
Co-Synthesis of a Configurable
SoC Platform based on a

Network on Chip Architecture
Mário P. Véstias & Horácio C. Neto

INESC-ID (PROSYS), Lisbon, Portugal

ASP-DAC’06
Yokohama, Japan

January 24-27, 2006

Outline
1. Introduction and Motivation
2. What Exists?
3. Our project proposal
4. Target architecture
5. Design methodology
6. Application example
7. Conclusions
8. Future work

1. Introduction and Motivation
Development of systems for high-capacity data processing
on configurable platforms
Working on architectures and design methodologies for SoC
design
Developed a platform-based methodology with IP and
architecture reuse.

Problems with the interconnection architecture (bus-based) :
Does not support the efficient interconnection of many IP in
a structured way.
Increasing connection difficulties – lack of scalability
Need reuse of interconnection!

Solution => Network on Chip

2. What exists
There exists some work on NoC development

Topologies, structures, protocols, etc.
There exists lots of work on cosynthesis and
codesign, but for bus-based architectures

Allocation, mapping, scheduling for Hw/Sw systems
It is time to adapt many of these techniques and
ideas to develop SoC systems based on the NoC
paradigm

Some tools already exist, but not a complete co-
synthesis framework

3. Our project proposal

In a first step, our project consisted on:
Develop a co-synthesis methodology based on a NoC
architecture
Study the impact on design productivity
Study the impact on design complexity
Study the impact on design quality

4. Target architecture

NoC:
2D-mesh topology
Routing, flow-control,
switching, arbitration,
buffering

Parameterization:
2D-size
Type of core
Link size

4.1 Target architecture - behavior

NoC behavior similar to the OSI communication architecture

4.2 Target Architecture - Router

Routing – XY algorithm
Flow-control: 2 way

handshake
Switching: store and

forward
Arbitration: round-robin
Buffering: output

Switch
Matrix

Arbitration

Buffer

Buffer

B
uf

fe
r

Buffer

Packet In

Packet Out

Rqst Rcv
Ack Rcv

Rqst Trm
Ack Trm

B
uf

fe
r

Packet In

Packet Out

Rqst Rcv
Ack Rcv

Rqst Trm
Ack Trm

Pa
ck

et
 O

ut

R
qs

t T
rm

Ac
k

Tr
m

Pa
ck

et
 In

R
qs

t R
cv

Ac
k

R
cv

P
ac

ke
t O

ut

R
qs

t T
rm

A
ck

 T
rm

Pa
ck

et
 In

R
qs

t R
cv

Ac
k

R
cv

Packet Out

Rqst Trm
Ack Trm

P
ac

ke
t I

n
R

qs
t R

cv

Ac
k

R
cv

WEST

LOCAL

EAST

SO
U

TH

N
O

R
TH

Routing

Flow control

4.3 Target Architecture - Network interface

Shared Memory comm
Functions:

Memory management
Task scheduling
Reassembly
Segmentation
Encapsulation
Flow-control

Buffer

Pa
ck

et
 O

ut

R
qs

t T
rm

A
ck

 T
rm

Pa
ck

et
 In

R
qs

t R
cv

A
ck

 R
cv LOCAL

Input
Control

Output
Control

IP Core

Memory

O
S

M
em

or
y

Task Scheduling

Reassembly

SegmentationMemory
Management

Encapsulation

End-to-end
Flow control

Router

NI

4.4 Target Architecture - Packet structure

Data packets
Configuration packets
Token packets

Data

Data

Data

Data

Instr/Prty

Instr/PrtyPort

Instr/PrtyPortAddr

24 bits3 bits4 bits5 bits

Application

Session

Transport

Network

4.5 NoC Characterization - performance

Link latency (LL) – 1 cycle;
Resource generation latency (RGL) – 4 cycles;
Resource reception latency (RCL) – 5 cycles;
Resource to resource latency (R2RL) - …;
Resource to resource bandwidth (R2RB) – f/5 packets/s.

frequency) working(f
NRLLRCLRGL ×++Edge delay =

Edge delaypipe = ()NPNR
RBR

+×
2
1

Can forward up to 750 Mpackets/s => 6Gbps

4.6 NoC Characterization - area

Block Size (slices) BRAM % XC2V6000

Router (8bits) 189 0 0,56

NI 121 1 0,36

5. Design Methodology

ApplicationsArchitecture
instance Quality

Mapping

Analysis

Allocation

Quality

Design Constraints

Design Constraints

Design Constraints

Generic NoC
Platform

RGB2YCbCr

2D-DCT 2D-DCT 2D-DCT

Quantizer
& Zigzag

Quantizer
& Zigzag

Quantizer
& Zigzag

Huffman
Encoder

Image.bmp

Image.jpg

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

5.1 Design Methodology - Allocation

Size of topology
Type of cores

SA Algorithm

5.2 Design Methodology - Mapping
R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

Assigns task, data transfer and variable to
core, link and memory - SA Algorithm

IHDFG

Unroll <- Unroll + 1

Map Analysis

Improved?

Unroll?

Unrolled Graph

Save
Solution

End

no

no

yes

yes

NoC
Architecture

RGB2YCbCr

2D-DCT 2D-DCT 2D-DCT

Quantizer
& Zigzag

Quantizer
& Zigzag

Quantizer
& Zigzag

Huffman
Encoder

Image.bmp

Image.jpg

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

5.3 Design Methodology - Analysis

Quality = Cthroughput + Cthroughput

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

R

IP
Core

Mem NI
IP

Core

Mem

R

NI

R

IP
Core

Mem NI

Performance, memory QUALITY

()

()
constrain with ,

Ci
Ci(P) - Ci, 0 max Ka

constrain without ,
Ci

PCiK
Cx

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛×

×
=

6 Application Example - JPEG

RGB2YCbCr

2D-DCT 2D-DCT 2D-DCT

Quantizer
& Zigzag

Quantizer
& Zigzag

Quantizer
& Zigzag

Huffman
Encoder

Image.bmp

Image.jpg

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

[8x8] [8x8] [8x8]

Task Size
(slices)

BRAM Latency

RGB2YCbCr 204 0 64
2D-DCT 1612 1 168
Quantizer 312 1 64
Huffman 176 1 192

JPEG algorithm for color
images with block size 8 x 8

6.1 Application Example - Results

The solution processes two
blocks of [8×8]×24 bits in 3.8
μs => 800 Mbps (VirtexII
XC2V6000)

Image size HW NoC
sec/fps

Pentium 4
at 1.7 GHz

HW bus
sec/fps

640×480 0.009
(108)

0.046 0,055

800×600 0.015 (67) 0.071 0,086
1024×768 0.024 (42) 0.110 0,14

7 Conclusions

Design complexity – easier to design due to
scalability, efficient interconnection of IP and
communication/performance “independence”
Design productivity – design methodology
accomplishes goals more efficiently
Design quality – better for communication intensive
applications. Better throughput; latency(?). Hybrid
structure with routers and buses must be
considered

7 Conclusions

A research over a set of IP cores concluded that
smaller routers must be implemented to improve
cost, power consumption and performance;
Many NoC parameters must be part of the design
methodology to improve final system quality –
buffer size, switching capacity, arbitration policy,
topology, etc.

8 Future work

Considering a more generic topology with routers
consisting of more than 1 local port and sharing of
router resources to improve cost, performance and
power dissipation;
Increase the set of configurable parameters of the
NoC architecture in the design methodology;

Co-Synthesis of a Configurable
SoC Platform based on a

Network on Chip Architecture
Mário P. Véstias & Horácio C. Neto

INESC-ID (PROSYS), Lisbon, Portugal

ASP-DAC’06
Yokohama, Japan

January 24-27, 2006

