CO-SYNTHESIS OF HARDWARE AND SOFTWARE FOR
DIGITAL EMBEDDED SYSTEMS

A DISSERTAITON
SUBMITTED TO THE DEPARTMENT OF ELECTRI CAL ENGI NEERI NG
AND THE COMM TTEE ON GRADUATE STUDX ES
OF STANFORD UNI VERSI TY
I N PARIT AL FULFI LLMENT OF THE REQUI REMENTS
FOR THE DEGREE OF
DOCTOR OF PHI LOSOPHY

By
Rajesh Kumar Gupta
December 10, 1993

(© Copyright 1994
by
Rajesh Kumar Gupta

il

I certify that I have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

I certify that I have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Michael J. Flynn

I certify that I have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Krishna Saraswat

I certify that I have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Kunle Olukotun

il

I certify that I have read this thesis and that in my opinion
it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Dr. Martin Freeman, Philips Research Labs.

Approved for the University Committee on Graduate Stud-

ies:

Dean of Graduate Studies & Research

Y

Abstract

As the complexity of systems being subject to computer-aided synthesis and optimization
techniques increases, so does the need to find ways to incorporate predesigned components
into the final system implementation. In this context, a general-purpose microprocessor
provides a sophisticated low-cost component that can be tailored to realize most system
functions through appropriate software. This approach is particularly useful in the design
of embedded systems that have a relatively simple target architecture, when compared
to general-purpose computing systems such as workstations. In embedded systems the
processor is used as a resource dedicated to implement specific functions. However, the
design issues in embedded systems are complicated since most of these systems operate
in a time-constrained environment. Recent advances in chip-level synthesis have made
it possible to synthesize application-specific circuits under strict timing constraints. This
dissertation formulates the problem of computer-aided design of embedded systems using
both application-specific as well as general-purpose reprogrammable components under

timing constraints.

Given a specification of system functionality and constraints in a hardware descrip-
tion language, we model the system as a set of bilogic flow graphs, and formulate the
co-synthesis problem as a partitioning problem under constraints. Timing constraints are
used to determine the parts of the system functionality that are delegated to application-
specific hardware and the software that runs on the processor. The software component
of such a ‘mixed’ system poses an interesting problem due to its interaction with con-
currently operating hardware. We address this problem by generating software as a
set of concurrent fixed-latency serialized operations called threads. The satisfaction of

the imposed performance constraints is then ensured by exploiting concurrency between

program threads, achieved by an inter-leaved execution on a single processor system.
This co-synthesis of hardware and software from behavioral specifications makes
it possible to build time-constrained embedded systems by using off-the-shelf parts and
application-specific circuitry. Due to the reduction in size of application-specific hardware
needed compared to an all-hardware solution, the needed hardware component can be
easily mapped to semicustom VLSI such as gate arrays, thus shortening the design time.
In addition, the ability to perform a detailed analysis of timing performance provides an
opportunity to improve the system definition by creating better prototypes. The algorithms
and techniques described have been implemented in a framework called Vulcan, which
is integrated with the Stanford Olympus Synthesis System and provides a path from

chip-level synthesis to system-level synthesis.

Vi

Dedication

This thesis is dedicated to a very special person in my life, my wife Anne Usha.

vii

Acknowledgements

My deepest gratitude is to Professor Giovanni De Micheli for giving me the opportunity to
explore new grounds in the computer-aided design of electronic systems without getting
lost in the process. His constant encouragement, support and guidance were key to
bringing this project to a fruitful completion. I am grateful to him for the training to

carry out productive and directed research and for his friendship.

I would like to thank my associate advisor, Professor Michael J. Flynn for devoting
precious time to monitor the progress of this research, and in reading this dissertation.
Professor Krishna Saraswat has been very generous with his time to serve as chairperson
for both my oral defense and the reading committees. I have also benefited from discus-

sions with Professor Kunle Olukotun, who served on the defense and reading committees.

My sincerest thanks to my mentor Dr. Martin Freeman of Philips Research, Palo
Alto for his constant guidance and a diligent reading of this dissertation. Needless to say,
that any remaining mistakes are my sole responsibility. I would like to thank Uzi Bar-
Gadda and Joe Kostelec of Philips Research, and Prof. Rick Reis and Carmen Miraflor
of the Center for Integrated Systems for the honor to have been supported by the Philips
Fellowship for the years 1992 and 1993.

This research builds upon the prior work of many people. I would like to thank
all the other people involved in the synthesis project at Stanford. Of particular mention
are David Ku, Frederic Mailhot, and Thomas Truong for writing the Olympus Synthesis
System upon which the project is based. Claudionor Coelho wrote the simulator and

contributed in numerous ways to this research work.

Many thanks are due to past and present members of our research group at Stanford.

I am thankful to my colleagues David Ku, Frederic Mailhot, Maurizio Damiani, Polly

viii

Siegel, Thomas Truong, Jerry Yang, David Filo and Claudionor Coelho for providing a
supportive and productive environment during the course of my stay at Stanford. I would
also like to take this opportunity to thank my friends outside our research group, Rohit
Chandra and Kourosh Gharachorloo for many discussions and for providing the valuable
‘non-CAD’ feedback to this research. Many thanks are due to Ms. Lilian Betters for her
valuable administrative support during the course of my stay at Stanford.

Many thanks to my colleague and one of the most critical examiners of this research,
Dr. Mani Bhushan Srivastava of AT&T Bell Laboratories. I am greatly indebted to him
for his ever sharp examination of the concepts and ideas presented in this dissertation.
He has provided valuable and constructive feedback at every stage of this project that
has enhanced the overall quality of the research work.

I would also like to thank Prof. Gaetano Borriello of University of Washington, Prof.
Wayne Wolf of Princeton University and Prof. Daniel Gajski of University of California,
Irvine for taking active interest in this research and providing a fertile environment to
foster the growth of new ideas.

The time during which the ideas in this thesis were developed was an intense time
for my family. It has all been made possible by the patience, love and support of my
wife, Anne Usha, and the high spirits maintained by our son Anand. My regards to Atta
and Mama for their family support and for giving me the most valuable companion in
my life, my wife. Finally, my regards to my parents for their love and understanding,
and to my brother Sanjay and sister Neena. They have all contributed in many ways to
the person that I am today.

Financial support for this research was provided by a Fellowship provided by Philips
and Center for Integrated Systems, and by NSF-ARPA under grant MIP 9115432.

iX

Contents

Abstract

Dedication

Acknowledgements

1 Introduction

2

1.1 Design of Embedded Systems
1.2 Synthesis Solutions Lo
1.3 Co-design and Co-synthesis
1.4 Motivations for Hardware-Software Co-synthesis
1.5 Applications of Hardware-Software Co-synthesis
1.6 The Opportunity of Co-synthesis
1.7 Architectures with Hardware-Software Components

1.7.1 Target system architecture
1.8 Scope and Contributions of Thesis
1.9 Outline of the Dissertation

Related Work

2.1 CAD Systems for Hardware-Software Co-design
21.1 Ptolemy
2.1.2 CODES e
2.1.3 Rapid prototyping using SIERRA

2.2 CAD for Hardware-Software Co-synthesis

vii

viii

O 3 N B

13
14
16
17
21
22

22.1 COSYMA 29

2.2.2 Use of non-deterministic finite state machines for co-design . . . 30
2.2.3 Co-synthesis from UNITY 33
2.2.4 Interface co-synthesis 33

3 System Modeling 35
3.1 System Specification using Procedural HDL 36
3.2 System Model and its Representation 41
3.3 The Flow Graph Model 43
3.3.1 Representation and definitions 43

332 Hierarchy 47

3.3.3 Execution semantics 48
3.3.4 Implementation attributes 50

3.4 Interaction Between System and its Environment 59
3.4.1 Ports and communication 59

3.4.2 Non-determinism in flow graph models 60

3.5 ND, Execution Rate and Communication 61
3.6 Constraints e e 65
3.6.1 Min/max delay constraints 66
3.6.2 Execution rate constraints 67

3.6.3 Specification of timing constraints 69

37 Summary 69
4 Constraint Analysis 72
4.1 Scheduling of Operations 73
4.2 Deterministic Analysis of Min/max Delay Constraints 79
4.3 Deterministic Analysis of Execution Rate Constraints 81
43.1 Procedure 96

4.4 Min/max Constraints Across Graph Models 99
4.5 ND Cycles in Constraint Graph 102
45.1 Meaningofan NDcycle 102
4.5.2 Problem formulation 0oL 105

xi

4.6

4.7
4.8

4.5.3 Use of buffers to extend bounds on loop index
Probabilistic Analysis of Min/max and Rate Constraints
4.6.1 Meaning of constraint satisfiability
4.6.2 Index distribution and bounds on bufferdepth
Flow Graph as a Stochastic Process

Summary

Software and Runtime Environment

5.1
5.2
53

54

5.5
5.6

5.7

5.8
59

Processor Cost Model,
A Model for Software and Runtime System
Estimation of Software Performance
5.3.1 Operation delay in a software implementation
Estimation of Software Size
5.4.1 Operation linearization.
5.4.2 Estimation of register, memory operations
543 Compilereffects oL
5.4.4 Software data size and performance tradeoffs
Software Synthesis L
Step I: Generation of Program Threads
5.6.1 Implementation of inter-thread buffers
Step II: Generation of Program Routines
5.7.1 Concurrency in software through Interleaving: Coroutines
5.7.2 Software implementation using description by cases
Step III: Code Synthesis
Issue in Code Synthesis from Program Routines
59.1 Memory allocation L
59.2 Datatypes
59.3 The C Standard Library
5.9.4 Linking and loading compiled C-programs

5.9.5 Interface to assembly routines

5.10 Summaryo

Xii

6 System Partitioning

6.1
6.2
6.3

6.4
6.5
6.6
6.7

Partition Cost Modelo L
Local versus Global Properties
Partitioning Feasibility
6.3.1 Effect of runtime scheduler

Partitioning Based on Separation of Control and Execute Procedures

Partitioning Based on Division of N'D Operations
Partition Related Transformations

Summary

7 System Implementation

7.1

7.2

7.3
7.4

Vulcan System Implementation
7.1.1 Data organizationin Vulcan
7.1.2 Command organization in Vulcan
Implementation of Target Architecture in Vulcan
7.2.1 System synchronization
7.2.2 Communication protocols
7.2.3 Hardware-software interface architecture
Co-simulation Environment.

Summaryo

8 Examples and Results

8.1

8.2

Graphics Controller L.
8.1.1 Implementation
Network Controller
8.2.1 Host CPU-controller interface
8.2.2 Controller operation
8.2.3 Controller architecture

8.2.4 Network controller implementation results

9 Summary, Conclusions and Future Work

9.1

Future Work

174
176
181
183
184
188
189
193
194

Bibliography 237

A A Note on HardwareC 249
B Bilogic Graphs 251
C Processor Characterization in Vulcan 254
D Runtime Scheduler Routines 256
E Index of Notations 259

Xiv

List of Tables

O 0 9 O Lt AW NN =

—_— = =
W NN = O

Operation vertices in a flow graph 45
Link vertices in a hierarchical flow graph 47
Basic instruction set oL o 129
Addressing modes o 131
Variable types and storage 132
Comparison of program thread implementation schemes 167
Vulcan (Rev 0) subsystems and commands. 204
A comparison of control FIFO implementation schemes 223
Graphics controller implementations. 224
Network controller instruction set 227
Network controller synthesis results using LSI library gates 230
Network controller synthesis results using Actel gates 230
Network controller software component 230

XV

List of Figures

O 00 9 N Lt AW N =

[V I NO T N T NS e e e e e T e
W NN = O O 0N N N kWD = O

A design-oriented approach to system implementation. 5
A synthesis-oriented approach to system implementation. 7
Proposed approach to system implementation. 8
Synthesis approach to embedded systems. 9
Example of a mixed system implementation 10
DES Procedure. 11
Bit permutations in DES Key Encryption 12
System Classification Based on HW/SW Components 17
Target System Architecture 18
Single chip realization of the target architecture. 20
System Synthesis Procedure 23
Objects in PTOLEMY i i 27

Codesign flow in COSYMA 30
Co-design from Finite State Machines 32
Organization of Chapter 3 37
Linear code versus data-flow graph representations 38
Flow graph of process example. 46
Flow graph model for an error correction system. 48
Simulation of the graph model in Example 3.3.6 57
Shared memory versus message passing communication 59
Graph model properties o 63
Communication across models. 63

Shared-memory versus message-passing implementations of loop operation. 64

Xvi

24
25
26
27

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

General flow of constraint analysis. 78
Constraint Graph Model 80
Operation invocation interval. 82

Consecutive executions of an operation corresponds to traversal of a path

NG, . 84
Upward propagation of minimum execution rate. 89
Relationships between flow graphs 99
Graph model hierarchy 101
An N'D cycle in the constraint graph 102
Types of loop operations. 104
Modeling an N'D loop as a producer-consumer system 105
Buftfer depth for exponential distributions (¢ = 0.01%) 116
States of stochastic flow graphs. 117
Loops in a serialized model. 120
Loopsinafork. 121
Software model to avoid creation of N'D cycles. 134
Software delay estimation flow. 140
Steps in generation of the software component 156
Use of enabling condition to build inter-thread dependencies. 159
Convexity serializations and possible thread implementations. 161
Generating fixed addresses from C-programs 171
Components of the partition cost model 177
Use of timing properties in partition cost function 182
Partitioning into Hardware Control and Software Execute Processes . . . 189
Partition of link vertices 194
Co-synthesis flow. 197
Data Organization in VULCAN 199

Vulcan subsystems and the Olympus Synthesis System 201
Flow of software synthesis in Vulcan 202
Control FIFO schematic 205
FIFO control state transition diagram 206

Xvil

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Hardware and Software Intertface Architecture 210

Hardware and Software Interface Model 210
Event-driven Simulation of a Mixed System Implementation 213
Producer consumer system. 214
Example simulation: software producer, hardware consumer 216
Example simulation: software consumer, hardware producer 216
Graphics controller block diagram 219
Graphics controller implementation 220
Graphics controller software component using hardware control FIFO . . 221
Graphics controller software component using software control FIFO . . 222
Graphics controller simulation 223
Network controller block diagram 226
Format of an ethernet frame 228
Network controller implementation 229
Network controller simulation 231

Xviii

Chapter 1
Introduction

Recent years have seen remarkable growth in the design and use of digital systems in
several application areas. Digital systems are designed for two major classes of appli-
cations: general-purpose and application-specific systems. General-purpose systems are
not designed for any specific applications but can be programmed to run different appli-
cations. The most common use of general-purpose systems is in computing applications.

Examples of these systems are computers such as workstations.

In contrast, application-specific systems are designed for dedicated applications. Ex-
amples of such systems can be found in medical instrumentation, process control, auto-
mated vehicles control, and networking and communication systems. As these systems
are contained within a larger non-electronic environment, these are commonly referred
to as embedded systems. Embedded computer systems have been applied to tasks erst-
while handled by electronic or electro-mechanical non-computing systems. As a result,
the volume of embedded electronics market has grown. For the year 1991, the industrial
and medical electronics market alone accounted for $31 billion compared to the general
purpose computing systems market of $46.5 billion [JJ93].

This growth has been fueled by the advent of microprocessors, the primary compute
element in a system. Microcontrollers, a derivative of microprocessors, are now beginning
to be used in many embedded systems. For the year 1991, the market for microcontrollers
amounted to $4.6 billion and has been rising at a 18% annual growth rate compared to

a 10% annual growth rate of general-purpose systems [JJ93].

1

2 CHAPTER 1. INTRODUCTION

While there has been notable growth in the use and application of embedded systems,
improvements in the design process for such systems have not kept pace, leading to a gap
in the evolution of component technology and its application in embedded computing sys-
tems. While new processors and programmable/reprogrammable integrated circuits are
announced every six months with an average performance boost of 50% per year, it may
be several years before such components find use in embedded computer systems. This
is in contrast to the design of general-purpose computing systems that have largely kept
pace with advances in component technology related to processors, memory or integrated
circuits. Currently, approximately 80% of the microcontrollers used in embedded systems
are 4- and 8-bit processors of old generations [Bad93]. Of the total $4.6 billion micro-
controller market for 1991, 32-bit processors account for less than 4% or $184 million,
despite the fact that such processors have been commonplace since 1985 and almost all
advances in processor technology since then have been concentrated in the design of

32-bit processors.

Examining the cost analysis for semiconductor manufacturing, including package and
testing, the total chip cost for a die size of 1x1 sq. cm. comes to an average of $27
versus $7 for a 0.25x0.25 sq. cm. die [HP90]. Thus, chip manufacturing cost is not
always the dominant factor in overall chip pricing. Historically, it has been observed
that the prices of single-chip processors stabilize to a certain level in the $10-50 range
regardless of the introduction price of the processor. This drop in price is more strongly
related to the advancements on the technology learning and yield curves than to market
dynamics. Typically this price stabilization occurs within two years of the introduction

of a processor.

There are several reasons for this discrepancy in the advancement of embedded versus
general-purpose systems. More often, the embedded system is not the most visible part
of the application and, therefore, its implementation inefficiencies are often overlooked.
Component prices and manufacturing/maintenance cost of such systems is often cited
as reasons for relatively slow proliferation of advanced components in such systems.
However, as explained, the cost/price stabilization for processors occurs much sooner
than their proliferation in the embedded systems. Further, instead of using multiple 4-,

8- or 16-bit processors, the trend in embedded system design is to use 32-bit processors

despite increased system costs. The use of 32-bit controllers in embedded applications,
though a tiny 4% of the total volume, is increasing at an annual rate of 52% as against
the overall growth of 18% for the overall embedded controller market [JJ93].

In summary, even though there is a greatly recognized need for the use of advanced
32-bit processors in embedded applications, their proliferation in terms of total volume
has been lagging behind the growth in the 32-bit processor market. Further, the price
stabilization for these advanced processors occurs much earlier than their bulk use in
embedded systems. Thus, the proliferation of advanced 32-bit processors in embedded

systems does not appear to be limited by component cost considerations alone.

The chief reason for the slow proliferation of advanced components into embedded
systems is the long design time and high cost of design of such systems. Since embed-
ded systems are tailored to specific applications, the design cost per unit volume is higher
for embedded systems. Therefore, such systems stand to gain most from advances in the
design process that shortens the design time and improves performances by leveraging
the use of newer and advanced components. Based on this hypothesis, this thesis exam-
ines the problems in system design and provides solutions to speed up the design process
by developing synthesis techniques. The difference in design and synthesis techniques is
discussed a little later in this chapter. But first we briefly examine some of the commonly

used terms associated with the design of computer systems.

An electronic system consists of a set of interacting components. A digital electronic
system implements its primary functions using components that react to and produce
discrete objects. A component of a system may be a system in itself. At the lowest-level
(leaf-level) components tend to be more functionally homogeneous than the systems that
use these components. For example, a digital computer system consists of software,
processor, memory and peripheral input/output components. For this reason, systems are

often called heterogenous systems.

A component functionality is classified as either a computation or communication.
As the terms suggest, a communication functionality relates to operations involving input
and output operations, with the rest being computations. Both computation and commu-
nication functionalities can be implemented in a synchronous or an asynchronous manner.

Synchronous communication refers to a constant phase-relationship between two or more

4 CHAPTER 1. INTRODUCTION

input and/or output operations. Asynchronous communication, on the other hand, refers
to input/output operations that have no or variable phase-relationships. A synchronous
implementation uses a global mechanism such as a clock, whereas asynchronous com-
putations are characterized by the absence of such global synchronization mechanisms.
This thesis is targeted at exploring the implementation of embedded digital
systems with synchronous computation and communication components that are target-
ed for specific applications. In addition to being application-specific, such systems are
also designed to respect constraints related to the relative timing of their actions, hence
these systems are referred to as real-time embedded systems. The application-specific
nature of these systems often requires custom hardware circuits and programs to run
on a general-purpose processor hardware. This personalization is commonly referred
to as programmability in hardware and software respectively. Since the components
may be re-used, we are interested in hardware and software components that can be

reprogrammed to suit applications or changes and upgrades in an application.

1.1 Design of Embedded Systems

While there have been tremendous advancements in the design of the general purpose
components of an embedded system, the design of the hardware and software compo-
nents to achieve its programmability has not changed much over the years. Software
programmability is achieved by manually writing software often in processor assem-
bly language. Similarly, hardware programmability is achieved by manual design using
gate-level circuits or low to medium-scale integration circuits.

There are several challenges in the design and the analysis of time-constrained embed-
ded systems that prolong the design process. Important among these are the problems of
performance estimation, selection of appropriate components and verification of such sys-
tems for functional and temporal properties. In practice, such systems are created using
a design-oriented approach. The system is specified by a collection of its functionalities
which are then implemented by a choice of appropriate components.

For instance, consider the design of a network controller shown in Figure 1. The

controller is connected to a serial line and a memory. The purpose of the controller is to

1.2. SYNTHESIS SOLUTIONS 5

SOFTWARE

\

N\

applications interface

Analog interface

/' DMA

packet formatting

Memory elf-test format'ébnversion

I::l
collisioh response
diagnostic "

+" address recognition

HARDWARE

Figure 1: A design-oriented approach to system implementation.

receive and send data over the serial line using a specific communication protocol (such
as CS/CD protocol for ethernet links). The decision to map functionalities into dedicated
hardware or implement them as programs on a processor is usually based on estimates
of achievable performance and implementation cost of the respective parts.

There are several limitations to this approach. The division of functionality between
components is based on the designer’s experience and takes place early on in the design
process. This often leads to portions of the design that are either under- or over-designed
with respect to their required performance. More importantly, due to the ad-hoc nature
of the overall design process, there is no guarantee that a given implementation meets

the required system performance (except possibly by overdesigning).

1.2 Synthesis Solutions

In contrast to design-oriented solutions, a methodical approach to system implementation
can be formulated as a synthesis-oriented solution which has been enormously successful
in the design of individual integrated circuit chips (chip-level synthesis). Instead of
using a specification as a set of loosely-defined functionalities, a synthesis approach

for hardware proceeds with systems described at the behavioral level by means of an

6 CHAPTER 1. INTRODUCTION

appropriate specification language. While the choice of finding a suitable specification
language for digital systems is a subject of on-going research, the use of procedural
hardware description languages (HDLs) to describe integrated circuits has been gaining

wide acceptance in recent years.

A synthesis-oriented approach to digital circuit design takes a behavioral description
of circuit functionality and attempts to generate a gate-level implementation that can be
characterized as a purely hardware implementation (Figure 2). Recent strides in high-level
synthesis have made it possible to synthesize digital circuits from high-level specifications
and several such systems are available from industry and academia [BCM*88, CR89,
RMV*88, CPTR89, TLW*t90, MKMT90, WTH"92]. The outcome of synthesis is a
gate-level or geometric-level description that is implemented as a single chip or multiple

chips.

An alternative to hardware synthesis of system prototypes would be to build a software
prototype of the system functionality. Such implementations lie on the opposite end of
the cost-performance spectrum (Figure 2). Here cost refers to system development cost
and performance is the time-related performance of the prototype. A software prototype
consists of a completely software specification based on a programming language that is
sometimes enhanced to support the structural interconnection of language objects [BL90a,
BL90b]. An example of a software prototyping system is the R API DE prototyping system
[LVBAO93]. Software prototypes are rather quick to build and are often used for verifying
system functionality. Because the prototypes are primarily targeted for simulations, there
is a limit to the resolution of time-scale of events that can be used. Therefore, the
timing performance of software prototypes often falls short of what is desired for time-

constrained system designs.

In summary, there are several limitations of existing synthesis-oriented solutions to
system implementation. For synthesized hardware solutions, as the number of gates (or
logic cells) increases, such implementations require the use of semi-custom or custom
design technologies with their associated increases in cost and design turn-around time.
Therefore, for large system designs, synthesized hardware solutions tend to be fairly
expensive depending upon the choice of technology required for chip implementation.

As mentioned earlier, software solutions on the other hand, often fail to meet constraints

1.3. CO-DESIGN AND CO-SYNTHESIS 7

BEHAVIORAL

SPECIFICATION —

/ Prototyping u’"'u,_‘High-IeveI Synthesis
Performance)

“¢- HARDWARE

¢, SOFTWARE

Cost

Figure 2: A synthesis-oriented approach to system implementation.

on timing performance.

1.3 Co-design and Co-synthesis

Synthesis-oriented approaches to system implementation provide systematic and rapid
evaluation of implementation alternatives. System cost and performance tradeoffs dictate
a choice between synthesized hardware solutions or software prototypes. But we do know
from our practical experience that cost-effective designs use a mixture of hardware and
software to accomplish their overall goals (Figure 1).

This provides sufficient motivation for attempting a system implementation that con-
tains both hardware and software components. This is commonly referred to as the
process of hardware-software co-design where both components are designed together.
The input specification in co-design may consist of a single or a collection of heteroge-
nous specifications.

A further development in this direction would be a co-synthesis approach that attempts

to provide mixed hardware-software implementations using synthesis techniques. Such

8 CHAPTER 1. INTRODUCTION

BEHAVIORAL

SPECIFICATION —
plus

CONSTRAINTS

Mixed
Implementations

/%rdware
P)
constraints
Software L

Performance

Cost

Figure 3: Proposed approach to system implementation.

an approach would benefit from a systematic analysis of design trade-offs that is common
in synthesis, while at the same time creating systems that are cost-effective. One way to
accomplish this task would be to specify constraints on the cost and the performance of

the resulting implementation (Figure 3).

This thesis presents a synthesis approach to systematic exploration of system designs
that is driven by the constraints. This work is built upon high-level synthesis tech-
niques for digital hardware [MKMTO90] by extending the concept of a resource needed
for implementation. Figure 4 shows the essential aspects of this approach. A behavioral
specification is captured into a system model that is partitioned for implementation into
hardware and software. The partitioned model is then synthesized into interacting hard-
ware and software components for the target architecture shown in Figure 9. The target
architecture uses one processor and application-specific hardware. The target architecture

is described in further detail in Section 1.7.1.

1.4. MOTIVATIONS FOR HARDWARE-SOFTWARE CO-SYNTHESIS 9

Processor

pro%ess (a, b c) line()

o .,;n)c Capture Partmo SV““‘eSize .. ﬂ ASIC
read(a; detach
write(c); ! circle() %

! Software S .
SPECIFICATION detach U Hardware
}

Interface
SUB-PROBLEMS - performance estimation - tradeoffs - concurrency
- constraint analysis - synchronization

Figure 4: Synthesis approach to embedded systems.

1.4 Motivations for Hardware-Software Co-synthesis

Most digital functions can be implemented by software programs. The major reason for
building dedicated application-specific hardware (ASICs) is the satisfaction of perfor-
mance constraints. These performance constraints can be on the overall time (latency)
to perform a given task, or more specifically on the timing to perform a subtask and/or
on the ability to sustain specified input/output data rates over multiple executions of the
system model. The hardware performance depends on the results of operation scheduling
and on the performance characteristics of individual hardware resources. The software
performance, defined as the number of cycles that it takes the processor to execute a
routine, depends on the number of instructions the processor must execute and the cycles-
per-instruction (CPI) metric of the processor. In general, application-specific hardware
implementations tend to be faster since the underlying hardware is optimized for the
specific set of tasks. However, in the absence of stringent performance constraints, for
a given behavioral description of an ASIC machine, some parts (subroutines) of it may
be well suited to a commonly available re-programmable processor (e.g., 6502, 68HCI11,
8051, 8096 etc) while others may take too long to execute. For instance, most gener-
al purpose CPUs deal with byte-size operands whereas many ASIC controllers contain
bit-oriented operations resulting in unnecessary overheads when the operations are im-
plemented entirely in software. However, the software implementations do provide the

ease and flexibility of reprogramming for the possible price of loss of performance.

10

CHAPTER 1. INTRODUCTION

Example 1.4.1. Data encryption controller.

receive data from memory using DMA

|
assemble frame | REPROGRAMMABLE
‘ . SOFTWARE
‘:.r'éceive encryption key T DEDIGATED
"' ' .
encryptdata conetraint HARDWARE

!

transmitdata /-

Figure 5: Example of a mixed system implementation

To be specific, consider the design of a data encryption/protocol controller chip,
based on the DES (Data Encryption Standard) protocol used by commercial banks
or the AES (Audio Engineering Society) protocol used for communication between
digital audio devices and computers. In Figure 5, the DES transmitter takes da-
ta from memory using a DMA controller, assembles the frame for transmission,
encrypts the data after it receives the key and transmits the encrypted data. The
encryption protocol requires that the encrypted data be transmitted within a certain
time duration of receiving the encryption key.

In the DES protocol, a 64-bit encryption key is used to transform 64 bits of ‘plain-
text’ into 64 bits of encrypted text. Here we present only the relevant aspects of the
encryption process. For details on the standard and algorithms the reader is referred
to [0S88] [SB88]. The encryption key contains 8 parity bits which are removed
before the encryption process thus deriving a 56-bit encryption key. As shown in
Figure 6, the entire encryption process consists of 18 permutation stages including
an initial and a final stage which do not require any key. The 16 intermediate steps
are key-controlled. The first and last stages are simple permutations. The 16 48-bit
keys required for intermediate stages are derived from the original 56-bit key. Thus
there are two separate 16-stage operations: a) generation of the 48-bit encryption
key, and b) use of encryption key to manipulate 64-bit data. Here we consider
the first operation, that is the generation of the encryption key, though a similar
argument can also be made for the data manipulation operations which consists of
rotation, permutations, xor and table lookup.

The encryption key algorithm transforms the 56-bit input key buffer (known as
shifted key buffer, SKB) into a 48-bit key which is organized as an 8-byte key
buffer (KB) such that only 6 bits from each byte of the KB are used in the key.

1.4. MOTIVATIONS FOR HARDWARE-SOFTWARE CO-SYNTHESIS 11

64-bit plain text 56-bit key

48-bit keys

K1
[e

~—— stage 2

K16
stage 16 ~—— stage 16

inverse of
initial permutation

64-bit encrypted data

Figure 6: DES Procedure

Thus each stage of the 16-stage key generation algorithm consists of 48 permutation
operations on the shifted key buffer as illustrated by the algorithm below:

clear 64-bit key buffer

for i = 1 .. 48 do {
isolate bit i of the shifted keyed buffer
if (bit == 1)

set key buffer bit pc2(i) using permuted choice table, pc2

}

Software implementations of this encryption key algorithm vary from 300 to 3000
instructions depending on the level of bit-oriented operations supported. This is in
sharp contrast to the hardware implementation in which each stage can be accom-
plished in a single cycle by building the permutation into an interconnection network
as shown in Figure 7. Therefore, a hardware implementation of the algorithm would
require 16 cycles. O

Thus, hardware and software implementations vary widely in speed. For designs
that are dominated by bit-oriented operations, dedicated hardware implementations are
preferred, whereas it may take too long to execute these operations as a sequence of
instructions on most processors, thus violating the constraints on timing performance
of the controller. Whereas implementing the complete protocol controller on dedicated
hardware may be too expensive, an implementation which uses a re-programmable com-
ponent may satisfy performance requirements and at the same time provide the ease and

flexibility of programming in software.

12 CHAPTER 1. INTRODUCTION

Shifted Key Buffer (56-bits)

12345678910 11 14 16 17 24 25 28 29 32 33 34 4142 50 53 54 55 56

lxx14 15Hxx328 Hxx 4 Hxx 2 Hxx 55Hxx Hxx563453‘|xx 32‘

8-byte Key Buffer containing 48-bit Key

(Not all permutations shown.)

Figure 7: Bit permutations in DES Key Encryption

While bit-wise shifting and xor operations lead to slower software implementations,
the implementation of byte-oriented data-intensive operations with the use of structured
memory is considerably faster. Such implementations are often competitive with corre-

sponding hardware implementations. Consider the following example.

Example 1.4.2. Cyclic redundancy code computation.

Consider a 16-bit CRC-CCITT computation using the polynomial 210422+ 25 4 1.
With the addition of every byte of data, the new CRC is clearly a function of 8-bits
of the old CRC and the new byte of data. This function is precomputed and stored
in a 256-entry table. A byte-wise implementation using two 256-byte tables, as
described by the following pseudo-code, when coded in assembly can achieve the
16-bit CRC computation in 7 instructions per byte.

typedef byte char;

byte Table_low[256], Table_high[256];
byte Temp, data, CRC_low, CRC_high;

Temp = data xor CRC_low;
CRC_low = Table_low[Temp] xor CRC_high;
CRC_high = Table_high[Temp];

The actual latency of computation is strongly dependent on the instruction-set ar-
chitecture (ISA) of the target processor. The best implementation of the above
pseudo-code on an Intel 8086 processor computes 16-bit CRCs in 9 instructions, a
Motorola 68K implementation in 11 instructions and a RISC-based implementation
in 14 instructions.

In contrast to a table-driven software implementation, a hardware implementation
of the CRC typically consists of a 16-bit shift register with xor taps at locations

1.5. APPLICATIONS OF HARDWARE-SOFTWARE CO-SYNTHESIS 13

dictated by the polynomial (i.e., positions 0, 5 and 12). Then the incoming bit
stream is shifted from the right into the shift register by left shifting the register.
Any time a 1 bit gets shifted off the left end of this register, the register contents
are replaced by an xor with the polynomial (equivalent to a modulo-2 subtraction
operation). This implementation results in a CRC computation rate of 8 cycles/byte.
|

1.5 Applications of Hardware-Software Co-synthesis

The hardware-software co-synthesis techniques formulated in this thesis can be used for

following applications.

1. Design of cost-effective systems: The overall cost of a system implementation can

be reduced by the ability to use already available general purpose re-programmable

components while reducing the number of application-specific components.

. Rapid prototyping of complex system designs: A complete hardware prototype
of a complex system is often too big to be implemented using field programmable
gate-array (FPGA) technologies. For such systems a mask programmable or even a
custom hardware realization is required. With the identification of the time critical
hardware section, the total amount of hardware to be synthesized may be reduced
significantly, thus making it feasible for rapid prototyping. A feasible partition
that shifts the non performance-critical tasks to software programs can be used to

quickly evaluate the design.

. Speedup of hardware emulation software: During their development phase,
many system designs are often modeled and emulated in software for test and
debugging purposes. Such an emulation can be assisted by dedicated hardware

components which provide a speedup on the emulation time.

Rapid prototyping and hardware emulation are two opposite ends of the system synthesis

objective. Rapid prototyping attempts to minimize the application-specific component to

reduce design time, whereas hardware emulation attempts to maximize the application-

specific component to realize maximum speed-up.

14

CHAPTER 1. INTRODUCTION

1.6 The Opportunity of Co-synthesis

This thesis explores the opportunity of achieving hardware-software co-synthesis by

formulating it as a problem of system partitioning into application-specific and re-

programmable components. We can also view it as an extension of high-level synthesis

techniques to systems with generic re-programmable resources. Nevertheless, the overall

problem is much more complex and it involves, among others, solving the following

sub-problems:

1. Modeling the system functionality and performance constraints.

System modeling refers to the specification problem of capturing important as-
pects of system functionality and constraints to facilitate design implementation
and evaluation. Most hardware description languages attempt to describe a system
functionality as a set of computations performed by a computing element and as
interactions among computing elements. Among the important issues relevant to

mixed system designs are:

e explicit or implicit concurrency in specification
e model of communication - shared memory versus message-passing

e control flow specification or scheduling information

There is a relationship between concurrency in specification and the natural par-
titions in the system descriptions. Typically, languages that contain explicit parti-
tioning via control flow breaks, find it difficult to specify concurrency explicitly.
Concurrency information is then obtained by performing a dependency analysis
whose complexity depends on the model of communication used. We consider the

relevant modeling issues in Chapter 3.

. Choosing the granularity of the hardware-software partition.

The system functionality can be handled either at the functional abstraction level
where a certain set of high-level operations is partitioned or at the process com-

munication level where a system model composed of interacting process models

1.6. THE OPPORTUNITY OF CO-SYNTHESIS 15

is mapped onto either hardware or software. The former attempts fine grain parti-
tioning while the latter attempts a high-level library binding through coarse-grain

partitioning.

3. Determining the feasible partitions of application-specific and re-programmable

components.

The so-called problem of hardware-software partitioning. This delineation is in-
fluenced by issues such as analog interfaces that require a specialized hardware
interface. However, for operations that can be implemented either in hardware or
in software, the problem requires a careful analysis of the flow of data and control

in the system model.
4. Specifying and synthesizing the hardware-software interface.

5. Implementing software routines to provide real-time response to concurrently exe-

cuting hardware modules.

6. Using synchronization mechanisms for software routines and synchronization be-

tween hardware and software portions of the system.

One important issue that needs to be resolved before addressing the co-synthesis sub-
problems is choice of a target system architecture. By target system architecture we mean
general organization of its components. As with specification, target architectures for
embedded systems are not universally defined or accepted. This is in sharp contrast with
single-chip systems where a single synchronous data-path/controller chip organization is
almost always implied unless otherwise mentioned.

The choice of a system architecture is not a trivial task due to the great impact of
system organization on system cost and performance. Further, a target architecture is
strongly influenced by the specific application to which the system is targeted. This
issue, though important, is peripheral to the co-synthesis problem that this thesis seeks to
address. Therefore, we choose an architecture that preserves essential features of mixed
systems while leaving the specific details as a co-design problem that must be solved

in the context of an application. In order to put it in proper perspective, we present

16 CHAPTER 1. INTRODUCTION

our target system architecture in the context of the organization of some of the familiar

computer systems.

1.7 Architectures with Hardware-Software Components

As mentioned earlier, most digital computer systems are either general-purpose or em-
bedded. General-purpose computer systems contain some form of storage that can be
altered (reprogrammed) by the user under software control. On the other hand, embedded
systems are usually hard-wired for certain specific tasks such that the degree of ‘repro-
grammability’ varies from none to the changing of parameters of some existing sequential
control. An embedded system may have a dedicated controller (a sequencer) or a mi-
crocontroller programmed to sequence operations. Most of these systems contain storage
(program or data) which is relatively small and cannot be easily altered. Microcontrollers
are essentially general purpose microprocessors with on-board memory for program and
data storage. The ability to reprogram a computer system is related to the versatility of
its primitive operations, or the instruction-set of the microprocessor or microcomputer
used in the system. In our terminology, we refer to a microprocessor or a microcontroller
as a reprogrammable component or simply as a processor. The specific sequence of
instructions needed for a particular application to be executed by the reprogrammable
component is referred to as the software component.

Thus, in broad terms, a digital system can be thought of as consisting of two com-
ponents: software as a program in an on-board RAM or ROM and hardware as the
underlying interconnection of special-purpose blocks. Based on this distinction, Fig-
ure 8 shows compositions of some familiar systems. The hardware component in a
system design may be manually designed or synthesized automatically using a silicon
compiler. The software component of a system may consist of microcoded routines, or
machine-level programs used in embedded control systems or high-level programs used
in special-purpose machines. Note that some system designs, most notably single-chip
microprocessors, use microprogramming simply as a design technique for implementa-
tion of hardware control. This is different from the software necessary to achieve system

functionality, as in microprogramming of functional algorithms in the case of mainframe

1.7. ARCHITECTURES WITH HARDWARE-SOFTWARE COMPONENTS 17

Degree of Reprogrammability

il A
|_
Z
w
Z
8 Reprogrammable MAINERAMES BIT-SLICED o
= Micro-prog CONTROLLERS £
8 Micro- VLIW MACHINES .
w Program <
|1 o
E:: 8
= ML MICROCONTROLLERS &
rogram ks
~ MIXED S
LCIS HL)
;] Program CONTROLLERS Q
Custom Synthesized Programmable
Hardware Hardware (PGA) (FPGA)

HARDWARE COMPONENT

Figure 8: System Classification Based on HW/SW Components

machines. Conventionally, machine-level and high-level programs manipulate user data-
structures, while microprograms manipulate hardware resources. In the case of the mixed
controller designs proposed in this dissertation, we use machine-level programs to perfor-
m both activities. The co-synthesis approach proposed in this work addresses the design

problem of mixed controllers shown in Figure 8.

1.7.1 Target system architecture

For the purposes of developing a co-synthesis approach, we choose the target architecture
shown in Figure 9 that consists of a processor assisted by application-specific hardware
components.

The application-specific hardware is not pipelined, for the sake of simplifying the
synthesis and performance estimation task for the hardware component. Even with its
relative simplicity, the target architecture is applicable to a wide class of applications in

embedded systems used in medical instrumentation, process control, vehicular control,

18 CHAPTER 1. INTRODUCTION

Interface Buffer

[
MICRO-
PROCESSOR | =™
|
Re-programmable Application-Specific
Component Components

Figure 9: Target System Architecture

and communications. The following lists the assumptions relating to the target architec-
ture. These assumptions are made in order to keep the relevant synthesis issues subject
to a systematic approach, while at the same time retaining generality and effectiveness
of the target architecture. Many of these assumptions can be dropped in a larger system
co-design methodology without affecting the underlying co-synthesis approach developed

here.

e We restrict ourselves to use of a single re-programmable component. We make
this simplifying assumption in order to make the synthesis tasks manageable. The
presence of multiple re-programmable components requires additional software syn-
chronization and memory protection considerations to facilitate safe multiprocess-
ing. Multiprocessor implementations also increase the system cost due to require-
ments for additional system bus bandwidth to facilitate inter-processor communi-
cations. These issues, though important, are not directly relevant to the focus on

system co-synthesis problem addressed in this work.

e The memory used for program and data-storage may be on-board the processor.

However, the interface buffer memory needs to be accessible to all of the hardware

1.7. ARCHITECTURES WITH HARDWARE-SOFTWARE COMPONENTS 19

modules directly. Because of the complexities associated with modeling hierarchi-
cal memory design, we consider only the case where all memory accesses are to a
single level memory, i.e., outside the re-programmable component. The hardware
modules are connected to the system address and data busses. Thus, all the com-
munication between the processor and different hardware modules takes place over

a shared medium.

e The re-programmable component is always the bus master. Almost all re-
programmable components come with facilities for bus control. The inclusion
of such functionality on the application-specific component would greatly increase

the total hardware cost.

e All the communication between the re-programmable component and the
application-specific circuits is done over named channels whose width (i.e. num-
ber of bits) is the same as the corresponding port widths used by read and write
instructions in the software component. The physical communication takes place

over a shared bus.

e The re-programmable component contains a ‘sufficient’ number of maskable inter-
rupt input signals. For the purpose of simplicity, we assume that these interrupts
are unvectored and there exists a predefined destination address associated with

each interrupt signal.

e The application-specific components have a well-defined RESET state that is

achieved through a system initialization sequence.

Figure 10 shows a single chip realization of the target architecture. The processor in
this realization refers to the processor core of a general-purpose microprocessor. Physical
implementation of the ASIC may be achieved using standard cells or gate array circuits.
The interface between the processor and the ASIC refers to the hardware portion of the
interface circuitry (for details on this see Section 7.2.3). The memory consists of program
ROM plus any RAM buffers need for the interface. Finally, the system interface may be

composed of analog I/O circuits such as A/D and D/A converters, direct-memory access

20 CHAPTER 1. INTRODUCTION

Interface Analog 1/0
g |
Processor & ASIC
o
£
Memory
DMA

Figure 10: Single chip realization of the target architecture

(DMA) circuits, and any possible data width conversion circuits (serial-to-parallel and

parallel-to-serial).

It is important to note that the final system implementation may or may not be a
single-chip system design, depending on availability of the re-programmable component
either as a macro-cell or as a separate chip. Further, the approach outlined in this report

can also be used for alternative target architectures.

The key concept in any realization of the target architecture is the fact that a (general-
purpose) processor is used as merely another resource to realize system functionality.
The emphasis is not to build a system around a processor, instead the emphasis is to use
a processor to reduce the size of the ASIC circuitry. At first glance, these two approaches
may appear to lead to the same implementation. However, the difference is in the em-
phasis on the utilization of the processor to implement system functionality. For systems
that are built around a given processor (or processors), the chief objective of system
design is to exploit processor functionality and utilization to the fullest extent, as is the
case in general-purpose computing systems. This often requires design decisions that are
difficult, if not impossible, to capture in a synthesis-oriented solution. In contrast, when
using the processor as another resource, the objective is to reduce the ASIC size while

meeting constraints where actual utilization of the processor is of secondary importance.

1.8. SCOPE AND CONTRIBUTIONS OF THESIS 21

Due to the emphasis on devising a synthesis-oriented solution to achieve embedded
system design, the resulting implementations have some limitations in their scope and
applicability. These limitations are due to assumptions made on the runtime system
and system interfaces in order to reduce the complexity of the embedded system design
details. The assumptions and limitations are described in their context in corresponding

chapters.

1.8 Scope and Contributions of Thesis
The following lists the goals and contributions of this dissertation:

e Development of a model for capturing hardware and software properties. The mod-
el is based on a graph-based representation of operations and dependencies and on

the relationship of computation rates to the associated communication mechanisms.

Formulation of rate constraints for high-level synthesis purposes and analysis of

feasible hardware-software partitions in the context of general timing constraints.

Development of partitioning schemes that capture both spatial and temporal prop-

erties of the partitioned systems.

Development of a runtime system software that is suitable for co-synthesis.

Development of model transformations to meet rate constraints, in particular pro-

gram transformations to improve latency and throughput.

Design of a low-overhead hardware-software interface architecture.

e \MILCAN- a CAD tool for exploring system-level designs.

Part of the subject matter addressed in this thesis has been presented in following
publications [GM90, GM91, GM92, GCM92b, GCM92a, GM93, GCM9%4].

22 CHAPTER 1. INTRODUCTION

1.9 Outline of the Dissertation

This thesis is organized according to the problem taxonomy described in Section 1.6.
Chapter 2 briefly presents an overview of related work in system design and computer-
aided design techniques developed for system synthesis. The organization of the rest of
thesis can be best explained by relating it to the organization of our co-synthesis CAD
system, WLCANshown in Figure 11. The input to our synthesis system is an algorithmic
description of system functionality described in a hardware description language (HDL).
The HDL description is compiled into a system graph model based on data-flow graphs.
Chapter 3 describes the features and properties of our system model. Chapter 4 describes
constraint modeling and analysis techniques to determine feasibility of hardware-software
implementations.

In Chapter 5 we discuss issues and techniques in the generation of software and
its associated runtime environment. We introduce the concept of a threaded software
implementation which is shown to observe constraint satisfiability properties discussed
in Chapter 4. In Chapter 6 we define the problem of system partitioning and present
an approach to partitioning of systems for hardware-software co-synthesis. In Chapter 7
we discuss issues in system synchronization, how synchronization is achieved between
heterogeneous components of a system design. Here we also present an overview of the
WiLcaN system. The resulting mixed system design consists of an assembly code for the
software component, and a gate-level description of the hardware and hardware-software
interface. This heterogenous description is simulated using the program RSTEI DON that
is described elsewhere [GCM92b].

Chapter 8 describes case studies in hardware-software co-synthesis and results. Chap-

ter 9 presents conclusions and directions for future research.

1.9. OUTLINE OF THE DISSERTATION

Specification

HDL

compilation

Chapter 4

Chapter 6

\ll

Program
Graph

Chapter 5

code synthesis)--e-——

Program

compilation

ke

Graph
Model

constraint
analysis

partitioning

‘ Y

strctural synthesis

Assembly
Program

\

ASIC Netlist

Mixed System Implementation

Figure 11: System Synthesis Procedure

System Inputs

POS

|
EIDON

Simulation)

System

|
Outputs

Chapter 2

Related Work

This chapter reviews important developments in the area of system design and synthesis.
The issue of co-design of hardware and software often appears in the larger context of
system design. Computer architects often tradeoff the implementation of an instruction
in hardware versus its implementation in software as a sequence of available instructions.
This flavor of the co-design problem addresses the issue of design of software and hard-
ware upon which the software runs. This is clearly different from the notion of hardware
and software defined in the previous chapter, where the software runs on a predesigned
hardware. The idea of hardware-software co-design has even been applied to the process
of system design [BV92].

We briefly review some of the novel architectures that consist of a mix of hardware
and software. Programmable active memories, PAM [BRV89], use a network of ba-
sic cells which are programmed for specific applications. The Map-oriented Machine
(MoM) [HHW89] belongs to a class of system architectures for implementing systolic
algorithms. MoM’s relevance to system co-design is highlighted by its reliance on repro-
grammable technologies to achieve performance speedups. Indeed, its derivative work
on xputer[HHR*91] attempts to use MoM architectural principles in prototype imple-
mentation of non-systolic algorithms. MoM is characterized by data-driven execution
streams. This key advantage is achieved by replacing register and ALU combinations
in sequential processors by a logic unit, called the problem-oriented logic unit, that uses
RAMs, PLDs and other programmable hardware. QuickTurn [Wal90] and PiE systems

24

2.1. CAD SYSTEMS FOR HARDWARE-SOFTWARE CO-DESIGN 25

use reprogrammable hardware to create system prototypes. The primary advantage of
these systems is the short amount of time it takes to create and modify these prototypes
that may not provide the intended system timing performance, but these prototypes are
considerably faster than their equivalent software prototypes.

Another area where the co-design problem has been studied is in the design and
analysis of ‘real-time systems’. Real-time systems span a wide variety of applications and
can be fairly complex. Performability analysis of real-time systems, defined as analysis
of system performance metrics over finite time intervals, is one of the key analytical
tools.

Work in the computer-aided approach to system design is relatively new. Recent
interest in system synthesis has been stimulated by the relative success and maturity of
chip-level synthesis tools, and emergence of synthesis approaches at levels of abstraction
higher than logic-level and RTL-level circuit descriptions. CAD related work falls under

two broad categories:

1. Generic CAD for supporting hardware-software co-design. These approaches gen-
erally recognize the difficulty in addressing all parts of the system design prob-
lem in a unified framework. Therefore, these systems concentrate on providing a

frame-work to support the process of system design.

2. Specific CAD for hardware-software co-synthesis. Work in this area concentrates
on providing CAD solutions to specific synthesis sub-problems. Most of these

solutions are devised under specific restrictions on system implementation.

2.1 CAD Systems for Hardware-Software Co-design

A CAD system refers to an integrated collection of tools that conform to an overlaying
methodology usage of these tools. The overall goal of a CAD system is to improve the
process of system analysis and design. In all these systems, trade-offs are made among

the following metrics:

1. Analyzability - the ability to analyze a system design for its functional and per-

formance properties,

26 CHAPTER 2. RELATED WORK

2. Simulatability - the ease in arriving at a complete system simulation,

3. Implementability - the ability to implement (design or synthesize) a system from

its specification.

2.1.1 Ptolemy

Prooemy [BHLMar] [KL93] is a framework for the simulation, prototyping and soft-
ware synthesis of digital signal processing systems. Due to its application focus on the
DSP domain, the reprogrammable components in system design are chosen from a set
of general-purpose DSP processors (or equivalent cores), such as Motorola DSP56001,
DSP96002. Hardware in ProLEmy refers to custom data paths and discrete (or glue)
logic components in addition to the processor.

ProLEwy’s strength is its unified framework for the simulation of specifications
as a set of heterogenous computation models. Specification in a particular model of
computation is referred to as a design style that is encapsulated in objects called domains.
A domain is comprised of blocks, targets and a scheduling discipline appropriate to
its model of computation. In addition, operational semantics are embedded in blocks
that govern their interaction with other blocks. Examples of supported domains are
synchronous data flow (SDF), dynamic data flow (DDF), discrete event (DE) and signal-
level digital hardware (Thor). A domain may embed another domain in its hierarchy. An
embedded domain interacts with its parent domain by means of a procedures called the
event horizon. Figure 12 explains the organization of domains and interface.

The event horizon is a key feature in ProLEMY that makes it possible to interface
event schedules from different domains. Domains can be classified into two categories:
timed and untimed domains. A timed domain refers to a model of computation that
produces events in the context of an associated time scale, for example, a discrete event
domain. On the other hand, untimed domains do not have an absolute time association
with their events, for example, data flow. When interfacing events across timed and un-
timed domains, there are several issues in event synchronization that must be worked out.
In general, it would be hard, if not impossible, to provide a consistent simulation frame-

work across concurrently independently active domains. However, due to embeddings

2.1. CAD SYSTEMS FOR HARDWARE-SOFTWARE CO-DESIGN 27

A domain
Interface

B domain
&
N
S

[scheduler | =— =
()
>
[0

Figure 12: Objects in ProLEMY

of these domains ProLEMY makes it possible to carry out simulation under (conserva-
tive) restrictions. Stopping heuristics are used in domain simulations in order to make
sure that inner timed domains do not temporally get ahead of the time in outer domains.
Of course, inner untimed domains react in zero time. Outer untimed domains maintain
timing attributes in order to set stop times for their inner domains. As an example, an
event from an untimed domain causing an event into timed domain initiates a time scale
on which to carry out further events in the timed domain until the inner domain has no
more active events, thus making the timed domain appear like a functional block.

Despite the code generation abilities in its synchronous data flow (SDF) domain,
ProLEmy is primarily a simulation-oriented tool. Its specification language (for do-
mains) is a procedural C++-type language. All models must be specified in this language
which is extended to allow modeling of operators from various other languages (such
as the ‘@’ operator from Silage etc). Each model generates tokens. Models differ in
values and timing interpretation of these tokens. Various models can be connected using
a graphical schematic capture or a netlist language.

Even though semantically rich, PrOLEMY’s syntax is awkward for specifying systems
that are best captured in non-procedural languages. The use of a predefined library of a
large number of models ameliorates this difficulty in specifying model functionalities.

The strength in heterogeneity by use of diverse computation models in ProLEmy
comes at the loss of an analytical handle on system properties. Further, it suffers in

implementability of these models because of the necessity to specify these systems in

28 CHAPTER 2. RELATED WORK

a simulation-oriented language which is not necessarily synthesizable. Nevertheless,
ProLEmy represents an important step towards simulation of complex systems. A
ProLEwmy-like system that also allows heterogenous specification with associated syn-
thesis tools (similar to an event scheduler) would be the next natural step toward creating

a simulation and implementation framework.

2.1.2 CODES

Buchenrieder in [BV92] presents a framework for COncurrent DESign. The system is
specified as a set of communicating parallel random access machines (PRAMs [HU79]).
The design process is modeled using Petri nets. The emphasis here is on including both
time-discrete and time-continuous behaviors in a single model. A component described
using the RAM model is embedded in an I/O frame that defines its interaction with other
models. The input specification can be simulated using Statemate[HLN190] or System
Description Language (SDL)[SSR89] tools. The synthesis into hardware relies on VHDL
based synthesis tools.

The authors report successful design of an engine controller using the co-design

methodology.

2.1.3 Rapid prototyping using SIERRA

Srivastava and Broderson [SB91] present a framework for rapid prototyping of systems
that span across chips and multiprocessor boards in hardware as well as device drivers
and operating system kernels in software. As opposed to ProLEMY, the emphasis in
SI ERRA is on the implementability of the system. Due to the enormous complexity of
the the systems represented, the analytical handle on system properties is further removed
from achieved performance.

This work leverages the use of chip-level synthesis tools LAGER [SJIR*91], HY-
PER [CPTR89], KAPPA [TRS*89] and DSP code synthesis tool GABRIEL [LHG™'89]
(GABRIEL functionalities were later incorporated in PIOLEMY) to present a framework
for performing both activities. A system is specified as a network of concurrent sequential

processes in VHDL. The communication between processes is by means of queues. This

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 29

specification is (manually) mapped into an architecture template. A mix of hardware and
software tools and libraries are used to implement parts of the design. The main strength
of this methodology lies in management of system complexity by using modularity and
reusability afforded by existing libraries.

Using this methodology, the authors report a dramatic reduction in the overall design
time to a matter of a couple of months. In addition, the framework affords the possibility
of exploring design alternatives such as the effect of different processors and components.
Successful designs of multi-board real time applications for a multi-sensory robot control

system and for a speech-recognition system are reported [Sri92].

2.2 CAD for Hardware-Software Co-synthesis

22.1 COSYMA

CO-SYnthesis for eMbedded Architectures, (ChYMA performs partitioning of opera-
tions at the basic block level with the goal of providing speedup in program execution
time using hardware co-processors. Figure 13 shows an overview of the system. Input to
B YM\A consists of an annotated C-program [HE92]. This input is compiled into a

set of basic blocks and corresponding DAG-based syntax graphs. The syntax graphs are
helpful in performing data-flow analysis for definition and use of variables that helps in
estimating communication overheads across hardware and software. The syntax graphs
are partitioned using a simulated annealing algorithm under a cost function. This pro-
cess is repeated using exact performance parameters from synthesis results for a given
partition.

The partitioning task consists of the identification of the portions of the program
that are suitable for synthesis into hardware in order to achieve a speedup in overall
execution times. This partitioning, or hardware extraction is done by means of a simulated
annealing algorithm using a cost function that yields potential speedup in execution times
and reduction in communication overheads.

A timing constraint in (ChYMArefers to a bound on the overall delay of a ba-

sic block. Since partitioning is done within a basic block, the timing performance of a

30 CHAPTER 2. RELATED WORK

Annotated C*

J

Syntax DAG
f f

t

C Cost estimates HardwareC

oy G

Figure 13: Codesign flow in GChYNA

hardware-software implementation is characterized by overall latency of the basic block.
This latency includes delay overhead due to communication as the total number of vari-
ables that are alive across the partition boundary.

The chief advantage of this approach is the ability to utilize advanced software struc-
tures that result in enlarging the complexity of system designs. However, selective
hardware extraction based on potential speedups makes this scheme relatively limited in
exploiting potential use of hardware components. Further, the assumption that hardware
and software components execute in an interleaved manner (and not concurrently) results

in a system that under-utilizes its resources.

2.2.2 Use of non-deterministic finite state machines for co-design

Chiodo et. al. in [CGH'93a] present a formal model for specification of hardware
software systems. The proposed model, Codesign Finite State Machines (CFSMs) is
based on the theory of finite state machines. Figure 14 shows the overall flow for co-
design. One of the important aspects of this approach to co-design is formal verification
of the system design (not shown in the Figure).

The behavior of a system in this model is described by a ‘trace’ as a sequence of
event instances. An event is defined by its name and the ‘communication port’ at which
it occurs. A broadcast model of event communication is assumed. An instance of an

event is different from the event itself and is identified by a time stamp at which the event

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 31

occurs. In general, events may carry values. Transitions are caused by trigger events, as
opposed to pure value events which are used to select between transitions over the same
set of trigger events based on data values. A CFSM is defined as a 5-tuple (I, E, O, R, F)
as a set of input events (I), set of output events (O) with initial value (R), and a transition
relation (F) from input to output events. E refers to a subset of events in I called trigger
events. The state of CFSM is defined by the set of simultaneously occurring events that
are both input (I) and output (O) events for the machine.

The reaction time to an input event can be (unbounded) non-zero. A CFSM con-
tains both temporal non-determinism (unknown reaction times) as well as causal non-
determinism since multiple input events may lead to the same output event (though an
output event is generated by one and only one CFSM). The CFSMs are shown to be
similar to classical finite state machines without an implied ‘synchronous’ hypothesis,

which assumes that state transitions in a network of machines happen at the same time.

Hardware synthesis from CFSMs is performed by translating a CFSM into a network
of (synchronous) Moore machines (with trace-equivalent/contained behavior) [CGH *93b]
which are then synthesized using sequential logic synthesis algorithms implemented in SIS
[SSM*92]. This translation is done assuming a finite reaction time to input events (i.e.,
no non-deterministic delay times are possible). This is accomplished by adding looping
transitions on states to model the asynchronous nature of state transitions by synchronous
machines!. The reaction to an event is present in a state immediate successor to state
containing the event. Software synthesis is performed as translation of CFSMs into C-
code blocks. The output events from CFSM are translated into communication events on

virtual I/O ports.

The CFSM model is similar to other models based on communicating finite state
machines, like SDL [SSR89] and CSIM [Sch90], though it lacks the storage extensions
found in other models. However, for hardware-software co-design purposes, it is not the
FSM nature of CFSM that is as important as its event-based model of communication.
Its FSM nature does simplify the task of system verification. Thus, CFSMs are targeted

for solving the system co-design and verification problems.

'This implementation, of course, assumes that the clock cycle time in synchronous implementation is
much shorter than event interval times.

32 CHAPTER 2. RELATED WORK

CFSM

|

Partitioning

|

Partitioned
Scheduler CFSM

Technology
mapping

Hardware

/
“

/%

C code

Figure 14: Co-design from Finite State Machines

The chief modeling limitation of this finite-state machine based approach to synthe-
sis is that control and data operations are indistinguishable. Even though a BLIF-MV
representation allows a concise representation of a data variable as a multi-valued log-
ic variable, a particular value of a data variable defines a state. This is different from
flow-graph based models where particular data values are inconsequential, and a system
state is defined based on the state of control (for example, a particular path of execution).
Because of this merging of control and data states in CFSMs, synthesis and optimization
operations that are suited for data or control must either be applied uniformly or heuristics
be used to determine a data state from a control state. Also, from a system design point

of view, a CFSM based approach ignores modeling and the effect of timing constraints.

A CFSM based approach is expected to perform well for control dominated machines.
However, for systems with a high-degree of data-intensive operations, a CFSM model

may not be amenable to data-flow based optimizations.

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 33

2.2.3 Co-synthesis from UNITY

Barros, Rosenstiel and Xiong in [BRX93] present partitioning of system descriptions
using the UNITY language. UNITY is a language for the specification of concurrent
systems developed by Chandi and Misra [CM88]. A specification in UNITY consists of
variable declarations and initializations followed by multiple-assignment statements. An
assignment modifies a value held by a variable. This is referred to as a state transition
in the execution of the UNITY program. Assignment can be composed in sequence or
in parallel. In case of a choice, the selection of assignment statement to be executed is
done non-deterministically.

The partitioning scheme presented classifies UNITY assignments according a set of
five attributes which identify the degree of data dependency and parallelism between
assignments. Associated with each of these attributes is a set of implementation alter-
natives. A reference implementation is chosen. A two-stage clustering algorithm then
selects assignments to be grouped according to similarity of implementation alternatives,
data dependencies, resource sharing and performance. The clustered assignments are
scheduled for a given target architecture. Finally, an interface graph is constructed based
on clustering results. This process is then reiterated based on satisfaction of design

constraints.

2.2.4 Interface co-synthesis

Chou, Ortega and Borriello in [COB92] present an algorithm for synthesis of the inter-
face between hardware-software systems. This interface allows interactions between the
external devices and the program running on the processor. The result of interface syn-
thesis is a software driver program and a logic circuit that provides a physical connection
between the processor and external devices. This problem is solved in two parts: (a)
allocation of physical ports on the processor to various devices; (b) selection of software
driver routines.

Port allocation refers to assignment of processor ports to device ports. A processor
port can be shared if its use by different device ports does not cause bus contention or

a temporal overlap of the software drivers associated with the devices. Allocation of

34 CHAPTER 2. RELATED WORK

processor ports to software function I/O calls to a device is performed in steps: attempt
to share the device port to an already allocated port (conditional sharing); if conditional
sharing fails then attempt to allocate a new processor port; if both these steps fail, then
backtrack to find and make an allocated port shareable by addition of control hardware.
If additional hardware does not help in sharing, an encoding transformation is applied to
reduce I/O transfers. In the absence of applicability of any of these solutions, a memory-
mapped I/O is selected which is always possible, though it comes with significantly
higher delay and control overheads due to the protocols needed to implement memory
operations over a shared communication medium.

The chief advantage of this approach is its considerable efficiency in building suit-
able input/output interfaces for controlling external devices. These are, as opposed to
memory-mapped external communications, facilitated by a set of processor 1/O ports. The
processor I/O ports, though limited in number, provide a low overhead communication

mechanism between software and hardware.

Chapter 3
System Modeling

This chapter examines issues in the specification and modeling of system functionality and
constraints for systems that are target of hardware-software co-synthesis. The essential
idea is to capture properties of a system without regard to its actual implementation. In
practice it is hard to do, save for specific application domains. Some would argue that
the more specific the application domain, the easier it is to develop a model. This work
is targeted towards co-synthesis of embedded systems for which the following properties

of target applications must be modeled and represented:
e The system consists of parts that operate at different speeds of execution,
e The interaction between parts of a system requires synchronization operations,
e There are constraints on the relative timing of operations.

A specification of a system functionality is done by means of a language. The
language primitives and associated semantics determine the detailed functionality unam-
biguously. This degree of detail is often unnecessary for purposes of analysis. Hence
models are needed.

In general, a model refers to an abstraction over its object, capturing important (but
simple) relationships between important components of the object. Models are often

needed in order to avoid creating detailed implementations. A model of a system helps

35

36 CHAPTER 3. SYSTEM MODELING

to estimate relevant properties, like area and delay, of its implementations.! Similarly, a
constraint model is helpful in verifying satisfiability of imposed constraints.

For the purpose of model abstraction, sometimes generalizations and simplifications
are made in order to represent objects that may be conceptually similar but differ in
implementations. For example, a communication between two operations in a system
model may be accomplished by means of a direct connection or over a shared medium
such as memory or a bus or by using any of numerous protocols. A choice of a particular
communication mechanism depends upon the individual operations and the part(s) to
which they belong. For modeling purposes, a communication between two operations
in the same part is abstracted as a dependency between the operations. Communication
between operations belonging to different parts can be generalized to occur over ports.
Ports represent communication to a shared-memory or inter-task communication by means
of message-passing protocols (Section 3.4.1).

In the following section, we present our choice of the specification language. We
then present a graph-based model and describe properties of the model used. Finally, we
describe the constraints and a means of capturing them into the system model. Figure 15

shows the organization of this chapter.

3.1 System Specification using Procedural HDL

The search for a suitable language for specification is very much a subject of ongoing
research. A detailed analysis of specification language issues is beyond the scope of
this dissertation. For an overview of current research trends the reader is referred to
[Har92] [Hal93] [Mic94], and [Sch92] [BW90b] for languages used for specifying real-
time systems.

In order to formulate a practical co-synthesis approach, it is important that the lan-
guage used have a developed path to hardware synthesis. From the point of view of
hardware synthesis the most likely candidates are procedural and applicative languages
[Joh83] [Sar89].

'Though sometimes simulations of an implementation are resorted to, particularly in cases where the
mathematical complexity of a model analysis is overwhelming. A case in point are queueing systems. See
Chapter 4.

3.1. SYSTEM SPECIFICATION USING PROCEDURAL HDL 37

HDL Specification
3.1

Abstraction
3 2

System Model

Definitions

I Semantics

Graph model

i‘_

Estimation of
hw and sw
properties

Model interactions 2.4

/ Constraint model , |
Constramt analy3|s Model properties
Chapter 4 3.5

Figure 15: Organization of Chapter 3

The use of procedural hardware description languages (HDL) to specify system func-
tionality for synthesis into digital hardware circuits has been gaining popularity in recent
years. Most common languages used in practice today in this category are VHSIC Hard-
ware Description Language (VHDL) [IEE87], and Verilog [TM91].

Part of the reason for the popularity of procedural languages in hardware specification
is due to the familiarity of users with writing sequential programs. However, there
are important differences in the expression of control in a program as opposed to its
implementation in hardware. The program specification inherently assumes the existence
of a single thread of control and static data storage, whereas the execution of operations
in hardware is usually multi-threaded and is driven by the availability of appropriate
data. Multi-threading is possible in hardware due to availability of multiple resources
that are used to increase the degree of concurrency in operation execution. As a result,
when describing hardware as a program, one is faced with the difficulty of specifying a
concurrently executing set of operations as an ordered set of operations.

In contrast to an instruction-driven single-threaded linear-program representation,
data-flow graphs (DFG) provide a data-driven representation that naturally models
multiple-threads of execution (Figure 16). For this reason, the hardware for embed-
ded controllers and non-recursive DSP algorithms is more appropriately represented by

flow graphs instead of sequential programs used for procedural specification.

38 CHAPTER 3. SYSTEM MODELING

Parsing and dependency analysis

Program

Data Flow Graph

Scheduling

) Instruction Driven
Data Driven Single Thread of Execution
Multiple Threads of Execution Linear, Static data store

Figure 16: Linear code versus data-flow graph representations

To avoid this dichotomy of behavioral representations, most hardware synthesis al-
gorithms operate on an intermediate representation based on data-flow graphs [McF78]
[CKR84] [PPM86] [BCM*88]. This intermediate representation is generated by parsing
and dependency analysis of the procedural input specification.

Data flow graphs have sufficient expressive power to represent either a hardware
or software implementation. For example, a sequence of machine instructions can be
represented by a machine-level data-flow graph. Indeed, the expression-evaluation trees
generated by compilers (before the code-generation stage) and for hardware are forms of
a data-flow graph. However, these data-flow graphs, consisting of operations described at
the level of machine instructions, decrease the specification granularity too much to make
them useful for the analysis needed for hardware and software co-synthesis. Therefore,
data-flow graphs in our context are described using operations available at the language
specification level.

Because of these strengths of a data-flow representation, we develop a system model
based on data flow graphs. This model provides the basis for analyzing hardware and
software implementations. From data-flow representations we can generate an equivalent
sequence of instructions by scheduling various operation vertices in the data-flow graph.
Operation scheduling techniques are important even in the case of a single thread of
execution where static memory requirements are affected by scheduling, even though
all schedules result in the same overall latency (see Chapter 5). Latency minimality in
scheduling is realized by exploiting parallelism in the instruction stream which requires

multiple execution threads. We consider the algorithms for evaluating data-flow graphs

3.1. SYSTEM SPECIFICATION USING PROCEDURAL HDL 39

and their equivalent linear-code representations in Chapter 5. Thus the ability to analyze
and synthesize both hardware and software from data-flow graphs makes them a good

candidate for an unified system model. This model is described in Section 3.2.

Specification. We specify system functionality in HardwareC [KM92a], a hardware
description language. As mentioned before, the co-synthesis approach developed in this
thesis is formulated on a system model based on data-flow graphs, and is independent of
the actual language used to describe the system functionality. It is possible to use VHDL,
Verilog or any other procedural HDL for system specification without altering the co-
synthesis approach described in this dissertation. In the context of the present work,
the choice of HardwareC is helpful in leveraging the existing path to hardware synthesis
[MKMT90]. HardwareC follows much of the syntax and semantics of the programming
language, C. Relevant features of the language are described in Appendix A. For further
details the reader is referred to [KM90a].

The basic entity for specifying system behavior is a process. A process executes con-
currently with other processes mentioned in the system specification. A process restarts
itself on completion of the last operation in the process body. A process in HardwareC
is similar to corresponding constructs in other hardware description languages. There
are important differences, however. For example, in contrast to a process as a sequen-
tial set of operations in VHDL, a process in HardwareC can have nested sequential and
parallel statement blocks. On the other hand, the synchronous semantics of HardwareC
limit its expressiveness compared to VHDL. Example 3.1.1 describes a simple process
specification.

Example 3.1.1. Example of a simple HDL process

process simple (a, b, c¢)
in port al[8], b[8] ;
out port c[8] ;

boolean x[8], yI[8], zI[8] ;

<
x = read(a);

y = read(b);

>

z = fun(x , y);

write ¢ = z;

40 CHAPTER 3. SYSTEM MODELING

This process performs two synchronous read operations in the same cycle, followed
by a function evaluation and a write operation, then it restarts. O

Thus, the use of multiple processes to describe a system functionality abstracts the
parts of a system implementation that operate at different speeds of execution. The
effect of interaction between multiple processes is discussed further when we consider

the system model in Section 3.2.

Memory and Communication

Communication refers to the process of transfer of information between operations. Some
implementations of a communication require the execution of communicating operations
at the same time. The process of bringing operation executions together is referred to
as a synchronization. Synchronization is a general concept. Sometimes synchroniza-
tion is needed to manage availability of shared resources. In our HDL specifications,
synchronization is explicitly indicated only in the context of communication operations.
A static resource allocation and binding paradigm is assumed, thus obviating the need
for resource synchronization, i.e., avoiding conflicts when the same resource implements
more than one operation. Therefore, synchronization in this work is mentioned in the
context of communication operations.

All communication between operations within a process body is based on shared
memory. This shared storage is declared as a part of the process body (for example
variables x, y and z in the Example 3.1.1 above). Shared memory communication be-
tween operations is possible since it is relatively straight-forward to determine a (partial)
ordering of operations within a given process body that ensures the integrity of memory
shared between operations. However, the consistency of memory shared across concur-
rently executing processes must be ensured by the processes themselves. Inter-process
communication is specified by message-passing operations that use a blocking proto-
col for synchronization purposes. As with shared memory variables, the only data-type
available for a channel is a fixed-width bit-vector.

The use of message-passing operations simplifies the specification of inter-process
communication. It should be noted, however, that it is easy to implement message-

passing communication using memory shared between processes (the converse is not

3.2. SYSTEM MODEL AND ITS REPRESENTATION 41

true, however). Indeed, during system partitioning, reduction in communication overhead
is realized by simplifying the inter-model communication as discussed in later sections.
Example 3.1.2 below shows a process description containing a message-passing receive

operation.
Example 3.1.2. Example of a process with unbounded delay operations

process example (a, b, c)
in port al8] ;
in channel b[8] ;
out port c ;

boolean x[8], yI[8], zI[8] ;

read(a);
receive (b);
f (x > vy)

Z =X -V
else

z =x *y;

while (z >= 0) {
write c =y ;
z =2z -1; 1}

X
Yy
i

read refers to a synchronous port read operation that is executed unconditionally
as a value assignment operation from the wire or register associated with the port
a. receilve is a message-passing based read operation where the channel b
carries additional control signals that facilitate a blocking read operation based on
the availability of data on channel b. O

3.2 System Model and its Representation

As mentioned earlier, a model refers to an abstraction of functionality over which the
properties of an implementation can be explored. Due to the simplicity of models, these
are extensively used in system analysis and synthesis procedures. A system model refers
to a model of the complete system, whereas a process model refers to the abstraction of
a process used in a system.

In order to correctly estimate properties of hardware and software in our target system
implementation, we look for model characteristics that ease this process of estimation.
Abstractions of operation-level concurrency and synchronization are important for hard-

ware since these affect the amount of resources required for hardware implementations.

42 CHAPTER 3. SYSTEM MODELING

These also affect the satisfaction of timing constraints. Modeling software requires the
abstraction of its interaction with a non-trivial runtime environment.

In the following we present a graph-based model that represents operation-level con-
currency explicitly while making a provision for encapsulating operations due to the
runtime system by a making suitable choice of additional source and sink operations in
the graph-model.

As mentioned earlier, the specification of a digital system consists not only of a
behavioral or algorithmic description of its functionality, but also of a description of
its interaction with its environment and performance constraints. Correspondingly, any

model of a digital system must also abstract these important components:

1. Functionality or its behavior in response to environmental inputs.

Broadly speaking, there are two major way of modeling and analyzing the system
behavior: algebraic process-based and graph-based. Algebraic modeling techniques
such as process algebra [BK90, BW90a, Mil90] are commonly used in proof sys-
tems [AFR80, OG76]. Graph-based modeling uses techniques from graph theory
to analyze system properties. The main difference between the two approaches is
in the explicit expression of dependencies between processes and constituent op-
erations. However, the equivalence between algebraic and graph-based modeling

approaches has been demonstrated in [Tar81].

We take a graph-based approach to system modeling and representation. Section 3.3

describes the model and its properties.

2. A set of ports over which it interacts with its environment.

The behavior of an embedded system includes its interaction with the environment
that influences current and future system behavior. This reactive nature of system
functionality is expressed by means of its behavior on its ports. System interaction
with an environment can be seen as a generalization of the interaction between
its components. This generalization is supported by the port abstraction which in
implementation can be a memory location, another system, or a device. Ports and

port semantics are discussed in Section 3.4.1.

3.3. THE FLOW GRAPH MODEL 43

3. Constraints on properties of its behavior.

Constraints are an important part of system specification. Constraints can be placed
at various levels of abstraction. The specification of constraints is described in

Section 3.6 and their analysis is presented in the Chapter 4.

3.3 The Flow Graph Model

The flow graph model captures the essential computational aspects of the target system.
This model is presented in three parts: (1) Representation and definitions (Sections 3.3.1
and 3.3.2); (2) Execution semantics (Section 3.3.3); and (3) Abstraction of implementation
attributes (Section 3.3.4).

3.3.1 Representation and definitions

Definition 3.1 A flow graph model is a polar acyclic graph G = (V, E, x) where
V. =A{w, v, ...,N} represent operations with vy and vy being the source and sink
operations respectively. The edge set, E = {(1y p) } represents dependencies between
operation vertices. Function \ associates a Boolean (enabling) expression with every
edge. In the case of edges incident from a condition vertex or incident to a join vertex,
the enabling expression refers to the condition under which the successor node for the

edge is enabled.

Table 1 lists operation vertices used in a flow graph model. It has been shown
that this set of simple operations (that is, all operations except wait and link) provides a
representation sufficient to capture universal computing power [Fos72]. A wait operation
is needed to capture the timing uncertainty in the system behavior due to its reactive
nature (see Section 3.4.2). The semantics of the link operation is discussed in the next
section in the context of hierarchy in flow graphs. Note that the presence of multiple
case values for the same branch leads to multiple edges between the condition and its
successor vertex, thus making the flow graph a multigraph.

The flow graph model is similar to sequencing graph model by Ku [KM92a] with the

following differences:

44 CHAPTER 3. SYSTEM MODELING

e A wait operation is added to abstract operations that represent synchronization
events at model ports. This distinguishes a synchronization operation such as
“wait (signal)” from a loop operation such as “while (!signal)” 2. The
reason for this distinction is that a software implementation of a wait operation is
different from that of a loop operation. Whereas, due to the presence of multiple
threads of execution in hardware, the wait operation is synthesized as a busy-waiting

loop operation.

e Conditional cond and join operations. These operations have been added for the
purposes of simplicity in data structures and constitute simple syntactic alteration

to the sequencing graph model.

The advantage of the above changes to the sequencing graph models of [KM92a] is that
they permit the distinction in abstraction of intra-model and inter-model communications
as based on shared memory or message passing respectively. This issue is discussed in
Section 3.5. However, the inclusion of conditional paths in the graph model introduces
data-dependent execution paths of operations in addition to the possible data-dependent
delay of operations. In contrast, the sequencing graph model features only the uncertainty
due to data-dependent delay of operations by treating the conditional paths as separate
graph models. Thus once invoked, all operations in a sequencing graph are eventually
executed. As said earlier, this is only a syntactical alteration since invocation of operations
on conditional paths is data-dependent in both cases.

For the sake of simplicity, a flow graph model, G, is often expressed as G = (V, E) .
Anedge e, ;= (v, p € E(G) represents a dependency, » v;, between operations
v; and v; such that for any execution of G(V'), operation; umust always be initiated
before operation v;. An edge represents either a data-dependency v; > v; or a control
dependency v; v ; between operations v; and v;. In the case of a data dependency,
operation v; produces (writes) data (variable) that is consumed (read) by the operation v ;.

A control dependency from operation v; to v; indicates one of the following conditions:

1. operation v; is environmentally constrained to be invoked only after invocation of

v; for correct behavior of the system being modeled,

2The loop operation is described later in the context of hierarchy.

3.3. THE FLOW GRAPH MODEL 45

‘ Operation ‘ Description
no-op No operation
cond Conditional fork
join Conditional join
op-logic Logical operations

op-arithmetic | Arithmetic operations
op-relational | Relational operations

op-io I/O operations
wait Wait on a signal variable
link Hierarchical operations

Table 1: Operation vertices in a flow graph

2. v; is invoked conditionally (based on output of v;),
3. both operations v; and v; write to the same variable (multiple assignments).
4. operation v; writes a variable that is read by operation v; (anti-dependency).

In compiler parlance, a data-flow dependency is also called a read-after-write dependency.
Note that in the last two cases (multiple assignments, and anti-dependency), dependencies
occur only when the shared variable corresponds to a physical port. The relation >*
indicates the transitive closure of the precedence relation >.

Note that any successor to a conditional operation is enabled if the result of condition
evaluation selects the branch to which the operation belongs. This is expressed by
the enabling condition associated with the edge from the condition vertex. In general, a
multiple in-degree operation vertex is enabled by evaluating an input expression consisting
of logical AND and OR operations over enabling expressions of its fanin edges. Similarly,
on completion of an operation, all or a set of its successor vertices can be enabled. For
each vertex, its output expression is an expression over enabling conditions of its fanout
edges. These expressions determine the flow of control through the graph model.

A flow graph is considered well-formed if the input and output expressions use either
AND or OR operations but not both in the same expression. For a well-formed graph,

a set of input or output edges to a vertex is considered conjoined if the corresponding

46 CHAPTER 3. SYSTEM MODELING

Source

1)
1 1
conjoined
K N\
{ONR O
Nonjoined/
oz 1

4
[c
disjoined
VA N

Sink Sink

Figure 17: Flow graph of process example.

expression is a conjunction over inputs or outputs. Similarly, a set of edges is disjoined
if the corresponding expression is a disjunction. A conjoined output directs the flow of
control to all its branches, whereas a disjoined output selects one of the successors based
on condition index. Similarly, a conjoined input requires arrival of control on all its
inputs before enabling the vertex. Structurally this makes the flow graph a bilogic graph
[Cer72]. For this reason, the flow graphs can be called bilogic sequencing graphs as
opposed to (unilogic) sequencing graphs introduced in [KM92a]. Bilogic graphs are a

fairly common occurrence in control graphs.

Example 3.3.3. Figure 17 shows example of a well-formed bilogic graph
model for the process described in Example 3.1.2. The example shows a one-bit
condition variable, ¢ = (x > y). In general, it can a multi-bit variable, thus

leading to more than two branches. Note that for bilogic graphs, the join node is
not essential since an appropriate input expression can be assigned to the successor
node. However, a join node makes it easier in defining well-formed graphs. O

Overall, the flow graph model consists of concurrent data-flow sections which are or-

dered by control flow. The graph edges represent dependencies, while conjoined branches

3.3. THE FLOW GRAPH MODEL 47

Operation | Description Invocation times ‘
call Procedural call | 1
loop Iteration 1 or constant > 1 or variable

Table 2: Link vertices in a hierarchical flow graph

indicate parallelism between operations. (Conjoined and disjoined fanin and fanout of a

3

vertex are indicated by symbols ‘*’ and ‘+’ respectively).

3.3.2 Hierarchy

Flow graph models are hierarchically composed by means of link vertices. A link vertex
represents a call to a flow graph model in the hierarchy. The called flow graph may be
invoked one or many times depending upon the type of the link vertex. Table 2 lists
types of link vertices and associated invocation times. Function and procedure calls are
represented by a call link vertex where the body of function/procedure is captured in a
separate graph model. A loop link operation consists of a loop condition operation that
performs testing of the loop exit condition and a loop body. The loop body is represented

as a separate graph model. All loop operations are assumed to be of the form

repeat {
body
} until (condition);

that is, a loop body is executed at least once. HDL specification of ‘while’-loops is

transformed as follows:
if (condition) {

while (condition) { repeat {
body = body
b } until (! condition);
}

A system consists of interacting parts, each of which can be abstracted into a flow
graph model. A system model refers to the abstraction of the system. A system model

consists of one or more flow graphs, that may be hierarchically linked to other flow

48 CHAPTER 3. SYSTEM MODELING

graphs. That is, a system model is expressed as, & = {G7, G, ..., ¢, where G7,
represents the process graph model G; and all the flow graphs that are hierarchically
linked to G;. Finally, a flow graph model that is common to two hierarchies of a system

model is considered a shared model or a shared resource.

Example 3.3.4. Model hierarchy in an Error Correction System.

Figure 18 shows an error correction system (ECS) that models the transmission of
digital data through a serial line. The ECS consists of an encoder front-end that
reads input data word, encrypts and transmits it serially as an encoded stream into
a noisy channel. The received bit stream is decoded and assembled into an output
data word.

The system graph model consists of three process graph models: {G'*,_. .. . G5.w » Chise -
The hierarchies of G¥_ . and G}, share the flow graph model G, . O

FLOW GRAPH

error?
encode I

data data

Figure 18: Flow graph model for an error correction system.

3.3.3 Execution semantics

In the previous section we showed the representation of the system functionality in a flow
graph where operations represent vertices and edges represent dependencies between
operations. This abstraction would be incomplete without an appropriate operational
semantics associated with the execution of operations in a flow graph representation of the

system model (also referred to as the flow graph model). An execution of the flow graph

3.3. THE FLOW GRAPH MODEL 49

model corresponds to a simulation of the system behavior. Thus, the development of an
execution semantics is instrumental in understanding the possible behaviors exhibited by
a system implementation. More importantly, it helps in reasoning about the validity of
transformations to the graph model vis-a-vis system specification.

The execution semantics for a flow graph can be described as follows. At any time,
an operation may be waiting for its execution, presently executing or having completed its
execution. Correspondingly, we define the state, ¢, of a vertex to be one of {s,, s s}
where s, refers to the reset state, s. to the enable state and s; to the done state. An
operation is enabled for execution once all its predecessors have completed execution
in the case of a input-conjoined vertex; and once any of its predecessors has completed
execution in the case of a input-disjoined vertex. The state of a vertex is changed from
done to reset if all its successors are either reset or done. This semantics is general, and
can support both pipelined and non-pipelined implementations of the graph model.

Example 3.3.5. Execution of process graph model example in Figure 17
reproduced below.

VACNIVAN
: /@é V.
\@/ \@

@@
/QX
@7

v
|}
™~

Non-pipelined Pipelined

1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13
e - - - - - - - - - - - - e - - - - - - - - - - - -
d e e - - - - - - - - - - d e e - - - - - - - - - -
- d d e - - - - - - - - - - d d e - - - - - - - - -
- - - d e - - - - - - - - - - - d e - - - - - - - -
- - - - 4d4 - e - - - - - - - - - - d - e - - - - - -
- - - - - - d e - - - - - - - - - - - d e - - - - -
- - - - - - - e e - - - - e - - - - - - e e - - - -
- - - - - - - e d e e - - d e e - - - - e d e e - -
- - - - - - - e - d d e - - d d e - - - e - d d e -
- - - - - - -d4 - - - d e - - - d e - - d - - - d e
e - - - - - - - - - - -4d - - - - d - e - - - - -d
d e - - - T I gDz ode gDz
- - - 3 - e - - - - - - - d e e - - - - e d e e - -
- -— -— - - d e - - - = - - - d d e - - - e - d d e -
- - - - - - d e - - - - - - - - d - e - d - - - d e
- - - - - - - e e - - - - - - - - - d e - - - - - d

- - - - - - e d e e - - - - - - - - d e - - - - -

This table shows a particular sequence of operation executions for a given data
input. Symbols ‘e’ and ‘d’ indicate enable and done states respectively. A dash ‘-’

50 CHAPTER 3. SYSTEM MODELING

indicates the reset state. No assumption about timing of the operations is made, that
is, consecutive rows in the table above can be spaced arbitrarily over the time axis.
Thus, the execution of a flow graph progresses as a wavefront of operations are
enabled for execution. The operations may complete at different times depending
upon the delay of the individual operations.

The table on the left shows the non-pipelined execution of the graph model, that
is, the source vertex is enabled again only after the completion of all operations
in the graph model. On the contrary, an execution is considered pipelined if the
source operation is enabled before completion of all operations. Therefore, in a
pipelined implementation, there is more than one wavefront of enabled operations
that progresses through the graph model at any time. In general, pipelining of flow
graphs requires generation of pipeline stall and bypass control needed to accommo-
date pipelining of variable delay and synchronization operations. In this work, we
consider restricted pipelining using buffers only in the context of software synthesis
in Chapter 4. For this pipelined execution, the minimum number of steps before
the source operation can be enabled is determined by the maximum number of the
steps taken by any operation. O

3.3.4 Implementation attributes

In this sub-section we define operation and graph attributes that are essential to performing
the constraint analysis described in next chapter. Informally, an implementation, Z(G),
of a graph model, G refers to assignment of delays and size properties to operations in G,
and a choice of runtime scheduler, T, that enables execution of source operations in G.
This actual assignment of values is related to the hardware or software implementation
of operations in . For non-pipelined hardware implementations, the runtime-scheduler
is trivial, the source operation is enabled once its sink operation completes (and the
graph enabling condition is true for conditionally invoked graphs). For software, the
runtime scheduler refers to the choice of a runtime system that provides the operating
environment for execution of operations in G. A runtime system is characterized by its

ability to preempt and prioritize operations. These are discussed in Chapter 5.

Size properties

Size attributes refer to the physical size and pinout of implementations of operations and

graphs. The meaning of size for hardware and software implementations is different. A

3.3. THE FLOW GRAPH MODEL 51

hardware implementation consists of hardware resources (also called data-path resources),
control logic, registers, and communication structures likes busses and multiplexor cir-
cuits. The size of a hardware implementation is expressed in units of gates or cells
(using a specific library of gates) required to implement the hardware. Each hardware
implementation has an associated area that is determined by the outcome of the physical
design. We estimate hardware size assuming a proportional relationship between size and

area. The size attribute for software consists of program and data storage required.

In general, it is a difficult problem to accurately estimate the size of the hardware
required from flow graph models. Indeed, the size of implementation is one of the
metrics that hardware synthesis attempts to minimize! Estimation in this context really
refers to relative sizes for implementations of different flow graphs, rather than an ab-
solute prediction of the size of the resulting hardware as formulated in [JMP89, KR93].
Notationally, the hardware size, S of an operation refers to its size as a sum of sizes
of hardware resources required to implement the operation, associated control logic and
storage registers. The size of a graph model is computed as a bottom-up sum of the size

of its operations.

Even though we describe constraints later in this chapter, the effect of constraints on
hardware size should also be noted. The effect of constraints, specifically on resource
usage, is to limit the amount of available concurrency in the flow graph model. The
more constraints on available hardware resources, the more operation dependencies are
needed to ensure constraint satisfaction. The effect of timing constraints, on the other
hand, is to explore alternative implementations at a given level of concurrency. Here we
assume that the expressed concurrency in flow graph models can be supported by available
hardware resources. That is, serialization required to meet hardware resource constraints
has already been performed. This is not a strong assumption, since the availability of

major resources like adders and multipliers are usually known in advance.

Capturing memory side-effects of a software implementation

A graph model captures the functionality of a system with respect to its behavior on its

ports. The operational semantics of the graph model requires use of an internal storage

52 CHAPTER 3. SYSTEM MODELING

in order to facilitate multiple-assignments in HDL descriptions. Whereas additional vari-
ables can be created that avoid multiple assignments to the same variable, assignments
to ports must still be multiply assigned in a flow graph model. Further, a port is often
implemented as a specific memory location (that is, as a shared variable) in software. The
memory side-effects created by graph models are captured by a set A/(G) of variables
that are referenced by operations in a graph model, G. M(G) is independent of the
cycle-time of the clock used to implement the corresponding synchronous circuitry and
does not include storage specific to structural implementations of G (for example, control
latches).

The size, S (G), of a software implementation consists of the program size and the
static storage to hold variable values across machine operations. The static data storage
can be in the form of specific memory locations or on-chip registers. This static storage
is, in general, upper bounded by the size of variables in M{ () defined above. In order to
estimate software size, a flow graph model is not enough. In addition, knowledge of the
processor to be used and the type of runtime system used would be needed. We discuss
the processor abstraction and runtime environment in Chapter 5.

Pinout, P(G) refers to the size of inputs and outputs in units of words or bits. A
pinout does not necessarily imply the number of ports required. A pinout port may be

bound to a number of input/output operations in a flow graph model.

Timing properties

The timing properties of the system model are derived from the timing properties of
the flow graph models used to build the system model. For synthesis into hardware,
the flow graph model is assumed to represent an abstraction of the synchronous digital
hardware and as such its timing properties are derived using a bottom-up computation
from individual operation delays.

Let us first consider non-hierarchical flow graphs, that is, graphs without link vertices.
The delay, 6, of an operation refers to the execution delay of the operation. We assume
that for a graph model, the delay of all operations are expressed as number of cycles for
a given cycl