Co-Synthesis of a Configurable SoC Platform based on a Network on Chip Architecture

> Mário P. Véstias & Horácio C. Neto INESC-ID (PROSYS), Lisbon, Portugal

> > ASP-DAC'06 Yokohama, Japan January 24-27, 2006

Outline

- 1. Introduction and Motivation
- 2. What Exists?
- 3. Our project proposal
- 4. Target architecture
- 5. Design methodology
- 6. Application example
- 7. Conclusions
- 8. Future work

1. Introduction and Motivation

- Development of systems for high-capacity data processing on configurable platforms
- Working on architectures and design methodologies for SoC design
- Developed a platform-based methodology with IP and architecture reuse.
- Problems with the interconnection architecture (bus-based) :
- Does not support the efficient interconnection of many IP in a structured way.
- Increasing connection difficulties lack of scalability
- Need reuse of interconnection!

Solution => Network on Chip

2. What exists

- There exists some work on NoC development
 - Topologies, structures, protocols, etc.
- There exists lots of work on cosynthesis and codesign, but for bus-based architectures
 - Allocation, mapping, scheduling for Hw/Sw systems
- It is time to adapt many of these techniques and ideas to develop SoC systems based on the NoC paradigm
 - Some tools already exist, but not a complete cosynthesis framework

3. Our project proposal

In a first step, our project consisted on:

- Develop a co-synthesis methodology based on a NoC architecture
- Study the impact on design productivity
- Study the impact on design complexity
- Study the impact on design quality

4. Target architecture

NoC:

- 2D-mesh topology
- Routing, flow-control, switching, arbitration, buffering
- Parameterization:
 - 2D-size
 - Type of core
 - Link size

4.1 Target architecture - behavior

NoC behavior similar to the OSI communication architecture Layered Platform Architecture Components Application IP cores Session Network Interfaces Transport Network Network Data-Link Routers Physical Physical links

4.2 Target Architecture - Router

Routing – XY algorithm Packet Ou Rqst Rcv Rqst Trm Ack Rcv Ack Trm Flow-control: 2 way handshake Buffer Switching: store and Ack Trm --> Buffer Rast Trm < forward Packet Out Arbitration: round-robin WEST Switch Packet In Matrix **Buffering:** output Rqst Rcv -> Flow control Buffe Ack Rcv 🔺 Arbitration Routing

4.3 Target Architecture - Network interface

- Shared Memory comm
- Functions:
 - Memory management
 - Task scheduling
 - Reassembly
 - Segmentation
 - Encapsulation
 - Flow-control

4.4 Target Architecture - Packet structure

- Data packets
- Configuration packets
- Token packets

Application				Data
Session			Instr/Prty	Data
Transport		Port	Instr/Prty	Data
Network	Addr	Port	Instr/Prty	Data
	5 bits	4 bits	3 bits	24 bits

4.5 NoC Characterization - performance

- Link latency (LL) 1 cycle;
- Resource generation latency (RGL) 4 cycles;
- Resource reception latency (RCL) 5 cycles;
- Resource to resource latency (R2RL) ...;
- Resource to resource bandwidth (R2RB) f/5 packets/s.

Edge delay =
$$\frac{RGL + RCL + LL \times NR}{f(\text{working frequency})}$$

Edge delaypipe =
$$\frac{1}{R2RB} \times (NR + NP)$$

Can forward up to 750 Mpackets/s => 6Gbps

4.6 NoC Characterization - area

Block	Size (slices)	BRAM	% XC2V6000
Router (8bits)	189	0	0,56
NI	121	1	0,36

5. Design Methodology

5.1 Design Methodology - Allocation

- Size of topology
- Type of cores

SA Algorithm

5.2 Design Methodology - Mapping

5.3 Design Methodology - Analysis

6 Application Example - JPEG

6.1 Application Example - Results

The solution processes two blocks of [8×8]×24 bits in 3.8 µs => 800 Mbps (VirtexII XC2V6000)

Image size	HW NoC sec/fps	Pentium 4 at 1.7 GHz	HW bus sec/fps
640×480	0.009 (108)	0.046	0,055
800×600	0.015 (67)	0.071	0,086
1024×768	0.024 (42)	0.110	0,14

Router0	Router1	Router2	Router3
A GBZYC bCr.	B CT	DCT	
	Router4	Router5	Router6
	Quantizer	Quantizer	Quantizer
	Router7	Router8	Router9
	PCT	OCT T	DCT
	Router 10	Router 11	Router 12
	Quantizer	Quantizer	Quantizer
		i kalisti kan kapang	Router 13
			luffman

7 Conclusions

- Design complexity easier to design due to scalability, efficient interconnection of IP and communication/performance "independence"
- Design productivity design methodology accomplishes goals more efficiently
- Design quality better for communication intensive applications. Better throughput; latency(?). Hybrid structure with routers and buses must be considered

7 Conclusions

- A research over a set of IP cores concluded that smaller routers must be implemented to improve cost, power consumption and performance;
- Many NoC parameters must be part of the design methodology to improve final system quality – buffer size, switching capacity, arbitration policy, topology, etc.

8 Future work

- Considering a more generic topology with routers consisting of more than 1 local port and sharing of router resources to improve cost, performance and power dissipation;
- Increase the set of configurable parameters of the NoC architecture in the design methodology;

Co-Synthesis of a Configurable SoC Platform based on a Network on Chip Architecture

> Mário P. Véstias & Horácio C. Neto INESC-ID (PROSYS), Lisbon, Portugal

> > ASP-DAC'06 Yokohama, Japan January 24-27, 2006