http://www.destecs.org/
http://into-cps.au.dk/
https://itea3.org/project/acosar.html
http://www.v2c2.at/research/ee-software/projects/acorta/


2. Differential Algebraic System Simulation – The composition of co-simulation units (SUs) is,
in the most general sense, made through algebraic constraints [233, 238, 249].

3. Hybrid Systems – co-simulation scenarios, in the most general sense, are hybrid systems
[53, 166, 186–188, 198, 272, 285]

4. Optimization – the heterogeneous capabilities of co-SUs pose interesting tradeoffs [52, 257].

5. Hierarchy – Systems of systems are hierarchical and the corresponding co-simulation scenarios
should be hierarchical as well [105]. Compositionality properties of co-simulations becomes
an interesting research challenge.

6. Formal Verification – The co-simulation orchestration algorithm, also known as the master,
can be certified to be correct under certain assumptions about the co-simulation scenarios
[52, 96, 108, 109, 193].

7. System Testing – Co-simulation can be used for exhaustively testing a set of black-box con-
stituent systems, with a non-deterministic environment [162, 177].

8. Dynamic Structure Systems – Subsystems can have different dependencies depending on
whom, and which level of abstraction, they interact with [20–22, 255].

9. Multi-paradigm Modeling – Subsystems can have different models at different levels of ab-
straction [267]. The relationships between the multiple levels have to be known so that correct
dynamic switching between levels abstraction can be made.

1.4 Outline

To help structure the characteristics of the simulators and how they interact, we distinguish two
main approaches for co-simulation: Discrete Event (DE), described in section 3, and Continuous
Time (CT), described in section 4. Both of these can be, and are, used for the co-simulation
of continuous, discrete, or hybrid coupled systems. We call Hybrid co-simulation, described in
section 5, a co-simulation approach that mixes the DE and CT approaches 6. section 6 summarizes
the features provided by co-simulation frameworks, and classifies the state of the art with that
taxonomy. Finally, section 7 concludes this publication. The section below provides the terminology
used in the rest of the survey.

2 Modeling, Simulation, and Co-simulation

2.1 Dynamical Systems – Models of Real Systems

A dynamical system is a model of a real system (for instance a physical system or a computer system)
characterized by a state and a notion of evolution rules. The state is a set of point values in a state
space. The evolution rules describe how the state evolves over an independent variable, usually
time. For instance, a traffic light system can be modeled as a dynamical system that can be in one

6Note that in this survey, we are focusing on timed formalisms (also called models of computation). Other
formalisms, with no or only logical notion of time, are not discussed in this survey. For an overview of formalisms
and models of computation, see [218] and [51].
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of four possible states (red, yellow, green, or off). The evolution rules may dictate that it changes
from red to green after some time (e.g., 60 seconds). Another example is a mass-spring-damper,
modeled by a set of first order Ordinary Differential Equations (ODEs). The equations describe
how the state —position and velocity of the mass— changes continuously over the simulated time.
In contrast with the traffic light system, where the state cannot take an infinite number of different
values over a finite duration of simulated time, the state of the mass-spring-damper can.

The behavior trace is the set of trajectories followed by the state (and outputs) of a dynamical
system. For example, a state trajectory x can be defined as a mapping between a time base T and
the set of reals R, that is, x : T → R. fig. 2 shows a possible behavior trace for each of the example
systems described before. In this example, the time base is R.

Figure 2: Examples of behavior traces.

We refer to the time variable t ∈ T as simulated time—or simply time, when no ambiguity
exists—defined over a time base T (typical the real numbers R), as opposed to the wall-clock time
τ ∈ WcT , which is the time that passes in the real world [103]. When computing the behavior
trace of a dynamical system over an interval [0, t] of simulated time, a computer takes τ units of
wall-clock time that depend on t. τ can therefore be used to measure the run-time performance of
simulators. fig. 3a highlights different kinds of simulation, based on the relationship between τ and
t. In real-time simulation, the relationship between t and τ is t = ατ , for a given α > 0. In most
cases α = 1 is required, but making sure this is obeyed by the simulation algorithm is one of the
main challenges in real-time simulation, and by extension, of co-simulation. In as-fast-as-possible
—or analytical— simulation, the relationship between τ and t is not restricted. Simulation tools
that offer interactive visualization allow the user to pause the simulation and/or set a different value
for α.

Knowing when a dynamical system can be used to predict the behavior of a real system is
crucial. The experimental frame describes, in an abstract way, a set of assumptions in which
the behavior trace of the dynamical system can be compared with the one of the real system
[284][23][266][267][250]. By real system we mean either an existing physical system, or a system
that does not yet exist. Validity is then the difference between the behavior trace of the dynamical
system and the behavior trace of the real system, measured under the assumptions specified by the
experimental frame. This is what conveys predictive power to dynamical systems. For example,
Hooke’s law, in the mass-spring-damper system, can only be used to predict the reaction force of
the spring for small deformations. For the traffic light dynamical system, the experimental frame
includes the assumption that the transition from the red light to the green light is instantaneous. It
is a valid assumption, provided that the executing platform in which the controller software runs,
has enough computing power [268][83][195]. A model is invalid when, within the experimental frame
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assumptions, its behavior trace is so different than the one of the real system, that it cannot be
used to predict properties of the real system.

In order to be practical, the behavior trace of a dynamical system has to highlight just the
features of interest of the real system that are relevant for the tasks at hand [156]. In the traffic
light model, the precise amount of wall-clock time a transition from red to green takes is unknown,
but deemed small enough to be neglected. In the mass-spring-damper, Hooke’s law was chosen
because the maximum displacement of the mass will not be large when the context in which the
system will be used is taken into account.

Finally, we consider only those dynamical systems for which it is possible to obtain its meaning,
i.e. the behavior trace, even if only an approximation.

2.2 Simulators – Computing the Behavior Trace

There are two generally accepted ways of obtaining the behavior trace of a dynamical system:
Translational Translate the dynamical system into another model, which can be readily used

to obtain the behavior trace. Obtaining the analytical solution of the mass-spring-damper
equations is an example of this approach. For instance, if the traffic light model is expressed
in the Statechart formalism, it can be translated into a DEVS model, as done in [43], which
can be used to obtain the behavior trace.

Operational Use of a solver – an algorithm that takes the dynamical system as input, and outputs
a behavior trace. For the mass-spring-damper example, a numerical solver can be used to
obtain an approximation of the behavior trace.

We focus on the latter.
A simulator (or solver) is an algorithm that computes the behavior trace of a dynamical system.

If running in a digital computer, it is often the case that a simulator will only be able to approximate
that trace. Two aspects contribute to the error in these approximations: inability to calculate a
trajectory over a continuum, and the finite representation of infinitely small quantities. Simulators
of discrete dynamical systems may also tolerate some inaccuracies in the behavior traces as well
(e.g., if that brings a performance benefit). fig. 3b shows an example approximation (dashed line)
of the behavior trace (solid line) of the mass-spring-damper system, computed by the forward Euler
method. Clearly, the trajectories differ.

In order to define what an accurate simulator is, or even be able to talk about error, we need
to postulate that every dynamical system has an analytical behavior trace. The error can then
be defined as the norm of the difference between the behavior trace produced by a simulator and
the analytical trace. A simulator is accurate when the error is below a given threshold. Even if it
is not possible to obtain the analytical behavior of every dynamical system, there are theoretical
results that allow simulators to control the error they make. These techniques are applied to co-
simulation in section 4.3. For the mass-spring-damper, and linear ODEs in general, the analytical
trace follows a known structure [54]. For the traffic light, and timed statemachine models in general,
the analytical behavior trace can be obtained with a sequential solver, that respects the causality
of events. In short, validity is a property of a dynamical system whereas accuracy is a property of a
simulator [67]. It is perfectly possible to have an accurate behaviour trace of a model that is invalid,
and vice versa. For continuous time systems, the choice of an appropriate solver is important and
should be made by domain experts [180][189].
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(a) Classification of time con-
straints in simulation. Based on
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(b) Approximate behavior trace of the mass-spring-damper system.
Parameters are: m = 1 = p = c1 = d1 = 1, and s = Fe(t) = 0. x is
the displacement and v is the velocity.

Figure 3

2.3 Simulation Units - Mock-ups of Reality

In strict terms, a simulator is not readily executable: it needs a dynamical system and input
trajectories, before being able to compute the behavior trace.

We use the term simulation unit (SU) to denote something that produces a behavior trace,
when inputs are provided. A SU can be a composition of a simulator and a dynamical system, or
it can be a real-world entity (with appropriate interface). Notice that, in contrast to a simulator, a
SU only requires inputs to produce behavior.

A simulation is the behavior trace obtained with a SU. The correctness of a SU is dictated by
the correctness of the simulation, which depends on the accuracy of the simulator and the validity
of the dynamical system.

2.4 Compositional Co-simulation

As described in section 1, it is useful to obtain correct simulations of complex, not yet existing,
systems as a combination of the behaviors of its constituent parts. Suppose each part is represen-
ted by a SU. Then these can be coupled via their inputs/outputs to produce a behavior trace of
the coupled system. A co-simulation, a special kind of simulation, is the collection of combined
simulations produced by the coupled SUs.

The SUs are independent black boxes. Hence, an orchestrator is necessary to couple them. The
orchestrator controls how the simulated time progresses in each SU and moves data from outputs to
inputs according to a co-simulation scenario. A co-simulation scenario is the information necessary
to ensure that a correct co-simulation can be obtained. It includes how the inputs of each SU are
computed from outputs, their experimental frames, etc.

Analogously to the simulator and SU concepts, the composition of a specific orchestrator with
a co-simulation scenario, yields a co-SU, which is a special kind of SU, and a substitute of the real
coupled system. It follows that a co-simulation is the simulation trace computed by a co-SU. This
characterization enables hierarchical co-simulation scenarios, where co-SUs are coupled.
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Co-simulation enables design decisions to be tried out in the model (what-if analysis), cheaply
7, early in the process, and possibly automatically [117][94].

In this survey, we focus on the coupling techniques of black box SUs, where limited knowledge
of the models and simulators is available. However, as will become clear in the following sections,
the black box restriction has to be relaxed so that certain properties related to correctness can
be ensured. Understanding what kind of information should be revealed and how IP can still be
protected is an active area of research in co-simulation.

Most challenges in co-simulation are related to compositionality: if every SU Si in a co-simulation
scenario satisfies property P , then the co-SU, with a suitable orchestrator, must also satisfy P . The
correctness is a property that should be compositional in co-simulation. Other properties include
validity, or accuracy. It is an open research question to ensure that a co-simulator is compositional
for a given set of properties. The following three sections provide an overview of the information
and techniques being used throughout the state of the art, divided into three main approaches:
discrete event (section 3), continuous time (section 4), and hybrid (section 5) co-simulation.

3 Discrete-Event-Based Co-simulation

The Discrete-Event-(DE)-based co-simulation approach describes a family of orchestrators and cha-
racteristics of simulation units (SUs) that are borrowed from the DE system simulation domain.
We start with a description of DE systems, and then we extract the main concepts that characterize
DE based co-simulation.

The traffic light is a good example of a DE system. It can be in one of the possible modes:
red, yellow, green, or off. The off mode is often used by the police, which in some countries is
characterized by a blinking yellow. Initially, the traffic light can be red. Then, after 60 seconds, it
changes to green. Alternatively, before those 60 seconds pass, some external entity (e.g., a police
officer) may trigger a change from red to off. The output of this system can be an event signaling
its change to a new color. This example captures some of the essential characteristics of a DE
dynamical system: reactivity – instant reaction to external stimuli (turning off by an external
entity); and transiency – a DE system can change its state multiple times in the same simulated
time point, and receive simultaneous stimuli. In the traffic light, transiency would happen if the
light changes always after 0s (instead of 60s), or if the police officer would turn off and on the traffic
light in the same instant.

These characteristics are embraced in DE based co-simulation, where the orchestrator acknow-
ledges that SUs can change their the internal state and exchange values despite the fact that the
simulated time is stopped.

3.1 DE Simulation Units

A DE SU is a black box that exhibits the characteristics of a DE dynamical system, but the
dynamical system it stands for does not need to be a DE one. Furthermore, it is typical to assume
that DE SUs communicate with the environment via time-stamped events, as opposed to signals.
This means that the outputs of SUs can be absent at times where no event is produced.

7Another aspect to consider is the balance between insights gained and resources spent [92].
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We adapt the definition of the Discrete Event System Specification(DEVS)8 in [263] (originally
proposed in [281]) to formally define a DE SU Si, where i denotes the reference of the SU:

Si =
〈
Xi, Ui, Yi, δ

ext

i , δinti , λi, tai, qi(0)
〉

δexti : Qi × Ui → Xi

δinti : Xi → Xi

λi : Xi → Yi ∪ {NaN }

tai : Xi → R≥0 ∪∞

qi(0) ∈ Qi

Qi = {(x, e)|x ∈ Xi and 0 ≤ e ≤ tai(x)}

(1)

where:
• Xi, Ui, and Yi are the set of possible discrete states, input events, and output events, respecti-

vely;
• δexti (qi, ui) = x′

i is the external transition function that computes a new total state (x′
i, 0) ∈ Qi

based on the current total state qi and an input event ui;
• δinti (xi) = x′

i is the internal transition function that computes a new total state (x′
i, 0) ∈ Qi

when the current total state is (xi, tai(xi)) ∈ Qi;
• e denotes the elapsed units of time since the last transition (internal or external);
• λi(xi) = yi ∈ Yi ∪ {NaN } is the output event function, invoked right before an internal

transition takes place and NaN encodes an absent value;
• tai(xi) ∈ R is the time advance function that indicates how much time passes until the next

state change occurs, assuming that no external events arrive;
• qi(0) is the initial state;
The execution of a DE SU is described informally as follows. Suppose that the SU is at time

ti ∈ R≥0 and marks the current discrete state as xi for e ≥ 0 elapsed units of time. Since e ≤ tai(xi),
the total state is (xi, e) ∈ Qi. Let tn = ti + tai(xi) − e. If no input event happens until tn, then at
time tn an output event is computed as yi := λi(xi) and the new discrete state xi is computed as
xi := (δinti (xi), 0). If, on the other hand, there is an event at time ts < tn, that is, ui is not absent
at that time, then the solver changes to state xi := (δexti ((xi, e + ts − ti), ui), 0) instead.

In the above description, if two events happen at the same time, both are processed before the
simulated time progresses. Due to the transiency and reactivity properties, the state and output
trajectories of a DE SU can only be well identified if the time base, traditionally the positive real
numbers, includes a way to order simultaneous events, and simultaneous state changes. An example
of such a time base is the notion of superdense time [166][178][175], where each time point is a pair
(t, n) ∈ T × N , with T typically being the positive real numbers and N , called the index, is the
set of natural numbers. In this time base, a state trajectory is a function xi : T ×N → Vxi

, where
Vxi

is the set of values for the state, and an output/input trajectory is ui : T ×N → Vui
∪ {NaN }.

Simultaneous states and events can be formally represented with incrementing indexes. See [53] for
an introduction.

eqs. (2) and (3) show instances of SUs represented in the adapted definition of DEVS.

8In the original DEVS definition, the initial state and the absent value in the output function are left implicit.
Here we make them explicit, to be consistent with section 4. Note also that there are many other variants of DE
formalisms. For instance, DE in hardware description languages (VHDL and Verilog) and actor based systems (for
instance the DE director in Ptolemy II [218]).

11



A DE SU is passive: it expects some external coordinator to set the inputs and call the tran-
sition functions. This passivity enables an easier composition of SUs in a co-simulation, by means
of a coordination algorithm, as will be shown later in section 3.2. algorithm 1 shows a trivial or-
chestrator9, which computes the behavior trace of a single DE SU, as specified in eq. (1), that has
no inputs. Remarks: tl holds the time of the last transition; and the initial elapsed time satisfies
0 ≤ e ≤ tai(xi(0));

If algorithm 1 is used to coordinate the execution of the traffic light SU in eq. (2), then the
resulting behavior trace is the piecewise constant traffic light state x1(t), together with the output
events. The latter is represented as a trajectory yi(t) that is mostly undefined (or absent), except
for the single points where an output is produced, according to ta1.

Algorithm 1: Single autonomous DE SU orchestration.

Data: A Si =
〈
Xi, ∅, Yi, δ

ext

i , δinti , λi, tai, (xi(0), ei)
〉
.

ti := 0 ;
xi := xi(0) ; // Initial discrete state

tl := −ei ; // Account for initial elapsed time

while true do
ti := tl + tai(xi) ; // Compute time of the next transition

yi := λi(xi) ; // Output

xi := δinti (xi) ; // Take internal transition

tl := ti ;

end

3.2 DE Co-simulation Orchestration

DEVS SUs communicate with their environment exclusively through inputs and outputs. DE co-
simulation scenarios are comprised of multiple DE SUs (eq. (1)) coupled through output to input
connections, which map output events of one SU to external events in other SU.

Consider the following DE SUs of a traffic light and a police office, respectively:

9Algorithm 1 is based on [263] and is originally proposed in [281].
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S1 =
〈

X1, U1, Y1, δ
ext

1 , δ
int

1 , λ1, ta1, q1(0)
〉

X1 = Y1 = {red , yellow , green, off }

U1 = {toAuto, toOff } ; q1(0) = (red , 0)

δ
ext

1 ((x1, e), u1) =

{

off if u1 = toOff

red if u1 = toAuto and x1 = off

δ
int

1 (x1) =











green if x1 = red

yellow if x1 = green

red if x1 = yellow

λ1(x1) =











green if x1 = red

yellow if x1 = green

red if x1 = yellow

ta1(x1) =



















60 if x1 = red

50 if x1 = green

10 if x1 = yellow

∞ if x1 = off

(2)

S2 =
〈

X2, U2, Y2, δ
ext

2 , δ
int

2 , λ2, ta2, q2(0)
〉

X2 = {working , idle}

U2 = ∅

Y2 = {toWork , toIdle}

δ
int

2 (x2) =

{

idle if x2 = working

working if x2 = idle

λ2(x2) =

{

toIdle if x2 = working

toWork if x2 = idle

ta2(x2) =

{

200 if x2 = working

100 if x2 = idle

q2(0) = (idle, 0)

(3)

With the following remarks:
• The current state of the model in the definition of δext1 is q1 = (x1, e) with e being the elapsed

time since the last transition.
• The output event function λ1 is executed immediately before the internal transition takes

place. It must then publish the next state instead of the current.
To model a scenario where the police officer interacts with a traffic light, the output events Y2

have to be mapped into the external events U1 of the traffic light SU (eq. (2)). In this example, if
U1 = {toAuto, toOff } are the external input events handled by the traffic light SU, the mapping
Z2,1 : Y2 → U1 is defined by:

Z2,1(y2) =

{

toAuto if y2 = toIdle

toOff if y2 = toWork
(4)

This way, if the police officer changes to working state at time tn, then the output signal y2 :=
toWork will be translated by Z2,1 into an input event u1 := toOff of the traffic light SU.

Based on the idea of abstract SUs [284], we formalize a DE co-simulation scenario with reference
cs as follows:

〈Ucs , Ycs , D, {Sd : d ∈ D} , {Id : d ∈ D ∪ {cs}} , {Zi,d : d ∈ D ∧ i ∈ Id} , Select〉 (5)

where:

• Ucs is the set of possible input events, external to the scenario;
• Ycs is the set of possible output events from the scenario to the environment;
• D is an ordered set of SU references;
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• For each d ∈ D, Sd denotes a DE SU, as defined in eq. (1);
• For each d ∈ D ∪ {cs}, Id ⊆ (D \ {d})∪ {cs} is the set of SUs that can influence Sd, possibly

including the environment external to the scenario (cs), but excluding itself;
• For each i ∈ Id, Zi,d specifies the mapping of events:

Zi,d :Ui → Ud, if i = cs

Zi,d :Yi → Yd, if d = cs

Zi,d :Yi → Ud, if i 6= cs and d 6= cs

• Select : 2D → D is used to deterministically select one SU among multiple SUs ready to
produce output events simultaneously, i.e., when at time t, the set of SUs

IMM (t) = {d|d ∈ D ∧ qd(t) = (xd, tad(xd))} (6)

has more than one SU reference. This function is restricted to select one from among the set
IMM (t), i.e., Select(IMM (t)) ∈ IMM (t).

The following co-simulation scenario cs couples the traffic light SU to the police officer SU:

〈∅, Ycs , {1, 2} , {S1, S2} , {I1, I2, Ics} , {Z2,1, Z1,cs} , Select〉

Ycs = Y1; I1 = {2} ; I2 = ∅; Ics = {1} ; Z1,cs(y1) = y1
(7)

where: S1 is the traffic light SU and S2 the police officer SU (eq. (3)); Y1 is the output of S1; Z2,1

is defined in eq. (4); and the omitted Zi,d functions map anything to absent (NaN ).
The Select function is particularly important to ensure that the co-simulation trace is unique.

For example, consider the co-simulation scenario of eq. (7), and suppose that at time tn both SUs
are ready to output an event and perform an internal transition. Should the traffic light output
the event and perform the internal transition first, or should it be the police office to do it first? In
general, the order in which these output/transition actions are performed matters. The reason is
that the way one SU reacts to the other SU’s output may be different, depending on the internal
state of the former. In the example co-simulation scenario, the end result is always the same but
this is not the general case.

algorithm 2 illustrates the orchestrator of an autonomous (without inputs) DE co-simulation
scenario 10. It assumes that the co-simulation scenario does not expect external events, that is, all
events that can affect the SUs are produced by other SUs in the same scenario. External output
events are possible though. Remarks: tcs holds the most recent time of the last transition in the
scenario; ed is the elapsed time of the current state qd = (xd, ed) of Sd; tn is the time of the next
transition in the scenario; i∗ denotes the chosen imminent SU; Ics is the set of SUs that can produce
output events to the environment; ycs is the output event signal of the scenario to the environment;
and {d|d ∈ D ∧ i∗ ∈ Id} holds the SUs that Si∗ can influence.

fig. 4 shows the behavior trace of the traffic light in the co-simulation scenario of eq. (7).
algorithm 2 is similar to algorithm 1: i) The time advance of the scenario tacs corresponds

to the time advance of a single SU; ii) The output produced by the state transition is analogous
to the λ function of a single SU; and iii) The output and state transition of child Si∗ , together
with the external transitions of the SUs influenced by Si∗ , are analogous to the internal transition
of a single SU. It is natural then that a co-simulation scenario cs as specified in eq. (5), can be

10Algorithm 2 is based on [263]
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Algorithm 2: Autonomous DE co-simulation scenario orchestration.

Data: A co-simulation scenario cs = 〈∅, Ycs , D, {Sd} , {Id} , {Zi,d} , Select〉.
tcs := 0 ;
xi := xi(0) for all i ∈ D ; // Store initial discrete state for each unit

while true do
tacs := mind∈D {tad(xd) − ed} ; // Time until the next internal transition

tn := tcs + tacs ; // Time of the next internal transition

i∗ := Select(IMM (tn)) ; // Get next unit to execute

yi∗ := λi∗(xi∗) ;
xi∗ := δinti∗ (xi∗) ; // Store new discrete state

ei∗ := 0 ; // Reset elapsed time for the executed unit

if i∗ ∈ Ics then
ycs := Zi∗,cs(yi∗) ; // Compute output of the scenario

end
for d ∈ {d|d ∈ D ∧ i∗ ∈ Id} do

ud := Zi∗,d(yi∗) ; // Trigger internal units that are influenced by unit i∗

xd := δextd ((xd, ed + tacs), ud) ;
ed := 0 ;

end
for d ∈ {d|d ∈ D ∧ i∗ 6∈ Id} do

ed := ed + tacs ; // Update the elapsed time of the remaining units

end
tcs := tn ; // Advance time

end

made to behave as a single DE SU Scs . Intuitively, the state of Scs is the set product of the total
states of each child DE SU; tacs is the minimum time until one of the DE SUs executes an internal
transition; the internal transition of Scs gets the output event of the imminent SU, executes the
external transitions of all the affected SUs, updates the elapsed time of all unaffected SUs, and
computes the next state of the imminent SU; the external transition of Scs gets an event from the
environment, executes the external transition of all the affected SUs, and updates the elapsed time
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Figure 4: Example co-simulation trace of the traffic light and police officer scenario.

of all the unaffected SUs [284]. Formally:

Scs =
〈
Xcs , Ucs , Ycs , δ

ext

cs
, δint

cs
, λcs , tacs , qcs(0)

〉

Xcs = ×d∈DQd

qcs(0) = (×d∈Dqi(0),min
d∈D

ed)

tacs((. . . , (xd, ed), . . .)) = min
d∈D

{tad(xd) − ed}

i∗ = Select(IMM (t))

λcs(xcs) =

{

Zi∗,cs(yi∗(tn)) if i∗ ∈ Ics

NaN otherwise

δint
cs

(xcs) = (. . . , (x′
d, e

′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′
d, e

′
d) =







(δintd (xd), 0) if i∗ = d

(δextd ((xd, ed + tacs(xcs)), Zi∗,d(λi∗(xi∗)), 0) if i∗ ∈ Id

(xd, ed + tacs(xcs)) otherwise

δext
cs

((xcs , ecs) , ucs) = (. . . , (x′
d, e

′
d), . . .), for all d ∈ D, where:

xcs = (. . . , (xd, ed), . . .)

(x′
d, e

′
d) =

{

(δextd ((xd, ed + ecs) , Zcs,d(ucs)), 0) if cs ∈ Id

(xd, ed + ecs) otherwise

(8)
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Remarks:
It is the Cartesian product of the total state of each child SU that makes the discrete state of the
co-SU;
The elapsed times of each child SU are managed solely by the co-SU, whenever there is a transition
(internal or external);
The external transition functions of each child are executed with the mapping of the events produced
by the current state of the imminent child, and not the next one computed by (δintd (xd), 0);
An internal transition of a child SU may cause an output event to the environment of the co-SU, if
the child is connected to the output of the co-SU.

The same internal transition causes not only a change in the child discrete state, but also, due
to its output event, may cause external transitions in other child SUs. This is not a recursive nor
iterative process: at most one external transition will occur in all the affected child SUs; if any of
the affected SUs becomes ready for an internal transition, it waits for the next internal transition
invoked from the coordinator of the co-SU;

The resulting co-SU Scs behaves exactly as a DE SU specified in eq. (1). It can thus be executed
with algorithm 1 (in case of no inputs), or composed with other SUs in hierarchical co-simulation
scenarios. Hierarchical co-simulation scenarios can elegantly correspond to real hierarchical systems,
a natural way to deal with their complexity [149].

In summary, DE based co-simulation exhibits the following characteristics:
reactivity: A DE SU (analogously, a DE co-SU) has to process an event at the moment it occurs.
transiency: In both algorithm 2 and in a DE co-SU, the time advance tacs to the next imminent

child internal transition can be zero for successive iterations, so an orchestrator has to be able
to tolerate the fact that simulated time may not advance for several iterations.

predictable step sizes: In a DE co-simulation scenario without inputs, the orchestrator, as shown
in algorithm 2, can always predict the next simulated time step. In a scenario with inputs, if
the environment provides the time of the next event, then the next simulated time step can
be predicted too. For this to be possible, black box DE SUs have to be able to inform the
orchestrator what their time advance is. This is not a trivial task for DE SUs that simulate
continuous systems whose future behavior trace, especially when reacting to future inputs, is
not easily predicted without actually computing it.

In the next subsection the main challenges in DE based co-simulation, and the requirements (or
capabilities) their solutions impose in DE SUs, are made explicit.

3.3 Challenges

Causality

For the sake of simplicity, algorithm 2 is sequential. In a hierarchical co-SU, the imminent SU
(closest to performing an internal transition) will be the one to execute, thus inducing that there
is a global order in the events that are exchanged. This global order avoids causality violations
but is too pessimistic. If an event y1(t1) causes another event —by changing the internal state
of some other SU, which in turn changes its next output event— y2(t2), then t1 ≤ t2, which is
ok. However, the converse is not true: t1 ≤ t2 does not necessarily imply that y1(t1) has caused
y2(t2), which means that S2 could execute before —in the wall-clock time sense— y1(t1) without
violating causality, at least within a small window of simulated time. To see why, suppose that S1
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and S2 do not influence each other in the scenario. Then y2(t2) would happen anyway, regardless of
y1(t1) occurring or not. Moreover, the co-simulation scenario holds information —the dependencies
{Id}— that can be used to determine who influences what [158][68].

A parallel optimistic orchestrator that takes {Id} into account is, in general, faster in the wall
clock time sense, than a pessimistic, sequential one. However, most of these, the Time-warp algo-
rithm [136] being a well known example, require rollback capabilities of SUs. This is because SUs
proceed to advance their own time optimistically, assuming that any other SUs will not affect them,
until they are proven wrong by receiving an event which occurs before their own internal time.
When that happens, the SU has to rollback to a state prior to the time of timestamp of the event
that just arrived. This may in turn cause a cascade of rollbacks in other affected SUs. Moreover, in
parallel optimistic DE co-simulation, any of the SUs in the scenario needs (theoretically) to support
multiple rollbacks and have enough memory to do so for an arbitrary distant point in the past
[103]. This point in the past is limited in Time-warp by the Global Virtual Time (GVT). The GVT
represents the minimum internal time of all SUs. By definition, no event that is yet to be produced
(in wall-clock time) can have a timestamp smaller than the GVT.

We make a distinction between multiple rollback and single rollback capabilities. To support
single rollback, a SU needs to store only the last committed state, thereby saving memory.

Causality is a compositionality property: if each child SU does not violate causality, then any
orchestrator has to ensure that the causality is not violated when these SUs are coupled. Optimistic
orchestration algorithms do so by requiring rollback capabilities from child SUs, whereas pessimistic
algorithms do so at the cost of performance.

Determinism and Confluence

Determinism is also a compositional property. The Select function, in the co-simulation scenario
definition of eq. (5), is paramount to ensure the compositionality of deterministic behavior. This
function is used to ensure that a unique behavior trace can be obtained when the co-simulation
scenario is executed by algorithm 2 or when it is turned into a co-SU, as in eq. (8). The alternative
to the Select function is to ensure that all possible interleavings of executions always lead to the
same behavior trace – this is known as confluence. Intuitively, if a co-SU is compositional with
respect to confluence, then it is also compositional with respect to determinism.

Proving confluence is hard in general for black box DE co-simulation because it depends on
knowledge about how the child SUs react to external events, which is potentially valuable IP.
Parallel-DEVS [72] is an approach, which leaves the confluence property to be satisfied by the
modeler.

Dynamic Structure

Until now, the dependencies {Id}, in eq. (5), have been assumed to be fixed over time. From
a performance perspective, a static sequence of dependencies may be too conservative, especially
if used to ensure causality in optimistic parallel co-simulation. To see why, consider that in a
large scale simulation, there is a SU S1 which may influence SU S2 but only under a very specific
set of conditions, which may not be verified until a large amount of simulated time has passed.
A pessimistic co-SU assumes that S1 may always affect S2 and hence, tries to ensure that the
simulated time of S2 is always smaller than S1, to minimize possible rollbacks. This incurs an
unnecessary performance toll in the overall co-simulation because S1 does not affect S2 most of the
time. This is where making I2 dynamic can improve the performance of the co-simulation since
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the co-SU will know that most of the time, S1 does not affect S2. Dynamic structure co-simulation
allows for {Id} to change over time, depending on the behavior trace of the SUs. It can be used to
study self-organizing systems [256][20].

Distribution

Co-SUs whose child SUs are geographically distributed are common [103]. Interesting solutions
like computation allocation [194][261], bridging the hierarchical encapsulation [262], and the use of
dead-reckoning models [164] have been proposed to mitigate the additional communication cost.
Moreover, security becomes important, as pointed out, and addressed, in [201].

4 Continuous-Time-Based Co-simulation

In the continuous time (CT) based co-simulation approach, the orchestrators’ and simulation units’
(SUs) behavior and assumptions are borrowed from the CT system simulation domain. We describe
these below.

4.1 CT Simulation Units

A CT SU is assumed to have a state that evolves continuously over time. It is easier to get the
intuitive idea of this by considering a SU of a CT dynamical system, such as a mass-spring-damper,
depicted in the left hand side of fig. 5. The state is given by the displacement x1 and velocity v1 of
the mass, and the evolution by:

ẋ1 = v1; m1 · v̇1 = −c1 · x1 − d1 · v1 + Fe

x1(0) = p1; v1(0) = s1
(9)

where ẋ denotes the time derivative of x; c1 is the spring stiffness constant and d1 the damping
coefficient; m1 is the mass; p1 and s1 the initial position and velocity; and Fe denotes an external
input force acting on the mass over time. The solutions x1(t) and v1(t) that satisfy eq. (9) constitute
the behavior trace of the dynamical system. fig. 3b shows an example of such trace.

eq. (9) can be generalized to the state space form:

ẋ = f(x, u) ; y = g(x, u) ; x(0) = x0 (10)

where x is the state vector, u the input and y the output vectors, and x0 is the initial state.
A solution [x(t), y(t)]

T
that obeys eq. (10) is the behavior trace of the system. If f is linear and

time-invariant, an analytical form for x(t) can be obtained [16]. An analytical solution obtained
by the application of mathematical identities is an example of a behavior trace obtained via the
translational approach, described in section 2.2. Alternatively, the behavior trace can be computed.

If f(x, u) is sufficiently differentiable, x can be approximated with a truncated Taylor series
[247][67]:

x(t + h) = x(t) + f(x(t), u(t)) · h + O
(
h2
)

(11)

where

O
(
hn+1

)
= max

i

(

lim
h→0

xn+1 (ζ(t∗))

(n + 1)!
hn+1

)

= const · hn+1
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denotes the order of the truncated residual term; t∗ ∈ [t, t + h]; and h ≥ 0 is the micro-step size.
eq. (11) is the basis of a family of numerical solvers that iteratively compute an approximated
behavior trace x̃. For example, the forward Euler method is given by:

x̃(t + h) := x̃(t) + f(x̃(t), u(t)) · h

x̃(0) := x(0)
(12)

A CT SU is assumed to have a behavior that is similar to one of a numerical solver computing
a set of differential equations. We reinforce that this does not restrict CT SUs to being mockups of
CT systems, even though it is easier to introduce them as such. For example, a SU S1 of the mass-
spring-damper, using the forward Euler solver, can be written by embedding the solver (eq. (12))
into eq. (9):

x̃1(t + h1) := x̃1(t) + v1(t) · h1

ṽ1(t + h1) := ṽ1(t) +
1

m1
· (−c1 · x̃1(t) − d1 · ṽ1(t) + Fe(t)) · h1

x̃1(0) := p1

ṽ1(0) := s1

(13)

where h1 is the micro-step size, Fe(t) is the input, and [x(t + h), v(t + h)]
T

is the output.

4.2 CT Co-simulation Orchestration

Consider now a second system, depicted in the right hand side of fig. 5. It is governed by the
differential equations:

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc

Fc = cc · (x2 − xc) + dc · (v2 − ẋc)

x2(0) = p2

v2(0) = s2

(14)

where cc and dc denote the stiffness and damping coefficients of the spring and damper, respectively;
xc denotes the displacement of the left end of the spring-damper. Combining with the forward Euler
solver, yields the following SU:

x̃2(t + h2) := x̃2(t) + ṽ2(t) · h2

ṽ2(t + h2) := ṽ2(t) +
1

m2
· (−c2 · x̃2(t) − Fc(t)) · h2

Fc(t) = cc · (x̃2(t) − xc(t)) + dc ·
(

ṽ2(t) − ˙xc(t)
)

x̃2(0) := p2

ṽ2(0) := s2

(15)

where h2 is the micro-step size, xc and ẋc are inputs, and Fc the output. Suppose S1 (eq. (13)) and
S2 are coupled, setting xc = x1, ẋc = v1 and Fe = Fc, so that the resulting co-simulation scenario
represents the multi-body system in fig. 5.
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Figure 5: A multi-body system comprised of two mass-spring-damper subsystems.

In the co-modeling approach, the models in Equations 9 and 14 would be combined to get the
following coupled model:

ẋ1 = v1

m1 · v̇1 = −c1 · x1 − d1 · v1 + Fc

ẋ2 = v2

m2 · v̇2 = −c2 · x2 − Fc

Fc = cc · (x2 − x1) + dc · (v2 − v1)

x1(0) = p1

v1(0) = s1

x2(0) = p2

v2(0) = s2

(16)

which can be written in the state space form (eq. (10)) as:







ẋ1

v̇1
ẋ2

v̇2







=







0 1 0 0

− c1+cc
m1

−d1+dc

m1

cc
m1

dc

m1

0 0 0 1
cc
m2

dc

m2
− c2+cc

m2
− dc

m2













x1

v1
x2

v2













x1(0)
v1(0)
x2(0)
v2(0)







=







p1
s1
p2
s2







(17)

The behavior trace of eq. (17) can be obtained either analytically, or with forward Euler solver
(eq. (12)).

In CT based co-simulation, to overcome the fact that each SU’s micro-step sizes are independent,
a communication step size H (also known as macro-step size or communication grid size) has to be
defined. H marks the times at which the SUs exchange values of inputs/outputs.

Suppose a SU Si is at time n ·H, for some natural n, and is asked by an orchestrator to execute
until time (n+ 1) ·H. If Si only gets its inputs valued at n ·H, then extrapolation must be used to

21



get the inputs in any of the internal micro-steps of the SU. In other words, when time is n·H+m·hi,
for m ≤ H

hi
and micro-step size hi, an extrapolation function φui

(m ·hi, ui(n ·H), ui((n−1) ·H), . . .),
built from input values known at previous communication time points, is used to approximate the
value of ui(n · H + m · hi). Notice that m = H

hi
is allowed, even though, theoretically, the value

of ui((n + 1) · H) can be obtained from the environment. The reason for this becomes clear in
section 4.3. Analogously, interpolation techniques have to be used when the orchestrator makes the
input value available at time (n + 1) ·H but the SU is still at time n ·H. For example, the input
Fe of the SU described in eq. (13) can be defined as:

Fe(n ·H + m · h1) := φFe
(m · h1, Fe(n ·H), Fe((n− 1) ·H), . . .), for m ≤

H

h1
(18)

Similarly, the inputs xc and ẋc of the SU described in eq. (15) can be defined as

xc(n ·H + m · h2) := φxc
(m · h2, xc(n ·H), xc((n− 1) ·H), . . .)

ẋc(n ·H + m · h2) := φẋc
(m · h2, ẋc(n ·H), ẋc((n− 1) ·H), . . .)

for m ≤
H

h2

(19)

In the simplest case, the extrapolations can be constant. In the coupled mass-spring-dampers, this
means:

φFe
(t, Fe(n ·H)) = Fe(n ·H); φxc

(t, xc(n ·H)) = xc(n ·H); φẋc
(t, ẋc(n ·H)) = ẋc(n ·H)

(20)

In the state of the art, input extrapolation approaches can be classified as: Constant; Li-
near; Polynomial; Extrapolated-Interpolation [82][55]; Context-aware [29][30]; and Estimated Dead-
Reckoning Model [240][48][242]; See [55][10][238][8] for an overview of linear and higher order ex-
trapolation techniques and how these affect the accuracy of the co-simulation trace.

The orchestrator for this co-simulation scenario, at a time t = n ·H, gets the outputs of both
SUs and computes their inputs. Then, each SU is instructed to compute its behavior trace until
the next communication step size, at t = (n + 1) ·H, making use of the extrapolating functions to
get the inputs at each of the micro steps (Equations 18 and 19).

We are now ready to formally define the behavior of a CT SU Si:

Si = 〈Xi, Ui, Yi, δi, λi, xi(0), φUi
〉

δi : R×Xi × Ui → Xi

λi : R×Xi × Ui → Yi or R×Xi → Yi

xi(0) ∈ Xi

φUi
: R× Ui × . . .× Ui → Ui

(21)

where:
• Xi is the state vector space;
• Ui is the input vector space;
• Yi is the output vector space;
• δi(t, xi(t), ui(t)) = xi(t+H) or δi(t, xi(t), ui(t+H)) = xi(t+H) is the function that instructs

the SU to compute a behavior trace from t to t + H, making use of the input extrapolation
(or interpolation) function φUi

;
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• λi(t, xi(t), ui(t)) = yi(t) or λi(t, xi(t)) = yi(t) is the output function; and
• xi(0) is the initial state.
For instance, the SU in eq. (13) can be described as follows:

S1 =

〈

R
2,R,R2, δ1, λ1,

[
p1
s1

]

, φFe

〉

δ1(t,

[
x̃1(t)
ṽ1(t)

]

, Fe(t)) =

[
x̃1(t + H)
ṽ1(t + H)

]

λ1(t,

[
x̃1(t)
ṽ1(t)

]

) =

[
x̃1(t)
ṽ1(t)

]

(22)

where [x̃1(t + H), ṽ1(t + H)]
T

is obtained by the iterative application of the SU in eq. (13) over a
finite number of micro-steps, making use of the extrapolation of Fe (defined in eq. (18)):

[
x̃1(t + H)
ṽ1(t + H)

]

=

[
x̃1(t)
ṽ1(t)

]

+

[
ẋ1(t)

v̇1(t, φFe
(t, Fe(t), . . .))

]

· h +

[
ẋ1(t + h)

v̇1(t + h, φFe
(t + h, Fe(t), . . .))

]

· h + . . .

A CT co-simulation scenario with reference cs includes at least the following information11:

〈Ucs , Ycs , D, {Si : i ∈ D} , L, φUcs
〉

L : (Πi∈DYi) × Ycs × (Πi∈DUi) × Ucs → R
m

(23)

where D is an ordered set of SU references, each Si is defined as in eq. (21), m ∈ N, Ucs is the
vector space of inputs external to the scenario, Ycs is the vector space of outputs of the scenario,
φUcs

a set of input approximation functions, and L induces the SU coupling constraints, that is, if
D = {1, . . . , n}, then the coupling is the solution to L(y1, . . . , yn, ycs , u1, . . . , un, ucs) = 0̄, where 0̄
denotes the null vector. As an example, the co-simulation scenario representing the system of fig. 5
is:

cs = 〈∅, ∅, {1, 2} , {S1, S2} , L, ∅〉 ; L = [xc − v1; ẋc − x1; Fe − Fc]
T (24)

where:
• S1 is the SU for the constituent system on the left (eq. (22)), and S2 is the SU for the remaining

constituent system;
• xc, ẋc are the inputs of S2, and Fe is the input of S1; and
• x1, v1 are outputs of S1 and Fc is the output of S2.
algorithm 3 summarizes, in a generic way, the tasks of the orchestrator related to computing

the co-simulation of a scenario cs with no external inputs. It represents the Jacobi communication
approach: SUs exchange values at time t and independently compute the trace until the next
communication time t + H. The way the system in eq. (25) is solved depends on the definition
of L. In the most trivial case, the system reduces to an assignment of an output yj(t) to each
input ui(t), and so the orchestrator just gets the output of each SU and copies it onto the input
of some other SU, in an appropriate order. Concrete examples of algorithm 3 are described in
[25][102][151][105][86][118][57][274].

11Please note that this formalization is related to the formalization proposed by [52], with the main differences: i)
it is not designed to formalize a subset of the FMI Standard, ii) it accommodates algebraic coupling conditions, and
iii) it does not explicitly define port variables.

23



An alternative to the Jacobi communication approach is the Gauss-Seidel (a.k.a. sequential or
zig-zag) approach, where an order of the SUs’ δ function is forced to ensure that, at time t, they get
inputs from a SU that is already at time t + H. Gauss-Seidel approach allows for interpolations of
inputs, which is more accurate, but hinders the parallelization potential. Examples are described
in [11][25][10][257].

Algorithm 3: Generic Jacobi based orchestrator for autonomous CT co-simulation scenarios.

Data: An autonomous scenario cs = 〈∅, Ycs , D = {1, . . . , n} , {Si} , L, ∅〉 and a
communication step size H.

Result: A co-simulation trace.
t := 0 ;
xi := xi(0) for i = 1, . . . , n ;
while true do

Solve the following system for the unknowns:







y1 = λ1(t, x1, u1)

. . .

yn = λn(t, xn, un)

L(y1, . . . , yn, ycs , u1, . . . , un) = 0̄

(25)

xi := δi(t, xi, ui), for i = 1, . . . , n ; // Instruct each SU to advance

t := t + H ; // Advance time

end

Similarly to DE based co-simulation, a CT co-simulation scenario, together with an orchestrator,
should behave as a (co-)SU of the form of eq. (21), and thus be coupled with other SUs, forming
hierarchical co-simulation scenarios: the state of the co-SU is the set product of the states of the
internal SUs; the inputs are given by Ucs and the outputs by Ycs ; the transition and output functions
are implemented by the orchestrator; the communication step size H used by the orchestrator is
analogous to a SU’s micro-step sizes, and the input extrapolation function is φUi

.
algorithm 3 makes it clear that the SUs can be coupled with very limited information about

their internal details. In concrete:
• The output λi and state transition δi functions need to be executable but their internal details

can remain hidden;
• the inputs ui need to be accessible;
• the state variables can be hidden. These are represented merely to illustrate that the internal

state of the SU changes when executing δi.
However, the blind coupling can lead to compositionality problems, as will be discussed in the
sections below. The common trait in addressing these is to require more from the individual SUs:
either more capabilities, or more information about the internal (hidden) dynamical system.
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4.3 Challenges

Modular Composition – Algebraic Constraints

In the co-simulation scenario described in eq. (24), the coupling condition L translates into a set
of assignments from outputs to inputs. This is because the inputs of the SU of the system in the
left hand side of fig. 5 and the outputs of the SU of the system represented in the right hand side
of the same picture can be connected directly, and vice versa. In practice, the SUs’ models are
not created with a specific coupling pattern in mind and L can be more complex. As an example,
adapted from [233], consider the system coupled by a massless rigid link, depicted in fig. 6. The
first subsystem is the same as the one in the left hand side of fig. 5 and its SU is in eq. (13). The
second constituent system is governed by the following differential equations:

ẋ3 = v3

m3 · v̇2 = −c3 · x3 + Fc

x3(0) = p3

v3(0) = s3

(26)

And the following SU:

x̃3(t + h3) = x̃3(t) + v3(t) · h3

ṽ3(t + h3) = ṽ3(t) +
1

m3
· (−c3 · x3(t) + Fc(t)) · h3

x̃3(0) = p3

ṽ3(0) = s3

(27)

The input to S3 is the coupling force Fc, and the output is the state of the mass [x̃3, ṽ3]
T

. The

input to S1 is the external force Fe and the outputs are the state of the mass [x̃1, ṽ1]
T

. Recall

eq. (13). There is clearly a mismatch. The outputs [x̃1, ṽ1]
T

of the first SU cannot be coupled
directly to the input Fc of the second SU, and vice versa. However, the massless link restricts the
states and inputs of the two SUs to be the same. Whatever the input forces may be, they are
equal and opposite in sign. Hence, any orchestration algorithm has to find inputs that ensure the
coupling constraints are satisfied:

L = [x̃1(n ·H) − x̃3(n ·H); ṽ1(n ·H) − ṽ3(n ·H); Fe(n ·H) + Fc(n ·H)]
T

= 0̄ (28)

This problem has been addressed in [118][119][11][10][238][233][239]. The approach taken in [118]
is worth mentioning because it defines a Boundary Condition Coordinator (BCC) which behaves
as an extra SU, whose inputs are the outputs of the original two SUs, and whose outputs are Fe

and Fc. They show that the initial co-simulation scenario with the non-trivial constraint can be
translated into a co-simulation, with a trivial constraint, by adding an extra SU. This is illustrated
in fig. 7.

Transforming the co-simulation scenario to make it simpler marks an important step in separa-
ting the concerns of the orchestrator [112]. In fact, the newly created SU can be run with a smaller
internal micro-step size, required to meet stability and accuracy criteria, as shown in [118]. In
many of the solutions proposed (e.g., [11][10][238][233][239]), information about the rate of change
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Figure 6: A multi-body system coupled by a mass-less link.

(or sensitivity) of outputs and states of each SU, with respect to changes in its inputs is required
to solve the non-trivial coupling condition. This information can be either provided directly as a
Jacobian matrix of the system and output functions, or estimated by finite differences, provided
that the SUs can be rolled back to previous states. A frequent characteristic of co-simulation: the
availability of certain capabilities from SUs can mitigate the lack of other capabilities.

To show why the sensitivity information is useful, one of the tasks of the BCC is to ensure that
x̃1 − x̃3 is as close to zero as possible, by finding appropriate inputs Fe and Fc. This is possible
since x̃1 and x̃3 are functions of the inputs Fe and Fc, and −Fe = Fc. So the constraint can be
written as

g(Fe) = x̃1(Fe) − x̃3(−Fe) = 0 (29)

From one communication step to the next, g can be expanded with the Taylor series:

g(Fe((n + 1) ·H)) = g(Fe(n ·H) + ∆Fe) ≈ g(Fe(n ·H)) +
∂g(Fe(n ·H))

∂Fe

· ∆Fe (30)

From a known input Fe(n · H), Equations 29 and 30 can be combined to obtain the input
Fe((n + 1) ·H) at the next communication step:

g(Fe(n ·H) + ∆Fe) ≈ g(Fe(n ·H)) +
∂g(Fe(n ·H))

∂Fe

· ∆Fe = 0 ↔

g(Fe(n ·H)) = −
∂g(Fe(n ·H))

∂Fe

· ∆Fe ↔

∆Fe = −

[
∂g(Fe(n ·H))

∂Fe

]−1

· g(Fe(n ·H)) ↔

Fe((n + 1) ·H) = Fe(n ·H) −

[
∂g(Fe(n ·H))

∂Fe

]−1

· g(Fe(n ·H))

(31)

with

∂g(Fe(n ·H))

∂Fe

=
∂x̃1(Fe(n ·H))

∂Fe

+
∂x̃3(−Fe(n ·H))

∂Fc

(32)
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Figure 7: Transforming a co-simulation scenario with a non-trivial constraint into a simpler scenario
by adding an extra SU that induces a trivial constraint. This promotes separation of concerns.

A simple orchestration algorithm will then perform the following steps, at each co-simulation
step:

1. Let x̃1(nH), x̃3(nH) be the current position outputs of the two SUs S1 and S3;
2. Perform a co-simulation step with a known Fe, obtaining x̃

p
1(nH), x̃p

3(nH) as new outputs.
3. Rollback SUs to state x̃1(nH), x̃3(nH);
4. Perform a co-simulation step with Fe + ∆Fe, obtaining x̃d

1(nH), x̃d
3(nH);

5. Approximate ∂g(Fe(n·H))
∂Fe

by finite differences and eq. (32);
6. Obtain a corrected F c

e by eq. (31);
7. Rollback SUs to state x̃1(nH), x̃3(nH);
8. Perform the final co-simulation step with F c

e ;
9. Commit states and advance time;
As can be seen in fig. 8, this coupling cannot be carried out without errors: the constraint

g(Fe((n + 1) · H)) cannot be accurately forced to zero at first try. Furthermore, finding initial
conditions and initial inputs that satisfy Equations 9, 26, and 28 is very important and usually
requires a fixed point iteration. The above algorithm could be changed to perform an arbitrary
number of iterations, repeating steps 1–7 until g(Fe((n+1) ·H)) is close enough to zero. This would
increase the accuracy but also increase the amount of computation.

These examples show that rollback capabilities are important. If a SU is a black box, then the
rollback capability has to be provided by the SU itself and there is little that the orchestrator can
do to make up for the lack of the feature. See [52] for an orchestrator that takes into account the
existence of the rollback feature. If, on the other hand, the SU provides access to its state, and
allows the state to be set, as in [38], then the orchestrator can implement the rollback by keeping
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Figure 8: Co-simulation of algebraically coupled masses. Parameters are: m2 = 2,m1 = c1 = c3 =
d1 = cc = 1, H = 0.1, x1(0) = 1.0, x3(0) = 1.1, v1(0) = v3(0) = 0. Notice the small disturbance at
the initial conditions.

track of the state of the SU. Rollback also plays a key role when dealing with algebraic loops in the
co-simulation scenario.

Finally, to explain why this subsection refers to modular composition of SUs, the example in
fig. 6 makes explicit one of the problems in co-simulation: the “rigid” and protected nature of SUs
can make their coupled simulation very difficult. To contrast, in a white box approach where the
equations of both constituent systems are available, the whole system is simplified, with the two
masses being lumped together, and their coupling forces canceling each other out. The simplified
system is a lumped mass-spring-damper, which is easily solvable. Such an approach is common in
acausal modeling languages, such as Modelica [1]. To be concrete, the coupled system is obtained
by combining Equations 9, 26, and 28, and simplifying to:

ẋ1 = v1

(m1 + m3) · v̇1 = −(c1 + c3) · x1 − d1 · v1

x1(0) = p1

v1(0) = s1

(33)

fig. 9 compares the behavior trace produced by algorithm 3 when applied to the co-simulation
scenario described in eq. (24), with the analytical solution, obtained from the coupled model of
eq. (17) (co-modelling). It is obvious that there is an error due to the extrapolation functions and
the large communication step size H = 0.1. In the white-box approach, the same constituent system
can be coupled to other systems in many different contexts, whereas in co-simulation it is possible
to get around the modularity aspect, but at a cost.

Algebraic loops

Algebraic loops occur whenever there is a variable that indirectly depends on itself. To see how
algebraic loops arise in co-simulation scenarios, recall (see eq. (21)) that the state evolution and
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Figure 9: Comparison of co-simulation with co-modelling for the sample coupled system. Parame-
ters are: m1 = m2 = c1 = c2 = d1 = cc = 1, H = 0.1.

output of each SU Si can be written as:

xi(t + H) = δi(t, xi(t), ui(t))

yi(t + H) = λi(t, xi(t + H), ui(t + H))
(34)

To simplify things, assume that the SUs are coupled by a set of assignments from outputs to
inputs, i.e.,

ui(t) := yj(t) (35)

where ui is the input of SU Si and yj the output of a SU Sj , in the same co-simulation scenario.
With these definitions, it is easy to see that, depending on the coupling assignments of the

co-simulation scenario, the output of a SU may depend on itself, that is,

yi(t + H) = λi(t, xi(t + H), ui(t + H))

ui(t + H) = yj(t + H)

yj(t + H) = λj(t, xj(t + H), uj(t + H))

uj(t + H) = yk(t + H)

. . .

uz(t + H) = yi(t + H)

(36)

We distinguish two kinds of algebraic loops in co-simulation [152]: the ones spanning just input
variables, and the ones that include state variables as well. The first kind arises when the outputs
of a SU depend on its inputs, while the second kind happens when implicit numerical solvers are
used, or when the input approximating functions are interpolations. In the previous example, the
first kind can be removed by replacing ui(t + H) in eq. (34) by the corresponding extrapolation
φui

(H,ui(n ·H), ui((n − 1) ·H), . . .) which does not depend on ui((n + 1) ·H), thus breaking the
algebraic loop. As shown in [152][13] (and empirically in [25]), neglecting a loop can lead to a
prohibitively high error in the co-simulation. Instead, fixed point iteration technique should be
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used to solve algebraic loops. For those involving state variables, the same co-simulation step has
to be repeated until convergence, whereas for loops over inputs/outputs, the iteration just repeats
the evaluation of the output functions.

To see how algebraic loops involving state variables arise, suppose that, in the example above,
φui

is constructed from ui((n + 1) ·H):

ui(n ·H + m · hi) := φui
(m · hi, ui((n + 1) ·H), ui(n ·H), ui((n− 1) ·H), . . .) (37)

If an order can be imposed in the evaluation of the SUs that ensures ui((n+1)·H) can be computed
from some λj(t, xj((n + 1) ·H), uj((n + 1) ·H)) that does not indirectly depend on ui((n + 1) ·H),
then this approach —Gauss-Seidel— can improve the accuracy of the co-simulation, as shown in
[13][11][55][140][10]. Obviously, the execution of SU Si has to start after SU Sj has finished and
its output λj(t, xj((n + 1) ·H), uj((n + 1) ·H)) can be evaluated. If the input uj((n + 1) depends
indirectly on ui((n + 1) ·H), then an algebraic loop exists. The output function λj(t, xj((n + 1) ·
H), uj((n + 1) ·H)) depends on the state of the SU at xj((n + 1) ·H), which in turn can only be
obtained by executing the SU from time n ·H to (n+1) ·H, using the extrapolation of the input uj ,
φuj

(m · hi, uj((n+ 1) ·H, . . .)); any improvement in the input uj((n+ 1) ·H, means that the whole
co-simulation step has to be repeated, to get an improved xj((n + 1) ·H) and by consequence, an
improved output λj(t, xj((n + 1) ·H), uj((n + 1) ·H)).

An orchestrator that makes use of rollback to repeat the co-simulation step with corrected
inputs is called dynamic iteration, waveform iteration, and strong or onion coupling [131][251]. If
the SUs expose their outputs at every internal micro-step, then the waveform iteration can be used
[167]. Strong coupling approaches are typically the best in terms of accuracy, but worst in terms
of performance. Approaches that do not perform any correction steps are the best in terms of
performance, but worst in accuracy. A variant that attempts to obtain the middle-ground is the
so-called semi-implicit method, where a fixed limited number of correction steps is performed. See
[238][233] for examples of this approach.

In the current FMI Standard for co-simulation, it is not possible, in the step mode, to perform
a fixed point iteration on the output variables only. A workaround is to use a strong coupling
technique. That is, rollback the SUs and repeat the co-simulation step, effectively treating the
algebraic loop as involving the state variables too.

Until here, we have assumed full knowledge of the models being simulated in each SU to explain
how to identify, and deal with, algebraic loops. In practice, with general black-box SUs, extra
information is required to identify algebraic loops. According to [52][13][35], a binary flag denoting
whether an output depends directly on an input is sufficient. A structural analysis, for example,
with Tarjan’s strong component algorithm [245], can then be performed to identify the loops.

Consistent Initialization of Simulators

The definition of a SU in eq. (21) assumes that an initial condition is part of the SU. However, as seen
in the example of fig. 6, the initial states of the SUs can be coupled by algebraic constraints, through
the output functions, which implies that the initial states of the SUs cannot be set independently of
the co-simulation in which they are used. For example, the constraint in eq. (28) has to be satisfied
for the initial states:

{x̃1(0), ṽ1(0), x̃3(0), ṽ3(0)}.
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In general, for a co-simulation scenario as defined in eq. (23), there is an extra coupling function
L0 that at the time t = 0, has to be satisfied. For example:

L0(x1(0), . . . , xn(0), y1(0), . . . , yn(0), ycs(0), u1(0), . . . , un(0), ucs(0)) = 0̄ (38)

where:

• xi(0) denotes the initial state of Si; and

• L0 : X1 × . . .×Xn ×Y1 × . . .×Yn ×U1 × . . .×Un → R
m represents the initial constraint, not

necessarily equal to L in eq. (23).

eq. (38) may have an infinite number of solutions – as in the case of the example in fig. 6 – or have
algebraic loops. The initialization problem (or co-initialization) is identified in [38] and addressed
in [105]. In the FMI Standard, there is a dedicated mode for the (possibly fixed point iteration
based) search of a consistent initial state in all SUs.

Compositional Convergence – Error Control

The accuracy of a co-simulation trace is the degree to which it conforms to the real trace as described
in section 2.2. Obtaining the real trace can be a challenge. Error —the difference between the co-
simulation trace and the real trace— is then a measure of accuracy.

In the context of co-simulation of CT systems, the most accurate trace is the analytical solution
to the coupled model that underlies the co-simulation scenario. For example, the coupled model
in eq. (17), corresponding to the multi-body system in fig. 5, is implicitly created from the co-
simulation scenario described in eq. (24). Fortunately, the analytical solution can be obtained for
this coupled model because it forms a linear time invariant system. In practice, the analytical
solution for a coupled model cannot be found easily. Calculating the error precisely is therefore
impossible for most cases but getting an estimate in how it grows is a well understood procedure
in numerical analysis.

In simulation, the factors that influence the error are [67]: the model, the solver, the micro-step
size, and, naturally, the size of the time interval to be simulated. In co-simulation, the extrapolation
functions introduce error in the inputs of the SUs, which is translated into error in the state/outputs
of these, causing a feedback on the error that can increase over time. Intuitively, the larger the
co-simulation step size H, the larger is the error made by the extrapolation functions.

For example, when the forward Euler solver (eq. (12)) is used to compute the approximated
behavior trace of the dynamical system in eq. (10), in a single micro step, it is making an error in
the order of ∥

∥
∥
∥
∥
∥
∥

(
x(t) + f(x(t)) · h + O

(
h2
))

︸ ︷︷ ︸

by infinite Taylor series

− (x(t) + f(x(t)) · h)
︸ ︷︷ ︸

by forward Euler

∥
∥
∥
∥
∥
∥
∥

= O
(
h2
)

Obviously, the order in the error made at one step O
(
h2
)
, most commonly called the local error,

depends on:
• f having no unbounded derivatives – to see why, observe that if the derivative of f is infinite,

then the residual term cannot be bounded by a constant multiplied by h2. Fortunately, since
most CT dynamic systems model some real system, this assumption is satisfied.

31



• The solver used – other solvers, such as the midpoint method, are derived by truncating
higher order terms of the Taylor series. For the midpoint method, the local truncation error
is O

(
h3
)
;

• Naturally, the larger the micro step size h is, the larger the local error O
(
h2
)

is.
The local error assumes that the solver only made one step, starting from an accurate point

x(t). To compute the approximate behavior trace, the only accurate point the solver starts from is
the initial value x(0). The rest of the trace is approximate and the error gets compounded over the
multiple steps. For the forward Euler method, if there is a limit to how f reacts to deviations on
its parameter x̃(t) = x(t) + e(t) from the true parameter x(t), that is, if

‖f(x(t)) − f(x(t) + e(t))‖ ≤ const · e(t)

and const < ∞, then the order of the total accumulation of error can be defined in terms of the
micro-step size. This condition is called global Lipschitz continuity [87]. For the forward Euler
solver, the total (or global) error is O (h).

For a solver to be useful, it must be convergent, that is, the computed trace must coincide with
the accurate trace when h → 0 [273]. It means the error can be controlled by adjusting the micro
step size h. The same concept of convergence applies to co-simulation but does, as the intuition
suggests, decreasing the communication step size H lead to a more accurate co-simulation trace?
This cannot be answered yet in general co-simulation because the behavior of the coupled model
induced by the coupling of SUs may not satisfy Lipschitz continuity.

According to [124][57][152][11][13], if the SUs are convergent and the coupled model induced by
the scenario coupling conditions can be written in the state space form of eq. (10), then the co-SU
induced by any of the Jacobi, Gauss-Seidel, or Strong coupling methods, is convergent, regardless
of the polynomial extrapolation technique used. Presence of algebraic loops, or complex coupling
constraints, are factors that may make it impossible to write the coupled model in state space form
[10].

The local error vector, in a co-simulation, is defined as the deviation from the true trace after
one co-simulation step H, starting from an accurate point.

x1(t + H) − x̃1(t + H)
· · ·

xn(t + H) − x̃n(t + H)
y1(t + H) − ỹ1(t + H)

· · ·
yn(t + H) − ỹn(t + H)

(39)

where x̃i(t + H) = δi(t, xi(t), φui
(t)), ỹi(t + H) = λi(t, x̃i(t + H), φui

(t + H)), and xi(t + H) and
yi(t + H) are the true state vectors and outputs, respectively, for SU Si.

For a convergent co-SU, some of the techniques traditionally used in simulation, have been
applied in co-simulation to estimate the error during the computation:
Richardson extrapolation: This well-known technique is compatible with black-box SUs as long

as these provide rollback and state saving/restore capabilities [14][13][105]. The essential

idea is to get an estimate of the local error by comparing [x̃i(t + H), ỹi(t + H)]
T

with a

less accurate point [x̄i(t + H), ȳi(t + H)]
T

. The less accurate point can be computed by the
same orchestrator but using a larger communication step size. We have seen that larger
communication step sizes affect the accuracy so if the two points are not too far apart, it
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means the communication step H does not need to be changed. It is importance to notice
that the less accurate point [x̄i(t + H), ȳi(t + H)]

T
has to be computed from the accurate

starting point [x̃i(t), ỹi(t)]
T

.
Multi-Order Input Extrapolation: The outputs of two different order input approximation

methods are compared [57][59].
Milne’s Device: Similar to the previous ones, but the extrapolation of the inputs is compared

with its actual value, at the end of the co-simulation step. Iterative approaches such as the
ones studied in [238][233][236][11][10] can readily benefit from this technique.

Parallel Embedded Method: This technique runs a traditional adaptive step size numerical
method in parallel with the co-simulation [131]. The purpose is to piggy back in the auxiliary
method, the decisions on the step size. The derivatives being integrated in each SU have to
be either provided, or estimated.

Conservation Laws: The local error is estimated based on the deviation from a known conserva-
tion law. Extra domain knowledge about the coupling between SUs is required. For example, if
the couplings form power bonds [208], then energy should be conserved across a co-simulation
step. In practice there is always an error due to the usual factors. The magnitude of the
energy residual at a start and at end of a co-simulation step serves as an estimate of the local
error. This technique has been implemented and studied in [225]. It has the advantage that
it may not require rollback functionalities.

Embedded Solver Method: If the individual SUs support adaptive step size, then the decisions
made internally can be made public to help the orchestrator decide on the communication
step size. To the best of our knowledge, there is no orchestrator proposed that performs this,
but the FMI Standard allows SUs to reject too large communication step sizes [38][52].

After the error is deemed too large by one of the above methods, the correction can be applied
pessimistically (rolling back and repeating the same step) or optimistically (adapt the next step).
To mitigate the overhead of a pessimistic approach, the corrections may be applied only to sensitive
SUs, as carried out in [270].

Compositional Stability

In the previous section we have presented conditions in which an orchestration engine can reduce
the communication step size to an arbitrarily small value in order to meet arbitrary accuracy.
Theoretically, this is useful as it tells the orchestrator that by reducing the local error, it also reduces
the global error. In practice, the communication step size cannot be reduced to an arbitrarily small
value without facing performance and roundoff error problems. Performance because, for smaller
communication step sizes, it takes more steps to compute a behavior trace over a given interval
of time. Round-off accuracy because in a digital computer, real numbers can only be represented
approximately. Computations involving very small real numbers incur a non-negligible round-off
error. So that means that in practice convergence does not imply that arbitrary accuracy can be
achieved. A better question is to analyze what happens to the global error, as the co-simulation
trace is computed with a non-null communication step size H.

Suppose that the analytical solution to the coupled model induced by the co-simulation scenario
eventually goes to zero. This is the case for the coupled multi-body system of fig. 5, described in
eq. (17), provided that at least one of the constants d1 or d2 is positive non-zero. Intuitively, this
means that the system will lose energy over time, until it eventually comes to rest.

Let x1(t) denote the analytical solution of the position the mass m1 in the system, and let x̃1(t)
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be the solution computed by a co-SU. Then exi
(t) = ‖x1(t) − x̃1(t)‖ denotes the global error at

time t made by the co-SU. If limt→∞ x1(t) = 0, then limt→∞ exi
(t) = x̃1(t).

If the co-SU is convergent, then for an arbitrarily small H → 0, limt→∞ exi
(t) → 0 will be

arbitrarily small too. Since in practice we cannot take arbitrarily small H, we want to know
whether there is some non-zero H such that limt→∞ x̃1(t) = 0, thus driving exi

(t) to zero as well.
If that is the case, then it means that, assuming the system will eventually come to rest, the co-SU
will too. This property is called numerical stability.

Contrarily to convergence, numerical stability is a property that depends on the characteristics
of the system being co-simulated. Numerical stability is always studied assuming that the system
being co-simulated is stable. It makes no sense to show that the co-simulation trace will grow
unbounded provided that the system does too. It is a comparison of two infinities. One of the ways
numerical stability in co-simulation can be studied is by calculating the spectral radius of the error
in the co-SU, written as an autonomous linear discrete system [56].

To give an example, recall that the coupled model induced by the co-simulation scenario descri-
bed in eq. (24) can be written as:

[
ẋ1

v̇1

]

=

[
0 1

− c1
m1

− d1

m1

]

︸ ︷︷ ︸

A1

[
x1

v1

]

+

[
0
1

m1

]

︸ ︷︷ ︸

B1

u1

y1 =

[
1 0
0 1

]

︸ ︷︷ ︸

C1

[
x1

v1

]

[
ẋ2

v̇2

]

=

[
0 1

− c2+cc
m2

− dc

m2

]

︸ ︷︷ ︸

A2

[
x2

v2

]

+

[
0 0
cc
m2

dc

m2

]

︸ ︷︷ ︸

B2

u2

y2 =
[
cc dc

]

︸ ︷︷ ︸

C2

[
x2

v2

]

+
[
−cc −dc

]

︸ ︷︷ ︸

D2

u2

(40)

with the coupling conditions u1 = y2 and u2 = y1.
In order to write the co-simulation model as an autonomous linear discrete system, we have

to write what happens at a single co-simulation step t ∈ [nH, (n + 1)H] when executed by the
orchestrator presented in algorithm 3. Since the purpose is to analyze the stability of a co-SU,
and not the stability of each of the SUs in the co-simulation, it is common to assume that the SUs
compute the analytical trace of the system. This enables the study of the stability properties of the
co-SU, starting from stable SUs.

From time t ∈ [nH, (n + 1)H], SU S1 is computing the behavior trace of the following Initial
Value Problem Ordinary Differential Equation (IVP-ODE):

[
ẋ1(t)
v̇1(t)

]

= A1

[
x1(t)
v1(t)

]

+ B1u1(nH) (41)

with initial conditions
[
x1(nH) v1(nH)

]T
given from the previous co-simulation step. The term

u1(nH) denotes the fact that we are assuming a constant extrapolation of the input in the interval
t ∈ [nH, (n + 1)H].
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eq. (41) is linear and time invariant, so the value of

[
x1((n + 1)H)
v1((n + 1)H)

]

can be given analytically

as:
[
x1((n + 1)H)
v1((n + 1)H)

]

= eA1H

[
x1(nH)
v1(nH)

]

+

(
∫ (n+1)H

nH

eA1((n+1)H−τ)dτ

)

B1u1(nH) (42)

or, replacing the integration variable with s = τ − nH,

[
x1((n + 1)H)
v1((n + 1)H)

]

= eA1H

[
x1(nH)
v1(nH)

]

+

(
∫ H

0

eA1(H−s)ds

)

︸ ︷︷ ︸

K1

B1u1(nH)
(43)

where eX =
∑∞

k=0
1
k!X

k is the matrix exponential.
Rewriting eq. (43) as a discrete time system gives us the computation performed by SU S1 in a

single co-simulation step, that is, the state transition function δ1:
[

x
(n+1)
1

v
(n+1)
1

]

= eA1H

[

x
(n)
1

v
(n)
1

]

+ K1B1u
(n)
1 (44)

where z(n) = z(nH).
At the end of the co-simulation step (t = (n+1)H) the output of the first SU, that is, its output

function λ1, is given by plugging in eq. (44) to the output y1 in eq. (40):

y
(n+1)
1 = C1e

A1H

[

x
(n)
1

v
(n)
1

]

+ C1K1B1u
(n)
1 (45)

Repeating the same procedure for the second SU, yields the state transition δ2 and output
functions λ2: [

x
(n+1)
2

v
(n+1)
2

]

= eA2H

[

x
(n)
2

v
(n)
2

]

+ K2B2u
(n)
2

y
(n+1)
2 = C2e

A2H

[

x
(n)
2

v
(n)
2

]

+ (C2K2B2 + D2)u
(n)
2

(46)

with K2 =
∫H

0
eA2(H−u)du.

Since the coupling conditions are u1 = y2 and u2 = y1, we can combine Equations 46, 45, and
41 into a single discrete time system:













[

x
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=







eA1H 0̄ 0̄ K1B1
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(47)
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The above system is stable if the behavior traces remain bounded (e.g., by going to zero) as
n → ∞. This can be checked by observing whether the spectral radius ρ(A) < 1. For parameters
m1 = m2 = c1 = c2 = d1 = cc = dc = 1, d2 = 2, a communication step size of H = 0.001,
ρ(A) = 0.9992, which means that the co-SU is stable. If the damping constant were dc = 6.0E6,
then the co-SU would be unstable (ρ(A) ≈ 76.43). A stable co-simulation is shown in fig. 10.
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Figure 10: Behavior trace of co-simulator described in eq. (47). Parameters are: m1 = m2 = c1 =
c2 = d1 = cc = dc = 1, d2 = 2, H = 0.001.

Different coupling methods, and different approximation functions yield different stability pro-
perties. See [55][58][56] for the stability analysis of multiple coupling approaches and approximating
functions. Stability of various co-SUs has been also studied in [153][236][140][118][10]. The rules of
thumb drawn from these papers can be summarized as: (1) Co-simulators that employ fixed point
iteration techniques typically have better stability properties; (2) Gauss-Seidel coupling approach
has slightly better stability properties when the order in which the SUs compute is appropriate
(e.g., the SU with the highest mass should be computed first [10]).

The main problem is that in co-simulation applied to industrial problems, the solvers and models
may be coupled in a black box to protect IP, so there is little knowledge about the kind of solver and
model being used and its stability properties. The best is then to always use iterative techniques
that have been shown to have better stability properties. However, these techniques require rollback
functionalities which can be difficult to support for certain SUs. Even if those functionalities are
available, the cost of computing a co-simulation trace can be prohibitively high when compared
with non-iterative approaches. This creates a paradox where industrial co-SUs should make use of
iterative techniques but the performance toll may be too high.

Compositional Continuity

If a SU is a mock-up of a CT system, then it is reasonable to expect that its inputs are also continu-
ous. As discussed in [225][55], the careless use of input extrapolations (e.g., constant extrapolation)
may violate this assumption. Consider the point of view of a SU Si in co-simulation. Throughout
a co-simulation step t ∈ [nH, (n + 1)H] the input φui

(t, ui(nH)) = ui(nH) is kept constant. At
the next co-simulation step t ∈ [(n + 1)H, (n + 2)H], the input φui

(t, ui((n+ 1)H)) = ui((n+ 1)H)
may change radically if ui((n + 1)H) is too far away from ui(nH).
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Any sudden change in the input to a CT SU may wreak havoc in the performance of its simulator,
causing it to reduce inappropriately the internal micro step size, to reinitialize the solver [67], to
discard useful information about the past (in multi-step solvers [8][9]), and/or produce inaccurate
values in its input extrapolation [206]. Furthermore, a discontinuity may be propagated to other
SUs, aggravating the problem.

Most numerical methods assume that the input is a discretized version of a continuous trace.
That means that, when a discontinuity occurs, SU Si cannot distinguish it from a very steep
change in the continuous trace. The way traditional solvers deal with this behavior is to reduce
the micro step size hi until the change is not so steep. This works with a continuous signal with
a steep change, but does not work with a discontinuity: even if the micro-step size hi is reduced,
the difference between limt→((n+1)H)− φui

(t, ui(nH)) = ui(nH) and limt→((n+1)H)+ φui
(t, ui((n +

1)H)) = ui((n + 1)H) is still the same, as it depends on the communication step size H and not
on the micro step size hi. The solver will reduce the micro step size until a minimum is reached, at
which point it gives up and finally advantages the micro step [67].

Most of the times this gives acceptable results but has a huge performance toll: when the solver
is repeatedly retrying a small micro-step size, it does not advance the simulated time. This means
that a huge computational effort goes to waste until the solver finally gives up [66].

We defer the discussion of the correct ways to deal with discontinuities to co-simulation scenario
where discontinuities are welcome, section 5. In continuous co-simulation scenarios, discontinuities
should not occur.

A solution to avoid discontinuities in the input approximations is to use the extrapolated in-
terpolation methods [55][82]. These methods ensure at least that limt→((n+1)H)− φui

(t, ui(nH)) =
limt→((n+1)H)+ φui

(t, ui((n + 1)H)).
To give an example, we derive one possible linear extrapolated interpolation method for φui

over the interval t ∈ [nH, (n + 1)H]. Since φui
is linear, then φui

(t, ui(nH), ui((n − 1)H)) =
b + a(t − nH), for some constants a, b. Let ūi(nH) = φui

(nH, ui((n − 1)H), ui((n − 2)H)). To
avoid discontinuities, we require that φui

(nH, ui(nH), ui((n− 1)H)) = ūi(nH). And we want that
φui

((n + 1)H,ui(nH), ui((n− 1)H)) = ui(nH).
So putting these constraints together gives

φui
(t, ui(nH), ui((n− 1)H)) = b + a(t− nH)

ūi(nH) = φui
(nH, ui((n− 1)H), ui((n− 2)H))

φui
(nH, ui(nH), ui((n− 1)H)) = ūi(nH)

φui
((n + 1)H,ui(nH), ui((n− 1)H)) = ui(nH)

(48)

Solving this system for φui
(t, ui(nH), ui((n− 1)H)) gives:

φui
(t, ui(nH), ui((n− 1)H)) = ui((n− 1)H) +

ui(nH) − ui((n− 1)H)

H
(t− nH) (49)

Real-time Constraints, Noise, and Delay

As introduced in section 2, the major challenge in real-time simulation is to ensure that a SU
is fast-enough to satisfy the timing constraint t = ατ . In real-time co-simulation, this challenge
gets aggravated due to the presence of multiple SUs, with different capabilities [241], and whose
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internal workings are unknown. Furthermore, real-time co-simulation is often used when at least
one of the SUs is a physical entity. This means that measurements may carry noise, and the
extrapolation functions used in the other SUs have to be properly protected from that noise (e.g.,
using statistical techniques such as Kalman filtering [139][242]). Finally, the quality of the network
is important, as the real-time SUs needs to receive their inputs in a timely manner. To mitigate
this, the orchestration algorithm has to compensate for any delays in the receiving of data, and
provide inputs to the real-time SU [240].

5 Hybrid Co-simulation Approach

Sections 3 and 4 described the essential characteristics and assumptions of simulation units (SUs) for
each kind of co-simulation approach. When compared to a CT SU, whose state evolves continuously
in time and whose output may have to obey to physical laws of continuity, a DE SU state can assume
multiple values at the same time (transiency) and its output is discontinuous. For an orchestrator,
a CT SU has some flexibility (safe for algebraic loops and complex coupling conditions) in deciding
the parameters (e.g., step size or tolerance) of the co-simulation. In contrast, a DE SU has to
get inputs and produce outputs at the precise time an event is supposed to occur, and there is no
Lipschitz continuity conditions to help predict how a delay in the output of the DE SU can affect
the overall co-simulation trace.

For example, in the SU of the mass-spring-damper system, eq. (22), with a constant extrapolation
function, and running under the orchestrator in algorithm 3, the change in the input can only affect
the output after at least H units of time. For continuous time solvers in general, as can be seen for
the explicit solver in eq. (12), a delayed response to the inputs is normal.

These differences are at the heart of many challenges in hybrid co-simulation scenarios.

5.1 Hybrid Co-simulation Scenarios

We do not give a formal definition of a hybrid co-simulation scenarios because that is related
to finding an appropriate standard for hybrid co-simulation, which is a non trivial challenge (see
section 5.2) [53].

Instead, we define it broadly as mixing the characteristics and assumptions of both kinds of
SUs. These scenarios, together with an adequate orchestrator, can be used as mock-ups of hybrid
systems [65][175][6][62]. A thermostat regulating the temperature in a room is a classical example
[174]. The Continuous Time (CT) constituent system represents the temperature dynamics of the
room, accounting for a source of heat (radiator). The Discrete Event (DE) part is a controller that
turns on/off the radiator depending on the temperature.

The SU S1 simulates the following dynamics:

ẋ = −α (x− 30q) ; x(0) = x0 (50)

where x is the output temperature in the room, α > 0 denotes how fast the room can be heated
(or cooled) down, and q ∈ {0, 1} is the control input that turns on/off the radiator. The SU S2

simulates the statemachine shown in fig. 11, where one can think of the input event tooHot as
happening when x(t) ≥ 21 and tooCold when x(t) ≤ 19. The output events off and on will assign
the appropriate value to the input q of S1. Therefore, the temperature x(t) is kept within a comfort
region.
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Figure 11: Statemachine model of the controller constituent system.

Clearly, the two SUs cannot just be coupled together via input to output assignments. Any
orchestrator for this co-simulation scenario has to reconcile the different assumptions about the
inputs and output of each SU.

• The CT SU expects a continuous input, whereas the output of the DE SU is an event signal.
• The output of the CT SU is a continuous signal, whereas the DE SUs expects an event signal

as input.
The coupling of CT and DE black box SUs has been studied in the state of the art. In essence, two
approaches are known, both based on adapting (or wrapping) the behavior of the SU:
Hybrid DE – adapt every CT SU as a DE SU, and use a DE based orchestrator;
Hybrid CT – wrap every DE SU to become a CT SU and use a CT based orchestrator.

According to the formalization that we have proposed for CT and DE SUs, the Hybrid DE ap-
proach, applied to the thermostat example may involve: adapting S1 as a DE SU, S′

1, with a time
advance that matches the size of the co-simulation step; and keeping track of the output of S1 in
order to produce an output event whenever it crosses the thresholds. Conversely, any output event
from S2 has to be converted into a continuous signal for the input q(t) of S1. Other examples of Hy-
brid DE are described in [265][220][203][205][148][275][40][91][18][279][282][41][61][60][150][196][157].

The Hybrid CT, in our example, requires the adaptation of the DE S2 as a CT SU that takes as
input the temperature continuous signal, and internally reacts to an event caused by the crossing
of the threshold. The output event of S2 can be converted into a continuous signal q(t). Examples
of the Hybrid CT include [106][219][162][76][246][90][253].

Regardless of the approach taken, the properties of the constituent systems have to be retained:
the fact that an otherwise discontinuous signal becomes continuous as a result of a linear or higher
order extrapolation may not respect the properties of the coupled system. Knowledge of the domain
and the SUs is paramount to retain aforementioned properties.

A third option, compared to only using Hybrid CT or Hybrid DE, is to have different mechanisms
of orchestrating the SUs depending on the semantic domain. For instance, in the actor modeling
language Ptolemy II [218], an actor has many similarities to a SU. Instead of using either Hybrid
CT or Hybrid DE, a so called Director block is used for a particular set of connected actors. In
this context, the notion of superdense time is fundamental, as discussed in [53] and [74].

In the section below, different issues that arise in hybrid co-simulation will be described. These
should be read in the light of hierarchical hybrid co-simulation scenarios, where compositionality is
important.
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5.2 Challenges

Semantic Adaptation and Model Composition

While a generic wrapper based on the underlying model of computation of the SU can be used,
as done in [218][73], the realization of any of the approaches Hybrid DE or Hybrid CT depends
on the concrete co-simulation scenario and the features of the SUs [46][192], as shown with the
thermostat example. There is simply no best choice of wrappers for all scenarios. Even at the
technical level, the manner in which the events or signals are sent to (or obtained from) the SU may
need to be adapted [253]. To be concrete, the SU S2 can assume that all events are communicated
by encoding them in a single string signal, as opposed to having a different signal signal to denote
different events. To account for this variability, the most common adaptations can be captured in
a configuration language, as was done in [182][76], or in a specialization of a model of computation,
as done in [157][190][210]. These approaches require that a person with the domain knowledge
describes how the SUs can be adapted.

Our choice of wrapper for the Hybrid DE approach is meant to highlight another problem
with the adaptations of SUs: the wrapper incorporates information that will ultimately have to
be encoded in the software controller. As such, we argue that the need for sophisticated semantic
adaptations should be smaller in later stages of the development of the components so that, for
more refined models of the thermostat, the decision about when to turn off the radiator is not made
by a wrapper of S1.

Predictive Step Sizes and Event Location

In the Hybrid DE approach, the time advance has to be defined (recall eq. (1)). Setting it to
whatever co-simulation step size H the orchestrator decides will work, but the adapted SU may
produce many absent output events. Better adaptations have been proposed. In the thermostat
example, S′

1 can propose a time advance that coincides with the moment that x(t) will leave the
comfort region, thereby always being simulated at the relevant times.

Naturally, these approaches rely on information that may expose the IP of SUs. Others try
to adaptively guess the right time advance by monitoring other conditions of interest, set over the
own dynamics of the adapted SU, the most common approach being the quantization of the output
space [283][41][147][148][204].

The capability to predict the time advance is also useful to enhance the performance/accuracy
of CT based co-simulation, as shown in [52].

Locating the exact time at which a continuous signal crosses a threshold is a well known problem
[44][285][42] and intimately related to guessing the right time advance for predicting the step size
[61][105]. To address this, solutions typically require derivative information of the signal that causes
the event, and/or the capability to perform rollbacks. In the thermostat example, a co-simulation
that shows the output q of the controller changing from 0 to 1 at time te while the temperature of
the room x actually crossed the confort zone at te − k, for k > 0, may not be accurate if k is too
large. Note that k is a consequence of the decisions made in the orchestrator.

Discontinuity Identification

Until here, we have based our discussion in the knowledge of what kind of SUs comprise a co-
simulation. In a general hierarchical co-simulation, a SU’s output may be an event signal coming
from a wrapper of a CT SU, or vice-versa. In any case, at runtime, a signal is often represented
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as a set of time-stamped points. Observing this sequence of points alone does not make it possible
to discern a steep change in a continuous signal, from a true discontinuity, that occurs in an event
signal [166][53][285][186]. Extra information is currently used: a) a formalization of time which
include the notion of absent signal, as proposed in [246][166][53]; or b) an extra signal can be used to
discern when a discontinuity occurs, as done in the FMI for Model Exchange [38], even facilitating
the location of the exact time of the discontinuity; or c) symbolic information (e.g., Dirac impulses
[79]) that characterize a discontinuity can be included, as done in [200][114].

Discontinuity Handling

Once a discontinuity is located, how it is handled depends on the nature of the SUs and their
capabilities. If the SU is a mock-up of a continuous system then, traditionally, discontinuities in the
inputs should be handled by reinitializing the SU [67]. This step can incur a too high performance
cost, especially with multi-step numerical methods, and [9][8] proposes an improvement for these
solvers. Furthermore, a discontinuity can cause other discontinuities, producing a cascade of re-
initializations. During this process, which may not finish, care must be taken to ensure that
physically meaningful properties such as energy distribution, are respected [188].

Algebraic Loops, Legitimacy, and Zeno Behavior

Algebraic loops are non-causal dependencies between SUs that can be detected using feedthrough
information, as explained in section 4.3. In CT based co-simulation, the solution to algebraic loops
can be attained by a fixed point iteration technique, as covered in section 4.3. There is the possibility
that the solution to an algebraic loop will fail to converge. The result is that, if left unchecked, the
orchestrator would move an infinite number of input and output values between SUs, at the same
point in time.

In DE based co-simulation a related property is legitimacy [284], which is roughly the unde-
sirable version of the transiency property, explained in section 3. An illegitimate co-simulation
scenario will cause the co-simulation orchestrator to move an infinite number of events with the
same timestamp between SUs, never advancing time. Distance matrices, used to optimize parallel
optimistic approaches, as explained in [103] and used in [110], can be leveraged to detect statically
the presence of some classes of illegitimacy.

A similar behavior, but more difficult to detect is Zeno behavior. It occurs when there is
successively smaller intervals of time between two consecutive events, up to the point that the sum
of all these intervals is finite [259]. As shown in [50], a simulator eventually fails to detect the
consecutive events. In particular, he advocates that the zeno behavior is a property of the model,
whereas the incorrectness is due to a simulation approximation error. However, while illegitimate
behaviors are not desired in pure DE co-simulation, Zenoness can be a desired feature in some hybrid
co-simulation scenarios (e.g., see [47]). We say in the theoretical sense because, for the purposes of
co-simulation, scenarios with Zenoness still have to be recognized and appropriate measures, such
as regularization [137], have to be taken.

Stability under X

If a hybrid co-simulation represents a hybrid or switched system [259], then it is possible that a
particular sequence of events causes the system to become unstable, even if all the individual con-
tinuous modes of operation are stable [138, Example 1.1]. New analyses are required to identify
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whether the CT SUs can yield unstable trajectories as a result of: 1. noisy inputs; 2. data quanti-
zation; 3. change of co-simulation orchestration [113]; 4. the events of wrapped DE SUs [115]; and,
5. delayed exchange of values.

Theory of DE Approximated States

In a pure DE based co-simulation, if round-off errors are neglected, the computed trajectories are
essentially exact. To the best of our knowledge, only [284] addresses theoretically how the error in a
discrete event system can be propagated. In CT based co-simulation however, error is an accepted
and well studied and techniques exist to control it.

In Hybrid co-simulation, there is a need for analysis techniques that provide bounds on the error
propagation in the DE SUs, when these are coupled to sources of error.

In addition, based on these analyzes, it should be possible for a DE SU to recognize that its
error has exceeded a given tolerance, and measures should be taken to reduce that error. Having
these techniques in place allows a hybrid co-simulation orchestrator to take appropriate measures
(e.g., adapt the communication step size, etc. . . ) the keep the error bounded in every SU.

Standards for Hybrid Co-simulation

While for CT co-simulation there is the Functional Mockup Interface (FMI) standard [38], and for
DE co-simulation there is the High Level Architecture (HLA) [2] standard, as of the time of writing,
both standards have limitations for hybrid co-simulation. References [246][39][106][74] use/propose
extensions to the FMI standard and [17] proposes techniques to perform CT simulation conforming
to HLA. Recognizing that hybrid co-simulation is far from well studied, [53] proposes a set of
idealized test cases that any hybrid co-SU, and underlying standard, should pass. In particular, it
is important to have correct handling and representation of time, to achieve a sound approach for
simultaneity.

Finally, even with a standardized interface, SUs have different capabilities: a fact that makes
coding an optimal orchestration algorithm difficult. A possible approach to deal with this hetero-
geneity, proposed in [112], is to assume that all SUs implement the same set of features, code the
orchestration algorithm for those features, and delegate to wrappers the responsibility of leveraging
extra features (or mitigating the lack of). In the section below, these features are classified.

6 Classification and Applications

Having described the multiple facets of co-simulation, this section summarizes our classification and
methodology, and applies it to a typical use case.

6.1 Methodology

To find an initial set of papers related to co-simulation, we used Google Scholar with the keywords
“co-simulation”, “cosimulation”, “coupled simulation”, and collected the first 10 pages of papers.
Every paper was then filtered by the abstract, read in detail, and its references collected. To guide
our reading to the most influential papers, we gave higher priority to most cited (from the papers
that we have collected).
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We read approximately 30 papers to create the initial version of the taxonomy. Then, as we
read new papers, we constantly revised the taxonomy and classified them.

After a while, new references did not cause revisions to the taxonomy, which prompted us to
classify the collected papers in a more systematic fashion: all the papers that we collected from
2011 (inclusive) up to, and including, 2016 were classified. Two main reasons justify the last 5
years interval: limited time; and most of the papers refer to, and are based on, prior work. As
a consequence, the classification would be very similar for many of the related references prior to
2011.

From the papers classified, those that report case studies where noted to create fig. 1. In total,
84 papers were read and classified.

6.2 Taxonomy

The taxonomy is represented as a feature model [141] structured in three main categories, shown
in fig. 12:
Non-Functional Requirements (NFRs): Groups concerns (e.g., performance, accuracy, and IP

Protection) that the reference addresses.
Simulation unit (SU) Requirements (SRs): Features required/assumed from the SUs by the

orchestrator described in the paper. Examples: Information exposed, causality, local/remote
availability, or rollback support.

Framework Requirements (FRs): Features provided by the orchestrator. Examples: dynamic
structure, adaptive communication step size, or strong coupling support.

Each main group is detailed in figs. 13 to 15. Abstract features denote concepts that can be easily
detailed down but we chose not to, for the sake of brevity. Mandatory features are required for the
activity of co-simulation, while optional are not.

6.3 Applications

To demonstrate how the taxonomy is used, we picked three examples from the state of the art: an
industrial use case, a co-simulation framework, and a co-simulation standard.

6.3.1 An Industrial Application

The case study reported in [212] applies co-simulation as part of the development of a controller
for an exhaust gas recirculation water handling system. The purpose of this system is to clean and
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Figure 14: Simulation Unit Requirements and features provided in the FMI Standard for co-
simulation, version 2.0.

recirculate exhaust gas to a ship engine intake manifold. The exhaust gas is cleaned by spraying
water into it, and allowing the mixture to cool down and deposit in a receiving tank. Then, the
(dirty) water is pumped to a water treatment center (externally developed) to be purified and
reused.

The system is a representative example because: it includes parts that are developed by other
departments (e.g., the ship engine) and external suppliers (e.g., the water treatment system); there
are both continuous and discrete event dynamics (e.g., the control system is comprised of a state
machine and a PI-Controller); and, quoting the authors, “to improve the control strategy of the
WHS, a higher-fidelity model [of the systems interacting with the controller] should be used.” [212,
Section 3.4].

In fact, thanks to the FMI Standard, its support by MATLAB/SimulinkR©, and to the INTO-
CPS co-simulation framework, the authors were able to combine the behavior of higher fidelity
models, with the behavior of the controller under development, simulated by an in-house C++
software application framework.

Through co-simulation, it was possible to reproduce and correct an issue that was previously
encountered only during a (costly) Hardware-in-the-loop simulation with a physical engine test
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bench available at the MDT research center in Copenhagen.
This work is classified as highlighted in figs. 13 to 15.

6.3.2 A Framework

We next consider the work of [257], where an FMI based multi-rate orchestration algorithm is ge-
nerated from a description of the co-simulation scenario. In the paper, the description language
introduced can be reused in a tool-agnostic manner. The orchestration code generator analyzes the
co-simulation scenario, and: a) identifies algebraic loops using I/O feedthrough information; b) se-
parates the fast moving SUs from the slow moving ones, using the preferred step size information,
and provides interpolation to the fast ones (multi-rate); and c) finds the largest communication step
size that divides all step sizes suggested by SUs and uses it throughout the whole co-simulation.
The algebraic loops are solved via successive substitution of inputs, storing and restoring the state
of the SUs.

Based on these facts, [257] is classified as highlighted in figs. 13 to 15.

6.3.3 A Standard

The FMI standard for co-simulation, version 2.0 [97], can also be classified according to the as-
sumptions it makes about the participating SUs. This is highlighted in fig. 14.

6.4 The State of the Art

The remaining state of the art is classified in Figs. 16–19. The raw data is available online12.
The apparent lack of papers in the interval 2006-2009 is a consequence of our methodology (recall

12http://msdl.cs.mcgill.ca/people/claudio/pub/Gomes2016bClassificationRawData/raw_data.zip
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6.5 Discussion

Analyzing fig. 16, Accuracy is the most observed NFR, with 31 reports, followed by IP protection
and Performance. The least observed NFRs are Fault tolerance, Hierarchy and Extensibility. Fault
tolerance is especially important for long running co-simulations. One of the industrial partners of
the INTO-CPS project has running co-simulations that takes a minimum of two weeks to complete.
We argue that Extensibility (the ability to easily accomodate new features) should be given more
importance: if an heterogeneous set of SUs participate in the same co-simulation scenario, the
combination of capabilities provided (see fig. 14) can be huge. Thus, the orchestrator can either
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assume a common homogeneous set of capabilities, which is the most common approach, or can
leverage the capabilities provided by each one. In any case, extensibility and hierarchy are crucial
to address, and implement, new semantic adaptations.

As fig. 18 suggests, we could not find approaches that make use of the nominal values of state and
output variables, even though these are capabilities supported in the FMI Standard, and are useful
to detect invalid co-simulations. A-causal approaches are important for modularity, as explained in
section 4.3, but these are scarce too.

As for the framework requirements, in fig. 19, the least observed features are dynamic structure
co-simulation, interactive visualization, multi-rate, algebraic coupling, and partial/full strong cou-
pling support. This can be explained by the fact that these features depend upon the capabilities
of the SUs, which may not be mature.

Figs. 16 – 19 do not tell the full story because they isolate each feature. Feature interaction is
a common phenomenon, and among many possible interactions, we highlight the accuracy concern,
domain of the co-simulation, number of SUs supported, and IP protection. As can be seen from
fig. 21, there is only one approach [157] that is both CT and DE based, up to any number of SUs.
Accommodating the different CT and DE domains means that the approach assumes that the SUs
can behave both as a CT and as a DE SU.

The concern with IP protection is evident in fig. 16 but the number of DE and CT based
approaches that provide some support for it is small, as shown in fig. 20. Similarly, as fig. 22
suggests, accuracy does not show up a lot in the DE and CT approaches, for more than two SUs.
Accuracy is particularly important in interactions between DE and CT SUs.

In general, from the observed classification, there is a lack of research into approaches that are
both DE and CT based, and that leverage the extra features from the SUs.
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Figure 19: Classification with respect to framework requirements.
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Figure 21: Formalisms vs SUs.
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Figure 22: Accuracy vs Forma-
lisms vs SUs.

7 Concluding Remarks

In this overview article, we show that there are many interesting challenges to be explored in co-
simulation, which will play a key role in enabling the virtual development of complex heterogeneous
systems in the decades to come. The early success can be attributed to a large number of reported
applications. However, the large majority of these applications represent ad-hoc couplings between
two simulators of two different domains (e.g., a network simulator with a power grid one, or a HVAC
simulator with a building envelop one)13. As systems become increasingly complex, the demand
for co-simulation scenarios that are large, hierarchical, heterogeneous, accurate, IP protected, and
so on, will increase.

This survey covers the main challenges in enabling co-simulation. To tackle such a broad topic,

13We did not consider the (potentially many) unreported applications of co-simulation.
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we have covered two main domains—continuous-time- and discrete-event-based co-simulation—
separately and then discussed the challenges that arise when the two domains are combined. A
taxonomy is proposed and a classification of the works related to co-simulation in the last five years
is carried out using that taxonomy.

From the challenges we highlight: semantic adaptation, modular coupling, stability and accu-
racy, and finding a standard for hybrid co-simulation. For early system analysis, the adaptations
required to combine simulators from different formalisms, even conforming to the same standard,
are very difficult to generalize to any co-simulation scenario.

One of the main conclusions of the classification is that there is lack of research into modular,
stable, and accurate coupling of simulators in dynamic structure scenarios. This is where acausal
approaches for co-simulation can play a key role. The use of bi-directional effort/flow ports can be
a solution inspired by Bond-graphs [208], and there is some work already in this direction [225].

Finally, this document is an attempt to summarize, bridge, and enhance the future research in
co-simulation, wherever it may lead us to.
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[81] Edo Drenth, Mikael Törmänen, Krister Johansson, Bengt-Arne Andersson, Daniel Andersson,
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[138] Raphaël Jungers. The joint spectral radius: theory and applications, volume 385. Springer
Science & Business Media, 2009. ISBN 3540959793.

[139] Rudolph Emil Kalman. A New Approach to Linear Filtering and Prediction Problems. Journal
of Basic Engineering, 82(1):35, mar 1960. ISSN 00219223. doi: 10.1115/1.3662552.

[140] Tamas Kalmar-Nagy and Ilinca Stanciulescu. Can complex systems really be simulated?
Applied Mathematics and Computation, 227:199–211, jan 2014. ISSN 00963003. doi: 10.
1016/j.amc.2013.11.037.

[141] K. C. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson. Feature-Oriented Domain
Analysis. Feasibility study,. Technical report, Carnegie Mellon University, 1990.

[142] M. Karner, M. Krammer, S. Krug, E. Armengaud, C. Steger, and R. Weiss. Heterogeneous
co-simulation platform for the efficient analysis of FlexRay-based automotive distributed em-
bedded systems. In 8th IEEE International Workshop on Factory Communication Systems
(WFCS), pages 231–240, 2010. doi: 10.1109/WFCS.2010.5548627.

61

http://link.springer.com/10.1007/978-3-319-06200-6{_}9


[143] Michael Karner, Eric Armengaud, Christian Steger, and Reinhold Weiss. Holistic Simulation
of FlexRay Networks by Using Run-time Model Switching. In Proceedings of the Conference
on Design, Automation and Test in Europe, DATE ’10, pages 544–549, 3001 Leuven, Belgium,
Belgium, 2010. European Design and Automation Association. ISBN 978-3-9810801-6-2.

[144] Michael Karner, Martin Krammer, Markus Schratter, Peter Wimmer, Daniel Watzenig, and
ChristianMichael Gruber. A Comprehensive Approach for Modeling, Simulation and Virtual
Validation of Integrated Safety Systems. In Jan Fischer-Wolfarth and Gereon Meyer, editors,
Advanced Microsystems for Automotive Applications 2013 SE - 10, Lecture Notes in Mobility,
pages 101–110. Springer International Publishing, 2013. ISBN 978-3-319-00475-4. doi: 10.
1007/978-3-319-00476-1 10.

[145] Abir Ben Khaled, Mongi Ben Gaid, Daniel Simon, and Gregory Font. Multicore si-
mulation of powertrains using weakly synchronized model partitioning. In IFAC Pro-
ceedings Volumes, volume 45, pages 448–455, Rueil-Malmaison, France, oct 2012. doi:
10.3182/20121023-3-FR-4025.00018.

[146] James Ellis Kleckner. Advanced mixed-mode simulation techniques. PhD thesis, 1984.

[147] Ernesto Kofman. A Second-Order Approximation for DEVS Simulation of Continu-
ous Systems. SIMULATION, 78(2):76–89, feb 2002. ISSN 0037-5497. doi: 10.1177/
0037549702078002206.

[148] Ernesto Kofman and Sergio Junco. Quantized-state systems: a DEVS Approach for continu-
ous system simulation. Transactions of The Society for Modeling and Simulation Internatio-
nal, 18(3):123–132, 2001. ISSN 0740-6797.

[149] Alexander Kossiakoff, William N. Sweet, Samuel J. Seymour, and Steven M. Biemer. Structure
of Complex Systems. In Systems Engineering Principles and Practice, pages 41–67. John
Wiley & Sons, Inc., Hoboken, NJ, USA, mar 2011. doi: 10.1002/9781118001028.ch3. URL
http://doi.wiley.com/10.1002/9781118001028.ch3.

[150] Velin Kounev, David Tipper, Martin Levesque, Brandon M. Grainger, Thomas Mcdermott,
and Gregory F. Reed. A microgrid co-simulation framework. In Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1–6, Lévesque, McDermott,
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[192] Sadaf Mustafiz, Bruno Barroca, Cláudio Gomes, and Hans Vangheluwe. Towards Modular
Language Design Using Language Fragments: The Hybrid Systems Case Study. In Shahram
Latifi, editor, 13th International Conference on Information Technology - New Generations
(ITNG), pages 785–797, Las Vegas, NV USA, apr 2016. Springer, Cham. doi: 10.1007/
978-3-319-32467-8 68.
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[275] E. Widl, W. Müller, A. Elsheikh, M. Hörtenhuber, and P. Palensky. The FMI++ library:
A high-level utility package for FMI for model exchange. In Workshop on Modeling and
Simulation of Cyber-Physical Energy Systems (MSCPES), pages 1–6, Berkeley, CA, USA,
2013. IEEE. doi: 10.1109/MSCPES.2013.6623316.

[276] Ming-chin Wu and Ming-chang Shih. Simulated and experimental study of hydraulic anti-lock
braking system using sliding-mode PWM control. Mechatronics, 13(4):331–351, may 2003.
ISSN 0957-4158. doi: 10.1016/S0957-4158(01)00049-6.

[277] Xiaorong Xie, Chuanyu Zhang, Huakun Liu, Chao Liu, Dongxiang Jiang, and Baorong Zhou.
Continuous-Mass-Model-Based Mechanical and Electrical Co-Simulation of SSR and Its Ap-
plication to a Practical Shaft Failure Event. IEEE Transactions on Power Systems, 31(6):
5172–5180, nov 2016. ISSN 0885-8950. doi: 10.1109/TPWRS.2016.2537001.

[278] Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Scott Eisele, Joseph Hite2 Sandeep
Neema2 Jason Scott, and Theodore Bapty. ADAS Virtual Prototyping using Modelica and
Unity Co-simulation via OpenMETA. 2016.

[279] Faruk Yılmaz, Umut Durak, Koray Taylan, and Halit Oğuztüzün. Adapting Functional
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Table 1: Historical Perspective of Co-simulation.

Time Concept Description

<80s Single Formalism The equations describing dynamic behavior are integrated
together.

80s Dynamic Iteration Large circuits are decomposed into coupled constitu-
ent systems and dynamic iteration techniques are used
[107][167][197][183][184][180].

90s Multi-Formalism Software and Hardware are developed and simulated con-
currently [122][224][290][69] at multiple levels of abstraction
[129][130][84]. Orchestration methods are explored in
[91][100][63][254].

Late 90s and
Early 2000s

Standard Interfaces Recognized as key for co-simulation
[291][155][213][127][243]

2010s IP Protection,
X-in-the-loop, and
Scale

Important to enhance industrial applicability of co-
simulation [258][7][81][105][17][18][19].

A Historical Perspective of Co-simulation

This section provides an historical perspective that relates the major concepts in co-simulation to
the time at which they are recognized in the studied state of the art, summarized in table 1.

A.1 One Formalism and Dynamic Iteration

Traditionally, the equations describing the dynamical behavior of large circuits were integrated to-
gether. These systems are sparsely coupled, reflecting the connections of the corresponding circuits,
and many techniques were developed that take advantage of this structure [180].

The crucial idea that improved the simulation speed in up to two orders of magnitude is to
decompose the large system into a set of coupled constituent systems and integrate them indepen-
dently.

The decomposition of the circuit implies the definition of inputs and outputs for each of the
resulting constituent systems. The coupling is then the assignment of outputs to inputs.

For a subsystem Si, we call the subsystems, whose outputs are assigned to any of the inputs of
Si, for neighbor subsystems.

The essence of the dynamic iteration approach is to integrate each subsystem independently, for
a period of time Tn → Tn+1 , using the extrapolated outputs of the neighbor subsystems as inputs
[167][197][183][184].

Naturally, the fact that outputs are extrapolated introduces inaccuracy in the solution of the
subsystem, so the integration can be repeated for the same period of time, with corrected outputs,
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until some form of convergence criteria is met [134]. The extrapolated outputs of a subsystem Sj

can be corrected by collecting the outputs during the integration of Sj .
It is easy to see that this approach only requires communication between constituent systems

at times Tn and Tn+1 and that the integration of each subsystem can be done independently and in
parallel [135], using any numerical method with any step size control policy. The signals exchanged
are functions in the interval [Tn, Tn+1].

The advantages of independent step size control policy become evident when one observes that
many circuits have components that change at different rates. If the whole system were to be
simulated, the simulation unit (SU) would have to use the smallest time step that ensures sufficient
accuracy for the fastest changing component, which would be a huge waste of computational effort
for the slow components. This is the similarity to multi-rate numerical methods [107].

To the best of our knowledge, dynamic iteration techniques and multi-rate numerical are the
first to resemble co-simulation. The coordination software that implements these techniques expect
any number of subsystems but assumes that the subsystems are all specific in the same formalism:
differential equations.

A.2 Two Formalisms: Digital and Analog Co-simulation

Co-simulation, in its modern definition, was applied to enable the virtual development of coupled
software and hardware systems [122][224][290][69]. In this application domain, co-simulation decre-
ases the need to build prototype board circuits to validate the composition of the software and the
hardware part. It enables software and hardware to be developed and validated concurrently. To
the best of our knowledge, this was one of the first uses of co-simulation in the modern sense. The
co-simulation frameworks developed in this application domain typically assumed two SUs and two
formalisms.

The hardware/software systems quickly became more complex and a new idea was introduced:
use multiple models at different levels of abstraction of each subsystem. Simulations could be made
arbitrarily faster in some intervals by solving the more abstract models, and arbitrarily accurate
in other intervals, by solving the more detailed ones [84][227][179][146]. In the particular case of
analog-digital co-simulation, each level of abstraction was solved by a different tool: a continuous
time tool and a discrete event tool. The separation into continuous time and discrete event made the
abstract synchronization problem and synchronization methods between SUs in these two domains
were developed [91][100][63][254]. We could call these some of the first master algorithms.

A.3 Multi-abstraction/Multi-Formalism Co-simulation

The heterogeneity aspect of co-simulation comes into play at this time: multiple formalisms can be
used to describe the same subsystem at multiple levels of abstraction: state machines can describe a
rough approximation of the modes, while differential equations can describe the detailed dynamics of
the electronic circuit. Depending on the purpose of the co-simulation, a subsystem and its neighbors
can be solved in detail, whereas subsystems that are “farther away” can be simulated with higher
levels of abstraction [129][130]. For the domain of Hw/sw co-simulation, RTL and TLM classify
the multiple abstraction levels of models [221][27] and switching between these multiple levels of
abstraction have been studied in [143].

As the number and heterogeneity of simulation tools to be coupled increases, the need to provide
a common interface to couple any number of tools is recognized in [291][155][213][127] and later in
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[37].
In parallel with the previous advancements, co-simulation has also been in use for heterogeneous

physical systems, such as automotive [163][118][153][231], railway [78][12] and HVAC [119][251], to
name just a few. The common motivation is the fact that co-simulation enables specialized SUs
to cooperatively simulated the system, with huge savings in time and cost, when compared to a
monolithic modeling approach.

A.4 Black-box Co-simulation

Later, distributed and concurrent development processes, enabled by co-simulation, are studied
and IP protection is identified as a desired characteristic [258][7] to enable suppliers and integrators
to exchange co-SUs without having to disclose sensitive information and avoiding vendor lock-in
contracts.

A.5 Real-time Co-simulation

Furthermore, co-simulation is used at every stage of the development process, from early system va-
lidation, to X-in-the-Loop co-simulation, bringing hard real-time constraints to the set of challenges
[81].

A.6 Many SUs: Large Scale Co-simulation

More recently, with the acknowledgment that there is a need to be able to simulate even larger sys-
tems of systems, scale and distribution become inherent challenges in co-simulation [105][17][18][19].

B State of the Art in Co-simulation Frameworks

This section provides the detailed classification of each reference.

Ref 1. Trcka2010: Co-simulation for performance prediction of integrated building and HVAC
systems – An analysis of solution characteristics using a two-body system [252].

Summary. They describe convergence and stability analysis for co-simulation.

Ref 2. Basile2017: A Refinement Approach to Analyse Critical Cyber-Physical Systems [24].

Summary. They take a model which has been model checked, and map it to a more complex
(stochastic) model, where stochastic analysis techniques can be applied.

They describe a nice example, based on the railway domain. Heaters are used to prevent line
switches from freezing.

It seems a great idea to apply their techniques to co-simulation itself. They use Contract
Automata to perform the validation of the protocol. The formalism is quite elegant and allows
for easy composition of many different simulators. They beauty is that we could use different
automata for each kind of simulator participating in a co-simulation. Then we could synthesize a
master algorithm that is considered optimal for that scenario.
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Ref 3. Bouissou2013: Enclosing Temporal Evolution of Dynamical Systems Using Numerical
Methods [45].

Summary. They describe how to adapt traditional numerical methods to compute over approxima-
tions of the solutions.

They present an interesting problem called the oil-reservoir problem.

Ref 4. Immler2014: Formally Verified Computation of Enclosures of Solutions of Ordinary Dif-
ferential Equations [133].

Summary. This paper gives many references to guaranteed integration techniques.
With these ideas, co-simulations could be computed with intervals of approximation, permitting

reachability analyses.
The paper references other works which also are related to guaranteed integration.

Ref 5. Foster2017: Towards a UTP Semantics for Modelica [98].

Summary. They seem to formalize the event iteration system of the modelica language.
As far as I can see, it seems to be a formalization just for formalization’s sake. There is no

convincing example of why it is useful to make such a formalization. Surely, the result is elegant.

Ref 6. Lu2017: A Tool Integration Language to Formalize Co-simulation Tool-chains for Cyber-
physical System ( CPS ) [173].

Summary. They seem to propose a language to describe co-simulation toolchains?
I think the purpose of the language is to allow an easier integration of other tools into a given

tool chain.
This work has been applied to two industrial use cases.

Ref 7. Larsen2017: Features of Integrated Model-based Co-modelling and Co-simulation Techno-
logy [160].

Summary. The paper is about the unique selling points of INTO-CPS.

Ref 8. Benedikt2013a: NEPCE-A Nearly Energy Preserving Coupling Element for Weak-coupled
Problems and Co-simulation [31].

Summary. This paper describes a control based scheme to compensate for extrapolation errors
across signals in co-simulations. It is based on generalized energy concepts.

nfr :performance
nfr : ip protection
nfr :accuracy
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
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fr :standard:fmi
fr :coupling model:io assignments
fr :domain:ct
fr :alg loop : explicit
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :num sim:three more
fr :sim rate: single
fr : sim step size : variable

Ref 9. Pedersen2015: Co-Simulation of Distributed Engine Control System and Network Model
using FMI & SCNSL [209].

Summary. This work describes a co-simulation master in the context of the maritime industry.
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :alg loop : explicit
fr : sim step size : fixed
fr :sim rate: single
fr :domain:ct
fr :coupling model:io assignments
fr :standard:fmi
fr :communication model:jacobi
fr :num sim:three more

Ref 10. Lin2011: Power system and communication network co-simulation for smart grid appli-
cations [132].

Summary. This work describes a co-simulation between power system and network simulator.
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :alg loop : explicit
fr :sim rate: single
fr :coupling model:io assignments
fr :num sim:two
fr :domain:de
fr : sim step size : variable
fr :communication model:gauss seidel
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Ref 11. Hoepfer2011: Towards a Comprehensive Framework for Co- Simulation of Dynamic
Models With an Emphasis on Time Stepping [131].

Summary. This work describes a co-simulation approach that finds an appropriate co-simulation
step size.

nfr :performance
nfr :accuracy
nfr : ip protection
sr : availability : local
sr : info : derivatives :out
sr : info : derivatives : state
sr : info : statevars
sr : causality :causal
sr : rollback :none
sr : rel time : analytic
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : variable
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :alg loop : explicit
fr : results visualization :post mortem

Ref 12. Faure2011: Methods for real-time simulation of Cyber-Physical Systems: application to
automotive domain [89].

Summary. This work addresses co-simulation with real-time simulators.
nfr :performance
nfr : parallelism
sr : availability : local
sr : rel time : fixed real scaled time simulation
sr : info :wcet
sr : rollback :none
fr : results visualization :post mortem
fr :num sim:three more
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:jacobi
fr :alg loop : explicit
fr :sim rate: single
fr : sim step size : fixed

Ref 13. Tomulik2011: Simulation of multibody systems with the use of coupling techniques: a
case study [249].
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Summary. This work discusses a co-simulation method for couplings with algebraic constraints. One
of the results is that this kind of coupling should be done with many derivatives of the coupling
variables.

nfr :accuracy
sr : rollback : single
sr : availability : local
sr : rel time : analytic
sr : causality :causal
sr : info : derivatives :out
sr : info :jacobian:out
fr : results visualization :post mortem
fr :communication model:jacobi
fr :alg loop : implicit
fr :coupling model:algebraic constraints
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 14. Sun2011: Combining Advantages of Specialized Simulation Tools and Modelica Models
using Functional Mock-up Interface (FMI) [244].

Summary. This work describes the application of co-simulation to the power production domain.
nfr : ip protection
nfr :performance
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr : results visualization :post mortem
fr :sim rate: single
fr :coupling model:io assignments
fr :standard:fmi
fr :domain:ct
fr :communication model:gauss seidel
fr :num sim:two
fr :alg loop : explicit
fr : sim step size : variable

Ref 15. Bastian2011a: Master for Co-Simulation Using FMI [25].

Summary. This work describes a co-simulation approach.
nfr : ip protection
nfr :platform independence
nfr : parallelism
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sr : causality :causal
sr : rollback :none
sr : info : stateserial
sr : info :jacobian:out
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr : sim step size : fixed
fr :sim rate: single
fr :alg loop : implicit
fr :domain:ct
fr :num sim:three more
fr :standard:fmi
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 16. Friedrich2011: Parallel Co-Simulation for Mechatronic Systems [102].

Summary. This work describes a co-simulation framework based on the Jacobi iteration scheme.
nfr : parallelism
nfr :performance
nfr : distribution
nfr : ip protection
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
fr : results visualization :post mortem
fr :alg loop : explicit
fr :domain:ct
fr :coupling model:io assignments
fr :coupling model:algebraic constraints
fr :num sim:three more
fr :communication model:jacobi
fr :sim rate: single
fr : sim step size : fixed

Ref 17. Gonzalez2011: On the effect of multirate co-simulation techniques in the efficiency and
accuracy of multibody system dynamics [116].

Summary. This work deals with multi-rate co-simulation. Essentially, one of the simulators (the
fast one) drives the simulation, while the slow one provides extrapolated inputs, to avoid excessive
computation.

nfr :accuracy
nfr :performance
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sr : causality :causal
sr : rollback :none
sr : availability : local
sr : rel time : analytic
fr : results visualization :post mortem
fr :alg loop : explicit
fr :communication model:gauss seidel
fr :coupling model:io assignments
fr :num sim:two
fr :domain:ct
fr :sim rate:multi
fr : sim step size : fixed

Ref 18. Nutaro2011: Designing power system simulators for the smart grid: Combining controls,
communications, and electro-mechanical dynamics [203].

Summary. This work describes a tool that is formed by the coupling of a DEVS simulator with
some other modules that wrap CT as DEVS simulators.

nfr : distribution
nfr :accuracy
sr : causality :causal
sr : rollback : single
sr : rel time : analytic
sr : availability : local
fr :alg loop : explicit
fr :domain:de
fr :communication model:gauss seidel
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
fr :coupling model:io assignments
fr : results visualization :post mortem

Ref 19. Busch2012: Asynchronous method for the coupled simulation of mechatronic systems [59].

Summary. This work describes co-simulation approaches between two simulation tools. The main
contribution is a semi-implicit method that applies a correction based on the jacobian of the sub-
system’s coupling variables.

nfr :accuracy
nfr : distribution
sr : causality :causal
sr : rollback : single
sr : availability :remote
sr : info :jacobian:out
sr : rel time : analytic
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fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem
fr :communication model:gauss seidel
fr :alg loop : semi implicit
fr :alg loop : explicit
fr :alg loop : implicit
fr :coupling model:io assignments
fr :domain:ct
fr :num sim:two

Ref 20. Pohlmann2012: Generating functional mockup units from software specifications [217].

Summary. This work describes an application of co-simulation to robotics.

Ref 21. Schmoll2012: Convergence Study of Explicit Co-Simulation Approaches with Respect
to Subsystem Solver Settings [230].

Summary. This paper describes global error analysis for co-simulation, that takes into account
sub-system solvers (instead of analytical solvers, as more commonly done).

nfr :accuracy
sr : rollback :none
sr : info : full model
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :alg loop : explicit
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :communication model:jacobi
fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem

Ref 22. Ni2012: Hybrid systems modelling and simulation in DESTECS: a co-simulation appro-
ach [198].

Summary. This work present a coupling of the tools Crescendo and 20-sim.
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:gauss seidel
fr : results visualization :post mortem
fr :coupling model:io assignments
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fr :alg loop : explicit
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :num sim:two

Ref 23. Hassairi2012: Matlab/SystemC for the New Co-Simulation Environment by JPEG Al-
gorithm [126].

Summary. This work introduces guidelines for the implementation of co-simulation between Matlab
and SystemC. The case study is the JPEG Algorithm.

sr : info : full model
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :coupling model:io assignments
fr : sim step size : fixed
fr :sim rate: single
fr :alg loop : explicit
fr :communication model:gauss seidel
fr : results visualization : live
fr :num sim:two

Ref 24. Schierz2012: Stabilized overlapping modular time integration of coupled differential-
algebraic equations [228].

Summary. This work discusses co-simulation techniques for simulators coupled via algebraic con-
straints.

nfr :accuracy
sr : availability : local
sr : rel time : analytic
sr : causality :causal
sr : rollback :none
sr : info : full model
sr : info :jacobian:out
fr : results visualization :post mortem
fr :sim rate: single
fr :num sim:three more
fr :alg loop : explicit
fr : sim step size : fixed
fr :domain:ct
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel
fr :communication model:jacobi
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Ref 25. Gunther2012: A Modular Technique for Automotive System Simulation [120].

Summary. This work describes the MDPCosim framework.
nfr :performance
The decomposition of the system for co-simulation is done for performance reasons.
nfr : parallelism
nfr :accuracy
sr : availability : local
IPC communication is used.
sr : causality :causal
sr : info : derivatives :out
sr : rollback :none
sr : info : predict step sizes
fr : results visualization :post mortem
fr :alg loop : explicit
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:jacobi
fr : sim step size : variable
The step size control approach is based on looking at the derivatives.
fr :sim rate: single
fr :num sim:three more

Ref 26. Quaglia2012: A SystemC/Matlab co-simulation tool for networked control systems [219].

Summary. Work describing another tool coupling.
nfr : distribution
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr : results visualization :post mortem
fr :alg loop : explicit
fr :coupling model:io assignments
fr :domain:ct
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel

Ref 27. Al-Hammouri2012: A comprehensive co-simulation platform for cyber-physical sys-
tems [5].
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Summary. The work describes the integration of two tools: Modelica, and NS-2.
sr : causality :causal
sr : rel time : analytic
sr : availability : local
Communication is done over named pipes.
sr : rollback :none
fr : results visualization :post mortem
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop : explicit
fr :domain:ct
fr :communication model:gauss seidel
fr :domain:de
fr :sim rate: single
fr : sim step size : variable

Ref 28. Eyisi2012: NCSWT: An integrated modeling and simulation tool for networked control
systems [88].

Summary. This work describes the coupling of two tools: Matlab and NS-2. The coupling is done
through HLA standard. The preliminary version of the tool is described in [222].

nfr :platform independence
nfr :performance
nfr : distribution
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :alg loop : explicit
fr :num sim:two
fr :coupling model:io assignments
fr :domain:de
fr :standard:hla
fr :communication model:gauss seidel
fr :sim rate: single
fr : sim step size : variable
fr : results visualization : live

Ref 29. Riley2011: Networked Control System Wind Tunnel (NCSWT): An Evaluation Tool for
Networked Multi-agent Systems [222].

Summary. This work describes the coupling of two tools: Matlab and NS-2. The coupling is done
through HLA standard.

nfr :platform independence
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nfr :performance
nfr : distribution
sr : info : predict step sizes
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :alg loop : explicit
fr :num sim:two
fr :coupling model:io assignments
fr :domain:de
fr :standard:hla
fr :communication model:gauss seidel
fr :sim rate: single
fr : sim step size : variable
fr : results visualization : live

Ref 30. Roche2012: A Framework for Co-simulation of AI Tools with Power Systems Analysis
Software [223].

Summary. This work describes a co-simulation between two tools in the power grid domain with
matlab running the co-simulation.

nfr : distribution
nfr :open source
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:gauss seidel
fr :alg loop : explicit
fr : results visualization :post mortem
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed

Ref 31. Fitzgerald2010: Collaborative Modelling and Co-simulation in the Development of
Dependable Embedded Systems [93].

Summary. This work describes the coupling between two tools: Overture and 20-sim.
nfr :accuracy
nfr : distribution
nfr :platform independence
sr : availability :remote
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sr : causality :causal
sr : rel time : analytic
fr : sim step size : variable
fr :sim rate: single
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop : explicit
fr : results visualization : live
fr :communication model:gauss seidel

Ref 32. Fitzgerald2013: A formal approach to collaborative modelling and co-simulation for
embedded systems [96].

Summary. This work describes the coupling between two tools: Overture and 20-sim; already
described in [93].

nfr :accuracy
nfr : distribution
nfr :platform independence
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
fr : sim step size : variable
fr :sim rate: single
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :coupling model:io assignments
fr :alg loop : explicit
fr : results visualization : live
fr :communication model:gauss seidel

Ref 33. Kudelski2013: RoboNetSim: An integrated framework for multi-robot and network
simulation [154].

Summary. This work describes the integration of three simulators (ARGoS, NS-2 and NS-3) that
can be used in co-simulation scenarios with two simulators.

nfr : distribution
nfr :platform independence
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
fr : results visualization :post mortem
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fr :alg loop : explicit
fr :communication model:jacobi
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :coupling model:io assignments

Ref 34. Broman2013: Determinate Composition of FMUs for Co-simulation [52].

Summary. This work describes a master algorithm that ensures a determinate execution.
nfr : ip protection
sr : availability : local
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info : causality :feedthrough
sr : info : predict step sizes
sr : info : stateserial
fr :coupling model:io assignments
fr :standard:fmi
fr : sim step size : variable
fr :domain:ct
fr :communication model:jacobi
fr :num sim:three more
fr :sim rate: single
fr :alg loop : explicit
fr : results visualization :post mortem

Ref 35. Benedikt2013: Guidelines for the Application of a Coupling Method for Non-iterative
Co-simulation [33].

Summary. This work describes a co-simulation approach where energy information about the signals
is used, and those errors are compensated in a corrector step.

nfr :accuracy
nfr :performance
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info :record outputs
sr : availability : local
fr : results visualization :post mortem
fr :alg loop : explicit
fr :num sim:two
fr :coupling model:io assignments
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fr :communication model:gauss seidel
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed

Ref 36. Benedikt2013b: Macro-step-size selection and monitoring of the coupoling error for
weak coupled subsystems in the frequency-domain [32].

Summary. The work describes a method for finding appropriate communication step sizes in co-
simulations between LTI systems. Essentially, it provides rules of thumb to chose a communication
step size based on the maximum instantaneous frequency of components.

nfr :accuracy
sr : availability : local
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : info :frequency outputs
fr : results visualization :post mortem
fr :sim rate: single
fr :coupling model:io assignments
fr :alg loop : explicit
fr :communication model:gauss seidel
fr :domain:ct
fr : sim step size : fixed
fr :num sim:two

Ref 37. Fuller2013: Communication simulations for power system applications [104].

Summary. This work describes a co-simulation between two co-simulation tools (ns-3 and GridLAB-
D) for smart grid development.

nfr : scalability
nfr : faulttolerance
nfr : ip protection
nfr : distribution
The tools keeps track of messages in transit.
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : rollback :none
fr :coupling model:io assignments
fr :alg loop : explicit
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
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fr : results visualization :post mortem
fr :communication model:gauss seidel

Ref 38. Bombino2013: A model-driven co-simulation environment for heterogeneous systems [42].

Summary. This work describes the coupling between two simulation tools.
nfr : distribution
sr : rollback :none
sr : causality :causal
sr : rollback : single
sr : rel time : dy real scaled time simulation
sr : availability :remote
fr :alg loop : explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr :domain:ct
fr :num sim:two
fr : results visualization : interactive live
fr :sim rate: single
fr : sim step size : fixed

Ref 39. Wang2013: HybridSim: A Modeling and Co-simulation Toolchain for Cyber-physical
Systems [272].

Summary. The approach described in this reference allows to arrange and process co-SUs, Modelica
models and TinyOS applications. SysML is used to configure the co-simulation master. The
coordination of simulators is done through the FMI standard.

nfr : ip protection
nfr : config reusability
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :alg loop : explicit
fr :communication model:gauss seidel
fr :num sim:two
fr :domain:ct
fr :standard:fmi
fr :sim rate: single
fr : sim step size : variable
fr : results visualization :post mortem

Ref 40. Hafner2013: An Investigation on Loose Coupling Co-Simulation with the BCVTB [124].
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Summary. This work discusses the consistency and stability of the Jacobi and Gauss-Seidel co-
simulation methods. Later, it presents a case study in HVAC systems.

nfr :accuracy
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :alg loop : explicit
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 41. Zhao2014: Co-simulation research and application for Active Distribution Network based
on Ptolemy II and Simulink [289].

Summary. This work describes the co-simulation between Ptolemy II and Simulink.
nfr : distribution
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :coupling model:io assignments
fr :domain:ct
fr :communication model:gauss seidel
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : explicit
fr : results visualization :post mortem

Ref 42. Li2011c: VPNET: A co-simulation framework for analyzing communication channel
effects on power systems [169].

Summary. This work describes the coupling of two simulation tools (VTB and OPNET) to achieve
co-simulation.

sr : availability : local
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
fr : results visualization :post mortem
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fr :alg loop : explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr :domain:ct
The coordination is a sample discrete time system.
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed

Ref 43. Awais2013b: Distributed hybrid simulation using the HLA and the Functional Mock-up
Interface [19].

Summary. The main difference between this work and [17] is that this proposes a variable step size
wrapper around CT components. The approach taken to do this is quantization.

nfr : distribution
nfr : parallelism
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : availability : local
fr :alg loop : explicit
fr :communication model:gauss seidel
fr :communication model:jacobi
fr :standard:fmi
fr :standard:hla
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :coupling model:io assignments
fr :domain:de
fr : results visualization :post mortem

Ref 44. Awais2013a: Using the HLA for Distributed Continuous Simulations [17].

Summary. This work addresses the need to adapt CT simulators as DE simulators, in order to be
used in a hybrid co-simulation scenario that is fundamentally DE oriented.

nfr : distribution
nfr : parallelism
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability :remote
sr : availability : local
fr :alg loop : explicit
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fr :communication model:gauss seidel
fr :communication model:jacobi
fr :standard:fmi
fr :standard:hla
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :coupling model:io assignments
fr :domain:de
fr : results visualization :post mortem

Ref 45. Kuhr2013: FERAL - Framework for simulator coupling on requirements and architecture
level [157].

Summary. They describe a framework that borrows many concepts from Ptolemy, but that is
fundamentally event based co-simulation. It allows for the specialization of basic directors for the
semantic adaptation of SUs.

nfr : ip protection
nfr : extensibility
sr : info : signal
sr : causality :causal
sr : rollback :none
sr : availability : local
sr : rel time : analytic
fr :sim rate:multi
fr :communication model:gauss seidel
fr :standard:fmi
fr :domain:de
fr :domain:ct
fr :num sim:three more
fr : sim step size : variable

Ref 46. Viel2014: Implementing stabilized co-simulation of strongly coupled systems using the
Functional Mock-up Interface 2.0. [271].

Summary. This work describes the implementation of the method described in [10] in the context
of the FMI standard.

nfr :accuracy
nfr : ip protection
sr : info :jacobian:out
sr : info :input extrapolation
sr : info :record outputs
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
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sr : availability : local
sr : rollback :none
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel
fr :standard:fmi

Ref 47. Sicklinger2014: Interface Jacobian-based Co-Simulation [239].

Summary. Describes a co-simulation method that makes use of the Jacobian information for fixed
point computations.

nfr :performance
nfr :accuracy
sr : availability : local
sr : rel time : analytic
sr : rollback : single
sr : info :jacobian:out
sr : causality :causal
fr : results visualization :post mortem
fr :communication model:gauss seidel
fr :communication model:jacobi
fr :coupling model:algebraic constraints
fr :domain:ct
fr :alg loop : implicit
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed

Ref 48. Zhang2014: A co-simulation framework for design of time-triggered automotive cyber
physical systems [288].

Summary. The work describes a co-simulation that integrates SystemC and CarSim.
sr : availability : local
sr : rollback :none
sr : causality :causal
sr : info : full model
sr : rel time : analytic
fr :coupling model:io assignments
fr :domain:de
fr :domain:ct
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fr :alg loop : explicit
fr : results visualization :post mortem
fr : sim step size : fixed
fr :sim rate: single
fr :num sim:two

Ref 49. Kounev2015: A microgrid co-simulation framework [150].

Summary. Describes the coupling of two simulators written in MATLAB and OMNeT++.
nfr :performance
sr : availability : local
sr : rel time : analytic
sr : rollback :none
The DEV’s orchestration is conservative.
sr : causality :causal
sr : info : predict step sizes
fr :coupling model:io assignments
fr : results visualization :post mortem
fr :communication model:gauss seidel
fr :domain:de
fr :num sim:two
fr :sim rate: single
fr : sim step size : variable
fr :alg loop : explicit

Ref 50. Bogomolov2015: Co-Simulation of Hybrid Systems with SpaceEx and Uppaal [39].

Summary. The orchestration algorithm is the one described in [52]. The work exploits the standard
by allowing zero step transitions.

sr : info : causality :feedthrough
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr :standard:fmi
fr :num sim:two
fr :communication model:jacobi
fr :alg loop : explicit
fr :sim rate: single
fr : sim step size : variable
This is due to the rejection of steps, not due to accuracy.
fr :domain:ct
fr :domain:de

97



They abuse the FMI standard to be able to support state transitions.
fr : results visualization :post mortem

Ref 51. Bian2015: Real-time co-simulation platform using OPAL-RT and OPNET for analyzing
smart grid performance [36].

Summary. Not many details are provided about the co-simulation orchestration. However, due to
the fact that it is real-time, we can infer certain features.

nfr :performance
sr : rollback :none
sr : causality :causal
sr : rel time : fixed real scaled time simulation
sr : availability :remote
Communication is done through UDP.
fr : sim step size : fixed
fr :sim rate: single
Two simulators do not give more than this.
fr :domain:ct
fr :coupling model:io assignments
fr :num sim:two
fr :alg loop : explicit
fr : results visualization :post mortem

Ref 52. Dols2016: Coupling the multizone airflow and contaminant transport software CONTAM
with EnergyPlus using co-simulation [80].

Summary. The work described the coupling of the CONTAM and EnergyPlus tools to achieve
HVAC simulation. The coupling is done through FMI. The coupling is done through the compiled
binaries. The case study highlights the problems with an explicit method for co-simulation, even if
the Gauss-seidel. Instabilities occur.

nfr : ip protection
sr : rollback :none
sr : rel time : analytic
sr : causality :causal
sr : availability :remote
fr : results visualization :post mortem
fr :domain:ct
fr :num sim:two
fr :standard:fmi
fr :alg loop : explicit
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : sim step size : fixed
It uses a 5-minute synchronization step.
fr :sim rate: single
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Ref 53. BenKhaled2012: Multicore simulation of powertrains using weakly synchronized model
partitioning [145].

Summary. According to [28], this work explores variable step solvers.
nfr : parallelism
nfr :performance
sr : info : causality :feedthrough
sr : info : full model
sr : rel time : fixed real scaled time simulation
sr : rollback :none
sr : availability : local
fr :standard:fmi
fr :coupling model:io assignments
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : explicit
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 54. BenKhaled2014: Fast multi-core co-simulation of Cyber-Physical Systems: Application
to internal combustion engines [28].

Summary. This paper focus on the parallelization of co-simulation. The approach is to start with
a single model and partition it into multiple models, which are then executed in separate FMUs in
parallel. The partitioning is important for accuracy reasons (e.g., break the algebraic loops at less
sensitive variables).

nfr : parallelism
nfr :accuracy
nfr :performance
nfr : scalability
sr : info : full model
sr : info :wcet
sr : info : causality :feedthrough
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:gauss seidel
fr : sim step size : fixed
fr :sim rate: single
fr :standard:fmi
fr :domain:ct
fr :num sim:three more
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fr :alg loop : explicit
It breaks the loops by establishing an order and delaying one of the variables in the loop.

Ref 55. Saidi2016: Acceleration of FMU Co-Simulation On Multi-core Architectures [226].

Summary. The paper addresses the problem of performance in FMI co-simulation. The solution
proposed is to go parallel. The parallelization approach is the same as the one presented in [145].
Since FMI does not enforce thread safety across multiple instances of the same FMU, the work pre-
sented ensures that these do not execute concurrently by using mutexes or changing the scheduling
policy.

nfr : parallelism
nfr :performance
nfr : ip protection
nfr : scalability
sr : info :wcet
sr : info : causality :feedthrough
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :communication model:jacobi
fr :standard:fmi
fr :domain:ct
fr :num sim:three more
fr :alg loop : explicit

Ref 56. Yamaura2016: ADAS Virtual Prototyping using Modelica and Unity Co-simulation via
OpenMETA [278].

Summary. The co-simulation framework includes 4 tools. The communication between the tools is
realized using OpenMeta. The work uses Unity for the modelling and simulation of the environment,
allowing for live interaction. Communication is over UDP but there is no report on extra caution
due to network delays and failures.

nfr : parallelism
sr : info : full model
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
fr :num sim:three more
fr :domain:ct
fr : results visualization : live
fr : results visualization : interactive live
fr :coupling model:io assignments
fr :sim rate: single
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fr :alg loop : explicit

Ref 57. Camus2015: Combining DEVS with multi-agent concepts to design and simulate multi-
models of complex systems (WIP) [60].

Summary. This work is the preliminary description of [61].
nfr : parallelism
nfr : distribution
nfr : ip protection
nfr :accuracy
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:de
fr :alg loop : explicit
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :standard:fmi
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : results visualization :post mortem

Ref 58. Camus2016: Hybrid Co-simulation of FMUs using DEV & DESS in MECSYCO [61].

Summary. It proposes to use a FMU wrapper around DEV and DESS models, meaning that the
co-simulation proceeds using a DE approach. It handles black box FMUs and the algorithm used
to drive the co-simulation is the conservative parallel DEVS simulator. It requires that the FMU
is able to perform rollback (through the use of state set and get).

nfr : parallelism
nfr : distribution
nfr : ip protection
nfr :accuracy
sr : rollback :none
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:de
fr :alg loop : explicit
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
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fr :standard:fmi
fr :coupling model:io assignments
fr :communication model:gauss seidel
fr : results visualization :post mortem

Ref 59. Pedersen2016: FMI for Co-Simulation of Embedded Control Software [210].

Summary. The paper describes the adaptation of an embedded system to comply with FMI and
thus interface with other FMUs. To validate the implementation, they run a co-simulation.

nfr : distribution
nfr : parallelism
sr : rel time : fixed real scaled time simulation
fr :domain:ct
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel
fr :standard:fmi
fr :coupling model:io assignments
fr :alg loop : explicit
fr : results visualization : live

Ref 60. Oh2016: A Co-Simulation Framework for Power System Analysis [206].

Summary. The paper proposes a co-simulation framework that takes into account network delays
and compensates for that. It proposes to use cubic spline extrapolation to compensate for the delay
but recognizes that if there are faults in the line (resulting in voltage drops), the derivatives used in
the extrapolation assume gigantic proportions, thus wreaking havoc in the simulation. To address
that, the framework employes an algorithm to detect discontinuities. The detection is simple: they
check the derivative of the signal to see whether it exceeds a pre-determined empirically threshold.
Basically, it looks for and Dirac delta. Figure 7 shows the effect of not handling a discontinuity.

nfr : distribution
nfr :accuracy
nfr : parallelism
fr :num sim:two
fr :sim rate: single
fr : sim step size : fixed
fr :communication model:gauss seidel
Due to the parallel interface protocol that they use.
fr :coupling model:io assignments
fr :domain:ct
fr :alg loop : explicit
sr : availability :remote
sr : causality :causal
sr : rel time : analytic
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sr : rollback :none

Ref 61. Xie2016: Continuous-Mass-Model-Based Mechanical and Electrical Co-Simulation of
SSR and Its Application to a Practical Shaft Failure Event [277].

Summary. Between two simulators. As it is explained in the paper, prior to co-simulation, the most
common approach would be to run two simulations: one complete for one sub-system, and then
another for the second sub-system, using the first as inputs. This is an open loop approach, whose
results can be misleading due to ignoring the feedback loops. Each simulator advances in parallel
and their communication is made with a barrier.

nfr : parallelism
fr :communication model:jacobi
fr :num sim:two
fr :domain:ct
fr : sim step size : fixed
fr : results visualization :post mortem
fr :sim rate: single
sr : availability : local
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
fr :alg loop : explicit
fr :coupling model:io assignments

Ref 62. Manbachi2016: Impact of EV penetration on Volt–VAR Optimization of distribution
networks using real-time co-simulation monitoring platform [176].

Summary. It describes an application of co-simulation in the distribution of energy in smart grids,
supported by a real-time co-simulation framework. The simulators involved are the RTDS, which
simulates the distribution network model, and the VVO Engine, coded in MATLAB.

sr : rel time : fixed real scaled time simulation
fr :num sim:two
sr : causality :causal
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : explicit
fr :communication model:jacobi

Ref 63. Schierz2012a: Co-simulation with communication step size control [229].
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Summary. Describes a master algorithm. Does not allow for interpolation of inputs. Needs rollback.
It touches upon accuracy, as it suggests an adaptive step size control mechanism. It does not address
algebraic loops. It assumes that there is no feedthrough information.

nfr :performance
nfr :accuracy
sr : info : derivatives :out
sr : info : stateserial
sr : causality :causal
sr : rel time : analytic
sr : rollback : single
sr : availability : local
fr :standard:fmi
fr :coupling model:io assignments
fr :num sim:three more
fr :domain:ct
fr :sim rate: single
fr : sim step size : variable
fr :alg loop : explicit
fr : results visualization :post mortem
fr :communication model:jacobi

Ref 64. Fourmigue2009: Co-simulation based platform for wireless protocols design explorati-
ons [99].

Summary. Application of co-simulation to wireless network development. One of the simulators is
the actual Linux operating system, and the other is represents a wireless network protocol simulator.

sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr :num sim:two
fr :domain:de
fr :communication model:jacobi

Ref 65. Liu2001: Calculation of Wing Flutter by a Coupled Fluid-Structure Method [172].

Summary. A fully implicit method, dealing with parallelism.
nfr : parallelism
nfr :performance
sr : causality :causal
sr : rel time : analytic
sr : rollback : single
sr : availability :remote
fr :coupling model:io assignments
fr :num sim:two
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fr :domain:ct
fr :alg loop : implicit
fr : results visualization :post mortem

Ref 66. Carstens2003: Coupled simulation of flow-structure interaction in turbomachinery [64].

Summary. Relates to the application of a co-simulation algorithm to the simulation of the defor-
mation in the blades of a transonic compressor rotor under airflow. One of the simulators calculates
deformation of the blades, while the other calculates the flow dynamics around the blades.

The communication of orchestration algorithm in use is shifted by half a step.
nfr :performance
They highlight the need for it, because the computation of a rotor is just too expensive.
sr : info : derivatives :out
sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability :remote
It seems that they perform the computation in separate computers.
fr :coupling model:io assignments
fr :num sim:two
fr :domain:ct
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : explicit
fr : results visualization :post mortem
fr :communication model:gauss seidel
Although it is a gauss seidel shifted in time.

Ref 67. Stettinger2014: Model-based coupling approach for non-iterative real-time co-simulation [240].

Summary. Proposes to address the challenges in real-time co-simulation by using a model based
coupling approach. The master has to keep track of two values for each packet of data: receiving
time delay tr – the time it takes for a packet to reach the master from the simulator –, and sending
time delay ts – the time it takes for a packet to leave the master and reach the simulator. When a
sample is delayed, the master acts as a replacement for it. Basically, it is a dead reckoning model.

nfr :performance
nfr : parallelism
nfr :accuracy
sr : causality :causal
fr :domain:ct
fr :num sim:two
sr : availability : local
fr :coupling model:io assignments
sr : rollback :none
sr : rel time : fixed real scaled time simulation
fr :sim rate: single
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fr : sim step size : fixed
fr :alg loop : explicit
fr : results visualization :post mortem
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 68. Benedikt2016: Automated configuration for non-iterative co-simulation [34].

Summary. Describes how a co-simulation master can configure some parameters throughout the
co-simulation execution. This is the idea behind adaptive master algorithms.

nfr : ip protection
nfr :accuracy
sr : info : causality :feedthrough
sr : causality :causal
sr : availability : local
sr : rollback :none
sr : rel time : analytic
fr :domain:ct
fr :num sim:three more
fr :coupling model:io assignments
fr :sim rate: single
fr : sim step size : variable
fr :alg loop : explicit
fr : results visualization :post mortem

Ref 69. Busch2011: An explicit approach for controlling the macro-step size of co-simulation
methods [57].

Summary. Presents an approach to estimate the local truncation error caused by the extrapolations
of inputs in a co-simulation. The sub-systems are assumed to make no error. It does not require
rollback or re-initialization.

Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
nfr :performance
They control the step size, which increases performance. And they study how to get an optimal

step size.
sr : info : causality :feedthrough
sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
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fr : sim step size : variable
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
In theory, they seem to support any communication model. In the paper they studied assuming

the Jacobi.

Ref 70. Quesnel2005: DEVS coupling of spatial and ordinary differential equations: VLE fra-
mework [220].

Summary. Proposes a way to wrap a continuous time ODE simulator as a DEVS model. It requires
that the state variables, and derivatives are available.

Categories:
nfr :hierarchy
nfr :open source
sr : info : derivatives :out
sr : info : statevars
sr : info : predict step sizes
sr : causality :causal
fr :domain:de
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
Any discrete event framework is by definition multi-rate.
fr : sim step size : variable
Any discrete event framework is by definition in this category.
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:gauss seidel
A discrete event framework is in this category as there is no extrapolation of inputs. Also,

Gauss seidel does not violate the causality of inputs and outputs, because it sorts according to
these dependencies. Events are processed to retain their causality.

Ref 71. Arnold2014a: Error analysis for co-simulation with force-displacement coupling [14].

Summary. Describes an FMI based master called SNiMoWrapper.
Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
sr : info : causality :feedthrough
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sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : explicit
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :standard:fmi

Ref 72. Arnold2014: Error Analysis and Error Estimates for Co-simulation in FMI for Model
Exchange and Co-Simulation v2.0 [13].

Summary. Studies the error control method known as Richard’s extrapolation.
Categories:
nfr :accuracy
Because they study the global error and control the local error.
nfr : ip protection
sr : info : causality :feedthrough
sr : info : statevars
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : variable
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :communication model:gauss seidel
fr :standard:fmi

Ref 73. Arnold2001: Preconditioned Dynamic Iteration for Coupled Differential-Algebraic Sys-
tems [11].

Summary. Studies the convergence of the Gauss-Seidel dynamic iteration method and proposes a
way to ensure it. The way to do it though, requires information from the model.

Categories:
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nfr :accuracy
Because they study the global error.
sr : info :jacobian:out
sr : info :record outputs
sr : info : full model
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel

Ref 74. Schweizer2014: Semi-implicit co-simulation approach for solver coupling [234].

Summary. Proposes a predictor corrector master that evaluates the macro step twice and uses a
perturbation on the inputs to get an estimate of the required partial derivatives. This approach is
then generalized to multiple kinds of joints in the mechanical domain. A double pendulum, double
mass-spring-damper and a slider crank mechanism are used as numerical examples.

Categories:
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:two
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : semi implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 75. Schweizer2015d: Stabilized implicit co-simulation methods: solver coupling based on
constitutive laws [237].

Summary. It presents an implicit and semi-explicit methods for the co-simulation of scenarios cou-
pled via applied forces. The difference between this paper and the previous ones by the same author
seems to be in the fact that the coupling constraints are integrated and differentiated, to enrich the
information being used to ensure that the original coupling constraints are met.
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Categories:
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : semi implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 76. Sadjina2016: Energy Conservation and Power Bonds in Co-Simulations: Non-Iterative
Adaptive Step Size Control and Error Estimation [225].

Summary. Proposes a master for co-simulation that requires the identification of power bonds
between sub-systems. It assumes that the scenario is energy conserving and thus calculate the
energy residual as an error to be minimized. The step size is adapted via a PI-Controller. When
the step size is reduced, it is only on the next co-simulation step, so the method is explicit.

nfr : ip protection
nfr :accuracy
Due to step size control.
sr : rollback :none
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : variable
fr :alg loop : explicit
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi

Ref 77. Busch2016: Continuous approximation techniques for co-simulation methods: Analysis
of numerical stability and local error [55].

Summary. Analyses the stability and local error of multiple co-simulation approaches with multiple
extrapolation approaches for the inputs. It considers Gauss-Seidel and Jacobi. It also talks about a
method called the extrapolated interpolation method, which ensure no discontinuities at the inputs
of the subsystems.

sr : rollback :none
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The method is explicit.
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :communication model:gauss seidel

Ref 78. Arnold2010: Stability of Sequential Modular Time Integration Methods for Coupled
Multibody System Models [10].

Summary. Studies stability of a gauss Seidel co-simulation method proposed in previous work:
[11]. Based on that analysis, it proposes an implicit stabilization technique that uses Gauss-Seidel
iteration. The resulting method is implicit but the equations that are being solved are linear.

Categories:
nfr :accuracy
Because they study the global error.
sr : info :jacobian:out
sr : info :record outputs
sr : info : full model
sr : rollback : single
sr : causality :causal
sr : rel time : analytic
sr : availability : local
fr :domain:ct
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr :alg loop : implicit
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:gauss seidel

Ref 79. Gu2001: Co-simulation of algebraically coupled dynamic subsystems [118].

Summary. Describes a technique to deal with algebraically coupled sub-systems using a control
theoretic approach. The highlights of this method are: it supports scenarios of arbitrary index; the
boundary condition coordinator is seen as a co-SU (this is an elegant approach) and the method is
explicit. The beauty of making the BCC as a co-SU, is that it can, just like any other sub-system be
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run at a different rate and in the paper they show that by running it at a higher rate, the stability
of the co-simulation increases.

sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:two
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 80. Gu2004: Co-Simulation of Algebraically Coupled Dynamic Subsystems Without Disclo-
sure of Proprietary Subsystem Models [119].

Summary. Describes a technique to solve causal conflicts using a Boundary Condition Coordinator
(BCC). Causal conflicts arise naturally from the coupling of different sub-systems and they are
a relevant challenge that needs to be overcome in order to perform correct co-simulation. While
in [118], the BCC requires the knowledge of the state variables of the simulations, in [119], some
modifications are made to ensure that this information is not required.

nfr : ip protection
nfr : distribution
sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : explicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 81. Schweizer2016: Co-simulation method for solver coupling with algebraic constraints
incorporating relaxation techniques [238].

Summary. A master algorithm capable of dealing with algebraic constraints is described. It requires
the derivatives of the coupled variables to be available. It executes each communication step twice,
being a semi-implicit method. It uses a predict step and a corrector step. The final corrected
coupling variables are obtained by polynomial extrapolation and relaxation (to avoid instabilities).
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Categories:
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
sr : info :jacobian:out
fr : sim step size : fixed
fr :alg loop : semi implicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 82. Schweizer2015: Predictor/corrector co-simulation approaches for solver coupling with
algebraic constraints [233].

Summary. Proposes a predictor corrector master that evaluates the macro step twice and uses a
perturbation on the inputs to get an estimate of the required partial derivatives.

Categories:
sr : rollback : single
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
fr : sim step size : fixed
fr :alg loop : semi implicit
sr : info :jacobian:out
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 83. Schweizer2015a: Stabilized index-2 co-simulation approach for solver coupling with
algebraic constraints [235].

Summary. A master algorithm capable of dealing with algebraic constraints is described. It requires
the derivatives of the coupled variables to be available. It executes each communication step twice,
being a semi-implicit method. It uses a predict step and a corrector step. The predictor step
allows the method to estimate the sensitivity of the state variables with respect to the applied
forces/torques.

Categories:
sr : rollback : single
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sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr :sim rate:multi
sr : info :jacobian:out
fr : sim step size : fixed
fr :alg loop : semi implicit
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:algebraic constraints
fr :communication model:jacobi

Ref 84. Andersson2016: Methods and Tools for Co-Simulation of Dynamic Systems with the
Functional Mock-up Interface [8].

Summary. This is a Phd Thesis. A linear extrapolation based master is proposed that is convergent
and does not require fixed point iterations. Then, a modification to multi-step methods is proposed
to increase their performance when executing in a co-simulation environment. This modification
avoids the need to restart when dealing with discontinuities.

Categories:
nfr : ip protection
nfr :platform independence
nfr :open source
sr : rollback :none
sr : causality :causal
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
fr : sim step size : fixed
sr : availability : local
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
fr :standard:fmi

Ref 85. Krammer2015: Model-Based Configuration of Automotive Co-Simulation Scenarios [151].

Summary. The language is further developed in [151] with the addition of three novel diagrams to
represent different aspects of the co-simulation configuration:

• Architectural – coupling of executable units;
• Tools – assignment of tools to models;
• Connections – connections (it was not clear what does this diagram do);
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In addition, they define a couple of well formedness properties that can be checked more easily with
the model-based approach. They give a brief summary of the tool ICOS.

Categories:
nfr : config reusability
nfr : parallelism
nfr :hierarchy
nfr : extensibility
fr :domain:ct
fr :num sim:three more
sr : rel time : analytic
sr : availability : local
fr :coupling model:io assignments
fr : results visualization :post mortem
sr : info : full model

Ref 86. Galtier2015: FMI-Based Distributed Multi-Simulation with DACCOSIM [105].

Summary. DACCOSIM is able to perform Distributed simulations and multi-core simulations. The
term “computation node” is used for a collection of FMU wrappers (which include an FMU) and
a local master / global master. The FMU wrappers, and thereby not the masters, are responsible
for passing outputs to connected inputs. This is to avoid bottlenecks. A component node contains
a master and some FMUs, which are wrapped in so-called “FMU-wrappers”. The masters take
responsibility of coordinated step sizes in case an FMU needs to roll back.

nfr :performance
Because of the possibility of splitting the simulation over a cluster / multi-core and the focus

on performance in the article. Additionally because of their use of variable step size
nfr : config reusability
It is possible to create multiple co-simulation configuration files in the simulation configuration

GUI. These can be stored and therefore reused.
nfr : ip protection
Some level of IP protection because of FMI..
nfr : parallelism
Because of the possibility of splitting the simulation over a cluster
nfr : distribution
Because a co-simulation can be executed on a cluster of computers
sr : availability :remote
sr : availability : local
nfr :hierarchy
DACCOSIM is weak hierarchical because it has the notion of local and global masters.
nfr : scalability
The framework is considered to be scalable because of the multi-core and distributed architec-

ture.
nfr :platform independence
There are two versions of the DACCOSIM library. A cross-platform version relying on JAVA

and a Windows version using C++ and QTronic SDK.
nfr :accuracy
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The article provides an example where the result of the co-simulation using DACCOSIM is
compared to the simulation using Dymola and the results are very close to each other. Accuracy is
ensured by each FMU examining its outputs and estimating how far they are from the exact value.

nfr :open source
The framework is distributed under an open source license from January 2016.
sr : info : stateserial
The framework can perform a single rollback using the state variable serialization.
sr : causality :causal
Because the framework is based on FMI for co-simulation it is considered to be causal.
fr :domain:ct
The framework supports multiple formalisms because it is based on FMI for co-simulation.
fr :num sim:three more
The frameworks is capable of supporting many FMUs and thereby many SUs. DACCOSIM

offers its own algorithm depending on global/local masters.
fr :coupling model:io assignments
sr : rel time : analytic
There is no mentioning of any other time models than this in the article.
fr :sim rate: single
The simulation rate is the same for all FMUs.
fr : sim step size : variable
The framework uses Coordinated Variable Step
fr :alg loop : explicit
The framework uses Euler’s method and Richardson’s method. Whether this is default, para-

meterizable or fully customizable is unknown based on this article.
fr :communication model:jacobi
See Co-initialization bullet 2 in the article.
fr :standard:fmi
It is based on the FMI standard.
fr : results visualization :post mortem

Ref 87. Fey1997: Parallel synchronization of continuous time discrete event simulators [91].

Summary. Presents two synchronization approaches, detailed in three different synchronization
protocols, to coordinate simulation scenarios that include one discrete event simulator and one
continuous time simulator. The discrete event simulator can implement any parallel simulation
approach that we know, such as Time-Warp. This means that, even internally, the DE simulator
can be forced to rollback due to straggler messages. The focus is on parallel approaches.

Categories:
nfr :performance
nfr : ip protection
nfr : parallelism
nfr :accuracy
fr :domain:de
fr :domain:ct
fr :num sim:two
fr :sim rate:multi
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fr : sim step size : fixed
fr : results visualization :post mortem
sr : rel time : analytic
sr : availability : local
sr : rollback : single
fr :coupling model:io assignments
sr : info : full model

Ref 88. Acker2015: Generation of an Optimised Master Algorithm for FMI Co-simulation [257].

Summary. Essentially, this paper shows how a compiled approach increases the performance of the
co-simulation. It also shows that, because there are so many decisions to be made when designing
the master, a compiled approach allows for a more elegant, and specifically tailored master, to be
generated.

nfr :performance
nfr : ip protection
nfr : config reusability
nfr :open source
sr : rel time : analytic
sr : availability : local
sr : info : causality :feedthrough
sr : info : statevars
sr : rollback :none
sr : causality :causal
sr : info : preferred step sizes
fr :domain:ct
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr : results visualization :post mortem
fr :standard:fmi
fr :communication model:gauss seidel
fr :alg loop : implicit
fr :coupling model:io assignments

Ref 89. Enge-Rosenblatt2011: Functional Digital Mock-up and the Functional Mock-up In-
terface - Two Complementary Approaches for a Comprehensive Investigation of Heterogeneous
Systems [86].

Summary. The paper describes and compares two approaches to performing co-simulation of hete-
rogeneous systems, namely the Functional Digital Mock-up (FDMU) and the Functional Mock-up
Interface (FMI). Besides describing these approaches it also introduces the “FDMU framework”, a
framework that implements the Functional Digital Mock-up approach. Furthermore, proposals are
presented for combining FDMU and FMI approaches.

117



The FDMU approach is a tool-independent and web service-based framework build on the Web
Service standards. It is capable of coupling different simulation tools and provide visualization
based on CAD models.

FDMU consists of three main concepts: functional building blocks (FBB), wrappers, FDMU
master, and FDMU Console. The functional building block can wrap geometric information (CAD
Models), behavioral models, and a simulator tool. It is the responsibility of the wrappers to establish
a connection between the different simulation tools and the FDMU Master Simulator. Finally, the
FDMU master ensures correct communication between the simulators. The FDMU Console is the
user’s front-end.

nfr :performance
Communication overhead of a web service-based approach.
nfr : ip protection
Because of the web service-based approach IP protection should be possible.
nfr : parallelism
Because of the web service-based approach it is parallel by nature. It uses thread-safe queues

and deadlock-free transmission of data.
nfr : distribution
Because of the web service-based approach it is easy distributable.
nfr : scalability
The distributed systems paradigm ensures scalability.
nfr :platform independence
web service-based approach.
nfr : extensibility
A new wrapper can be implemented.
sr : causality :causal
Every input of an FBB must have an appropriate output belonging to another FBB.
fr :domain:ct
fr :coupling model:io assignments
fr :num sim:three more
fr :sim rate:multi
sr : availability :remote
fr : results visualization : live
The framework provides an interactive 3D visualization based on CAD.
fr :standard:fdmu

Ref 90. Karner2010a: Heterogeneous co-simulation platform for the efficient analysis of FlexRay-
based automotive distributed embedded systems [142].

Summary. Motivation: FlexRay is a wired network for automotive high-speed control applications
and no solutions exist that simulates all parts of the network.

What: a co-simulation platform called TEODACS FlexRayExprt.Sim. The simulation approach
used in the platform covers mechanics and all parts of the network from physical layer to application
layer, which is not done by other solutions. The framework CISC SyAD is used to perform the
microelectronics co-simulation, CarMaker/AVL InMotion for the mechanics, and they are bridged
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by TEODACS FlexRayEprt.Sim. The platform uses a very interesting approach to faster co-
simulations, namely the use of model switching, where a less detailed model replaces a more detailed
model in parts of the simulation.

The paper provides an overview of existing approaches such as transaction based modeling,
HDLs such as SystemC and Verilog, and cable harness and topology modeling along with why
these contain shortcomings to this domain. Furthermore, the paper provides some details of the
implementation of the models used in the co-simulation and showcases how the platform can analyse
a system with specific examples.

nfr :accuracy
Because of model switching.
nfr :performance
Because of model switching.
fr :dynamic structure
Because the structure of the co-simulation is changed via model switching.
fr :domain:ct
Because SyAD supprots multiple formalisms and CarMaker / AVL InMotion.
fr :domain:de
fr :coupling model:io assignments
fr :num sim:three more
Multiple FlexRay nodes can be added.
sr : rel time : analytic
From model switching and similar it is clear that analytic simulation is used.
fr : results visualization :post mortem

Ref 91. Aslan2015: MOKA: An Object-Oriented Framework for FMI Co-Simulation [15].

Summary. The paper describes MOKA, which is a framework for performing co-simulations and
creating FMUs using FMI 2.0 for co-simulation. The framework turns the creation of FMUs into
an object-oriented process by using C++. An FMU is created by inheriting one of the classes and
implementing virtual functions thereby avoiding writing boilerplate code. The implementation of
FMUs is realised by the concepts of FMUBlock, which is to be inherited, FMUPort, and FMU-
StateVariables. FMUBlock is to be extended by a concrete FMU slave and implements common
computation phase functions for slaves. It contains FMUPort for data exchange and FMUStateVa-
riables for state tracking during the simulation. The FMUPort classes provides the data exchange
interface of a slave. It abstracts the value references by automatically assigning a value reference
to the variable. The BaseStateVariable class also functions as base that is to be extended. It provi-
des virtual functions for state variable services. The StateVariable inherits from BaseStateVariable
and represents state variables for the slave. The framework also provides a template for the FMU
Master so the master code changes minimally for different scenarios.

The article exemplifies an application of the MOKA framework where two FMUs are used: The
bouncing ball and integer counter example from the QTronic SDK, where the bouncing ball has
been re-developed with MOKA.

In future work it is stated that development of a DSL in a current study, so that different
scenarios can be executed without altering the master code.

nfr : ip protection
nfr : config reusability
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sr : causality :causal
sr : rel time : analytic
sr : rollback :none
sr : availability : local
fr :coupling model:io assignments
fr :num sim:three more
fr :standard:fmi
fr :domain:ct
fr :alg loop : explicit
fr :sim rate: single
fr :communication model:gauss seidel
fr : results visualization :post mortem

Ref 92. Wetter2010: Co-simulation of building energy and control systems with the Building
Controls Virtual Test Bed [274].

Summary. Describes a co-simulation framework called Building Controls Virtual Test Bed (BCVTB)
that can be used for real-time simulation and co-simulation. It is a modular extensible open-source
platform to interface different simulation programs with each other. The intention is to give users
the option to use the best tools suited to model various aspects of building energy and control
systems, or use programs where they have expertise. The middleware to couple any number of
simulation programs also provides libraries such that it can be extended. Furthermore, the paper
describes how they gathered capabilities the framework should support. The framework is based
on Ptolemy II, which is extended by some java packages. The simulator package adds functionality
that allows an actor to perform system calls to start any executable on Windows, OSX or Linux.
It simply starts a simulation program, sends input tokens to the simulation program, receives new
values and sends them to its output port. Algorithms are also provided on how simulators are
coupled. These are also exemplified with specific simulators. It is also described how to connect
client programs. The article describes how the interfaces are created for simulink, matlab, modelica,
and system cals. Furthermore, a specific example is presented.

nfr : config reusability
nfr : distribution
nfr :platform independence
nfr : extensibility
nfr :open source
sr : causality :causal
sr : rel time : analytic
sr : rel time : fixed real scaled time simulation
fr :domain:ct
In the paper, their explanation is focused on the CT domain.
fr :num sim:three more
fr :sim rate: single
fr : sim step size : fixed
fr : results visualization :post mortem
fr :coupling model:io assignments
fr :communication model:jacobi
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Ref 93. Neema2014: Model-based integration platform for FMI co-simulation and heterogeneous
simulations of cyber-physical systems [196].

Summary. The article concerns integrating FMI as an HLA federate and extending the Command
and Control Wind Tunnel (C2WT) metamodel to include FMI-specifics. This enables the C2WT
tool to use FMUs as part of a simulation. The C2WT tool is describes as a multi-model integration
platform that allows users to model and synthesize complex, heterogeneous, command and control
simulations. The tool therefore has support for multiple simulation engines and an introduction to
the tool is given in the paper. Furthermore, a case study on Vehicle Thermal Management using
FMUs are presented and The focompared to a simulation in a different environment. The work is
sponsored by the US DoD.

nfr :platform independence
nfr : distribution
nfr : config reusability
fr :domain:de
fr :num sim:three more
fr :sim rate:multi
fr : sim step size : fixed
fr : sim step size : variable
sr : rel time : fixed real scaled time simulation
sr : rel time : analytic
fr : results visualization : live
fr :standard:hla
fr :standard:fmi
fr :communication model:jacobi

Ref 94. Larsen2016c: Integrated Tool Chain for Model-Based Design of Cyber-Physical Sys-
tems [159].

Summary. This article presents an overview of the INTO-CPS project and thereby a Co-Simulation
tool. The projects concerns production of a well-founded tool chain for model-based design of
CPSs, and therefore consists of a semantic foundation and several baseline tools such as Modelio,
Overture, 20-sim, OpenModelica and RT-Tester. Furthermore, an application called the INTO-CPS
application is the entry point for configuring co-simulations and uses the co-simulation orchestration
engine (COE) to perform the actual simulations. This COE is based on the FMI standard. The
entire tool chain and the semantic foundation are presented in this paper. This is related to [159].

nfr : config reusability
nfr : ip protection
sr : info :nominal values:output
sr : info :nominal values:state
sr : info : derivatives :out
sr : info : derivatives : state
sr : info :jacobian:out
sr : info :jacobian: state
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sr : info : preferred step sizes
sr : info : causality :feedthrough
sr : causality :causal
sr : availability : local
sr : info : statevars
sr : info :record outputs
sr : rel time : analytic
sr : info : stateserial
fr :standard:fmi
sr : info : signal
fr :num sim:three more
fr :domain:de
fr :domain:ct
fr :sim rate: single
fr : results visualization :post mortem
fr : results visualization : live

Ref 95. Lausdahl2015: Design of the INTO-CPS Platform [161].

Summary. This is an EU deliverable related to the INTO-CPS project. It contains the technical
documentation of the INTO-CPS platform at the end of 2015 (the first year of the project). Part
of this project is the Co-simulation Orchestration Engine (COE). This is related to [159].

sr : info : predict step sizes
Supports the FMI suggested extension fmi2getMaxStepSize
nfr :performance
The COE supports variable step size, which can increase performance.
sr : rollback : single
Supports rollback to last successful state.
nfr :performance
The COE supports variable step size, which can increase performance.
nfr :accuracy
Contains various constraints such as zero-crossing, bounded difference and sampling rate. Furt-

hermore, support for allowed min and max values.

C Co-Simulation Scenario Categorization

This section describes each category and lists the references that belong to that category, classified
in the previous section.

C.1 Non-Functional Requirements

C.1.1 Fault Tolerance

A co-simulation platform is fault tolerant if, for example, when one SU fails, other can take its
place. This is particularly important for long running simulations. To be fault tolerant, certain
features need to available: periodically store the state of SUs; record all inputs to each SU. If a
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SU fails and the state is periodically stored, then the simulation can be paused while the state is
restored in a new instance of the SU. The history of input values passed to each SU can be used to
bring the SU to the current state.

References in this category:
Fuller2013

C.1.2 Configuration Reusability

This category refers to the fact that frameworks can provide a way to configure co-simulation
scenarios that can be reused. This means that the configuration is considered external to the
execution of the co-simulation. External in this context means that the configuration can reused
without altering the binaries for the co-simulation application.

If a tool/frame does not provide a way to reuse configurations for co-simulation, then it is a
time-consuming, error-prone and non-trivial process to set up co-simulations [151].

References in this category:
Wang2013
Krammer2015
Galtier2015
Acker2015
Aslan2015
Wetter2010
Neema2014

C.1.3 Performance

Performance is a relative measure: a co-simulation platform is performant when it is able to simulate
a great deal in a short amount of time while needing little resources. This can be achieved by using
variable step integration methods and signal extrapolation techniques. Parallelism also plays a role
but mostly on the time aspect of performance.

References in this category:
Hoepfer2011
Faure2011
Sun2011
Friedrich2011
Gonzalez2011
Gunther2012
Eyisi2012
Riley2011
Benedikt2013
Sicklinger2014
Kounev2015
Bian2015
BenKhaled2012
BenKhaled2014
Saidi2016
Schierz2012a
Liu2001
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Carstens2003
Stettinger2014
Busch2011
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a

C.1.4 IP Protection

IP Protection deals with not requiring the models participating in the co-simulation to provide de-
tailed structure, variables, etc. . . There are multiple levels of protection ranging from fully protected
to not protected at all. A good IP protection enables component suppliers to provide the system
integrators with detailed simulations of their components avoiding expensive lock-in contracts.

There are multiple techniques can be be employed to ensure some degree of protection. For
instance, making the models (and corresponding SUs) available as a web service is a possible
solution. Another example is any framework that implements the FMI Standard [37][38], which
allows models and SUs to be exported as a single functional unit, in binary format, that can be
imported into a co-simulation.

References in this category:
Hoepfer2011
Sun2011
Bastian2011a
Friedrich2011
Broman2013
Fuller2013
Wang2013
Kuhr2013
Viel2014
Dols2016
Saidi2016
Camus2015
Camus2016
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Sadjina2016
Gu2004
Andersson2016
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Aslan2015
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C.1.5 Parallelism

A co-simulation framework is parallel when it makes use of multiple processes/threads to perform
the co-simulation. This is typically in the same computer or same local network.

Techniques such as signal extrapolation help improve the speed-up gained from parallelism.
Furthermore waveform relaxation techniques and the Jacobi iterations promote parallelism [180].

References in this category:
Faure2011
Bastian2011a
Friedrich2011
Gunther2012
Awais2013b
Awais2013a
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Pedersen2016
Oh2016
Xie2016
Liu2001
Stettinger2014
Krammer2015
Galtier2015
Fey1997
Enge−Rosenblatt2011

C.1.6 Distribution

A co-simulation framework is parallel and distributed when it allows each SU to be remote, across
a wide area network.

This is very important since suppliers can, instead of transferring the SUs in executable form
across computers, can make them available over the web. This offers much more control over how
the SUs are used.

The same techniques used in parallelism can be used to promote distribution, but fault tolerance
is also important.

References in this category:
Friedrich2011
Nutaro2011
Busch2012
Quaglia2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
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Fitzgerald2013
Kudelski2013
Fuller2013
Bombino2013
Zhao2014
Awais2013b
Awais2013a
Camus2015
Camus2016
Pedersen2016
Oh2016
Gu2004
Galtier2015
Enge−Rosenblatt2011
Wetter2010
Neema2014

C.1.7 Hierarchy

A hierarchical co-simulation framework is able to abstract a co-simulation scenario as a black box
SU. This is very intuitive and promotes abstraction of complex systems.

References in this category:
Quesnel2005
Krammer2015
Galtier2015

C.1.8 Scalability

A co-simulation framework is scalable when it supports a large number of SUs. It is intimately
related to performance and paralelism.

References in this category:
Fuller2013
BenKhaled2014
Saidi2016
Galtier2015
Enge−Rosenblatt2011

C.1.9 Platform Independence

A co-simulation framework is platform independent when it works on multiple computing platforms.
For this to be achieved, a platform independent language, such as Java, can be used to coordinate
the simulation.

References in this category:
Bastian2011a
Eyisi2012
Riley2011
Fitzgerald2010
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Fitzgerald2013
Kudelski2013
Andersson2016
Galtier2015
Enge−Rosenblatt2011
Wetter2010
Neema2014

C.1.10 Extensibility

A co-simulation framework is extensible when it can be easily extended to support new kinds of SUs,
with new kinds of capabilities. A higher level, domain specific, language can be used to specify the
behaviour in a platform agnostic way. Code is then generated from this description. The hypothesis
is that the high level description can be more easily extended to describe new behaviour and that
the code generation process can be adapted accordingly.

References in this category:
Kuhr2013
Krammer2015
Enge−Rosenblatt2011
Wetter2010

C.1.11 Accuracy

A co-simulation is accurate when the error between the trace produced and the correct trace is
minimal. This can be achieved by error control mechanisms.

References in this category:
Hoepfer2011
Tomulik2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Schierz2012
Gunther2012
Fitzgerald2010
Fitzgerald2013
Benedikt2013
Benedikt2013b
Hafner2013
Viel2014
Sicklinger2014
BenKhaled2014
Camus2015
Camus2016
Oh2016
Schierz2012a
Stettinger2014
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Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Arnold2001
Sadjina2016
Arnold2010
Galtier2015
Fey1997
Karner2010a

C.1.12 Open source

We consider open source the frameworks that make available the source code under certain licenses
that are not paid for in any way.

References in this category:
Roche2012
Quesnel2005
Andersson2016
Galtier2015
Acker2015
Wetter2010

C.2 Simulator Requirements

This sub section covers the taxonomy that focuses on individual simulators’ capabilities.

C.2.1 Information Exposed

Frequency of State The instantaneous frequency of the state of the sub-system can be used to
adjust the communication step size.

Frequency of Outputs The instantaneous frequency of the output of the sub-system can be
used to adjust the communication step size, as is done in [32].

References in this category:
Benedikt2013b

Detailed Model Simulators that make the equations of the dynamic system available fall into
this category.

References in this category:
Schmoll2012
Hassairi2012
Schierz2012
Zhang2014
BenKhaled2012
BenKhaled2014
Yamaura2016
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Arnold2001
Arnold2010
Krammer2015
Fey1997

Nominal Values of Outputs This information indicates the order of magnitude of output sig-
nals.

Nominal Values of State This information indicates the order of magnitude of state signals.

I/O Signal Kind The kind of output signal helps the master algorithm understand what as-
sumptions are in a signal.

References in this category:
Kuhr2013

Time Derivative

Output References in this category:
Hoepfer2011
Tomulik2011
Gunther2012
Schierz2012a
Carstens2003
Quesnel2005

State References in this category:
Hoepfer2011

Jacobian

Output References in this category:
Tomulik2011
Bastian2011a
Busch2012
Schierz2012
Viel2014
Sicklinger2014
Arnold2001
Arnold2010
Schweizer2016
Schweizer2015
Schweizer2015a

State
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Discontinuity Indicator A discontinuity indicator is a signal that indicates the presence of a
discontinuity in the output of the SU.

Deadreckoning model A deadreckoning model is a function that can be used by other SUs to
extrapolate the behavior of this SU.

Preferred Step Size References in this category:
Acker2015

Next Step Size The next step size indicates the next communication time that is appropriate
for the current simulator.

References in this category:
Lin2011
Gunther2012
Eyisi2012
Riley2011
Broman2013
Kounev2015
Quesnel2005

Order of Accuracy The order of accuracy can be used to determine the appropriate input
extrapolation functions to be used in a co-simulation scenario.

I/O Causality Feedthrough
References in this category:
Broman2013
Bogomolov2015
BenKhaled2012
BenKhaled2014
Saidi2016
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Acker2015
Propagation Delay
The propagation delay indicates how many micro-steps have to be performed before a change in

the input affects an output. In Simulink, this is the number of delay blocks in chain from an input
to an output.

Input Extrapolation This information denotes the kind of input extrapolation being performed
by the SU.

References in this category:
Viel2014
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State Variables References in this category:
Hoepfer2011
Quesnel2005
Arnold2014
Acker2015

Serialized State References in this category:
Bastian2011a
Broman2013
Viel2014
Bogomolov2015
Camus2015
Camus2016
Schierz2012a
Galtier2015

Micro-Step Outputs This information denotes the output of the SU, evaluated at each of the
micro-steps.

References in this category:
Benedikt2013
Viel2014
Arnold2001
Arnold2010

WCET This denotes the worst case excution time.
References in this category:
Faure2011
BenKhaled2014
Saidi2016

C.2.2 Causality

Causal References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
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Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
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Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Galtier2015
Acker2015
Enge−Rosenblatt2011
Aslan2015
Wetter2010

A-Causal

C.2.3 Time Constraints

Analytic Simulation References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Tomulik2011
Sun2011
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
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Benedikt2013
Benedikt2013b
Fuller2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Dols2016
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016
Xie2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
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Fey1997
Acker2015
Karner2010a
Aslan2015
Wetter2010
Neema2014

Scaled Real Time Simulation
Fixed

A simulator is fixed scaled real time when it simulated time progresses according to a fixed linear
relationship with the real time.

References in this category:
Faure2011
Bian2015
BenKhaled2012
Pedersen2016
Manbachi2016
Stettinger2014
Wetter2010
Neema2014
Dynamic
A simulator is dynamic scaled real time when the relation between the simulated time and the

real time can be changed throughout the simulation.
References in this category:
Bombino2013

C.2.4 Rollback Support

None References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Schmoll2012
Ni2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
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Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Oh2016
Xie2016
Manbachi2016
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Arnold2014a
Sadjina2016
Busch2016
Gu2001
Gu2004
Andersson2016
Acker2015
Aslan2015

Single Single rollback means that the SU is capable of saving a certain state in the past (simulated
time) and revert to that state. Once reverted, the SU cannot revert further in the past.

References in this category:
Tomulik2011
Nutaro2011
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Busch2012
Bombino2013
Sicklinger2014
Schierz2012a
Liu2001
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Arnold2010
Schweizer2016
Schweizer2015
Schweizer2015a
Fey1997

Multiple Multiple rollback means that the SU is capable of saving a certain state in the past
(simulated time) and revert to that state. Once reverted, the SU revert further into the past as
many times as necessary.

C.2.5 Availability

Remote References in this category:
Friedrich2011
Busch2012
Quaglia2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Fuller2013
Bombino2013
Zhao2014
Awais2013b
Awais2013a
Bian2015
Dols2016
Yamaura2016
Oh2016
Liu2001
Carstens2003
Galtier2015
Enge−Rosenblatt2011
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Local References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Gonzalez2011
Nutaro2011
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Al−Hammouri2012
Broman2013
Benedikt2013
Benedikt2013b
Wang2013
Hafner2013
Li2011c
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
BenKhaled2012
BenKhaled2014
Saidi2016
Camus2015
Camus2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
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Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Aslan2015

C.3 Framework Requirements

C.3.1 Standard

High Level Architecture References in this category:
Eyisi2012
Riley2011
Awais2013b
Awais2013a
Neema2014

Functional Mock-up Interface References in this category:
Pedersen2015
Sun2011
Bastian2011a
Broman2013
Wang2013
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Bogomolov2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Camus2015
Camus2016
Pedersen2016
Schierz2012a
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Arnold2014a
Arnold2014
Andersson2016
Galtier2015
Acker2015
Aslan2015
Neema2014

Functional Digital Mock-up References in this category:
Enge−Rosenblatt2011

C.3.2 Coupling

Input/Output Assignments References in this category:
Pedersen2015
Lin2011
Faure2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
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Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
Yamaura2016
Camus2015
Camus2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Fourmigue2009
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Sadjina2016
Busch2016
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
Wetter2010

Algebraic Constraints References in this category:
Tomulik2011
Friedrich2011
Schierz2012
Viel2014
Sicklinger2014
Arnold2001
Schweizer2014
Schweizer2015d
Arnold2010
Gu2001
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Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a

C.3.3 Number of Simulation Units

Two References in this category:
Lin2011
Sun2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Zhao2014
Li2011c
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Fourmigue2009
Liu2001
Carstens2003
Stettinger2014
Schweizer2014
Gu2001
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Fey1997

Three or More References in this category:
Pedersen2015
Hoepfer2011
Faure2011
Tomulik2011
Bastian2011a
Friedrich2011
Schierz2012
Gunther2012
Broman2013
Hafner2013
Awais2013b
Awais2013a
Kuhr2013
Viel2014
Sicklinger2014
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
Schierz2012a
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
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Wetter2010
Neema2014

C.3.4 Domain

CT References in this category:
Pedersen2015
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Roche2012
Fitzgerald2010
Fitzgerald2013
Broman2013
Benedikt2013
Benedikt2013b
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Kuhr2013
Viel2014
Sicklinger2014
Zhang2014
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Pedersen2016
Oh2016
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Xie2016
Schierz2012a
Liu2001
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Krammer2015
Galtier2015
Fey1997
Acker2015
Enge−Rosenblatt2011
Karner2010a
Aslan2015
Wetter2010

DE References in this category:
Lin2011
Nutaro2011
Al−Hammouri2012
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Fuller2013
Awais2013b
Awais2013a
Kuhr2013
Zhang2014
Kounev2015
Bogomolov2015
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Camus2015
Camus2016
Fourmigue2009
Quesnel2005
Fey1997
Karner2010a
Neema2014

C.3.5 Dynamic structure

References in this category:
Karner2010a

C.3.6 Co-simulation Rate

Single References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Tomulik2011
Sun2011
Bastian2011a
Friedrich2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
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Li2011c
Viel2014
Sicklinger2014
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Yamaura2016
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Carstens2003
Stettinger2014
Benedikt2016
Busch2016
Arnold2010
Galtier2015
Aslan2015
Wetter2010

Multi Multi-rate co-simulation denotes that the framework distinguishes between slow and fast
sub-systems and dimensions the communication step size accordingly, providing for interpolati-
on/extrapolation of the slow systems.

References in this category:
Gonzalez2011
Awais2013b
Awais2013a
Kuhr2013
Camus2015
Camus2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Arnold2001
Schweizer2014
Schweizer2015d
Sadjina2016
Gu2001
Gu2004
Schweizer2016
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Schweizer2015
Schweizer2015a
Fey1997
Acker2015
Enge−Rosenblatt2011
Neema2014

C.3.7 Communication Step Size

Fixed References in this category:
Pedersen2015
Faure2011
Tomulik2011
Bastian2011a
Friedrich2011
Gonzalez2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Quaglia2012
Roche2012
Kudelski2013
Benedikt2013
Benedikt2013b
Bombino2013
Hafner2013
Zhao2014
Li2011c
Awais2013a
Viel2014
Sicklinger2014
Zhang2014
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Pedersen2016
Oh2016
Xie2016
Manbachi2016
Carstens2003
Stettinger2014
Arnold2014a
Arnold2001
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Schweizer2014
Schweizer2015d
Busch2016
Arnold2010
Gu2001
Gu2004
Schweizer2016
Schweizer2015
Schweizer2015a
Andersson2016
Fey1997
Acker2015
Wetter2010
Neema2014

Variable References in this category:
Lin2011
Hoepfer2011
Sun2011
Nutaro2011
Gunther2012
Al−Hammouri2012
Eyisi2012
Riley2011
Fitzgerald2010
Fitzgerald2013
Broman2013
Fuller2013
Wang2013
Awais2013b
Kuhr2013
Kounev2015
Bogomolov2015
Camus2015
Camus2016
Schierz2012a
Benedikt2016
Busch2011
Quesnel2005
Arnold2014
Sadjina2016
Galtier2015
Neema2014
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C.3.8 Strong Coupling Support

None – Explicit Method References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Sun2011
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Hassairi2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Eyisi2012
Riley2011
Roche2012
Fitzgerald2010
Fitzgerald2013
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Bombino2013
Wang2013
Hafner2013
Zhao2014
Li2011c
Awais2013b
Awais2013a
Zhang2014
Kounev2015
Bogomolov2015
Bian2015
Dols2016
BenKhaled2012
BenKhaled2014
Saidi2016
Yamaura2016
Camus2015
Camus2016
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Pedersen2016
Oh2016
Xie2016
Manbachi2016
Schierz2012a
Carstens2003
Stettinger2014
Benedikt2016
Busch2011
Quesnel2005
Arnold2014a
Arnold2014
Sadjina2016
Busch2016
Gu2001
Gu2004
Galtier2015
Aslan2015

Partial – Semi-Implicit Method References in this category:
Busch2012
Schweizer2014
Schweizer2015d
Schweizer2016
Schweizer2015
Schweizer2015a

Full – Implicit Method References in this category:
Tomulik2011
Bastian2011a
Busch2012
Viel2014
Sicklinger2014
Liu2001
Arnold2001
Arnold2010
Acker2015

C.3.9 Results Visualization

Postmortem The results are available after the simulation. References in this category:
Pedersen2015
Lin2011
Hoepfer2011
Faure2011
Tomulik2011
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Sun2011
Bastian2011a
Friedrich2011
Gonzalez2011
Nutaro2011
Busch2012
Schmoll2012
Ni2012
Schierz2012
Gunther2012
Quaglia2012
Al−Hammouri2012
Roche2012
Kudelski2013
Broman2013
Benedikt2013
Benedikt2013b
Fuller2013
Wang2013
Hafner2013
Zhao2014
Li2011c
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