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1. Introduction and Motivation
Development of systems for high-capacity data processing 
on configurable platforms
Working on architectures and design methodologies for SoC
design
Developed a platform-based methodology with IP and 
architecture reuse.

Problems with the interconnection architecture (bus-based) :
Does not support the efficient interconnection of many IP in 
a structured way.
Increasing connection difficulties – lack of scalability
Need reuse of interconnection!

Solution => Network on Chip



2. What exists
There exists some work on NoC development

Topologies, structures, protocols, etc.
There exists lots of work on cosynthesis and 
codesign, but for bus-based architectures

Allocation, mapping, scheduling for Hw/Sw systems
It is time to adapt many of these techniques and 
ideas to develop SoC systems based on the NoC
paradigm

Some tools already exist, but not a complete co-
synthesis framework



3. Our project proposal

In a first step, our project consisted on:
Develop a co-synthesis methodology based on a NoC
architecture
Study the impact on design productivity
Study the impact on design complexity
Study the impact on design quality



4. Target architecture

NoC:
2D-mesh topology
Routing, flow-control, 
switching, arbitration, 
buffering

Parameterization:
2D-size
Type of core
Link size



4.1 Target architecture - behavior

NoC behavior similar to the OSI communication architecture



4.2 Target Architecture - Router

Routing – XY algorithm
Flow-control: 2 way 

handshake
Switching: store and 

forward
Arbitration: round-robin
Buffering: output
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4.3 Target Architecture - Network interface

Shared Memory comm
Functions:

Memory management
Task scheduling
Reassembly
Segmentation
Encapsulation
Flow-control
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4.4 Target Architecture - Packet structure

Data packets
Configuration packets
Token packets
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4.5 NoC Characterization - performance

Link latency (LL) – 1 cycle;
Resource generation latency (RGL) – 4 cycles;
Resource reception latency (RCL) – 5 cycles;
Resource to resource latency (R2RL) - …;
Resource to resource bandwidth (R2RB) – f/5 packets/s.

frequency) working(f
NRLLRCLRGL ×++Edge delay = 

Edge delaypipe = ( )NPNR
RBR

+×
2
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Can forward up to 750 Mpackets/s => 6Gbps  



4.6 NoC Characterization - area

Block Size (slices) BRAM % XC2V6000

Router (8bits) 189 0 0,56

NI 121 1 0,36



5. Design Methodology
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5.1 Design Methodology - Allocation

Size of topology
Type of cores

SA Algorithm



5.2 Design Methodology - Mapping
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5.3 Design Methodology - Analysis

Quality = Cthroughput + Cthroughput
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6 Application Example - JPEG
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Task Size
(slices)

BRAM Latency

RGB2YCbCr 204 0 64
2D-DCT 1612 1 168
Quantizer 312 1 64
Huffman 176 1 192

JPEG algorithm for color 
images with block size 8 x 8



6.1 Application Example - Results

The solution processes two 
blocks of [8×8]×24 bits in 3.8 
μs => 800 Mbps (VirtexII
XC2V6000)

Image size HW NoC
sec/fps

Pentium 4 
at 1.7 GHz

HW bus 
sec/fps

640×480 0.009 
(108)

0.046 0,055

800×600 0.015 (67) 0.071 0,086
1024×768 0.024 (42) 0.110 0,14



7 Conclusions

Design complexity – easier to design due to 
scalability, efficient interconnection of IP and 
communication/performance “independence”
Design productivity – design methodology 
accomplishes goals more efficiently
Design quality – better for communication intensive 
applications. Better throughput; latency(?). Hybrid 
structure with routers and buses must be 
considered



7 Conclusions

A research over a set of IP cores concluded that 
smaller routers must be implemented to improve 
cost, power consumption and performance;
Many NoC parameters must be part of the design 
methodology to improve final system quality –
buffer size, switching capacity, arbitration policy, 
topology, etc.



8 Future work

Considering a more generic topology with routers  
consisting of more than 1 local port and sharing of 
router resources to improve cost, performance and 
power dissipation;
Increase the set of configurable parameters of the 
NoC architecture in the design methodology;



Co-Synthesis of a Configurable 
SoC Platform based on a 

Network on Chip Architecture
Mário P. Véstias & Horácio C. Neto

INESC-ID (PROSYS), Lisbon, Portugal

ASP-DAC’06 
Yokohama, Japan

January 24-27, 2006


