
CO-SYNTHESIS OF HARDWARE AND SOFTWARE FOR
DIGITAL EMBEDDED SYSTEMS

a dissertation

submitted to the department of electrical engineering

and the committee on graduate studi es

of stanforduniversi ty

in partial fulfi llment of the requirements

for the degree of

doctor of phi losophy

By

Rajesh Kumar Gupta

December 10, 1993

c Copyright 1994

by

Rajesh Kumar Gupta

ii

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Giovanni De Micheli
(Principal Adviser)

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Michael J. Flynn

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Krishna Saraswat

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Kunle Olukotun

iii

I certify that I have read this thesis and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation

for the degree of Doctor of Philosophy.

Dr. Martin Freeman, Philips Research Labs.

Approved for the University Committee on Graduate Stud-

ies:

Dean of Graduate Studies & Research

iv

Abstract

As the complexity of systems being subject to computer-aided synthesis and optimization

techniques increases, so does the need to find ways to incorporate predesigned components

into the final system implementation. In this context, a general-purpose microprocessor

provides a sophisticated low-cost component that can be tailored to realize most system

functions through appropriate software. This approach is particularly useful in the design

of embedded systems that have a relatively simple target architecture, when compared

to general-purpose computing systems such as workstations. In embedded systems the

processor is used as a resource dedicated to implement specific functions. However, the

design issues in embedded systems are complicated since most of these systems operate

in a time-constrained environment. Recent advances in chip-level synthesis have made

it possible to synthesize application-specific circuits under strict timing constraints. This

dissertation formulates the problem of computer-aided design of embedded systems using

both application-specific as well as general-purpose reprogrammable components under

timing constraints.

Given a specification of system functionality and constraints in a hardware descrip-

tion language, we model the system as a set of bilogic flow graphs, and formulate the

co-synthesis problem as a partitioning problem under constraints. Timing constraints are

used to determine the parts of the system functionality that are delegated to application-

specific hardware and the software that runs on the processor. The software component

of such a ‘mixed’ system poses an interesting problem due to its interaction with con-

currently operating hardware. We address this problem by generating software as a

set of concurrent fixed-latency serialized operations called threads. The satisfaction of

the imposed performance constraints is then ensured by exploiting concurrency between

v

program threads, achieved by an inter-leaved execution on a single processor system.

This co-synthesis of hardware and software from behavioral specifications makes

it possible to build time-constrained embedded systems by using off-the-shelf parts and

application-specific circuitry. Due to the reduction in size of application-specific hardware

needed compared to an all-hardware solution, the needed hardware component can be

easily mapped to semicustom VLSI such as gate arrays, thus shortening the design time.

In addition, the ability to perform a detailed analysis of timing performance provides an

opportunity to improve the system definition by creating better prototypes. The algorithms

and techniques described have been implemented in a framework called Vulcan, which

is integrated with the Stanford Olympus Synthesis System and provides a path from

chip-level synthesis to system-level synthesis.

vi

Dedication

This thesis is dedicated to a very special person in my life, my wife Anne Usha.

vii

Acknowledgements

My deepest gratitude is to Professor Giovanni De Micheli for giving me the opportunity to

explore new grounds in the computer-aided design of electronic systems without getting

lost in the process. His constant encouragement, support and guidance were key to

bringing this project to a fruitful completion. I am grateful to him for the training to

carry out productive and directed research and for his friendship.

I would like to thank my associate advisor, Professor Michael J. Flynn for devoting

precious time to monitor the progress of this research, and in reading this dissertation.

Professor Krishna Saraswat has been very generous with his time to serve as chairperson

for both my oral defense and the reading committees. I have also benefited from discus-

sions with Professor Kunle Olukotun, who served on the defense and reading committees.

My sincerest thanks to my mentor Dr. Martin Freeman of Philips Research, Palo

Alto for his constant guidance and a diligent reading of this dissertation. Needless to say,

that any remaining mistakes are my sole responsibility. I would like to thank Uzi Bar-

Gadda and Joe Kostelec of Philips Research, and Prof. Rick Reis and Carmen Miraflor

of the Center for Integrated Systems for the honor to have been supported by the Philips

Fellowship for the years 1992 and 1993.

This research builds upon the prior work of many people. I would like to thank

all the other people involved in the synthesis project at Stanford. Of particular mention

are David Ku, Frederic Mailhot, and Thomas Truong for writing the Olympus Synthesis

System upon which the project is based. Claudionor Coelho wrote the simulator and

contributed in numerous ways to this research work.

Many thanks are due to past and present members of our research group at Stanford.

I am thankful to my colleagues David Ku, Frederic Mailhot, Maurizio Damiani, Polly

viii

Siegel, Thomas Truong, Jerry Yang, David Filo and Claudionor Coelho for providing a

supportive and productive environment during the course of my stay at Stanford. I would

also like to take this opportunity to thank my friends outside our research group, Rohit

Chandra and Kourosh Gharachorloo for many discussions and for providing the valuable

‘non-CAD’ feedback to this research. Many thanks are due to Ms. Lilian Betters for her

valuable administrative support during the course of my stay at Stanford.

Many thanks to my colleague and one of the most critical examiners of this research,

Dr. Mani Bhushan Srivastava of AT&T Bell Laboratories. I am greatly indebted to him

for his ever sharp examination of the concepts and ideas presented in this dissertation.

He has provided valuable and constructive feedback at every stage of this project that

has enhanced the overall quality of the research work.

I would also like to thank Prof. Gaetano Borriello of University of Washington, Prof.

Wayne Wolf of Princeton University and Prof. Daniel Gajski of University of California,

Irvine for taking active interest in this research and providing a fertile environment to

foster the growth of new ideas.

The time during which the ideas in this thesis were developed was an intense time

for my family. It has all been made possible by the patience, love and support of my

wife, Anne Usha, and the high spirits maintained by our son Anand. My regards to Atta

and Mama for their family support and for giving me the most valuable companion in

my life, my wife. Finally, my regards to my parents for their love and understanding,

and to my brother Sanjay and sister Neena. They have all contributed in many ways to

the person that I am today.

Financial support for this research was provided by a Fellowship provided by Philips

and Center for Integrated Systems, and by NSF-ARPA under grant MIP 9115432.

ix

Contents

Abstract v

Dedication vii

Acknowledgements viii

1 Introduction 1

1.1 Design of Embedded Systems : 4

1.2 Synthesis Solutions : 5

1.3 Co-design and Co-synthesis : 7

1.4 Motivations for Hardware-Software Co-synthesis : : : : : : : : : : : : : 9

1.5 Applications of Hardware-Software Co-synthesis : : : : : : : : : : : : : 13

1.6 The Opportunity of Co-synthesis : 14

1.7 Architectures with Hardware-Software Components : : : : : : : : : : : 16

1.7.1 Target system architecture : 17

1.8 Scope and Contributions of Thesis : 21

1.9 Outline of the Dissertation : 22

2 Related Work 24

2.1 CAD Systems for Hardware-Software Co-design : : : : : : : : : : : : : 25

2.1.1 Ptolemy : 26

2.1.2 CODES : 28

2.1.3 Rapid prototyping using SIERRA : : : : : : : : : : : : : : : : : 28

2.2 CAD for Hardware-Software Co-synthesis : : : : : : : : : : : : : : : : 29

x

2.2.1 COSYMA : 29

2.2.2 Use of non-deterministic finite state machines for co-design : : : 30

2.2.3 Co-synthesis from UNITY : 33

2.2.4 Interface co-synthesis : 33

3 System Modeling 35

3.1 System Specification using Procedural HDL : : : : : : : : : : : : : : : 36

3.2 System Model and its Representation : : : : : : : : : : : : : : : : : : : 41

3.3 The Flow Graph Model : 43

3.3.1 Representation and definitions : : : : : : : : : : : : : : : : : : : 43

3.3.2 Hierarchy : 47

3.3.3 Execution semantics : 48

3.3.4 Implementation attributes : 50

3.4 Interaction Between System and its Environment : : : : : : : : : : : : : 59

3.4.1 Ports and communication : 59

3.4.2 Non-determinism in flow graph models : : : : : : : : : : : : : : 60

3.5 ND, Execution Rate and Communication : : : : : : : : : : : : : : : : : 61

3.6 Constraints : 65

3.6.1 Min/max delay constraints : 66

3.6.2 Execution rate constraints : 67

3.6.3 Specification of timing constraints : : : : : : : : : : : : : : : : 69

3.7 Summary : 69

4 Constraint Analysis 72

4.1 Scheduling of Operations : 73

4.2 Deterministic Analysis of Min/max Delay Constraints : : : : : : : : : : 79

4.3 Deterministic Analysis of Execution Rate Constraints : : : : : : : : : : 81

4.3.1 Procedure : 96

4.4 Min/max Constraints Across Graph Models : : : : : : : : : : : : : : : : 99

4.5 ND Cycles in Constraint Graph : 102

4.5.1 Meaning of an ND cycle : 102

4.5.2 Problem formulation : 105

xi

4.5.3 Use of buffers to extend bounds on loop index : : : : : : : : : : 107

4.6 Probabilistic Analysis of Min/max and Rate Constraints : : : : : : : : : 109

4.6.1 Meaning of constraint satisfiability : : : : : : : : : : : : : : : : 110

4.6.2 Index distribution and bounds on buffer depth : : : : : : : : : : 113

4.7 Flow Graph as a Stochastic Process : 116

4.8 Summary : 124

5 Software and Runtime Environment 126

5.1 Processor Cost Model : 127

5.2 A Model for Software and Runtime System : : : : : : : : : : : : : : : : 132

5.3 Estimation of Software Performance : : : : : : : : : : : : : : : : : : : 135

5.3.1 Operation delay in a software implementation : : : : : : : : : : 136

5.4 Estimation of Software Size : 139

5.4.1 Operation linearization : 141

5.4.2 Estimation of register, memory operations : : : : : : : : : : : : 147

5.4.3 Compiler effects : 154

5.4.4 Software data size and performance tradeoffs : : : : : : : : : : : 155

5.5 Software Synthesis : 155

5.6 Step I: Generation of Program Threads : : : : : : : : : : : : : : : : : : 157

5.6.1 Implementation of inter-thread buffers : : : : : : : : : : : : : : 164

5.7 Step II: Generation of Program Routines : : : : : : : : : : : : : : : : : 165

5.7.1 Concurrency in software through Interleaving: Coroutines : : : : 166

5.7.2 Software implementation using description by cases : : : : : : : 166

5.8 Step III: Code Synthesis : 168

5.9 Issue in Code Synthesis from Program Routines : : : : : : : : : : : : : 168

5.9.1 Memory allocation : 169

5.9.2 Data types : 169

5.9.3 The C Standard Library : 170

5.9.4 Linking and loading compiled C-programs : : : : : : : : : : : : 170

5.9.5 Interface to assembly routines : : : : : : : : : : : : : : : : : : : 171

5.10 Summary : 172

xii

6 System Partitioning 174

6.1 Partition Cost Model : 176

6.2 Local versus Global Properties : 181

6.3 Partitioning Feasibility : 183

6.3.1 Effect of runtime scheduler : 184

6.4 Partitioning Based on Separation of Control and Execute Procedures : : 188

6.5 Partitioning Based on Division of ND Operations : : : : : : : : : : : : 189

6.6 Partition Related Transformations : 193

6.7 Summary : 194

7 System Implementation 196

7.1 Vulcan System Implementation : 196

7.1.1 Data organization in Vulcan : 199

7.1.2 Command organization in Vulcan : : : : : : : : : : : : : : : : : 200

7.2 Implementation of Target Architecture in Vulcan : : : : : : : : : : : : : 203

7.2.1 System synchronization : 203

7.2.2 Communication protocols : 207

7.2.3 Hardware-software interface architecture : : : : : : : : : : : : : 209

7.3 Co-simulation Environment. : 211

7.4 Summary : 217

8 Examples and Results 218

8.1 Graphics Controller : 219

8.1.1 Implementation : 219

8.2 Network Controller : 225

8.2.1 Host CPU-controller interface : : : : : : : : : : : : : : : : : : : 225

8.2.2 Controller operation : 225

8.2.3 Controller architecture : 227

8.2.4 Network controller implementation results : : : : : : : : : : : : 228

9 Summary, Conclusions and Future Work 232

9.1 Future Work : 234

xiii

Bibliography 237

A A Note on HardwareC 249

B Bilogic Graphs 251

C Processor Characterization in Vulcan 254

D Runtime Scheduler Routines 256

E Index of Notations 259

xiv

List of Tables

1 Operation vertices in a flow graph : 45

2 Link vertices in a hierarchical flow graph : : : : : : : : : : : : : : : : : 47

3 Basic instruction set : 129

4 Addressing modes : 131

5 Variable types and storage : 132

6 Comparison of program thread implementation schemes : : : : : : : : : 167

7 Vulcan (Rev 0) subsystems and commands. : : : : : : : : : : : : : : : : 204

8 A comparison of control FIFO implementation schemes : : : : : : : : : 223

9 Graphics controller implementations. : : : : : : : : : : : : : : : : : : : 224

10 Network controller instruction set : 227

11 Network controller synthesis results using LSI library gates : : : : : : : 230

12 Network controller synthesis results using Actel gates : : : : : : : : : : 230

13 Network controller software component : : : : : : : : : : : : : : : : : 230

xv

List of Figures

1 A design-oriented approach to system implementation. : : : : : : : : : : 5

2 A synthesis-oriented approach to system implementation. : : : : : : : : : 7

3 Proposed approach to system implementation. : : : : : : : : : : : : : : 8

4 Synthesis approach to embedded systems. : : : : : : : : : : : : : : : : : 9

5 Example of a mixed system implementation : : : : : : : : : : : : : : : 10

6 DES Procedure : 11

7 Bit permutations in DES Key Encryption : : : : : : : : : : : : : : : : : 12

8 System Classification Based on HW/SW Components : : : : : : : : : : 17

9 Target System Architecture : 18

10 Single chip realization of the target architecture : : : : : : : : : : : : : : 20

11 System Synthesis Procedure : 23

12 Objects in Ptolemy : 27

13 Codesign flow in COSYMA : 30

14 Co-design from Finite State Machines : : : : : : : : : : : : : : : : : : : 32

15 Organization of Chapter 3 : 37

16 Linear code versus data-flow graph representations : : : : : : : : : : : : 38

17 Flow graph of process example. : 46

18 Flow graph model for an error correction system. : : : : : : : : : : : : : 48

19 Simulation of the graph model in Example 3.3.6 : : : : : : : : : : : : : 57

20 Shared memory versus message passing communication : : : : : : : : : 59

21 Graph model properties : 63

22 Communication across models. : 63

23 Shared-memory versus message-passing implementations of loop operation. 64

xvi

24 General flow of constraint analysis. : 78

25 Constraint Graph Model : 80

26 Operation invocation interval. : 82

27 Consecutive executions of an operation corresponds to traversal of a path

in G. : 84

28 Upward propagation of minimum execution rate. : : : : : : : : : : : : : 89

29 Relationships between flow graphs : 99

30 Graph model hierarchy : 101

31 An ND cycle in the constraint graph : : : : : : : : : : : : : : : : : : : 102

32 Types of loop operations. : 104

33 Modeling an ND loop as a producer-consumer system : : : : : : : : : : 105

34 Buffer depth for exponential distributions (� = 0:01%) : : : : : : : : : : 116

35 States of stochastic flow graphs. : 117

36 Loops in a serialized model. : 120

37 Loops in a fork. : 121

38 Software model to avoid creation of ND cycles. : : : : : : : : : : : : : 134

39 Software delay estimation flow. : 140

40 Steps in generation of the software component : : : : : : : : : : : : : : 156

41 Use of enabling condition to build inter-thread dependencies. : : : : : : 159

42 Convexity serializations and possible thread implementations. : : : : : : 161

43 Generating fixed addresses from C-programs : : : : : : : : : : : : : : : 171

44 Components of the partition cost model : : : : : : : : : : : : : : : : : : 177

45 Use of timing properties in partition cost function : : : : : : : : : : : : 182

46 Partitioning into Hardware Control and Software Execute Processes : : : 189

47 Partition of link vertices : 194

48 Co-synthesis flow. : 197

49 Data Organization in Vulcan : 199

50 Vulcan subsystems and the Olympus Synthesis System : : : : : : : : : : 201

51 Flow of software synthesis in Vulcan : : : : : : : : : : : : : : : : : : : 202

52 Control FIFO schematic : 205

53 FIFO control state transition diagram : : : : : : : : : : : : : : : : : : : 206

xvii

54 Hardware and Software Interface Architecture : : : : : : : : : : : : : : 210

55 Hardware and Software Interface Model : : : : : : : : : : : : : : : : : 210

56 Event-driven Simulation of a Mixed System Implementation : : : : : : : 213

57 Producer consumer system. : 214

58 Example simulation: software producer, hardware consumer : : : : : : : 216

59 Example simulation: software consumer, hardware producer : : : : : : : 216

60 Graphics controller block diagram : 219

61 Graphics controller implementation : 220

62 Graphics controller software component using hardware control FIFO : : 221

63 Graphics controller software component using software control FIFO : : 222

64 Graphics controller simulation : 223

65 Network controller block diagram : 226

66 Format of an ethernet frame : 228

67 Network controller implementation : 229

68 Network controller simulation : 231

xviii

Chapter 1

Introduction

Recent years have seen remarkable growth in the design and use of digital systems in

several application areas. Digital systems are designed for two major classes of appli-

cations: general-purpose and application-specific systems. General-purpose systems are

not designed for any specific applications but can be programmed to run different appli-

cations. The most common use of general-purpose systems is in computing applications.

Examples of these systems are computers such as workstations.

In contrast, application-specific systems are designed for dedicated applications. Ex-

amples of such systems can be found in medical instrumentation, process control, auto-

mated vehicles control, and networking and communication systems. As these systems

are contained within a larger non-electronic environment, these are commonly referred

to as embedded systems. Embedded computer systems have been applied to tasks erst-

while handled by electronic or electro-mechanical non-computing systems. As a result,

the volume of embedded electronics market has grown. For the year 1991, the industrial

and medical electronics market alone accounted for $31 billion compared to the general

purpose computing systems market of $46.5 billion [JJ93].

This growth has been fueled by the advent of microprocessors, the primary compute

element in a system. Microcontrollers, a derivative of microprocessors, are now beginning

to be used in many embedded systems. For the year 1991, the market for microcontrollers

amounted to $4.6 billion and has been rising at a 18% annual growth rate compared to

a 10% annual growth rate of general-purpose systems [JJ93].

1

2 CHAPTER 1. INTRODUCTION

While there has been notable growth in the use and application of embedded systems,

improvements in the design process for such systems have not kept pace, leading to a gap

in the evolution of component technology and its application in embedded computing sys-

tems. While new processors and programmable/reprogrammable integrated circuits are

announced every six months with an average performance boost of 50% per year, it may

be several years before such components find use in embedded computer systems. This

is in contrast to the design of general-purpose computing systems that have largely kept

pace with advances in component technology related to processors, memory or integrated

circuits. Currently, approximately 80% of the microcontrollers used in embedded systems

are 4- and 8-bit processors of old generations [Bad93]. Of the total $4.6 billion micro-

controller market for 1991, 32-bit processors account for less than 4% or $184 million,

despite the fact that such processors have been commonplace since 1985 and almost all

advances in processor technology since then have been concentrated in the design of

32-bit processors.

Examining the cost analysis for semiconductor manufacturing, including package and

testing, the total chip cost for a die size of 1x1 sq. cm. comes to an average of $27

versus $7 for a 0.25x0.25 sq. cm. die [HP90]. Thus, chip manufacturing cost is not

always the dominant factor in overall chip pricing. Historically, it has been observed

that the prices of single-chip processors stabilize to a certain level in the $10-50 range

regardless of the introduction price of the processor. This drop in price is more strongly

related to the advancements on the technology learning and yield curves than to market

dynamics. Typically this price stabilization occurs within two years of the introduction

of a processor.

There are several reasons for this discrepancy in the advancement of embedded versus

general-purpose systems. More often, the embedded system is not the most visible part

of the application and, therefore, its implementation inefficiencies are often overlooked.

Component prices and manufacturing/maintenance cost of such systems is often cited

as reasons for relatively slow proliferation of advanced components in such systems.

However, as explained, the cost/price stabilization for processors occurs much sooner

than their proliferation in the embedded systems. Further, instead of using multiple 4-,

8- or 16-bit processors, the trend in embedded system design is to use 32-bit processors

3

despite increased system costs. The use of 32-bit controllers in embedded applications,

though a tiny 4% of the total volume, is increasing at an annual rate of 52% as against

the overall growth of 18% for the overall embedded controller market [JJ93].

In summary, even though there is a greatly recognized need for the use of advanced

32-bit processors in embedded applications, their proliferation in terms of total volume

has been lagging behind the growth in the 32-bit processor market. Further, the price

stabilization for these advanced processors occurs much earlier than their bulk use in

embedded systems. Thus, the proliferation of advanced 32-bit processors in embedded

systems does not appear to be limited by component cost considerations alone.

The chief reason for the slow proliferation of advanced components into embedded

systems is the long design time and high cost of design of such systems. Since embed-

ded systems are tailored to specific applications, the design cost per unit volume is higher

for embedded systems. Therefore, such systems stand to gain most from advances in the

design process that shortens the design time and improves performances by leveraging

the use of newer and advanced components. Based on this hypothesis, this thesis exam-

ines the problems in system design and provides solutions to speed up the design process

by developing synthesis techniques. The difference in design and synthesis techniques is

discussed a little later in this chapter. But first we briefly examine some of the commonly

used terms associated with the design of computer systems.

An electronic system consists of a set of interacting components. A digital electronic

system implements its primary functions using components that react to and produce

discrete objects. A component of a system may be a system in itself. At the lowest-level

(leaf-level) components tend to be more functionally homogeneous than the systems that

use these components. For example, a digital computer system consists of software,

processor, memory and peripheral input/output components. For this reason, systems are

often called heterogenous systems.

A component functionality is classified as either a computation or communication.

As the terms suggest, a communication functionality relates to operations involving input

and output operations, with the rest being computations. Both computation and commu-

nication functionalities can be implemented in a synchronous or an asynchronous manner.

Synchronous communication refers to a constant phase-relationship between two or more

4 CHAPTER 1. INTRODUCTION

input and/or output operations. Asynchronous communication, on the other hand, refers

to input/output operations that have no or variable phase-relationships. A synchronous

implementation uses a global mechanism such as a clock, whereas asynchronous com-

putations are characterized by the absence of such global synchronization mechanisms.

This thesis is targeted at exploring the implementation of embedded digital

systems with synchronous computation and communication components that are target-

ed for specific applications. In addition to being application-specific, such systems are

also designed to respect constraints related to the relative timing of their actions, hence

these systems are referred to as real-time embedded systems. The application-specific

nature of these systems often requires custom hardware circuits and programs to run

on a general-purpose processor hardware. This personalization is commonly referred

to as programmability in hardware and software respectively. Since the components

may be re-used, we are interested in hardware and software components that can be

reprogrammed to suit applications or changes and upgrades in an application.

1.1 Design of Embedded Systems

While there have been tremendous advancements in the design of the general purpose

components of an embedded system, the design of the hardware and software compo-

nents to achieve its programmability has not changed much over the years. Software

programmability is achieved by manually writing software often in processor assem-

bly language. Similarly, hardware programmability is achieved by manual design using

gate-level circuits or low to medium-scale integration circuits.

There are several challenges in the design and the analysis of time-constrained embed-

ded systems that prolong the design process. Important among these are the problems of

performance estimation, selection of appropriate components and verification of such sys-

tems for functional and temporal properties. In practice, such systems are created using

a design-oriented approach. The system is specified by a collection of its functionalities

which are then implemented by a choice of appropriate components.

For instance, consider the design of a network controller shown in Figure 1. The

controller is connected to a serial line and a memory. The purpose of the controller is to

1.2. SYNTHESIS SOLUTIONS 5

Analog interface

format conversion

collision response

address recognition

DMA

applications interface

self−test

SOFTWARE

HARDWARE

diagnostic

Memory

packet formatting

Figure 1: A design-oriented approach to system implementation.

receive and send data over the serial line using a specific communication protocol (such

as CS/CD protocol for ethernet links). The decision to map functionalities into dedicated

hardware or implement them as programs on a processor is usually based on estimates

of achievable performance and implementation cost of the respective parts.

There are several limitations to this approach. The division of functionality between

components is based on the designer’s experience and takes place early on in the design

process. This often leads to portions of the design that are either under- or over-designed

with respect to their required performance. More importantly, due to the ad-hoc nature

of the overall design process, there is no guarantee that a given implementation meets

the required system performance (except possibly by overdesigning).

1.2 Synthesis Solutions

In contrast to design-oriented solutions, a methodical approach to system implementation

can be formulated as a synthesis-oriented solution which has been enormously successful

in the design of individual integrated circuit chips (chip-level synthesis). Instead of

using a specification as a set of loosely-defined functionalities, a synthesis approach

for hardware proceeds with systems described at the behavioral level by means of an

6 CHAPTER 1. INTRODUCTION

appropriate specification language. While the choice of finding a suitable specification

language for digital systems is a subject of on-going research, the use of procedural

hardware description languages (HDLs) to describe integrated circuits has been gaining

wide acceptance in recent years.

A synthesis-oriented approach to digital circuit design takes a behavioral description

of circuit functionality and attempts to generate a gate-level implementation that can be

characterized as a purely hardware implementation (Figure 2). Recent strides in high-level

synthesis have made it possible to synthesize digital circuits from high-level specifications

and several such systems are available from industry and academia [BCM+88, CR89,

RMV+88, CPTR89, TLW+90, MKMT90, WTH+92]. The outcome of synthesis is a

gate-level or geometric-level description that is implemented as a single chip or multiple

chips.

An alternative to hardware synthesis of system prototypes would be to build a software

prototype of the system functionality. Such implementations lie on the opposite end of

the cost-performance spectrum (Figure 2). Here cost refers to system development cost

and performance is the time-related performance of the prototype. A software prototype

consists of a completely software specification based on a programming language that is

sometimes enhanced to support the structural interconnection of language objects [BL90a,

BL90b]. An example of a software prototyping system is the Rapideprototyping system

[LVBA93]. Software prototypes are rather quick to build and are often used for verifying

system functionality. Because the prototypes are primarily targeted for simulations, there

is a limit to the resolution of time-scale of events that can be used. Therefore, the

timing performance of software prototypes often falls short of what is desired for time-

constrained system designs.

In summary, there are several limitations of existing synthesis-oriented solutions to

system implementation. For synthesized hardware solutions, as the number of gates (or

logic cells) increases, such implementations require the use of semi-custom or custom

design technologies with their associated increases in cost and design turn-around time.

Therefore, for large system designs, synthesized hardware solutions tend to be fairly

expensive depending upon the choice of technology required for chip implementation.

As mentioned earlier, software solutions on the other hand, often fail to meet constraints

1.3. CO-DESIGN AND CO-SYNTHESIS 7

SPECIFICATION

Cost

Performance

HARDWARE

SOFTWARE

High-level SynthesisPrototyping

BEHAVIORAL

Figure 2: A synthesis-oriented approach to system implementation.

on timing performance.

1.3 Co-design and Co-synthesis

Synthesis-oriented approaches to system implementation provide systematic and rapid

evaluation of implementation alternatives. System cost and performance tradeoffs dictate

a choice between synthesized hardware solutions or software prototypes. But we do know

from our practical experience that cost-effective designs use a mixture of hardware and

software to accomplish their overall goals (Figure 1).

This provides sufficient motivation for attempting a system implementation that con-

tains both hardware and software components. This is commonly referred to as the

process of hardware-software co-design where both components are designed together.

The input specification in co-design may consist of a single or a collection of heteroge-

nous specifications.

A further development in this direction would be a co-synthesis approach that attempts

to provide mixed hardware-software implementations using synthesis techniques. Such

8 CHAPTER 1. INTRODUCTION

Cost

Performance

CONSTRAINTS

plus

SPECIFICATION

Mixed
Implementations

constraints

Hardware

Software

BEHAVIORAL

Figure 3: Proposed approach to system implementation.

an approach would benefit from a systematic analysis of design trade-offs that is common

in synthesis, while at the same time creating systems that are cost-effective. One way to

accomplish this task would be to specify constraints on the cost and the performance of

the resulting implementation (Figure 3).

This thesis presents a synthesis approach to systematic exploration of system designs

that is driven by the constraints. This work is built upon high-level synthesis tech-

niques for digital hardware [MKMT90] by extending the concept of a resource needed

for implementation. Figure 4 shows the essential aspects of this approach. A behavioral

specification is captured into a system model that is partitioned for implementation into

hardware and software. The partitioned model is then synthesized into interacting hard-

ware and software components for the target architecture shown in Figure 9. The target

architecture uses one processor and application-specific hardware. The target architecture

is described in further detail in Section 1.7.1.

1.4. MOTIVATIONS FOR HARDWARE-SOFTWARE CO-SYNTHESIS 9

Partition
MODEL

SPECIFICATION

process (a, b, c)
 in port a, b;
 out port c;
{
 read(a);
 ...
 write(c);
}

Capture Synthesize

- tradeoffs
- performance estimation

- constraint analysis

ASIC

line()
{
a = ..
...
detach
}

circle()
{
r = ...
...
detach
} Interface

- concurrency

- synchronization

Processor

SUB-PROBLEMS

Software

Hardware

Figure 4: Synthesis approach to embedded systems.

1.4 Motivations for Hardware-Software Co-synthesis

Most digital functions can be implemented by software programs. The major reason for

building dedicated application-specific hardware (ASICs) is the satisfaction of perfor-

mance constraints. These performance constraints can be on the overall time (latency)

to perform a given task, or more specifically on the timing to perform a subtask and/or

on the ability to sustain specified input/output data rates over multiple executions of the

system model. The hardware performance depends on the results of operation scheduling

and on the performance characteristics of individual hardware resources. The software

performance, defined as the number of cycles that it takes the processor to execute a

routine, depends on the number of instructions the processor must execute and the cycles-

per-instruction (CPI) metric of the processor. In general, application-specific hardware

implementations tend to be faster since the underlying hardware is optimized for the

specific set of tasks. However, in the absence of stringent performance constraints, for

a given behavioral description of an ASIC machine, some parts (subroutines) of it may

be well suited to a commonly available re-programmable processor (e.g., 6502, 68HC11,

8051, 8096 etc) while others may take too long to execute. For instance, most gener-

al purpose CPUs deal with byte-size operands whereas many ASIC controllers contain

bit-oriented operations resulting in unnecessary overheads when the operations are im-

plemented entirely in software. However, the software implementations do provide the

ease and flexibility of reprogramming for the possible price of loss of performance.

10 CHAPTER 1. INTRODUCTION

Example 1.4.1. Data encryption controller.

assemble frame

receive data from memory using DMA

max time
constraint

REPROGRAMMABLE

SOFTWARE

DEDICATED

HARDWARE

receive encryption key

encrypt data

transmit data

Figure 5: Example of a mixed system implementation

To be specific, consider the design of a data encryption/protocol controller chip,

based on the DES (Data Encryption Standard) protocol used by commercial banks

or the AES (Audio Engineering Society) protocol used for communication between

digital audio devices and computers. In Figure 5, the DES transmitter takes da-

ta from memory using a DMA controller, assembles the frame for transmission,

encrypts the data after it receives the key and transmits the encrypted data. The

encryption protocol requires that the encrypted data be transmitted within a certain

time duration of receiving the encryption key.

In the DES protocol, a 64-bit encryption key is used to transform 64 bits of ‘plain-

text’ into 64 bits of encrypted text. Here we present only the relevant aspects of the

encryption process. For details on the standard and algorithms the reader is referred

to [oS88] [SB88]. The encryption key contains 8 parity bits which are removed

before the encryption process thus deriving a 56-bit encryption key. As shown in

Figure 6, the entire encryption process consists of 18 permutation stages including

an initial and a final stage which do not require any key. The 16 intermediate steps

are key-controlled. The first and last stages are simple permutations. The 16 48-bit

keys required for intermediate stages are derived from the original 56-bit key. Thus

there are two separate 16-stage operations: a) generation of the 48-bit encryption

key, and b) use of encryption key to manipulate 64-bit data. Here we consider

the first operation, that is the generation of the encryption key, though a similar

argument can also be made for the data manipulation operations which consists of

rotation, permutations, xor and table lookup.

The encryption key algorithm transforms the 56-bit input key buffer (known as

shifted key buffer, SKB) into a 48-bit key which is organized as an 8-byte key

buffer (KB) such that only 6 bits from each byte of the KB are used in the key.

1.4. MOTIVATIONS FOR HARDWARE-SOFTWARE CO-SYNTHESIS 11

64-bit plain text

64-bit encrypted data

56-bit key

K1

K2

K16

48-bit keys

inverse of

stage 1

stage 2

stage 16

stage 1

stage 2

stage 16

initial permutation

initial permutation

Figure 6: DES Procedure

Thus each stage of the 16-stage key generation algorithm consists of 48 permutation

operations on the shifted key buffer as illustrated by the algorithm below:

clear 64-bit key buffer
for i = 1 .. 48 do f

isolate bit i of the shifted keyed buffer
if (bit == 1)

set key buffer bit pc2(i) using permuted choice table, pc2
g

Software implementations of this encryption key algorithm vary from 300 to 3000

instructions depending on the level of bit-oriented operations supported. This is in

sharp contrast to the hardware implementation in which each stage can be accom-

plished in a single cycle by building the permutation into an interconnection network

as shown in Figure 7. Therefore, a hardware implementation of the algorithm would

require 16 cycles. 2

Thus, hardware and software implementations vary widely in speed. For designs

that are dominated by bit-oriented operations, dedicated hardware implementations are

preferred, whereas it may take too long to execute these operations as a sequence of

instructions on most processors, thus violating the constraints on timing performance

of the controller. Whereas implementing the complete protocol controller on dedicated

hardware may be too expensive, an implementation which uses a re-programmable com-

ponent may satisfy performance requirements and at the same time provide the ease and

flexibility of programming in software.

12 CHAPTER 1. INTRODUCTION

Shifted Key Buffer (56-bits)

8-byte Key Buffer containing 48-bit Key

xx xx xx xx xx xx xx xx

28 291 2 3 4 5 6 7 8 9 10 11 16 17 24 2514 32 33 34 41 42 50 53 54 55 56

14 51 3 28 4 2 55 56 34 53 32

(Not all permutations shown.)

Figure 7: Bit permutations in DES Key Encryption

While bit-wise shifting and xor operations lead to slower software implementations,

the implementation of byte-oriented data-intensive operations with the use of structured

memory is considerably faster. Such implementations are often competitive with corre-

sponding hardware implementations. Consider the following example.

Example 1.4.2. Cyclic redundancy code computation.

Consider a 16-bit CRC-CCITT computation using the polynomial x16
+x12

+x5
+1.

With the addition of every byte of data, the new CRC is clearly a function of 8-bits

of the old CRC and the new byte of data. This function is precomputed and stored

in a 256-entry table. A byte-wise implementation using two 256-byte tables, as

described by the following pseudo-code, when coded in assembly can achieve the

16-bit CRC computation in 7 instructions per byte.

typedef byte char;

byte Table low[256], Table high[256];
byte Temp, data, CRC low, CRC high;

Temp = data xor CRC low;
CRC low = Table low[Temp] xor CRC high;
CRC high = Table high[Temp];

The actual latency of computation is strongly dependent on the instruction-set ar-

chitecture (ISA) of the target processor. The best implementation of the above

pseudo-code on an Intel 8086 processor computes 16-bit CRCs in 9 instructions, a

Motorola 68K implementation in 11 instructions and a RISC-based implementation

in 14 instructions.

In contrast to a table-driven software implementation, a hardware implementation

of the CRC typically consists of a 16-bit shift register with xor taps at locations

1.5. APPLICATIONS OF HARDWARE-SOFTWARE CO-SYNTHESIS 13

dictated by the polynomial (i.e., positions 0, 5 and 12). Then the incoming bit

stream is shifted from the right into the shift register by left shifting the register.

Any time a 1 bit gets shifted off the left end of this register, the register contents

are replaced by an xor with the polynomial (equivalent to a modulo-2 subtraction

operation). This implementation results in a CRC computation rate of 8 cycles/byte.

2

1.5 Applications of Hardware-Software Co-synthesis

The hardware-software co-synthesis techniques formulated in this thesis can be used for

following applications.

1. Design of cost-effective systems: The overall cost of a system implementation can

be reduced by the ability to use already available general purpose re-programmable

components while reducing the number of application-specific components.

2. Rapid prototyping of complex system designs: A complete hardware prototype

of a complex system is often too big to be implemented using field programmable

gate-array (FPGA) technologies. For such systems a mask programmable or even a

custom hardware realization is required. With the identification of the time critical

hardware section, the total amount of hardware to be synthesized may be reduced

significantly, thus making it feasible for rapid prototyping. A feasible partition

that shifts the non performance-critical tasks to software programs can be used to

quickly evaluate the design.

3. Speedup of hardware emulation software: During their development phase,

many system designs are often modeled and emulated in software for test and

debugging purposes. Such an emulation can be assisted by dedicated hardware

components which provide a speedup on the emulation time.

Rapid prototyping and hardware emulation are two opposite ends of the system synthesis

objective. Rapid prototyping attempts to minimize the application-specific component to

reduce design time, whereas hardware emulation attempts to maximize the application-

specific component to realize maximum speed-up.

14 CHAPTER 1. INTRODUCTION

1.6 The Opportunity of Co-synthesis

This thesis explores the opportunity of achieving hardware-software co-synthesis by

formulating it as a problem of system partitioning into application-specific and re-

programmable components. We can also view it as an extension of high-level synthesis

techniques to systems with generic re-programmable resources. Nevertheless, the overall

problem is much more complex and it involves, among others, solving the following

sub-problems:

1. Modeling the system functionality and performance constraints.

System modeling refers to the specification problem of capturing important as-

pects of system functionality and constraints to facilitate design implementation

and evaluation. Most hardware description languages attempt to describe a system

functionality as a set of computations performed by a computing element and as

interactions among computing elements. Among the important issues relevant to

mixed system designs are:

� explicit or implicit concurrency in specification

� model of communication - shared memory versus message-passing

� control flow specification or scheduling information

There is a relationship between concurrency in specification and the natural par-

titions in the system descriptions. Typically, languages that contain explicit parti-

tioning via control flow breaks, find it difficult to specify concurrency explicitly.

Concurrency information is then obtained by performing a dependency analysis

whose complexity depends on the model of communication used. We consider the

relevant modeling issues in Chapter 3.

2. Choosing the granularity of the hardware-software partition.

The system functionality can be handled either at the functional abstraction level

where a certain set of high-level operations is partitioned or at the process com-

munication level where a system model composed of interacting process models

1.6. THE OPPORTUNITY OF CO-SYNTHESIS 15

is mapped onto either hardware or software. The former attempts fine grain parti-

tioning while the latter attempts a high-level library binding through coarse-grain

partitioning.

3. Determining the feasible partitions of application-specific and re-programmable

components.

The so-called problem of hardware-software partitioning. This delineation is in-

fluenced by issues such as analog interfaces that require a specialized hardware

interface. However, for operations that can be implemented either in hardware or

in software, the problem requires a careful analysis of the flow of data and control

in the system model.

4. Specifying and synthesizing the hardware-software interface.

5. Implementing software routines to provide real-time response to concurrently exe-

cuting hardware modules.

6. Using synchronization mechanisms for software routines and synchronization be-

tween hardware and software portions of the system.

One important issue that needs to be resolved before addressing the co-synthesis sub-

problems is choice of a target system architecture. By target system architecture we mean

general organization of its components. As with specification, target architectures for

embedded systems are not universally defined or accepted. This is in sharp contrast with

single-chip systems where a single synchronous data-path/controller chip organization is

almost always implied unless otherwise mentioned.

The choice of a system architecture is not a trivial task due to the great impact of

system organization on system cost and performance. Further, a target architecture is

strongly influenced by the specific application to which the system is targeted. This

issue, though important, is peripheral to the co-synthesis problem that this thesis seeks to

address. Therefore, we choose an architecture that preserves essential features of mixed

systems while leaving the specific details as a co-design problem that must be solved

in the context of an application. In order to put it in proper perspective, we present

16 CHAPTER 1. INTRODUCTION

our target system architecture in the context of the organization of some of the familiar

computer systems.

1.7 Architectures with Hardware-Software Components

As mentioned earlier, most digital computer systems are either general-purpose or em-

bedded. General-purpose computer systems contain some form of storage that can be

altered (reprogrammed) by the user under software control. On the other hand, embedded

systems are usually hard-wired for certain specific tasks such that the degree of ‘repro-

grammability’ varies from none to the changing of parameters of some existing sequential

control. An embedded system may have a dedicated controller (a sequencer) or a mi-

crocontroller programmed to sequence operations. Most of these systems contain storage

(program or data) which is relatively small and cannot be easily altered. Microcontrollers

are essentially general purpose microprocessors with on-board memory for program and

data storage. The ability to reprogram a computer system is related to the versatility of

its primitive operations, or the instruction-set of the microprocessor or microcomputer

used in the system. In our terminology, we refer to a microprocessor or a microcontroller

as a reprogrammable component or simply as a processor. The specific sequence of

instructions needed for a particular application to be executed by the reprogrammable

component is referred to as the software component.

Thus, in broad terms, a digital system can be thought of as consisting of two com-

ponents: software as a program in an on-board RAM or ROM and hardware as the

underlying interconnection of special-purpose blocks. Based on this distinction, Fig-

ure 8 shows compositions of some familiar systems. The hardware component in a

system design may be manually designed or synthesized automatically using a silicon

compiler. The software component of a system may consist of microcoded routines, or

machine-level programs used in embedded control systems or high-level programs used

in special-purpose machines. Note that some system designs, most notably single-chip

microprocessors, use microprogramming simply as a design technique for implementa-

tion of hardware control. This is different from the software necessary to achieve system

functionality, as in microprogramming of functional algorithms in the case of mainframe

1.7. ARCHITECTURES WITH HARDWARE-SOFTWARE COMPONENTS 17

Programmable

HL
Program

ML
Program

Micro-
Program

Reprogrammable
Micro-prog

HARDWARE COMPONENT

S
O

F
T

W
A

R
E

 C
O

M
P

O
N

E
N

T
Degree of Reprogrammability

D
e
p
e
n
d
e
n
c
e
 o

n
 H

a
rd

w
a
re

(FPGA)(PGA)

VLIW MACHINES

MAINFRAMES

MICROCONTROLLERS
MIXED

CONTROLLERS

BIT-SLICED
CONTROLLERS

Synthesized
Hardware

Custom
Hardware

Figure 8: System Classification Based on HW/SW Components

machines. Conventionally, machine-level and high-level programs manipulate user data-

structures, while microprograms manipulate hardware resources. In the case of the mixed

controller designs proposed in this dissertation, we use machine-level programs to perfor-

m both activities. The co-synthesis approach proposed in this work addresses the design

problem of mixed controllers shown in Figure 8.

1.7.1 Target system architecture

For the purposes of developing a co-synthesis approach, we choose the target architecture

shown in Figure 9 that consists of a processor assisted by application-specific hardware

components.

The application-specific hardware is not pipelined, for the sake of simplifying the

synthesis and performance estimation task for the hardware component. Even with its

relative simplicity, the target architecture is applicable to a wide class of applications in

embedded systems used in medical instrumentation, process control, vehicular control,

18 CHAPTER 1. INTRODUCTION

ASIC

MEMORY
ML Program

User Data

Interface Buffer

Application-Specific
Components

Re-programmable
Component

ASIC

PROCESSOR

MICRO-

Figure 9: Target System Architecture

and communications. The following lists the assumptions relating to the target architec-

ture. These assumptions are made in order to keep the relevant synthesis issues subject

to a systematic approach, while at the same time retaining generality and effectiveness

of the target architecture. Many of these assumptions can be dropped in a larger system

co-design methodology without affecting the underlying co-synthesis approach developed

here.

� We restrict ourselves to use of a single re-programmable component. We make

this simplifying assumption in order to make the synthesis tasks manageable. The

presence of multiple re-programmable components requires additional software syn-

chronization and memory protection considerations to facilitate safe multiprocess-

ing. Multiprocessor implementations also increase the system cost due to require-

ments for additional system bus bandwidth to facilitate inter-processor communi-

cations. These issues, though important, are not directly relevant to the focus on

system co-synthesis problem addressed in this work.

� The memory used for program and data-storage may be on-board the processor.

However, the interface buffer memory needs to be accessible to all of the hardware

1.7. ARCHITECTURES WITH HARDWARE-SOFTWARE COMPONENTS 19

modules directly. Because of the complexities associated with modeling hierarchi-

cal memory design, we consider only the case where all memory accesses are to a

single level memory, i.e., outside the re-programmable component. The hardware

modules are connected to the system address and data busses. Thus, all the com-

munication between the processor and different hardware modules takes place over

a shared medium.

� The re-programmable component is always the bus master. Almost all re-

programmable components come with facilities for bus control. The inclusion

of such functionality on the application-specific component would greatly increase

the total hardware cost.

� All the communication between the re-programmable component and the

application-specific circuits is done over named channels whose width (i.e. num-

ber of bits) is the same as the corresponding port widths used by read and write

instructions in the software component. The physical communication takes place

over a shared bus.

� The re-programmable component contains a ‘sufficient’ number of maskable inter-

rupt input signals. For the purpose of simplicity, we assume that these interrupts

are unvectored and there exists a predefined destination address associated with

each interrupt signal.

� The application-specific components have a well-defined RESET state that is

achieved through a system initialization sequence.

Figure 10 shows a single chip realization of the target architecture. The processor in

this realization refers to the processor core of a general-purpose microprocessor. Physical

implementation of the ASIC may be achieved using standard cells or gate array circuits.

The interface between the processor and the ASIC refers to the hardware portion of the

interface circuitry (for details on this see Section 7.2.3). The memory consists of program

ROM plus any RAM buffers need for the interface. Finally, the system interface may be

composed of analog I/O circuits such as A/D and D/A converters, direct-memory access

20 CHAPTER 1. INTRODUCTION

Processor ASIC

Memory

Interface

DMA

Analog I/O

In
te

rf
a
c
e

Figure 10: Single chip realization of the target architecture

(DMA) circuits, and any possible data width conversion circuits (serial-to-parallel and

parallel-to-serial).

It is important to note that the final system implementation may or may not be a

single-chip system design, depending on availability of the re-programmable component

either as a macro-cell or as a separate chip. Further, the approach outlined in this report

can also be used for alternative target architectures.

The key concept in any realization of the target architecture is the fact that a (general-

purpose) processor is used as merely another resource to realize system functionality.

The emphasis is not to build a system around a processor, instead the emphasis is to use

a processor to reduce the size of the ASIC circuitry. At first glance, these two approaches

may appear to lead to the same implementation. However, the difference is in the em-

phasis on the utilization of the processor to implement system functionality. For systems

that are built around a given processor (or processors), the chief objective of system

design is to exploit processor functionality and utilization to the fullest extent, as is the

case in general-purpose computing systems. This often requires design decisions that are

difficult, if not impossible, to capture in a synthesis-oriented solution. In contrast, when

using the processor as another resource, the objective is to reduce the ASIC size while

meeting constraints where actual utilization of the processor is of secondary importance.

1.8. SCOPE AND CONTRIBUTIONS OF THESIS 21

Due to the emphasis on devising a synthesis-oriented solution to achieve embedded

system design, the resulting implementations have some limitations in their scope and

applicability. These limitations are due to assumptions made on the runtime system

and system interfaces in order to reduce the complexity of the embedded system design

details. The assumptions and limitations are described in their context in corresponding

chapters.

1.8 Scope and Contributions of Thesis

The following lists the goals and contributions of this dissertation:

� Development of a model for capturing hardware and software properties. The mod-

el is based on a graph-based representation of operations and dependencies and on

the relationship of computation rates to the associated communication mechanisms.

� Formulation of rate constraints for high-level synthesis purposes and analysis of

feasible hardware-software partitions in the context of general timing constraints.

� Development of partitioning schemes that capture both spatial and temporal prop-

erties of the partitioned systems.

� Development of a runtime system software that is suitable for co-synthesis.

� Development of model transformations to meet rate constraints, in particular pro-

gram transformations to improve latency and throughput.

� Design of a low-overhead hardware-software interface architecture.

� Vulcan - a CAD tool for exploring system-level designs.

Part of the subject matter addressed in this thesis has been presented in following

publications [GM90, GM91, GM92, GCM92b, GCM92a, GM93, GCM94].

22 CHAPTER 1. INTRODUCTION

1.9 Outline of the Dissertation

This thesis is organized according to the problem taxonomy described in Section 1.6.

Chapter 2 briefly presents an overview of related work in system design and computer-

aided design techniques developed for system synthesis. The organization of the rest of

thesis can be best explained by relating it to the organization of our co-synthesis CAD

system, Vulcanshown in Figure 11. The input to our synthesis system is an algorithmic

description of system functionality described in a hardware description language (HDL).

The HDL description is compiled into a system graph model based on data-flow graphs.

Chapter 3 describes the features and properties of our system model. Chapter 4 describes

constraint modeling and analysis techniques to determine feasibility of hardware-software

implementations.

In Chapter 5 we discuss issues and techniques in the generation of software and

its associated runtime environment. We introduce the concept of a threaded software

implementation which is shown to observe constraint satisfiability properties discussed

in Chapter 4. In Chapter 6 we define the problem of system partitioning and present

an approach to partitioning of systems for hardware-software co-synthesis. In Chapter 7

we discuss issues in system synchronization, how synchronization is achieved between

heterogeneous components of a system design. Here we also present an overview of the

Vulcansystem. The resulting mixed system design consists of an assembly code for the

software component, and a gate-level description of the hardware and hardware-software

interface. This heterogenous description is simulated using the program Poseidon that

is described elsewhere [GCM92b].

Chapter 8 describes case studies in hardware-software co-synthesis and results. Chap-

ter 9 presents conclusions and directions for future research.

1.9. OUTLINE OF THE DISSERTATION 23

System Outputs

System Inputs

Chapter 4

Chapter 3

Graph

Model

HDL

Specification

compilation

constraint
analysis

partitioning

code synthesis

Program

Graph

C

Program

compilation

ASIC

Graph

Model

interface gen

Assembly

Program
ASIC Netlist

Interface

strctural synthesis

Mixed System Implementation

Chapter 5

(Simulation)

POSEIDON

Chapter 6

Chapter 7

Figure 11: System Synthesis Procedure

Chapter 2

Related Work

This chapter reviews important developments in the area of system design and synthesis.

The issue of co-design of hardware and software often appears in the larger context of

system design. Computer architects often tradeoff the implementation of an instruction

in hardware versus its implementation in software as a sequence of available instructions.

This flavor of the co-design problem addresses the issue of design of software and hard-

ware upon which the software runs. This is clearly different from the notion of hardware

and software defined in the previous chapter, where the software runs on a predesigned

hardware. The idea of hardware-software co-design has even been applied to the process

of system design [BV92].

We briefly review some of the novel architectures that consist of a mix of hardware

and software. Programmable active memories, PAM [BRV89], use a network of ba-

sic cells which are programmed for specific applications. The Map-oriented Machine

(MoM) [HHW89] belongs to a class of system architectures for implementing systolic

algorithms. MoM’s relevance to system co-design is highlighted by its reliance on repro-

grammable technologies to achieve performance speedups. Indeed, its derivative work

on xputer[HHR+91] attempts to use MoM architectural principles in prototype imple-

mentation of non-systolic algorithms. MoM is characterized by data-driven execution

streams. This key advantage is achieved by replacing register and ALU combinations

in sequential processors by a logic unit, called the problem-oriented logic unit, that uses

RAMs, PLDs and other programmable hardware. QuickTurn [Wal90] and PiE systems

24

2.1. CAD SYSTEMS FOR HARDWARE-SOFTWARE CO-DESIGN 25

use reprogrammable hardware to create system prototypes. The primary advantage of

these systems is the short amount of time it takes to create and modify these prototypes

that may not provide the intended system timing performance, but these prototypes are

considerably faster than their equivalent software prototypes.

Another area where the co-design problem has been studied is in the design and

analysis of ‘real-time systems’. Real-time systems span a wide variety of applications and

can be fairly complex. Performability analysis of real-time systems, defined as analysis

of system performance metrics over finite time intervals, is one of the key analytical

tools.

Work in the computer-aided approach to system design is relatively new. Recent

interest in system synthesis has been stimulated by the relative success and maturity of

chip-level synthesis tools, and emergence of synthesis approaches at levels of abstraction

higher than logic-level and RTL-level circuit descriptions. CAD related work falls under

two broad categories:

1. Generic CAD for supporting hardware-software co-design. These approaches gen-

erally recognize the difficulty in addressing all parts of the system design prob-

lem in a unified framework. Therefore, these systems concentrate on providing a

frame-work to support the process of system design.

2. Specific CAD for hardware-software co-synthesis. Work in this area concentrates

on providing CAD solutions to specific synthesis sub-problems. Most of these

solutions are devised under specific restrictions on system implementation.

2.1 CAD Systems for Hardware-Software Co-design

A CAD system refers to an integrated collection of tools that conform to an overlaying

methodology usage of these tools. The overall goal of a CAD system is to improve the

process of system analysis and design. In all these systems, trade-offs are made among

the following metrics:

1. Analyzability - the ability to analyze a system design for its functional and per-

formance properties,

26 CHAPTER 2. RELATED WORK

2. Simulatability - the ease in arriving at a complete system simulation,

3. Implementability - the ability to implement (design or synthesize) a system from

its specification.

2.1.1 Ptolemy

Ptolemy [BHLMar] [KL93] is a framework for the simulation, prototyping and soft-

ware synthesis of digital signal processing systems. Due to its application focus on the

DSP domain, the reprogrammable components in system design are chosen from a set

of general-purpose DSP processors (or equivalent cores), such as Motorola DSP56001,

DSP96002. Hardware in Ptolemy refers to custom data paths and discrete (or glue)

logic components in addition to the processor.

Ptolemy’s strength is its unified framework for the simulation of specifications

as a set of heterogenous computation models. Specification in a particular model of

computation is referred to as a design style that is encapsulated in objects called domains.

A domain is comprised of blocks, targets and a scheduling discipline appropriate to

its model of computation. In addition, operational semantics are embedded in blocks

that govern their interaction with other blocks. Examples of supported domains are

synchronous data flow (SDF), dynamic data flow (DDF), discrete event (DE) and signal-

level digital hardware (Thor). A domain may embed another domain in its hierarchy. An

embedded domain interacts with its parent domain by means of a procedures called the

event horizon. Figure 12 explains the organization of domains and interface.

The event horizon is a key feature in Ptolemy that makes it possible to interface

event schedules from different domains. Domains can be classified into two categories:

timed and untimed domains. A timed domain refers to a model of computation that

produces events in the context of an associated time scale, for example, a discrete event

domain. On the other hand, untimed domains do not have an absolute time association

with their events, for example, data flow. When interfacing events across timed and un-

timed domains, there are several issues in event synchronization that must be worked out.

In general, it would be hard, if not impossible, to provide a consistent simulation frame-

work across concurrently independently active domains. However, due to embeddings

2.1. CAD SYSTEMS FOR HARDWARE-SOFTWARE CO-DESIGN 27

A domain

B domain

scheduler scheduler

e
ve

n
t

h
o

ri
zo

n

Interface

Figure 12: Objects in Ptolemy

of these domains Ptolemymakes it possible to carry out simulation under (conserva-

tive) restrictions. Stopping heuristics are used in domain simulations in order to make

sure that inner timed domains do not temporally get ahead of the time in outer domains.

Of course, inner untimed domains react in zero time. Outer untimed domains maintain

timing attributes in order to set stop times for their inner domains. As an example, an

event from an untimed domain causing an event into timed domain initiates a time scale

on which to carry out further events in the timed domain until the inner domain has no

more active events, thus making the timed domain appear like a functional block.

Despite the code generation abilities in its synchronous data flow (SDF) domain,

Ptolemy is primarily a simulation-oriented tool. Its specification language (for do-

mains) is a procedural C++-type language. All models must be specified in this language

which is extended to allow modeling of operators from various other languages (such

as the ‘@’ operator from Silage etc). Each model generates tokens. Models differ in

values and timing interpretation of these tokens. Various models can be connected using

a graphical schematic capture or a netlist language.

Even though semantically rich, Ptolemy’s syntax is awkward for specifying systems

that are best captured in non-procedural languages. The use of a predefined library of a

large number of models ameliorates this difficulty in specifying model functionalities.

The strength in heterogeneity by use of diverse computation models in Ptolemy

comes at the loss of an analytical handle on system properties. Further, it suffers in

implementability of these models because of the necessity to specify these systems in

28 CHAPTER 2. RELATED WORK

a simulation-oriented language which is not necessarily synthesizable. Nevertheless,

Ptolemy represents an important step towards simulation of complex systems. A

Ptolemy-like system that also allows heterogenous specification with associated syn-

thesis tools (similar to an event scheduler) would be the next natural step toward creating

a simulation and implementation framework.

2.1.2 CODES

Buchenrieder in [BV92] presents a framework for COncurrent DESign. The system is

specified as a set of communicating parallel random access machines (PRAMs [HU79]).

The design process is modeled using Petri nets. The emphasis here is on including both

time-discrete and time-continuous behaviors in a single model. A component described

using the RAM model is embedded in an I/O frame that defines its interaction with other

models. The input specification can be simulated using Statemate[HLN+90] or System

Description Language (SDL)[SSR89] tools. The synthesis into hardware relies on VHDL

based synthesis tools.

The authors report successful design of an engine controller using the co-design

methodology.

2.1.3 Rapid prototyping using SIERRA

Srivastava and Broderson [SB91] present a framework for rapid prototyping of systems

that span across chips and multiprocessor boards in hardware as well as device drivers

and operating system kernels in software. As opposed to Ptolemy, the emphasis in

Si erra is on the implementability of the system. Due to the enormous complexity of

the the systems represented, the analytical handle on system properties is further removed

from achieved performance.

This work leverages the use of chip-level synthesis tools LAGER [SJR+91], HY-

PER [CPTR89], KAPPA [TRS+89] and DSP code synthesis tool GABRIEL [LHG+89]

(GABRIEL functionalities were later incorporated in Ptolemy) to present a framework

for performing both activities. A system is specified as a network of concurrent sequential

processes in VHDL. The communication between processes is by means of queues. This

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 29

specification is (manually) mapped into an architecture template. A mix of hardware and

software tools and libraries are used to implement parts of the design. The main strength

of this methodology lies in management of system complexity by using modularity and

reusability afforded by existing libraries.

Using this methodology, the authors report a dramatic reduction in the overall design

time to a matter of a couple of months. In addition, the framework affords the possibility

of exploring design alternatives such as the effect of different processors and components.

Successful designs of multi-board real time applications for a multi-sensory robot control

system and for a speech-recognition system are reported [Sri92].

2.2 CAD for Hardware-Software Co-synthesis

2.2.1 COSYMA

CO-SYnthesis for eMbedded Architectures, COSYMA, performs partitioning of opera-

tions at the basic block level with the goal of providing speedup in program execution

time using hardware co-processors. Figure 13 shows an overview of the system. Input to

COSYMAconsists of an annotated C-program [HE92]. This input is compiled into a

set of basic blocks and corresponding DAG-based syntax graphs. The syntax graphs are

helpful in performing data-flow analysis for definition and use of variables that helps in

estimating communication overheads across hardware and software. The syntax graphs

are partitioned using a simulated annealing algorithm under a cost function. This pro-

cess is repeated using exact performance parameters from synthesis results for a given

partition.

The partitioning task consists of the identification of the portions of the program

that are suitable for synthesis into hardware in order to achieve a speedup in overall

execution times. This partitioning, or hardware extraction is done by means of a simulated

annealing algorithm using a cost function that yields potential speedup in execution times

and reduction in communication overheads.

A timing constraint in COSYMArefers to a bound on the overall delay of a ba-

sic block. Since partitioning is done within a basic block, the timing performance of a

30 CHAPTER 2. RELATED WORK

Annotated C*

Syntax DAG

Partition

C

Compile Synthesize

HardwareC

Profile

Cost estimates

Figure 13: Codesign flow in COSYMA

hardware-software implementation is characterized by overall latency of the basic block.

This latency includes delay overhead due to communication as the total number of vari-

ables that are alive across the partition boundary.

The chief advantage of this approach is the ability to utilize advanced software struc-

tures that result in enlarging the complexity of system designs. However, selective

hardware extraction based on potential speedups makes this scheme relatively limited in

exploiting potential use of hardware components. Further, the assumption that hardware

and software components execute in an interleaved manner (and not concurrently) results

in a system that under-utilizes its resources.

2.2.2 Use of non-deterministic finite state machines for co-design

Chiodo et. al. in [CGH+93a] present a formal model for specification of hardware

software systems. The proposed model, Codesign Finite State Machines (CFSMs) is

based on the theory of finite state machines. Figure 14 shows the overall flow for co-

design. One of the important aspects of this approach to co-design is formal verification

of the system design (not shown in the Figure).

The behavior of a system in this model is described by a ‘trace’ as a sequence of

event instances. An event is defined by its name and the ‘communication port’ at which

it occurs. A broadcast model of event communication is assumed. An instance of an

event is different from the event itself and is identified by a time stamp at which the event

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 31

occurs. In general, events may carry values. Transitions are caused by trigger events, as

opposed to pure value events which are used to select between transitions over the same

set of trigger events based on data values. A CFSM is defined as a 5-tuple (I, E, O, R, F)

as a set of input events (I), set of output events (O) with initial value (R), and a transition

relation (F) from input to output events. E refers to a subset of events in I called trigger

events. The state of CFSM is defined by the set of simultaneously occurring events that

are both input (I) and output (O) events for the machine.

The reaction time to an input event can be (unbounded) non-zero. A CFSM con-

tains both temporal non-determinism (unknown reaction times) as well as causal non-

determinism since multiple input events may lead to the same output event (though an

output event is generated by one and only one CFSM). The CFSMs are shown to be

similar to classical finite state machines without an implied ‘synchronous’ hypothesis,

which assumes that state transitions in a network of machines happen at the same time.

Hardware synthesis from CFSMs is performed by translating a CFSM into a network

of (synchronous) Moore machines (with trace-equivalent/contained behavior) [CGH+93b]

which are then synthesized using sequential logic synthesis algorithms implemented in SIS

[SSM+92]. This translation is done assuming a finite reaction time to input events (i.e.,

no non-deterministic delay times are possible). This is accomplished by adding looping

transitions on states to model the asynchronous nature of state transitions by synchronous

machines1. The reaction to an event is present in a state immediate successor to state

containing the event. Software synthesis is performed as translation of CFSMs into C-

code blocks. The output events from CFSM are translated into communication events on

virtual I/O ports.

The CFSM model is similar to other models based on communicating finite state

machines, like SDL [SSR89] and CSIM [Sch90], though it lacks the storage extensions

found in other models. However, for hardware-software co-design purposes, it is not the

FSM nature of CFSM that is as important as its event-based model of communication.

Its FSM nature does simplify the task of system verification. Thus, CFSMs are targeted

for solving the system co-design and verification problems.

1This implementation, of course, assumes that the clock cycle time in synchronous implementation is

much shorter than event interval times.

32 CHAPTER 2. RELATED WORK

CFSM

Partitioning

CFSM
Partitioned

SW

Synthesis

HW

Synthesis

Scheduler

C code

Interfaces

Hardware

Technology
mapping

Figure 14: Co-design from Finite State Machines

The chief modeling limitation of this finite-state machine based approach to synthe-

sis is that control and data operations are indistinguishable. Even though a BLIF-MV

representation allows a concise representation of a data variable as a multi-valued log-

ic variable, a particular value of a data variable defines a state. This is different from

flow-graph based models where particular data values are inconsequential, and a system

state is defined based on the state of control (for example, a particular path of execution).

Because of this merging of control and data states in CFSMs, synthesis and optimization

operations that are suited for data or control must either be applied uniformly or heuristics

be used to determine a data state from a control state. Also, from a system design point

of view, a CFSM based approach ignores modeling and the effect of timing constraints.

A CFSM based approach is expected to perform well for control dominated machines.

However, for systems with a high-degree of data-intensive operations, a CFSM model

may not be amenable to data-flow based optimizations.

2.2. CAD FOR HARDWARE-SOFTWARE CO-SYNTHESIS 33

2.2.3 Co-synthesis from UNITY

Barros, Rosenstiel and Xiong in [BRX93] present partitioning of system descriptions

using the UNITY language. UNITY is a language for the specification of concurrent

systems developed by Chandi and Misra [CM88]. A specification in UNITY consists of

variable declarations and initializations followed by multiple-assignment statements. An

assignment modifies a value held by a variable. This is referred to as a state transition

in the execution of the UNITY program. Assignment can be composed in sequence or

in parallel. In case of a choice, the selection of assignment statement to be executed is

done non-deterministically.

The partitioning scheme presented classifies UNITY assignments according a set of

five attributes which identify the degree of data dependency and parallelism between

assignments. Associated with each of these attributes is a set of implementation alter-

natives. A reference implementation is chosen. A two-stage clustering algorithm then

selects assignments to be grouped according to similarity of implementation alternatives,

data dependencies, resource sharing and performance. The clustered assignments are

scheduled for a given target architecture. Finally, an interface graph is constructed based

on clustering results. This process is then reiterated based on satisfaction of design

constraints.

2.2.4 Interface co-synthesis

Chou, Ortega and Borriello in [COB92] present an algorithm for synthesis of the inter-

face between hardware-software systems. This interface allows interactions between the

external devices and the program running on the processor. The result of interface syn-

thesis is a software driver program and a logic circuit that provides a physical connection

between the processor and external devices. This problem is solved in two parts: (a)

allocation of physical ports on the processor to various devices; (b) selection of software

driver routines.

Port allocation refers to assignment of processor ports to device ports. A processor

port can be shared if its use by different device ports does not cause bus contention or

a temporal overlap of the software drivers associated with the devices. Allocation of

34 CHAPTER 2. RELATED WORK

processor ports to software function I/O calls to a device is performed in steps: attempt

to share the device port to an already allocated port (conditional sharing); if conditional

sharing fails then attempt to allocate a new processor port; if both these steps fail, then

backtrack to find and make an allocated port shareable by addition of control hardware.

If additional hardware does not help in sharing, an encoding transformation is applied to

reduce I/O transfers. In the absence of applicability of any of these solutions, a memory-

mapped I/O is selected which is always possible, though it comes with significantly

higher delay and control overheads due to the protocols needed to implement memory

operations over a shared communication medium.

The chief advantage of this approach is its considerable efficiency in building suit-

able input/output interfaces for controlling external devices. These are, as opposed to

memory-mapped external communications, facilitated by a set of processor I/O ports. The

processor I/O ports, though limited in number, provide a low overhead communication

mechanism between software and hardware.

Chapter 3

System Modeling

This chapter examines issues in the specification and modeling of system functionality and

constraints for systems that are target of hardware-software co-synthesis. The essential

idea is to capture properties of a system without regard to its actual implementation. In

practice it is hard to do, save for specific application domains. Some would argue that

the more specific the application domain, the easier it is to develop a model. This work

is targeted towards co-synthesis of embedded systems for which the following properties

of target applications must be modeled and represented:

� The system consists of parts that operate at different speeds of execution,

� The interaction between parts of a system requires synchronization operations,

� There are constraints on the relative timing of operations.

A specification of a system functionality is done by means of a language. The

language primitives and associated semantics determine the detailed functionality unam-

biguously. This degree of detail is often unnecessary for purposes of analysis. Hence

models are needed.

In general, a model refers to an abstraction over its object, capturing important (but

simple) relationships between important components of the object. Models are often

needed in order to avoid creating detailed implementations. A model of a system helps

35

36 CHAPTER 3. SYSTEM MODELING

to estimate relevant properties, like area and delay, of its implementations.1 Similarly, a

constraint model is helpful in verifying satisfiability of imposed constraints.

For the purpose of model abstraction, sometimes generalizations and simplifications

are made in order to represent objects that may be conceptually similar but differ in

implementations. For example, a communication between two operations in a system

model may be accomplished by means of a direct connection or over a shared medium

such as memory or a bus or by using any of numerous protocols. A choice of a particular

communication mechanism depends upon the individual operations and the part(s) to

which they belong. For modeling purposes, a communication between two operations

in the same part is abstracted as a dependency between the operations. Communication

between operations belonging to different parts can be generalized to occur over ports.

Ports represent communication to a shared-memory or inter-task communication by means

of message-passing protocols (Section 3.4.1).

In the following section, we present our choice of the specification language. We

then present a graph-based model and describe properties of the model used. Finally, we

describe the constraints and a means of capturing them into the system model. Figure 15

shows the organization of this chapter.

3.1 System Specification using Procedural HDL

The search for a suitable language for specification is very much a subject of ongoing

research. A detailed analysis of specification language issues is beyond the scope of

this dissertation. For an overview of current research trends the reader is referred to

[Har92] [Hal93] [Mic94], and [Sch92] [BW90b] for languages used for specifying real-

time systems.

In order to formulate a practical co-synthesis approach, it is important that the lan-

guage used have a developed path to hardware synthesis. From the point of view of

hardware synthesis the most likely candidates are procedural and applicative languages

[Joh83] [Sar89].

1Though sometimes simulations of an implementation are resorted to, particularly in cases where the

mathematical complexity of a model analysis is overwhelming. A case in point are queueing systems. See

Chapter 4.

3.1. SYSTEM SPECIFICATION USING PROCEDURAL HDL 37

HDL Specification

Abstraction

Graph model

Model interactions

Constraint model

Constraint analysis Model properties

System Model

3.1

3.2

3.3

3.4

3.5

3.6

Chapter 4

Definitions

Semantics

Estimation of

hw and sw

properties

Figure 15: Organization of Chapter 3

The use of procedural hardware description languages (HDL) to specify system func-

tionality for synthesis into digital hardware circuits has been gaining popularity in recent

years. Most common languages used in practice today in this category are VHSIC Hard-

ware Description Language (VHDL) [IEE87], and Verilog [TM91].

Part of the reason for the popularity of procedural languages in hardware specification

is due to the familiarity of users with writing sequential programs. However, there

are important differences in the expression of control in a program as opposed to its

implementation in hardware. The program specification inherently assumes the existence

of a single thread of control and static data storage, whereas the execution of operations

in hardware is usually multi-threaded and is driven by the availability of appropriate

data. Multi-threading is possible in hardware due to availability of multiple resources

that are used to increase the degree of concurrency in operation execution. As a result,

when describing hardware as a program, one is faced with the difficulty of specifying a

concurrently executing set of operations as an ordered set of operations.

In contrast to an instruction-driven single-threaded linear-program representation,

data-flow graphs (DFG) provide a data-driven representation that naturally models

multiple-threads of execution (Figure 16). For this reason, the hardware for embed-

ded controllers and non-recursive DSP algorithms is more appropriately represented by

flow graphs instead of sequential programs used for procedural specification.

38 CHAPTER 3. SYSTEM MODELING

Data Driven
Multiple Threads of Execution

Single Thread of Execution
Instruction Driven

Linear, Static data store

Program

Data

Scheduling

Parsing and dependency analysis

Data Flow Graph

Figure 16: Linear code versus data-flow graph representations

To avoid this dichotomy of behavioral representations, most hardware synthesis al-

gorithms operate on an intermediate representation based on data-flow graphs [McF78]

[CKR84] [PPM86] [BCM+88]. This intermediate representation is generated by parsing

and dependency analysis of the procedural input specification.

Data flow graphs have sufficient expressive power to represent either a hardware

or software implementation. For example, a sequence of machine instructions can be

represented by a machine-level data-flow graph. Indeed, the expression-evaluation trees

generated by compilers (before the code-generation stage) and for hardware are forms of

a data-flow graph. However, these data-flow graphs, consisting of operations described at

the level of machine instructions, decrease the specification granularity too much to make

them useful for the analysis needed for hardware and software co-synthesis. Therefore,

data-flow graphs in our context are described using operations available at the language

specification level.

Because of these strengths of a data-flow representation, we develop a system model

based on data flow graphs. This model provides the basis for analyzing hardware and

software implementations. From data-flow representations we can generate an equivalent

sequence of instructions by scheduling various operation vertices in the data-flow graph.

Operation scheduling techniques are important even in the case of a single thread of

execution where static memory requirements are affected by scheduling, even though

all schedules result in the same overall latency (see Chapter 5). Latency minimality in

scheduling is realized by exploiting parallelism in the instruction stream which requires

multiple execution threads. We consider the algorithms for evaluating data-flow graphs

3.1. SYSTEM SPECIFICATION USING PROCEDURAL HDL 39

and their equivalent linear-code representations in Chapter 5. Thus the ability to analyze

and synthesize both hardware and software from data-flow graphs makes them a good

candidate for an unified system model. This model is described in Section 3.2.

Specification. We specify system functionality in HardwareC [KM92a], a hardware

description language. As mentioned before, the co-synthesis approach developed in this

thesis is formulated on a system model based on data-flow graphs, and is independent of

the actual language used to describe the system functionality. It is possible to use VHDL,

Verilog or any other procedural HDL for system specification without altering the co-

synthesis approach described in this dissertation. In the context of the present work,

the choice of HardwareC is helpful in leveraging the existing path to hardware synthesis

[MKMT90]. HardwareC follows much of the syntax and semantics of the programming

language, C. Relevant features of the language are described in Appendix A. For further

details the reader is referred to [KM90a].

The basic entity for specifying system behavior is a process. A process executes con-

currently with other processes mentioned in the system specification. A process restarts

itself on completion of the last operation in the process body. A process in HardwareC

is similar to corresponding constructs in other hardware description languages. There

are important differences, however. For example, in contrast to a process as a sequen-

tial set of operations in VHDL, a process in HardwareC can have nested sequential and

parallel statement blocks. On the other hand, the synchronous semantics of HardwareC

limit its expressiveness compared to VHDL. Example 3.1.1 describes a simple process

specification.

Example 3.1.1. Example of a simple HDL process

process simple (a, b, c)
in port a[8], b[8] ;
out port c[8] ;

{
boolean x[8], y[8], z[8] ;

<
x = read(a);
y = read(b);
>

z = fun(x , y);
write c = z;

}

40 CHAPTER 3. SYSTEM MODELING

This process performs two synchronous read operations in the same cycle, followed

by a function evaluation and a write operation, then it restarts. 2

Thus, the use of multiple processes to describe a system functionality abstracts the

parts of a system implementation that operate at different speeds of execution. The

effect of interaction between multiple processes is discussed further when we consider

the system model in Section 3.2.

Memory and Communication

Communication refers to the process of transfer of information between operations. Some

implementations of a communication require the execution of communicating operations

at the same time. The process of bringing operation executions together is referred to

as a synchronization. Synchronization is a general concept. Sometimes synchroniza-

tion is needed to manage availability of shared resources. In our HDL specifications,

synchronization is explicitly indicated only in the context of communication operations.

A static resource allocation and binding paradigm is assumed, thus obviating the need

for resource synchronization, i.e., avoiding conflicts when the same resource implements

more than one operation. Therefore, synchronization in this work is mentioned in the

context of communication operations.

All communication between operations within a process body is based on shared

memory. This shared storage is declared as a part of the process body (for example

variables x, y and z in the Example 3.1.1 above). Shared memory communication be-

tween operations is possible since it is relatively straight-forward to determine a (partial)

ordering of operations within a given process body that ensures the integrity of memory

shared between operations. However, the consistency of memory shared across concur-

rently executing processes must be ensured by the processes themselves. Inter-process

communication is specified by message-passing operations that use a blocking proto-

col for synchronization purposes. As with shared memory variables, the only data-type

available for a channel is a fixed-width bit-vector.

The use of message-passing operations simplifies the specification of inter-process

communication. It should be noted, however, that it is easy to implement message-

passing communication using memory shared between processes (the converse is not

3.2. SYSTEM MODEL AND ITS REPRESENTATION 41

true, however). Indeed, during system partitioning, reduction in communication overhead

is realized by simplifying the inter-model communication as discussed in later sections.

Example 3.1.2 below shows a process description containing a message-passing receive

operation.

Example 3.1.2. Example of a process with unbounded delay operations

process example (a, b, c)
in port a[8] ;
in channel b[8] ;
out port c ;

{
boolean x[8], y[8], z[8] ;

x = read(a);
y = receive(b);
if (x > y)

z = x - y ;
else

z = x * y ;
while (z >= 0) {

write c = y ;
z = z - 1 ; }

}

read refers to a synchronous port read operation that is executed unconditionally

as a value assignment operation from the wire or register associated with the port

a. receive is a message-passing based read operation where the channel b
carries additional control signals that facilitate a blocking read operation based on

the availability of data on channel b. 2

3.2 System Model and its Representation

As mentioned earlier, a model refers to an abstraction of functionality over which the

properties of an implementation can be explored. Due to the simplicity of models, these

are extensively used in system analysis and synthesis procedures. A system model refers

to a model of the complete system, whereas a process model refers to the abstraction of

a process used in a system.

In order to correctly estimate properties of hardware and software in our target system

implementation, we look for model characteristics that ease this process of estimation.

Abstractions of operation-level concurrency and synchronization are important for hard-

ware since these affect the amount of resources required for hardware implementations.

42 CHAPTER 3. SYSTEM MODELING

These also affect the satisfaction of timing constraints. Modeling software requires the

abstraction of its interaction with a non-trivial runtime environment.

In the following we present a graph-based model that represents operation-level con-

currency explicitly while making a provision for encapsulating operations due to the

runtime system by a making suitable choice of additional source and sink operations in

the graph-model.

As mentioned earlier, the specification of a digital system consists not only of a

behavioral or algorithmic description of its functionality, but also of a description of

its interaction with its environment and performance constraints. Correspondingly, any

model of a digital system must also abstract these important components:

1. Functionality or its behavior in response to environmental inputs.

Broadly speaking, there are two major way of modeling and analyzing the system

behavior: algebraic process-based and graph-based. Algebraic modeling techniques

such as process algebra [BK90, BW90a, Mil90] are commonly used in proof sys-

tems [AFR80, OG76]. Graph-based modeling uses techniques from graph theory

to analyze system properties. The main difference between the two approaches is

in the explicit expression of dependencies between processes and constituent op-

erations. However, the equivalence between algebraic and graph-based modeling

approaches has been demonstrated in [Tar81].

We take a graph-based approach to system modeling and representation. Section 3.3

describes the model and its properties.

2. A set of ports over which it interacts with its environment.

The behavior of an embedded system includes its interaction with the environment

that influences current and future system behavior. This reactive nature of system

functionality is expressed by means of its behavior on its ports. System interaction

with an environment can be seen as a generalization of the interaction between

its components. This generalization is supported by the port abstraction which in

implementation can be a memory location, another system, or a device. Ports and

port semantics are discussed in Section 3.4.1.

3.3. THE FLOW GRAPH MODEL 43

3. Constraints on properties of its behavior.

Constraints are an important part of system specification. Constraints can be placed

at various levels of abstraction. The specification of constraints is described in

Section 3.6 and their analysis is presented in the Chapter 4.

3.3 The Flow Graph Model

The flow graph model captures the essential computational aspects of the target system.

This model is presented in three parts: (1) Representation and definitions (Sections 3.3.1

and 3.3.2); (2) Execution semantics (Section 3.3.3); and (3) Abstraction of implementation

attributes (Section 3.3.4).

3.3.1 Representation and definitions

Definition 3.1 A flow graph model is a polar acyclic graph G = (V; E; �) where

V = fv0; v1; . . . ; vNg represent operations with v0 and vN being the source and sink

operations respectively. The edge set, E = f(vi; vj) g represents dependencies between

operation vertices. Function � associates a Boolean (enabling) expression with every

edge. In the case of edges incident from a condition vertex or incident to a join vertex,

the enabling expression refers to the condition under which the successor node for the

edge is enabled.

Table 1 lists operation vertices used in a flow graph model. It has been shown

that this set of simple operations (that is, all operations except wait and link) provides a

representation sufficient to capture universal computing power [Fos72]. A wait operation

is needed to capture the timing uncertainty in the system behavior due to its reactive

nature (see Section 3.4.2). The semantics of the link operation is discussed in the next

section in the context of hierarchy in flow graphs. Note that the presence of multiple

case values for the same branch leads to multiple edges between the condition and its

successor vertex, thus making the flow graph a multigraph.

The flow graph model is similar to sequencing graph model by Ku [KM92a] with the

following differences:

44 CHAPTER 3. SYSTEM MODELING

� A wait operation is added to abstract operations that represent synchronization

events at model ports. This distinguishes a synchronization operation such as

“wait(signal)” from a loop operation such as “while(!signal)” 2. The

reason for this distinction is that a software implementation of a wait operation is

different from that of a loop operation. Whereas, due to the presence of multiple

threads of execution in hardware, the wait operation is synthesized as a busy-waiting

loop operation.

� Conditional cond and join operations. These operations have been added for the

purposes of simplicity in data structures and constitute simple syntactic alteration

to the sequencing graph model.

The advantage of the above changes to the sequencing graph models of [KM92a] is that

they permit the distinction in abstraction of intra-model and inter-model communications

as based on shared memory or message passing respectively. This issue is discussed in

Section 3.5. However, the inclusion of conditional paths in the graph model introduces

data-dependent execution paths of operations in addition to the possible data-dependent

delay of operations. In contrast, the sequencing graph model features only the uncertainty

due to data-dependent delay of operations by treating the conditional paths as separate

graph models. Thus once invoked, all operations in a sequencing graph are eventually

executed. As said earlier, this is only a syntactical alteration since invocation of operations

on conditional paths is data-dependent in both cases.

For the sake of simplicity, a flow graph model, G, is often expressed as G = (V ; E) .

An edge ei j= (vi; vj) 2 E(G) represents a dependency, vi > vj , between operations

vi and vj such that for any execution of G(V) , operation vi must always be initiated

before operation vj . An edge represents either a data-dependency vi � vj or a control

dependency vi ��v j between operations vi and vj. In the case of a data dependency,

operation vi produces (writes) data (variable) that is consumed (read) by the operation v j .

A control dependency from operation vi to vj indicates one of the following conditions:

1. operation vj is environmentally constrained to be invoked only after invocation of

vi for correct behavior of the system being modeled,

2The loop operation is described later in the context of hierarchy.

3.3. THE FLOW GRAPH MODEL 45

Operation Description

no-op No operation

cond Conditional fork

join Conditional join

op-logic Logical operations

op-arithmetic Arithmetic operations

op-relational Relational operations

op-io I/O operations

wait Wait on a signal variable

link Hierarchical operations

Table 1: Operation vertices in a flow graph

2. vj is invoked conditionally (based on output of vi),

3. both operations vi and vj write to the same variable (multiple assignments).

4. operation vj writes a variable that is read by operation vi (anti-dependency).

In compiler parlance, a data-flow dependency is also called a read-after-write dependency.

Note that in the last two cases (multiple assignments, and anti-dependency), dependencies

occur only when the shared variable corresponds to a physical port. The relation >�

indicates the transitive closure of the precedence relation >.

Note that any successor to a conditional operation is enabled if the result of condition

evaluation selects the branch to which the operation belongs. This is expressed by

the enabling condition associated with the edge from the condition vertex. In general, a

multiple in-degree operation vertex is enabled by evaluating an input expression consisting

of logical and and or operations over enabling expressions of its fanin edges. Similarly,

on completion of an operation, all or a set of its successor vertices can be enabled. For

each vertex, its output expression is an expression over enabling conditions of its fanout

edges. These expressions determine the flow of control through the graph model.

A flow graph is considered well-formed if the input and output expressions use either

and or or operations but not both in the same expression. For a well-formed graph,

a set of input or output edges to a vertex is considered conjoined if the corresponding

46 CHAPTER 3. SYSTEM MODELING

rd

Source

Sink

nop

nop

rcv

cond

submpy

join

loop

conjoined

disjoined

disjoined

conjoined

nop

nop

Sink

Source

wr

1

2 3

4

5 6

7

8
10 11

12

9

1 1

1 1

c

c’

c’

c

c

1 1

1

1

sub

13

conjoined

1

1conjoined

Figure 17: Flow graph of process example.

expression is a conjunction over inputs or outputs. Similarly, a set of edges is disjoined

if the corresponding expression is a disjunction. A conjoined output directs the flow of

control to all its branches, whereas a disjoined output selects one of the successors based

on condition index. Similarly, a conjoined input requires arrival of control on all its

inputs before enabling the vertex. Structurally this makes the flow graph a bilogic graph

[Cer72]. For this reason, the flow graphs can be called bilogic sequencing graphs as

opposed to (unilogic) sequencing graphs introduced in [KM92a]. Bilogic graphs are a

fairly common occurrence in control graphs.

Example 3.3.3. Figure 17 shows example of a well-formed bilogic graph

model for the process described in Example 3.1.2. The example shows a one-bit

condition variable, c = (x > y). In general, it can a multi-bit variable, thus

leading to more than two branches. Note that for bilogic graphs, the join node is

not essential since an appropriate input expression can be assigned to the successor

node. However, a join node makes it easier in defining well-formed graphs. 2

Overall, the flow graph model consists of concurrent data-flow sections which are or-

dered by control flow. The graph edges represent dependencies, while conjoined branches

3.3. THE FLOW GRAPH MODEL 47

Operation Description Invocation times

call Procedural call 1

loop Iteration 1 or constant > 1 or variable

Table 2: Link vertices in a hierarchical flow graph

indicate parallelism between operations. (Conjoined and disjoined fanin and fanout of a

vertex are indicated by symbols ‘*’ and ‘+’ respectively).

3.3.2 Hierarchy

Flow graph models are hierarchically composed by means of link vertices. A link vertex

represents a call to a flow graph model in the hierarchy. The called flow graph may be

invoked one or many times depending upon the type of the link vertex. Table 2 lists

types of link vertices and associated invocation times. Function and procedure calls are

represented by a call link vertex where the body of function/procedure is captured in a

separate graph model. A loop link operation consists of a loop condition operation that

performs testing of the loop exit condition and a loop body. The loop body is represented

as a separate graph model. All loop operations are assumed to be of the form

repeat f

body

g until (condition);

that is, a loop body is executed at least once. HDL specification of ‘while’-loops is

transformed as follows:

while (condition) f

body

g;

)

if (condition) f

repeat f

body

g until (! condition);

g

A system consists of interacting parts, each of which can be abstracted into a flow

graph model. A system model refers to the abstraction of the system. A system model

consists of one or more flow graphs, that may be hierarchically linked to other flow

48 CHAPTER 3. SYSTEM MODELING

graphs. That is, a system model is expressed as, � = fG�
1; G�2; . . . ; G�

n
g, where G�

i
,

represents the process graph model Gi and all the flow graphs that are hierarchically

linked to Gi. Finally, a flow graph model that is common to two hierarchies of a system

model is considered a shared model or a shared resource.

Example 3.3.4. Model hierarchy in an Error Correction System.

Figure 18 shows an error correction system (ECS) that models the transmission of

digital data through a serial line. The ECS consists of an encoder front-end that

reads input data word, encrypts and transmits it serially as an encoded stream into

a noisy channel. The received bit stream is decoded and assembled into an output

data word.

The system graph model consists of three process graph models: fG�
encode

; G�
decode

; G�
noise

g.

The hierarchies of G�
encode

and G�
decode

share the flow graph model Gxor . 2

encode

noise

decode

generator

xor

data data

error?
encoded

stream
corrupted

stream

LINK VERTEX LINK VERTEX

FLOW GRAPH

Figure 18: Flow graph model for an error correction system.

3.3.3 Execution semantics

In the previous section we showed the representation of the system functionality in a flow

graph where operations represent vertices and edges represent dependencies between

operations. This abstraction would be incomplete without an appropriate operational

semantics associated with the execution of operations in a flow graph representation of the

system model (also referred to as the flow graph model). An execution of the flow graph

3.3. THE FLOW GRAPH MODEL 49

model corresponds to a simulation of the system behavior. Thus, the development of an

execution semantics is instrumental in understanding the possible behaviors exhibited by

a system implementation. More importantly, it helps in reasoning about the validity of

transformations to the graph model vis-a-vis system specification.

The execution semantics for a flow graph can be described as follows. At any time,

an operation may be waiting for its execution, presently executing or having completed its

execution. Correspondingly, we define the state, & , of a vertex to be one of fsr; se; sdg

where sr refers to the reset state, se to the enable state and sd to the done state. An

operation is enabled for execution once all its predecessors have completed execution

in the case of a input-conjoined vertex; and once any of its predecessors has completed

execution in the case of a input-disjoined vertex. The state of a vertex is changed from

done to reset if all its successors are either reset or done. This semantics is general, and

can support both pipelined and non-pipelined implementations of the graph model.

Example 3.3.5. Execution of process graph model example in Figure 17

reproduced below.

1

2 3

4

5 6

7

8 10

12

9

+

+

∗

∗

11

∗

∗
13

Non-pipelined

1 2 3 4 5 6 7 8 9 10 11 12 13
- - - - - - - - - - - - -
e - - - - - - - - - - - -
d e e - - - - - - - - - -
- d d e - - - - - - - - -
- - - d e - - - - - - - -
- - - - d - e - - - - - -
- - - - - - d e - - - - -
- - - - - - - e e - - - -
- - - - - - - e d e e - -
- - - - - - - e - d d e -
- - - - - - - d - - - d e
e - - - - - - - - - - - d
d e e - - - - - - - - - -
- d d e - - - - - - - - -
- - - d - e - - - - - - -
- - - - - d e - - - - - -
- - - - - - d e - - - - -
- - - - - - - e e - - - -
- - - - - - - e d e e - -

Pipelined

1 2 3 4 5 6 7 8 9 10 11 12 13
- - - - - - - - - - - - -
e - - - - - - - - - - - -
d e e - - - - - - - - - -
- d d e - - - - - - - - -
- - - d e - - - - - - - -
- - - - d - e - - - - - -
- - - - - - d e - - - - -
e - - - - - - e e - - - -
d e e - - - - e d e e - -
- d d e - - - e - d d e -
- - - d e - - d - - - d e
- - - - d - e - - - - - d
- - - - - - d e - - - - -
e - - - - - - e e - - - -
d e e - - - - e d e e - -
- d d e - - - e - d d e -
- - - d - e - d - - - d e
- - - - - d e - - - - - d
- - - - - - d e - - - - -

This table shows a particular sequence of operation executions for a given data

input. Symbols ‘e’ and ‘d’ indicate enable and done states respectively. A dash ‘-’

50 CHAPTER 3. SYSTEM MODELING

indicates the reset state. No assumption about timing of the operations is made, that

is, consecutive rows in the table above can be spaced arbitrarily over the time axis.

Thus, the execution of a flow graph progresses as a wavefront of operations are

enabled for execution. The operations may complete at different times depending

upon the delay of the individual operations.

The table on the left shows the non-pipelined execution of the graph model, that

is, the source vertex is enabled again only after the completion of all operations

in the graph model. On the contrary, an execution is considered pipelined if the

source operation is enabled before completion of all operations. Therefore, in a

pipelined implementation, there is more than one wavefront of enabled operations

that progresses through the graph model at any time. In general, pipelining of flow

graphs requires generation of pipeline stall and bypass control needed to accommo-

date pipelining of variable delay and synchronization operations. In this work, we

consider restricted pipelining using buffers only in the context of software synthesis

in Chapter 4. For this pipelined execution, the minimum number of steps before

the source operation can be enabled is determined by the maximum number of the

steps taken by any operation. 2

3.3.4 Implementation attributes

In this sub-section we define operation and graph attributes that are essential to performing

the constraint analysis described in next chapter. Informally, an implementation, I(G),

of a graph model, G refers to assignment of delays and size properties to operations in G,

and a choice of runtime scheduler, � , that enables execution of source operations in G.

This actual assignment of values is related to the hardware or software implementation

of operations in G. For non-pipelined hardware implementations, the runtime-scheduler

is trivial, the source operation is enabled once its sink operation completes (and the

graph enabling condition is true for conditionally invoked graphs). For software, the

runtime scheduler refers to the choice of a runtime system that provides the operating

environment for execution of operations in G. A runtime system is characterized by its

ability to preempt and prioritize operations. These are discussed in Chapter 5.

Size properties

Size attributes refer to the physical size and pinout of implementations of operations and

graphs. The meaning of size for hardware and software implementations is different. A

3.3. THE FLOW GRAPH MODEL 51

hardware implementation consists of hardware resources (also called data-path resources),

control logic, registers, and communication structures likes busses and multiplexor cir-

cuits. The size of a hardware implementation is expressed in units of gates or cells

(using a specific library of gates) required to implement the hardware. Each hardware

implementation has an associated area that is determined by the outcome of the physical

design. We estimate hardware size assuming a proportional relationship between size and

area. The size attribute for software consists of program and data storage required.

In general, it is a difficult problem to accurately estimate the size of the hardware

required from flow graph models. Indeed, the size of implementation is one of the

metrics that hardware synthesis attempts to minimize! Estimation in this context really

refers to relative sizes for implementations of different flow graphs, rather than an ab-

solute prediction of the size of the resulting hardware as formulated in [JMP89, KR93].

Notationally, the hardware size, S of an operation refers to its size as a sum of sizes

of hardware resources required to implement the operation, associated control logic and

storage registers. The size of a graph model is computed as a bottom-up sum of the size

of its operations.

Even though we describe constraints later in this chapter, the effect of constraints on

hardware size should also be noted. The effect of constraints, specifically on resource

usage, is to limit the amount of available concurrency in the flow graph model. The

more constraints on available hardware resources, the more operation dependencies are

needed to ensure constraint satisfaction. The effect of timing constraints, on the other

hand, is to explore alternative implementations at a given level of concurrency. Here we

assume that the expressed concurrency in flow graph models can be supported by available

hardware resources. That is, serialization required to meet hardware resource constraints

has already been performed. This is not a strong assumption, since the availability of

major resources like adders and multipliers are usually known in advance.

Capturing memory side-effects of a software implementation

A graph model captures the functionality of a system with respect to its behavior on its

ports. The operational semantics of the graph model requires use of an internal storage

52 CHAPTER 3. SYSTEM MODELING

in order to facilitate multiple-assignments in HDL descriptions. Whereas additional vari-

ables can be created that avoid multiple assignments to the same variable, assignments

to ports must still be multiply assigned in a flow graph model. Further, a port is often

implemented as a specific memory location (that is, as a shared variable) in software. The

memory side-effects created by graph models are captured by a set M(G) of variables

that are referenced by operations in a graph model, G. M(G) is independent of the

cycle-time of the clock used to implement the corresponding synchronous circuitry and

does not include storage specific to structural implementations of G (for example, control

latches).

The size, S (G), of a software implementation consists of the program size and the

static storage to hold variable values across machine operations. The static data storage

can be in the form of specific memory locations or on-chip registers. This static storage

is, in general, upper bounded by the size of variables in M(G) defined above. In order to

estimate software size, a flow graph model is not enough. In addition, knowledge of the

processor to be used and the type of runtime system used would be needed. We discuss

the processor abstraction and runtime environment in Chapter 5.

Pinout, P (G) refers to the size of inputs and outputs in units of words or bits. A

pinout does not necessarily imply the number of ports required. A pinout port may be

bound to a number of input/output operations in a flow graph model.

Timing properties

The timing properties of the system model are derived from the timing properties of

the flow graph models used to build the system model. For synthesis into hardware,

the flow graph model is assumed to represent an abstraction of the synchronous digital

hardware and as such its timing properties are derived using a bottom-up computation

from individual operation delays.

Let us first consider non-hierarchical flow graphs, that is, graphs without link vertices.

The delay, �, of an operation refers to the execution delay of the operation. We assume

that for a graph model, the delay of all operations are expressed as number of cycles for

a given cycle time associated with the graph model. In a non-hierarchical flow graph,

the delays of all operations (except wait) are fixed and independent of the input data.

3.3. THE FLOW GRAPH MODEL 53

The wait operation offers variable delay which may or may not be data-dependent

depending upon its implementation. The latency, �(G), of a graph model, G, refers

to the execution delay of G. The latency of a flow graph may be variable due to the

presence of conditional paths.

Next, the hierarchical flow graphs also contain link vertices such as call and loop

which point to flow graphs in the hierarchy. Therefore, an execution delay can be

associated with link vertices as the latency of the corresponding graph model times the

number of times the called graph is invoked. Since the latency can be variable, therefore,

the delay of a link vertex can be variable. It may also be unbounded in case of loop

vertices, since these can, in principle, be invoked unbounded number of times.

As mentioned earlier, the delay of wait operation depends upon its implementation.

For instance, in a busy-wait implementation, the wait operation is implemented as a

loop operation that iterates until the concerned input is received. This implementation

is commonly used for hardware synthesis [KM92a]. Another implementation of wait

operation would be to cause a context-switch which is particularly applicable for software

implementations. For this implementation, the delay of the wait operation is characterized

as a fixed quantity.

Length attribute and its computation

We define a lower bound on latency as the length, `(G) 2 Z+, of the longest path

between the source and sink vertices assuming the loop index to be one for the loop

operations3. In presence of conditional paths, the length is a vector, ` =(` [i]) where

each element ` [i] indicates the execution delay of a path in G. The elements of àre

the lengths of the longest paths that are mutually-exclusive. No particular ordering of

elements in ` is assumed.

The length computation for a flow graph proceeds by a bottom-up computation lengths

from delays of individual operations. Given two operations, u and v with delays, �u, �v ,

these can be related in one of the following three ways in the flow graph:

Sequential composition: that is, u > v or v > u . The combined delay of u and v is

3Recall that loop vertices represent ‘repeat-until’ type operations. The length computation treats the

loop operation as a call operation.

54 CHAPTER 3. SYSTEM MODELING

represented by �u � �v and is defined as

�u �� v
:
=� u + �v (3: 1)

Conjoined composition: when the operations u and v belong to two branches of a

conjoined fork. A conjoined composition is denoted by
 and the delay is defined

as

�u
� v
:
=max(� u; �v) (3: 2)

Disjoined composition: when the operations u and v belong to two branches of a dis-

joined fork. This composition is denoted by symbol � and the combined delay is

defined as

�u �� v
:
= (�u; �v) (3: 3)

Clearly, a disjoined composition of two delays leads to a 2-tuple delay since the two

operations belong to mutually exclusive paths. This composition of delays is generalized

to composition of paths as follows. In case of a sequential composition of two path

lengths, `u and `v with cardinality n and m respectively, the resulting path length contains

n �m elements, consisting of sum over all possible pairs of elements of `u and `v . In

case of a conjoined composition, the resulting path length is of cardinality n �m and

consists of maximum over all possible pairs of elements. Finally, in case of a disjoined

composition, the resulting path length is of cardinality n +m and contains all elements

of `u and `v . With this definition, the composition operators, �;
 and � form a simple

algebraic structure called commutative monoid, on the the power set of positive integers,

Z+ with 0 as an identity element.

In practice, one often needs only the upper and lower bounds on latencies. Nota-

tionally, `m and `M refer to the minimum and maximum element in ` respectively. For

well-formed graphs, `m and `M can be computed efficiently by collapsing conditional

paths into a single operation vertex with minimum or maximum branch delay respective-

ly. We state without proof the following properties:

max(`1 �` 2) = ` 1M +̀ 2M (3.4)

min(`1 �` 2) = ` 1m +̀ 2m (3.5)

3.3. THE FLOW GRAPH MODEL 55

max(`1
` 2) = max(` 1M ; 2̀M) (3.6)

min(`1
` 2) = max(` 1m; 2̀m) (3.7)

max(`1 �` 2) = max(` 1M ; 2̀M) (3.8)

min(`1 �` 2) = min(` 1m; 2̀m) (3.9)

Recall that a flow graph is considered unilogic if it all the fanin and fanout edges are

only conjoined. A bilogic graph has both conjoined and disjoined relations on fanin and

fanouts. The following theorem says that the maximum over the path length, `M , in a

bilogic graph can be obtained simply by computing the longest path assuming the graph

to be unilogic.

Theorem 3.1 Given a bilogic graph, Gbi logi c, let Guni l og i cbe a graph created by treating

all fanin and fanout edges to be only conjoined. Then,

`M(Gb i l og i c) =` (Guni l og i c) (3: 10)

Proof: Proof is by induction over expression for path length. See

Appendix B.]

Example 3.3.6. Latency and path length computations for bilogic flow graphs.

Figure below shows a process graph model, G3 and graph models on its calling

hierarchy. G3 calls G2 that constitutes body of a loop operation, v3. G2 in turn

calls G1 that constitutes the body of a loop operation, v2. Numbers in the circle

indicate delay of the operations.

For this set of graph models, the path lengths are:

`(G1) = 2 � (0; 1)� (1) =(3; 4)

`(G2) = 2 � 3 � (1; 6)� (̀G1) =(6; 11)� (̀G1) =(9; 10; 14; 15)

`(G3) = 2 � 2 � (0; (5; 7))�(̀G2) =4 � (0; 5; 7)�(̀G2) =(4; 9; 11)�(̀G2)

= (13; 14; 18; 19; 20; 21; 23; 24; 25; 26)

Possible latencies are as follows:

�(G1) =` (G�
1) = (3; 4)

� (G2) =` (G�
2) = (6; 11)� x � (3; 4) =(6 +3x ; 6 +4x ; 11+3x ; 11+4x)

� (G3) =` (G�
3) = (4; 9; 11)� y � � (G2) =(4; 9; 11)� y [(6; 11)� x (3; 4)]

= (4; 9; 11)� y (6; 11)� y x (3; 4)

= (4 +6y +3x y ; 4 +6y +4x y ; 4+11y +3x y ; 4 +11y +4x y +

9 +6y +3x y ; 9 +6y +4x y ; 9 +11y +3x y ; 9+11y +4x y +

11 +6y +3x y ; 11+6y +4x y ; 11+11y +3x y ; 11+11y +4x y)

56 CHAPTER 3. SYSTEM MODELING

0

0 0

0

0

0

+

+

+

+

v3

5 7

0

0

0

v2

1 6

0

0

0

+

+

+

+

0 1

1

y

x

G3 G2 G1

A

BC

D

b !b

!c c

!ee

g !g

2

2

2

3

2

Note that the upper bound on latencies are given by

max� (G1) = ` M(G1)

max� (G2) = ` M(G2) +(x � 1) � M̀ (G1)

max� (G3) = ` M(G3) +(y � 1) � M̀(G2) +(y � 1) � (x � 1) � `M(G1)

2

Rate of execution

The instantaneous rate of execution, e�i(t) of an operation vi is the marginal number of

executions n of operation v i at any instant of time, t .

e�i(t) :
=

dn

dt
= lim

�t!0

�n

�t
(sec�1) (3: 11)

Due to the discrete nature of executions (i.e., n2 Z +), we define

e�i(t) :
=

8><>:
1

t� tk(vi)
k such that tk(vi) < t <t k+1 (vi)

0 t � t1(vi)

where tk(vi) refers to the start time of the k th execution of operation vi. Assuming a

synchronous execution model with cycle time � , we define a discrete rate of execution

b�i(l) = e�i(t) jt =l � � =
1

l � tk(vi)

�

(cycle�1)
tk(vi)

�
�l �

tk+1 (vi)

�
(3:12)

3.3. THE FLOW GRAPH MODEL 57

We define the rate of execution at invocation k of an operation v i as the inverse of

the time interval between its current and previous execution. That is,

�i(k)
:
= e�i(t) jt =t k(vi)

=
1

tk(vi) �t k�1 (vi)
(sec�1) (3.13)

=
�

tk(vi) �t k�1 (vi)
(cycle�1)

By convention, the instantaneous rate of execution is 0 at the first execution of an op-

eration (t0 =�1). Note that � i is defined only at times when operation vi is executed

whereas e�i is a function of time and defined at all times. In statistics such a function

is commonly referred to as of lattice type. In our treatment of execution rates and con-

straints on rates, only rates at times of operation execution are of interest. Hence we use

the definition of � as the rate of execution.

Example 3.3.7. Figure 19 shows a simulation of the graph in Example 3.3.6.

Figure 19: Simulation of the graph model in Example 3.3.6

Outputs labeled A, B and C refer to the execution of operation vertices ‘A’, ‘B’

and ‘C’ respectively.

58 CHAPTER 3. SYSTEM MODELING

From the figure, assuming the same cycle time for all graphs, the rate of execution

of these operations is given as (cycle�1
) Consider operation ‘A’ that is executed at

times 22, 26, 30, 51, 66, 70, 84 and 88. For this operation, �A(0) =0 by definition,

�A(1) =
1

26�22 =
1
4 and so on. The following table lists the rate of execution for

operations ‘A’, ‘B’ and ‘C’.

k ! 1 2 3 4 5 6 7

�A(k) 0 1
4

1
4

1
21

1
15

1
4

1
14

�B(k) 0 1
34

1
10

1
23

�C(k) 0 1
32

1
40

1
18

Thus the rate of execution of an operation varies as the interval between successive

executions of the operation varies. A maximum rate of execution occurs following

the shortest interval between two successive executions, and is always less than or

equal to 1 cycle�1. 2

For a graph model, G, its rate of reaction, is defined as the rate of of execution of

its source operation, that is,

%G(k)
:
= �0(k) (3:14)

The reaction rate is a property of the graph model and it is used to capture the effect on

the runtime system and the type of implementation chosen for the graph model. To be

specific, the choice of a non-pipelined implementation of Gleads to

%G(k)
�1 =� G(k) + G(k) (3:15)

where (k) refers to the overhead delay, that represents the delay in reinvocation of G.

(k) may be a fixed delay representing the overhead due to a runtime scheduler or it

may be a variable quantity representing delay in case of conditional invocation of G. For

a pipelined implementation, the degree of pipelining determines the reaction rate of G.

As the number of pipestages increases, the reaction rate of the graph model increases.

With appropriate choice of pipeline buffers, it is possible to accommodate different rates

of execution for operations in a graph model.

3.4. INTERACTION BETWEEN SYSTEM AND ITS ENVIRONMENT 59

Shared Memory Message Passing

memory
control

datadata data

control

Figure 20: Shared memory versus message passing communication

3.4 Interaction Between System and its Environment

3.4.1 Ports and communication

Input and output operations in a digital system are performed over ports and channels.

Since the HDL description can be implemented either as hardware or software, the seman-

tics attached to the input/output ports of a system model must be suitable for specification

of reactive hardware/software systems. In particular, the semantics of port/channel ac-

cesses must be compatible with the semantics of variable accesses. We examine these

two together in the general context of communication in the graph model.

Communication in a system graph model �refers to the transfer of a data value from

one operation vertex to another operation vertex or to the data transfer between operations

and the environment external to �.

The operation vertex generating the data value is referred to as the producer vertex

and the operation vertex using the data value is referred to as the consumer vertex.

Communication between operations is either based on shared memory (SM) or message

passing (MP). In the case of a shared memory communication between two operations,

the sender operation modifies the contents of a storage (variable) that is shared by the

receiving operation. A variable can be written by more than one operation. In the

case of message passing communication between two operations, the actual data transfer

is preceded by a handshaked communication protocol that requires the sending and

60 CHAPTER 3. SYSTEM MODELING

receiving operations to execute simultaneously (Figure 20). A communication protocol

is a general term that encompasses many possible schemes to facilitate data transfer.

For all operations in a graph model, G, all communication is based on shared

storage, M(G). Inter-model communications are represented by explicit I/O operation

vertices, which on execution, may alter the model storage M(G). An I/O operation ver-

tex encapsulates a sequence of operations as a particular ‘communication protocol’. A

communication protocol may be blocking or non-blocking. Since protocol is specified in-

dependently for the producer and consumer operations, it can be blocking or non-blocking

at either or both ends. Further, a non-blocking protocol may also be finitely buffered.

These protocols are built using simpler operations available in the flow graph model.

Section 7.2.2 shows implementations of these protocols.

As mentioned earlier, dependencies between operations due to shared storage are rep-

resented by corresponding edges between operations. In the case of a read-after-write

operation, a data-edge is indicated. For all other dependencies, a control edge is used.

Communication based on message-passing is by means of channels that connect the

communicating models. A channel, as a variable, can be accessed by multiple opera-

tions in the graph model. In our model, all communication dependencies are statically

specified, that is, shared memory and message-passing channels are compiled from input

descriptions.

3.4.2 Non-determinism in flow graph models

A flow graph model consists of operations that present fixed delay or variable delay

during execution. This variance in delay is caused by the dependence of operation delay

on either the value of input data or on the timing of input data.

Example of operations with value-dependent delays are loops with data-dependent

iteration counts. Since the execution delay (or latency) of a bilogic flow graph can, in

general, be data-dependent due to the presence of conditional paths, the delay of a call

vertex is also variable and data-dependent. In bilogic flow graphs, link vertices present

value-dependent delays.4

4We note here that for unilogic flow graphs, the conditional operation is also a link operation which

presents a value-dependent delay corresponding to the delay of the operations in the branch taken.

3.5. ND, EXECUTION RATE AND COMMUNICATION 61

The second category concerns operations with delays that depend upon a response

from the environment. An operation presents a timing-dependent delay only if it has

blocking semantics. The only operation in the flow graph model with blocking semantics

is the wait operation. The read and write operations are treated as non-blocking. Their

blocking versions are created by adding additional control signals and the wait operation.

For this reason, the wait operation is also referred to as a synchronization operation.

Data-dependent loop and synchronization operations introduce uncertainty over the

precise delay and order of operations in the system model. Due to concurrently operating

flow graph models, these operations affect the order in which various operations are

invoked. Due to this uncertainty, a system model containing these operations is called a

non-deterministic [BEW88] model and operations with variable delays are termed non-

deterministic delay or NDoperations. Note that the non-determinism here is caused

by the uncertainty in timing behavior of a concurrent system, and is different from

the meaning of non-determinism used in the context of finite-state sequential machines

[HU79].

3.5 ND, Execution Rate and Communication

As mentioned earlier, a system model consists of parts (abstracted as graphs) that may

execute at different speeds. For a given input/output operation, the system throughput at

the corresponding port equals the rate of execution of the operation. For a flow graph

containing no conditional and NDoperations, the rate of execution of all operations is

the same and is independent of input data. Therefore, the reaction rate of the graph, G,

%G(k) =� vi
(k) for all v i 2V(G) and for all k� 0

Thus the execution of Gproceeds at a single rate. For a single-rate graph model, the

system throughput at all ports is identical. For two single-rate graph models, G1 and

G2, there exists a fixed number of invocations of G1 with respect to an invocation of G2

given by the ratio
%1
%2

.

62 CHAPTER 3. SYSTEM MODELING

Example 3.5.8. Single rate graph models.

G1 G2

GetInfo DisplayUpdate

Velocity
Display

Sensor

Figure above shows part of a vehicle cruise controller that consists of two single-

rate graphs G1 and G2 implemented in hardware and software respectively. The

latencies of the respective implementations are, �G1
= 25 � �h sec with G1

= 0

and �G2
= 665 � �s � sec with G2

= 85 cycles. The clock cycle times for the

hardware and software are 500 ns and 125 ns respectively. The reaction rates are

%G1
= 80; 000=sec and %G2

= 10; 666:6=sec. Therefore, for each execution of the

software model, there are a fixed number of 80000
10666:6

= 7: 5 executions of hardware.

2

The reaction rate of a graph model containing conditional and ND operations is

variable. A graph model with variable reaction rate is termed a multi-rate execution

model. A multi-rate model has a bounded reaction rate if the model does not contain

ND operations, else it is unbounded.

All communication in a single-rate graph model can be accomplished by means of

shared storage since any execution of a graph model observes the partial order induced

by its edges, regardless of individual operation delays. However, the relative ordering of

operations across the graph model are dictated by the execution delay of individual oper-

ations. For software implementations this may lead to possible interleaving of operations

in the graph models whereas a hardware implementation also includes the possibility of

concurrent execution of operations across processes.

For any communication between operations across the graph models, a safe execution

requires that the dependencies induced due to communication are always respected. For

example, in Figure 21, a communication from operation c in G2 to operation a in G1

implies that only those executions are safe in which execution of c precedes execution

of a . There are two ways to ensuring that this ordering from c to a is always observed.

One is to construct a single flow graph model by merging G1 and G2 in which an edge

is added from c to a . This may not always be possible, particularly, if G1 and G2

3.5. ND, EXECUTION RATE AND COMMUNICATION 63

memory memory

messages

Graph model Graph model

single
rate multi

rate

single
rate

a

b

c

d

G1
G 2

Figure 21: Graph model properties

have different reaction rates or use different clocks. An alternative is then to make the

operation a block until c is available (and vice-versa). This is accomplished by using a

message-passing protocol between G1 and G2.

Example 3.5.9. Use of message passing for communication across two graph

models.

a

b

d

send

u

w

x

rcv

G1 G2

b send wrcv

G1 G2

Single−rate

* *

**

+

+

+

+

cond cond

join join

Single−rate Multi−rate Multi−rate

Figure 22: Communication across models.

Figure 22 shows communication across two models, G1 and G2. In the first case, G1

and G2, are single rate. Since the send and receive operations are invoked for

each execution of the respective graph models, therefore, the rates of execution of

operations b and w are identical. In the second case the execution of synchronization

is conditionally invoked. Hardware-software implementations of G1 and G2 benefit

by this synchronization operation since it allows G 1 and G2 to run at their reaction

rates and synchronize only when a communication is indicated.

64 CHAPTER 3. SYSTEM MODELING

The advantage of message-passing is realized when communicating across multi-

rate model(s). In the case of single-rate models, use of message passing provides a

notational simplicity; however, it is more efficient to implement the communication

based on shared-memory. This is because a shared memory communication uses

much less overhead both in operation delay as well as control complexity. In this

context, a completely non-blocking message-passing communication can be thought

of as a shared memory communication. 2

In principle, communication between two single-rate models can be accomplished by

means of shared memory. This is, however, not convenient for different implementations,

such as one in hardware and the other in software, of single-rate graph models, even if they

have the same reaction rate. This is because, hardware and software implement storage

differently even though the access semantics in graph models are identical. On the other

hand, communication across two multi-rate models using the same implementation can

be accomplished by shared memory, as shown by the following example.

Example 3.5.10. Implementation of communication across multi-rate models

by means of shared memory.

An example of a multi-rate model using shared memory is the complete hardware

implementation of the loop operation in [FKD92]. As shown in Figure 23, the loop

G+ G

signal1

wait2

loop

body

SHARED MEMORY MESSAGE PASSING

wait1

signal2

control body

All hardware implementation. Hardware−software implementation.

a b a b

send a;

receive a;

send b;

receive b;

Figure 23: Shared-memory versus message-passing implementations of loop operation.

body communicates with the calling body by means of shared storage, even though

the operations in the loop body are executed multiple times for each execution of the

3.6. CONSTRAINTS 65

operations in the calling-body. The safety of the executions is ensured by blocking

the execution of the parent body (by operation wait2) until the loop has terminated.

2

A question naturally arises: what then is gained by using message passing based com-

munication between the parent body and the loop body? The answer depends upon the

memory side-effects created by the loop operation and the kind of loop operation be-

ing used. In the case of loop operations with no memory side-effects, the parent body

need not be blocked, i.e., operation wait2 can be eliminated, thus providing additional

flexibility in scheduling of operations. While such flexibility comes with significant addi-

tional overhead in hardware, software implementations of flow models require relatively

minor operations in the run-time environment to make use of this flexibility to overlap

operation. In particular, the execution of a blocking wait operation can be overlapped to

that of run-time scheduling operation. This is accomplished by including the delay of the

wait1 operation into the runtime delay without leading to loss of processor utilization in

software. Therefore, different implementations of operations even within a graph model

are more conveniently handled by the use of message-passing based communications than

shared memory. This allows the hardware and software parts to run at suitable reaction

rates while synchronizing only when necessary.

3.6 Constraints

Constraints are an integral part of the system specification. Constraints can be on the size

and/or on the performance of the desired implementation. Typically, the goal of system

synthesis is to explore solutions that optimize parameters while observing constraints on

specified parameters.

In the context of mixed system synthesis, performance constraints can be on system

response time and degree of resource utilization. These performance constraints have

varying degrees of time granularity and tolerances. Further, different embedded systems

operate under varying types and degrees of constraints. For example, for systems used

in control applications, real-time response time constraints are most important, while to

systems used in on-line transactions and data-processing, synchronization and consistency

66 CHAPTER 3. SYSTEM MODELING

constraints are of most importance.

In general, these performance constraints are too abstract to be handled directly on

a system model that is described at the level of individual operations. For this reason,

we first devise timing constraints that apply to the level of individual operations, devel-

op a runtime system to support the operation of mixed systems and finally develop a

relationship of operation-level timing schema to system performance parameters in the

context of the runtime system environment. For a given set of performance constraints,

there can be more than one assignment of operation-level constraints. The selection of

appropriate operation-level constraints corresponding to a given performance constraint

would then require a clear understanding of the effect of constraints in system partitioning

for hardware and software. In the following, we discuss operation level constraints and

their implications for a mixed system design. The system performance constraints are

developed in the context of a runtime system described in Chapter 5.

Timing Constraints are of crucial importance, since in our approach to co-synthesis

they determine the feasibility of mixed implementations. We use these constraints to drive

a partitioning algorithm in choosing operations for hardware or software implementation.

Timing constraints are of the following types:

1. Min/max delay constraints

2. Execution rate constraints

These operation-level constraints are devised in order to make the task of constraint

analysis tractable in the context of our system model based on flow graphs. We note that

these two constraint types capture the durational and deadline timing constraints used in

specifying real-time systems [Das85].

3.6.1 Min/max delay constraints

Let us first consider the timing constraints of the first type, that is, the min/max delay

constraints. Min/max constraints are specified operation-to-operation and are needed to

ensure required separation between the execution of two operations. If the operations are

3.6. CONSTRAINTS 67

input/output related, then a min/max constraint implies a certain bound on the response

from the environment in which a circuit operates (e.g., memory), or a bound on the

response of the system to the environment.

In the case where min/max constraints are on operations other than input/output,

min/max constraints account for delays of specific components or resources. By default,

any sequencing dependency between two operations, induces a minimum timing con-

straint which must be satisfied in order to observe the execution semantics of the flow

graph.

For operations implemented in software that is running on a single processor, the

important min/max constraints are those on input/output operations. This is due to the

fact that a single-processor enforces execution of only a single thread of control at any

time. In fact, the insensitivity to relative inter-operation delays in interleaved execution

threads is a necessary condition for ensuring functional correctness of the software. Note

this situation is different in hardware (or software on multiple processors) where multiple

threads of control can coexist simultaneously.

Recall that tk(vi) represents the start time of the kt h occurrence of operation vi. A

minimum timing constraint, li j � 0 from operation vertex vi to vj is defined by the

following relation between the start times of the respective vertices:

tk(vj) � tk(vi) +l i j for all k > 0 (3: 16)

For notational simplicity, we drop the suffix k when the constraint applies universally

to k . Similarly a maximum timing constraint, ui j � 0 from vi to vj is defined by the

following inequality:

t (vj) � t (vi) +u i j (3: 17)

3.6.2 Execution rate constraints

Execution rate constraints refer to constraints on the interval of time between successive

executions of the same operation. In particular, execution rate constraints on input (out-

put) operations refer to the rates at which the data is required to be consumed (produced).

We assume that each execution of an input (output) operation consumes (produces) a sam-

ple of data. Execution rate constraints on input/output operations are referred to as data

68 CHAPTER 3. SYSTEM MODELING

rate constraints. In the literature, data rate constraints have also been referred to as

throughput constraints as opposed to min/max constraints which are expressed on delays

associated with a single execution.

A minimum data rate constraint, ri (cycles�1), on an input/output operation defines

the lower bound on the instantaneous execution rate of operation vi. Similarly, a maximum

data rate constraint, Ri (cycles�1), on an I/O operation defines the upper bound on the

instantaneous execution rate of operation vi.

�vi(k) � Ri 8 k > 0 [max rate]

) tk(vi) � tk�1(vi) � � � Ri
�1 8 k > 0

(3: 18)

Similarly,

�vi(k) � ri 8 k > 0 [min rate]

) t k(vi)� tk�1(vi) � � � ri
�1 8 k > 0

(3: 19)

Let us now consider, an operation, vi, in a graph model G. In general, when con-

sidering rate of execution of vi we must consider the successive executions of vi that

may belong to separate invocations of G. On the other hand, a relative execution rate

constraint of an operation, vi, with respect to a graph model, G, is a constraint on the

rate of execution of vi when G is continuously enabled and executing. In other words,

rG
i
� �vi(k) � RG

i
(3: 20)

for all k > 0 and there exists an execution, j, of G such that

tj(v0(G)) � tk�1(vi) � tk(vi) � tj(vN (G)) (3: 21)

The motivation behind the relative rate of execution is to express rate constraints that

are applicable to a specific context of execution as expressed by the flow of execution

that enables the specified graph G. Clearly, a relative rate constraint is meaningful

when expressed relative to a flow graph in the hierarchy in which the operation resides.

Further, as we shall see in the following chapter, the maximum execution rate of an

operation is achieved when the flow graph in which the operation belongs is continuously

enabled. Therefore, a relative maximum rate constraint, RG, is always trivially satisfied

if a corresponding maximum rate constraint is satisfied. Therefore, it is the relative

minimum rate constraints that are used in practice.

3.7. SUMMARY 69

3.6.3 Specification of timing constraints

Operations in the flow graph model correspond to language-level operations, that is,

operations supported in the HDL. Therefore, it is easy to specify timing constraints by

tagging the corresponding statements in HDL descriptions.

In the case of nested loop operations, rate constraints are indexed by the corresponding

loop operations. The loops are indexed by increasing integer numbers. The inner-most

loop is indexed 0. In the Example 3.6.11 below there are two relative rate constraints on

the read operation with respect to the two while statements.

Example 3.6.11. Specification of rate constraints in presence of nested loop
operations.

process example (frameEN, bitEN, bit, word)
in port frameEN, bitEN, bit;
out port word[8];

{
boolean store[8], temp;
tag A;

while (frameEN)
{

while (bitEN)
{

A: temp = read(bit);
store[7:0] = store[6:0] @ temp;

}
write word = store;

}
attribute "constraint minrate of A = 100 cycles/sample";
attribute "constraint minrate 0 of A = 1 cycles/sample";
attribute "constraint minrate 1 of A = 10 cycles/sample";

}

In this example, an r of 0.01 per cycle is indicated on the read operation. In

addition, two relative minimum data rates of 1 and 0.1 per cycle are indicated for

the read operation with respect to loops while(bitEN) and while(frameEN)
respectively. 2

3.7 Summary

The design of a suitable language for system specification is a topic of active research

interest and beyond the scope of this work. We follow the current practice in system

design by using a procedural language input as specification. Clearly, this does not imply

70 CHAPTER 3. SYSTEM MODELING

that this means of specification is ideal, except that it serves our purpose of specifying

sufficient information in order to make system co-synthesis possible.

Most of this chapter defines the input model used for abstraction of system functional-

ity and constraints. We develop a representation based on graphs that meets the essential

requirements of capturing explicit concurrency, synchronization, data and control flow.

This model is general enough to allow synthesis of both hardware and software as well as

their pipelined or non-pipelined implementations. The properties of implementations are

captured as attributes of the graph model. Due to this abstraction of an input description

into operations and dependencies, it is argued that different specification languages can

be used without altering the co-synthesis paradigm. The scope of systems handled by the

co-synthesis approach is succinctly defined by this abstraction. HardwareC or any other

language (not necessarily procedural) can be used to describe the system functionality for

this purpose. (The converse is of course not true. That is, not all VHDL or C descriptions

can be synthesized into hardware-software as described here.)

The flow graph model consists of a graphical structure and an execution semantics

that formally abstracts HDL descriptions. Computationally, the flow graphs are similar

to control graphs. However, unlike the general control-data-flow graph models, the flow

graph model also captures the memory side-effects of an implementation by means of

a set of variables that are associated with a graph model. Most representations based

on data-flow graphs, disallow this multiple assignment, thus creating a correspondence

between a single data-item to each edge in the graph. Our motivation for multiple

assignments stems from our need to treat all communication, whether by ports in hardware

implementations or by means of storage in software implementations, symmetrically.

Therefore, variables, in general, can be multiply assigned, similar to ports. Indeed a

port can itself be implemented as a memory location in case of memory-mapped I/O

operations.

The distinction between rate of execution of an operation as it relates to the structure

of the flow graph in which the operation belongs helps in analysis of constraints on rates

of execution by propagating known rates of execution through the graph model. By

definition, in a single rate graph model, all operations execute at the same rate. When

interfacing two graphs models (with possibly different implementations), their rates of

3.7. SUMMARY 71

reaction are important in selecting the protocol for communication across the models. The

protocols can be blocking, non-blocking or buffered. Since these protocols have different

implementation costs, analysis of reaction rates can be used to minimize communication

costs (for example, by eliminating redundant synchronizations).

Chapter 4

Constraint Analysis

In this chapter, we present timing constraint abstraction and analysis techniques. The

primary objective of constraint analysis is to examine the mutual-consistency of timing

constraints, and to answer the question about the existence of a system implementation

that would satisfy the timing constraints. This analysis assumes that any constraints

on availability of hardware resources have already been resolved as additional control

dependencies in the flow graph model. Therefore, the available concurrency in the flow

graph model can indeed be supported by the available hardware.

For each invocation of a flow graph model, an operation is invoked zero, one or

many times depending upon its position on the hierarchy of the flow graph model. The

execution times of an operation are determined by two separate mechanisms:

� The runtime scheduler, �

� The operation scheduler,

The runtime scheduler determines the invocation times of flow graphs, which may be as

simple as fixed-ordered where the selection is made by a predefined order (most likely by

the system control flow). This is typically the case in hardware implementations where

the graph invocation is purely a subject of system control flow. Software implementations

of the runtime scheduler tend to be more sophisticated, due to the ease in altering system

control flow. The runtime scheduling is also referred to as long term scheduling (as

opposed to short term operation scheduling performed by the operation scheduler). We

72

4.1. SCHEDULING OF OPERATIONS 73

make a distinction between two major types of runtime environments: non-prioritized

and prioritized. A prioritized environment assumes an ordering of graphs irrespective of

system control flow. The effect of a runtime scheduler is presented in the next chapter.

4.1 Scheduling of Operations

Given a graph model, G =(V ; E), the selection of a schedule refers to the choice of

a function,
 that determines the start time of the operations such that graph execution

semantics shown by the following equation:

tk(vi) � max
j 3 vj>vi

�
tk(vj) +� (vj)

�
(4: 22)

is satisfied for each invocation k > 0 of operations vi and vj. Here � (�) refers to the

delay function and returns the execution delay of the operation.

Given a scheduling function, a timing constraint is considered satisfied if the operation

initiation times determined from applying the scheduling function satisfy the correspond-

ing Inequalities (3.16, 3.17, 3.18 or 3.19). Clearly, the satisfaction of timing constraints

is related to the choice of the scheduling function. Before proceeding to analyze satisfi-

ability of timing constraints, let us take a look at different types of scheduling functions

that can be applied to the flow graph model described in the previous chapter.

We consider first a model, G, where the delay of all operations in G is known and

bounded. A schedule of G maps vertices to integer labels that define the start time of

corresponding operations, that is,
s : V 7! Z+ such that operation start times, tk(vi) =

s(vi) satisfy Inequality 4.22. A schedule is considered minimum if j tk(vi)� tk(vo)j is

minimum for all vi 2 V . For each invocation of G, since the start times of all operations

are fixed for all executions of G (that is, for all k), such a schedule is referred to as a

static schedule. Various static scheduling disciplines are possible, for example, As Soon

As Possible (ASAP), As Late As Possible (ALAP), List or Force Directed Scheduling

(refer to Chapter 5 in [Mic94] for an overview of static scheduling methods).

All static scheduling disciplines require the determination of fixed and known delays

for all operations. In the presence of conditional, loop and wait operations, not all delays

can be fixed or known statically, thus making a determination of an unique operation

74 CHAPTER 4. CONSTRAINT ANALYSIS

start time impossible. This provides the motivation for a scheduling function that does

not require � (�) to be a fixed quantity. We consider one such function, called the relative

schedule [KM92b], which uses runtime information to determine operation start times

for each invocation of a graph model.

A relative schedule function maps vertices to a set of integers representing offsets.

An offset �vj (vi) of vertex vi with respect to vertex vj is defined as the delay in starting

execution of vi after completion of operation vj. Offsets are determined relative to

vertices which the execution of vi (transitively) depends upon. That is,

tk(vi) � tk(vj) +� (vj) +� vj
(vi) if vj >

� vi

For a given vertex, vi a set, A(vi) of anchor vertices is defined as the set of conditional

(CD) and loop, wait (ND) vertices that have a path to vi:

A(vi) =f vj 2 V : vj >
� vi; vj is ND or C Dg (4: 23)

A relative schedule function,
r is defined as a set of offsets for each operation such that

operation start time satisfies the following inequality:

tk(vi) � max
a2A(vi)

�
tk(a) +� (a) +� a(vi)

�
(4: 24)

Since the quantity � (a) is known only at runtime, the operation start time under relative

schedule is determined only at the runtime.

Inequality 4.24 can be derived from the inequality 4.22 by expressing the latter over

the transitive closure, G>� , of G and then adding the known operation delays, � , as

offsets from unknown delay operations. Recall, that a transitive closure of a graph refers

to a graph with edges indicating direct or transitive dependency between operations.

Clearly, a solution to Inequality 4.24 will also satisfy Inequality 4.22 if the offsets,

�vj (vi) � `(vj; vi), where `(vj ; vi) refers to the path length from vertex vj to vertex vi.

Finally, a relative schedule is minimum if it leads to minimum values of all offsets for

all vertices.

One of the interesting properties of a relative schedule is that it attempts to express

the (spatial) uncertainty associated with conditional invocations of an operation (C D) as

its temporal uncertainty by treating it as an unbounded delay (ND) operation. Thus, a

4.1. SCHEDULING OF OPERATIONS 75

conditional operation is same as an data-dependent loop operation where operations on

its branches are invoked a variable number of times (0 or 1) depending upon data values.

For the purposes of relative scheduling, variable delay operations are treated as unknown

delay operations in [KM90c]. Due to this treatment, the corresponding flow graph used

for relative scheduling is unilogic, since conditional branches belong to separate graphs

same as in the case of loops. Of course, this idea can be carried further by treating all

operations as unbounded delay operations and computing the start times of operations at

runtime. Such an implementation of a flow graph would be similar in architecture to data

flow machines [Wat84]. In terms of the latency of execution, such a dynamic scheduler

will give the most ‘compact’ schedule. There is, however, an overhead cost of control

associated with increasing the number of unbounded delay operations that makes such an

architecture unsuitable for either gate-level hardware or software on conventional general-

purpose processors. Hence we seek to minimize the number of unknown delay operations

in the graph model. Filo et. al. in [FKD92] address the problem of minimization of

the number of unbounded delay operations that belong to the anchor set of an operation

based on the notion of irredundant anchor operations that are essential in determination

of the start time of an operation. This process can be complemented by taking out as

many operations out of the scope of unbounded delay operations as possible.

In this context, bilogic flow graphs treat conditional operations not as unknown delay

operations, but as variable and bounded delay operations. Correspondingly, we develop

a bilogic relative schedule that uses bounds on the variable delay operations to develop

a schedule. Depending upon the actual branches taken, this schedule may not be the

minimum in the sense of relative scheduling described earlier, however, it reduces the

number of ND operations, thus making it easier to perform the constraint analysis. Also,

the cost of implementing control for a bilogic relative scheduler lies somewhere between

the control costs for static and relative schedulers.

A bilogic relative schedule treats an operation offset as a vector �vj
(vi) representing

the (finite) set of possible delays. A bilogic schedule,
br then computes the offset

vectors such that

t (vi) � max
a2A b(vi)

�
ta +� (a) +j � a(vi)j1

�
(4: 25)

where j � j1 refers to the largest element (or the infinity norm) of the vector. The bilogic

76 CHAPTER 4. CONSTRAINT ANALYSIS

anchor set is defined as Ab(vi) =f v j 2 V : vj >� vi; vj is NDg : Once again, the

inequality 4.25 can be derived from Eq 4.22 for bilogic flow graphs. Thus a solution to

Eq. 4.25 will also satisfy Eq. 4.22 provided j �a(vi)j1 � `M(a; vi). The following shows

an example of unilogic and bilogic relative schedules.

Example 4.1.1. Unilogic versus bilogic relative schedule for process example
in Example 3.1.2. The flow graph of the process model is reproduce below. The

numbers outside the circle indicate operation delays in cycles.

1

2 3

4

5 6

7

8
10

12

9

+

+

∗

∗

0

0

0

0

0

0

1

1

1

3

δ3

δ8 11

13

1

∗

∗

The assignment of offsets using a relative scheduler and a bilogic relative scheduler

are shown below:

Relative offset, � Bilogic relative offset, �

Vertex v1 v3 v4 v8 v1 v3 v8

1 - - - - - - -

2 0 - - - 0 - -

3 0 - - - 0 - -

4 1 0 - - 1 0 -

5 - - 0 - 1 0 -

6 - - 0 - 1 0 -

7 1 0 0 - (2,4) (1,3) -

8 1 0 0 - (2,4) (1,3) -

9 1 0 0 - (2,4) (1,3) -

10 - - - 0 - - 0

11 - - - 0 - - 0

12 - - - 1 - - 1

13 1 0 0 0 (2,4) (1,3) 0

where a ‘-’ indicates that the start time of the operation is not affected by the

particular anchor vertex. According to the relative schedule (Inequality 4.24), the

4.1. SCHEDULING OF OPERATIONS 77

start time of a vertex v7, for example, is given by t(v7) =maxft(v 1) +1; t(v3) +

�3; t(v4)+� 4g. Note that �(v1) =0. For a bilogic relative scheduler, the vertex v 3

is no longer an anchor but a variable delay vertex. The offsets are now computed

as vectors of possible delay values, as shown below: Thus the start time for vertex,

v7 in this case is given by t(v7) =maxft(v 1) +4; t(v3) +� 3 +3g. 2

From Section 3.3.4 we recall that for a given flow graph model, G=(V; E), an

implementation, I (G) of G refers to the selection of a delay function, � , that assigns

execution delay to simple non-ND vertices in V (G) and to the choice of a runtime

scheduler, � .

Definition 4.1 Given an implementation, I (G), of a flow graph model, G, a constraint is

considered satisfiable if there exists a solution to the corresponding constraint inequality

(Eqs. 3.16, 3.17, 3.18, 3.19) that also satisfies the basic scheduling Inequality 4.22.

A particular assignment of start times to operations is referred to as a schedule of the

operations. For constraint analysis purposes, it is not necessary to determine a schedule

of operations, but only to verify the existence of a schedule. Since there can be many

possible schedules, constraint satisfiability analysis proceeds by identifying conditions

under which no solutions are possible.

A timing constraint is considered inconsistent if it can not be satisfied by any imple-

mentation of the flow graph model. A set of timing constraints is considered mutually

inconsistent if these constraints can not be satisfied by any implementation of the flow

graph model. Since the consistency of constraints is independent of the implementation,

these are related to the structure of the graphs.

Timing constraint analysis is performed in stages and in order of increasing non-

determinism in the model. We first consider the satisfiability of min/max delay constraints

followed by the execution rate constraints. The questions about constraint satisfiability

are answered in the context of the scheduling schemes discussed in this section. The

emphasis in satisfiability analysis is in the determination of constraint satisfiability without

relying on runtime (or data-dependent) information. We identify the cases where such

a (deterministic) analysis fails and develop the bounds on operation delays in order to

satisfy imposed constraints. A notion of marginal satisfiability is developed that relates

the likelihood of constraint violation to the probability of violation of delay bounds.

78 CHAPTER 4. CONSTRAINT ANALYSIS

Min delay, l
Max rate, R Max delay, uMin rate, r Rel. Min rate

CONSTRAINT ANALYSIS

Runtime
bound

γ

Synch.
Imp.
Boundγ

w

Flow Graph, GImplementation

Serialize

DETERMINISTIC

1
.

C
O

N
S

T
R

A
IN

T
S

 S
A

T
IS

F
IE

D
 B

Y
 T

H
E

 I
M

P
L

E
M

E
N

T
A

T
IO

N

2. CONSTRAINTS NOT SATISFIED.
 CHOOSE ANOTHER IMPLEMENTATION.

3. CONSTRAINTS ARE INCONSISTENT,
 MODIFY CONSTRAINTS.

OR

Add buffers

4. MARGINALLY
 SATISFIABLE

Modified flow graph

5
.

IN
S

U
F

F
IC

IE
N

T
 I

N
F

O
R

M
A

T
IO

N

F

O
R

 M
A

R
G

IN
A

L
 S

A
T

IS
F

IA
B

IL
IT

Y
.

Markov Model

Producer−Consumer

Model

PROBABILISTIC

Measure of confidence

4. MARGINALLY
 SATISFIABLE

Flow Graph, G

Implementation

Constraint

Graph

ND

CYCLES

ND

CYCLES

ND

CYCLE

Add buffers

γ, λ, ρ bounds

Deterministic

Queue model Probabilistic

Queue model

Expected values
of loop indices.

Figure 24: General flow of constraint analysis.

Figure 24 shows the flow of the constraint analysis. The given flow graph model with

an implementation and a set of min/max delay and execution rate constraints is input to

deterministic constraint analysis that relies on a constraint graph model to determine if

the constraints are satisfiable. If the constraints are satisfiable (answer 1 in Figure 24),

then the choice of hardware or software implementation is acceptable and the constraint

analysis is complete. This means that there exists a possible detailed implementation

of the graph model in hardware or software for which the constraints can be satisfied.

Conversely, a given set of constraints may be violated by an implementation (answer 2),

for example, the operation delays may not be fast enough for the choice of hardware or

software. If the constraints are not satisfiable by either hardware or software implemen-

tations, there is a possibility that constraints may be inconsistent (answer 3). Constraint

analysis in all these cases is complete. On the other hand, constraint analysis may be

4.2. DETERMINISTIC ANALYSIS OF MIN/MAX DELAY CONSTRAINTS 79

inconclusive, implying the need for alterations in the style of implementation. For exam-

ple, alternative implementations of the wait operation can be explored or buffering can

be used to meet execution rate constraints. Such cases are identified by cycles with ND

operations in the constraint graph model, described in the next section.

In presence of cycles with ND operations in the constraint graph model, constraints

may be treated as marginally satisfiable if certain bounds on delay of ND operations

are observed. These (positive) bounds are developed from available slack assuming that

the constraints are satisfied (answer 4). In the case of marginally satisfiable constraints,

alternative implementations ofND operations can be explored that improve these bounds.

In the last case (answer 5), we need additional information about a measure of confidence

(for example, acceptable probability of error) in order to carry out probabilistic analysis.

4.2 Deterministic Analysis of Min/max Delay Constraints

The timing constraints are abstracted in a constraint graph model which is based on the

flow graph model. An edge from vertex vi to vj with weight, � , implies that tk(vj) �

tk(vi) +� for all k >0. This represents a minimum delay constraint on the interval

from initiation of vi to initiation of vj . A maximum delay constraint from vi to vj

implies tk(vj) � tk(vi)+� which can be rewritten as t k(vi) � tk(vj)� � and is indicated

as an edge from vj to vi with weight �� . Therefore, maximum delay constraints are

represented by edges with negative weights. Since an edge in the (acyclic) flow graph

model represents a minimum delay constraint, edges with negative weight are considered

backward edges.

Definition 4.2 The timing constraint graph model, GT is defined as GT =(V; E; �)

where the set of edges consists of forward and backward edges, E=E f [Eb and �ij 2 �

defines the weights on edges such that tk(vi) +� ij � tk(vj) for all k >0.

The constraint graph here does not make any distinction between conjoined and

disjoined forks/merge operation nodes. In other words, all forks/merge are considered

conjoined. This interpretation is consistent with the constraint Inequality 4.22 where the

inequality is defined over all dependencies. It is important to note that the scheduling of

80 CHAPTER 4. CONSTRAINT ANALYSIS

operations for a given set of resources is not affected by the presence of conditionals, since

start times for operations must observe worst case path delays. Conditionals do reduce

the resource requirements by allowing sharing of resources across mutually exclusive

operations [Cam90] which is not an issue here since we assume that the concurrency in

the flow graph model can indeed by supported by available resources.

Example 4.2.2. Constraint graph model.

+

∗

∗

∗

∗

+

rd

op

cond

add add

rd

mpy

op

op

join

wr

wr

0

0 0

0 0 0 0

1 1 1 6

0 0

0

1

1

1

1

−12

#define Const 100
process convert(a,b,c)
 in port a[3];
 in port b[2];
 out port c[8];
{
 static sum[8], count[8];
 boolean sample[3], t[1], scale[2], value[8];
 tag tag_a, tag_c;

tag_a: sample = read(a);
 t = (sum+sample >= Const);
 if (t) {
 scale = read(b);
 value = sum * scale;
 sum = 0;
 count = 0;
 } else {
 sum = sum + sample;
 count++;
 }
tag_c: write c = count;
 write c = value;
 constraint maxtime from tag_a to tag_c = 12 cycles;
}

Figure 25: Constraint Graph Model

Figure 25 shows the (well-formed) flow graph model and the corresponding con-

straint graph model for the process convert. 2

We now examine the use of the constraint graph model in answering question about

constraint satisfiability. The following theorem defines the conditions for constraint sat-

isfiability. This theorem occurs in various forms in different application areas. Its proof

can be found in, for example, in [CK86] [KM90c] [LW83].

Theorem 4.1 (Static scheduling) In the absence of any ND operations, a set of

min/max delay constraints is satisfiable if and only if there exist no positive cycles in

GT .

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 81

In the presence of ND operations, satisfiability analysis attempts to determine the

existence of a schedule of operations for all possible (and conceivably infinite) values of

the delay of the ND operations. Clearly, due to variations in operation delays, any static

scheduling function that attempts to determine operation initiation times a priori must use

upper bounds on operation delays such that the initiation times satisfy Inequality 4.22.

However, such a schedule may not be minimum. In order to obtain minimum sched-

ules, the operation scheduler can not be static and must have the flexibility to schedule

operations dynamically based on actual operation delays. As explained above, relative

and bilogic relative schedulers allow this flexibility. Therefore, constraint satisfiability is

checked only for these schedulers.

Using a relative scheduler, a minimum delay constraint is always satisfiable since

from any solution that satisfies Inequality 4.24 or 4.25 a solution can be constructed

such that �vj
(vi) � max(`(vj ; vi); lji) for each constraint lji . This solution satisfies both

Inequalities 4.22 and 3.16. On the contrary, a maximum delay constraint may not always

be satisfiable. A constraint graph is considered feasible if it contains no positive cycle

when the delay of ND operations is assigned to zero.

The following theorem due to Ku and De Micheli [KM92b] lays out a necessary and

sufficient condition for to determine the satisfiability of constraints in presence of ND

operations.

Theorem 4.2 (Relative scheduling) Min/max delay constraints are satisfiable if and on-

ly if the constraint graph is feasible and there exist no cycles with ND operations.

4.3 Deterministic Analysis of Execution Rate Constraints

Execution rate constraints are constraints on the time interval between invocations of the

same operation. In general, this interval can be affected by pipelining techniques since

pipelining allows one to initiate an operation sooner than what the total latency of the

graph model will allow.

We consider here only non-pipelined implementations of the flow graph models.

Limited pipelining of operations is considered in the context of ND-cycles discussed

in the following section. Therefore, operations in the graph model are enabled for next

82 CHAPTER 4. CONSTRAINT ANALYSIS

iteration only after completion of the previous iteration:

tk�1 (v0) � tk�1 (vN) � tk(v0) � tk(vN) 8 k >0: (4: 26)

where v0 and vN refer to the source and the sink vertices respectively.

Consider an I/O operation vi 2 V (G) with data-rate constraints, r i and Ri. The rate

constraints imply
�

Ri

� tk(vi)� tk�1 (vi) �
�

ri
8 k >0: (4: 27)

� refers to the cycle time of the clock associated with G. Inequality 4.27 is satisfied if

and only if

min
k

(tk(vi)� tk�1 (vi)) �
�

Ri

[lower bound] (4.28)

max
k

(tk(vi)� tk�1 (vi)) �
�

ri
[upper bound] (4.29)

Thus, satisfiability for execution rate constraints is determined by checking for the min-

imum and maximum delay between any two consecutive invocations of constrained op-

eration. This interval can be expressed as shown in Figure 26, namely:

tk(vi) � tk�1 (vi) = [t k(vi) � tk(v0)] +[t k(v0)� tk�1 (vN)] +

[tk�1 (vN)� tk�1 (v0)] +[t k�1 (v0) � tk�1 (vi)]

= � k(vi) + k�1 (G) +� k�1 (G) � � k�1 (vi) (4.30)

where �k(vi) refers to execution delay from source vertex v0 to vi for the kth execution.

k�1 (G) is the delay in rescheduling a graph, that is, the time from completion of (k�1) th

execution of Gto initiation of the k th execution. From Inequalities 4.22 and 4.26 each

of the four components in Inequality 4.30 are non-negative quantities.

k−1 k

t
k−1

v
0

()
i

v()t
k−1

()t
k−1 N

v v
0

()t
k

t
k i

v() N
vt

k
()

λ
k−1

γ
k−1

λ k

Figure 26: Operation invocation interval.

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 83

Example 4.3.3. Interval between successive executions of an operation.

Consider the execution of operation ‘B’ in graph model shown in Example 3.3.6.

Its simulation is shown in Figure 17 in Chapter 3. The interval between 1 st and 2nd

executions of ‘B’ is given as

t2(B)� t1(B) =44� 10 = � 2(B) + 1(G2) +� 1(G2)� �1(B)

= 2 +11+(11+3� 4)� 2 =34

Similarly, interval between 2nd and 3rd executions of ‘B’ is expressed as

t3(B)� t 2(B) =54� 44 = � 3(B) + 2(G2) +� 2(G2)� �1(B)

= 2 +0 +(6+1� 4)� 2 =10

Note that in �k(B) =1 for all k > 0. Note also that the invocation overhead of

G2 is 11 cycles for 1 and 0 cycles for 2. 2

Let us now consider the lower and upper bounds on this interval. These bounds are

developed based on the analysis of paths in the flow graph. It follows from Inequali-

ty 4.22, that for vertices in a path, p =f v i; vi+1; � � � ; vjg the following is true for all

k >0

tk(vi) � tk(vi+1) � � � � � tk(vj) (4: 31)

It is important to note that even though the actual interval between successive execu-

tions is summed as shown in Eq. 4.30, the bounds on this interval can be developed based

on analysis of the graph model itself. This is because, in a non-pipelined implementation

of Gthe consecutive execution of an operation corresponds to traversal of a path from

source to sink vertex in G. Consider (k � 1) th and kth executions of an operation vi in

V (G) as shown in Figure 27. Let q k�1 =f v i; � � � ; vNg represent the path traversed

from vi to vN in k� 1th execution of Gand let p k =f v0; � � � ; vig be the path traversed

from v0 to vi in kth execution of G. Using Inq. 4.31 it can be easily shown that p k[qk�1

is a path from source to sink in G.

Theorem 4.3 (Maximum rate constraint) A max-rate constraint, Ri, in Gis satisfied

if `m(G) � R �1
i .

Proof: In order to obtain a lower bound on the interval between

two consecutive executions of operation, vi, we consider the case when the

84 CHAPTER 4. CONSTRAINT ANALYSIS

source

sink

q
k−1

p
k

q
k−1

p
k

execution, k−1

execution, k

v

v

v

Figure 27: Consecutive executions of an operation corresponds to traversal of a path in
G.

execution of the graph model is restarted immediately after the completion

of the previous execution, that is, k�1 (G) =0. From the discussion above,

there exists a path in Gthat corresponds to consecutive execution of operation

vi. In other words, the interval tk(vi)� tk�1 (vi) is bounded by the latency of

the graph. Recall that the length vector provides a lower bound on latency

of G. The result follows.]

Note that similar to a minimum delay constraints, a maximum rate constraint is always

satisfiable. When `m(G) <R
�1
i

the maximum rate constraint, Ri, can still be satisfied

by an appropriate choice of overhead delay that is applied to every execution of G.

Example 4.3.4. Maximum rate constraints.

For the process graph model convert shown in Figure 25, `(G) =(5; 10). There-

fore, for non-pipelined implementations of G, the lower bound on the interval be-

tween successive initiations of any operation in Gis 5 cycles. In other words, the

maximum rate for any operation in Gis 1
5 =0:2 cycle �1. For any maximum rate

constraint less than 0.2 cycle�1 transformation of the flow graph would be needed

to ensure satisfaction of the maximum rate constraint.

For the process graph model example shown in Figure 17 (reproduced blow) the

maximum rate of the write operation, determined by `(G1), is 1 cycle�1, whereas

the maximum rate of the read operation, determined by `(G2) =((1
 0)� (1�

3))� (1
 1) =(3; 5) is 1
3

cycle�1. Any maximum rate constraint larger than or

equal to 1
3 is satisfied by the graph model.

Note that this lower bound, `m, used for checking the satisfaction of maximum rate

constraints, also defines the fastest rate at which an operation in the graph model

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 85

+

+

∗

∗

0

0

0

0

0

0

1

1

1

3

0

1

∗

∗

write

read

G1

G2

can be executed by a non-pipelined implementation. Thus points to the necessary

condition for meeting a minimum rate constraint. Sufficient conditions for minimum

rate constraints are considered in next section. 2

Note that in case of a pipelined implementation of G, the operation vi can be restarted

without waiting for completion of all operations in G. An extreme example of this would

be a buffer at an input operation (equivalent to a pipestage containing only v i), in which

case the operation can be enabled after every execution delay of vi (until the buffer is

full).

Upper bound

While the lower bound on time-interval between successive executions of an operation

can be derived by analyzing G�, that is the graph to which the operation belongs and

all the graphs below in the control-flow hierarchy, the determination of upper-bound on

the inter-iteration interval of an operation, requires also estimations of the delays due

to operations and graphs that lie above the operation in the control-flow hierarchy. In

particular, the effect of the runtime scheduler must also be taken into account.

We use following notation to help express the propagation of constraints over the

graph hierarchy. For a given graph G, G+ denotes the parent body that calls the graph

G. For a graph, G, Go refers to the parent process graph, that is, the graph at the root

of the hierarchy corresponding to a process model.

Note that (static) determination of interval of successive executions of an operation

86 CHAPTER 4. CONSTRAINT ANALYSIS

that is conditionally invoked is undecidable. That is, there may not exist an upper bound

on the invocation interval. For example, consider a statement

if (condition)

value = read (a);

There is not enough information to determine the rate of execution of the ‘read’

operation. In order determine constraint satisfiability we need additional input on how

frequently the condition is true. For deterministic analysis purposes, we take a two step

approach to answering constraint satisfiability:

1. Answer about implementation satisfiability assuming that the condition is always

true. In other words, the only uncertainty is conditional invocation of the graph

which may correspond to the body of a process or a loop operation. This is

consistent with the interpretation that a timing constraint specifies a bound on the

interval between operation executions, but does not imply per se that the operation

must be executed.

Under this assumption, the loops are executed at least once (that is, loops are of the

type ‘repeat-until’) since the ‘while’ loops are expressed as a conditional followed

by a repeat-until loop as explained in Chapter 3.

2. Next we use the rate constraint on the ‘read’ operation as the additional information

about frequency of invocation of the condition. That is, the rate constraint serves

as a property of the environment in continuing the rate constraint analysis. This

way, constraints are source of additional input which is far more convenient to

specify than probabilities of conditions taken. An alternative approach would be

to use simulations to collect data on the likelihood of the condition being true and

use it to derive constraint satisfiability.

The actual execution delay or the latency, � (G), refers to the delay of the longest

path in G. This path may contain ND operations in which case the latency can not be

bounded. We examine the two cases separately.

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 87

Case I: G contains no ND operations. The latency of G takes one of the finite values

given by `(G). Equations 3.4 through 3.9 define the formulae for calculation of `. An

upper bound on the operation interval is then given by:

max
k

(tk(vi)� tk�1 (vi)) � max
k

�
k�1 (G) +� k�1 (G)

�
� max

k

k(G) +̀ M(G) (4.32)

Let us now examine the delay k(G). The overhead k(G) represents the delay

[tk+1 (v0(G)) � tk(vN (G))] and can be thought of as an additional delay operation in

series with the sink operation, vN (G). If G is not a root-level flow graph, then there

exists a parent flow graph G+ that calls G by means of a link operation, say v . The upper

bound on this interval is derived when the k th and (k +1) th invocations of G correspond

to separate invocations of the link operation v 2 V (G+). That is,

k(G) = t k+1 (v0(G)) � tk(vN (G))

� tj+1(v) � tj(v) � xj � �k(G)

� max
j

[tj+1(v)� tj(v)] � min
j

xj � min
k

[�k(G)] (4.33)

where xj is the number of times the flow graph G is invoked for the j th execution of

operation v . By definition, G is invoked at least once for each execution of v , i.e.,

minj xj =1. Therefore, from Inq. 4.32 and 4.33,

k(G) � (G)
:
= [M̀(G+) + (G+)] � m̀(G) (4: 34)

Note that by definition, `M (G+) � `M(G) � `m(G), therefore, is always a positive

quantity.

Lemma 4.1 (Minimum rate constraint with no ND) A minimum rate constraint on

an operation vi 2 V (G), where G contains no ND operations is satisfiable if

(G) +̀ M(G) �
�

ri
(4: 35)

where the overhead term (G) is defined by Equation 4.34.

Proof: Follows from Inq. 4.29, 4.32 and 4.34.]

88 CHAPTER 4. CONSTRAINT ANALYSIS

Clearly, a bound on the overhead delay k(G) implies existence of a bound on the

invocation interval of G+, and by induction, bound on the invocation interval of all

graphs in the parent hierarchy. In particular, the bound on the invocation interval of

the parent process graph, Go, corresponds to the bound on the delay due to the runtime

scheduler overhead. This places restrictions on the choice of the runtime scheduler such

that a bound on the scheduling interval can indeed be placed (see Section 5.2). Note

that a bound on k(G) does not necessarily imply a bound on the latency of G. This is

illustrated by Example 4.3.5 below. An immediate consequence of the above (sufficient)

condition for satisfiability of minimum rate constraint is that question about the constraint

satisfiability can be propagated as a minimum rate constraint on the link operation in the

parent graph model. The following lemma defines this concept more precisely.

If a given implementation of a flow graph G satisfies a minimum rate constraint r i

on an operation G, we say that G satisfies the rate constraint, ri.

Lemma 4.2 (Constraint propagation) A flow graph G satisfies a minimum rate con-

straint ri if its parent graph G+ satisfies a minimum rate constraint
h
�
ri
� �` (G)

i�1
,

where �` (G)
:
= `M(G) � `m(G).

Proof: If G+ satisfies a minimum rate constraint
h
�
ri
� �` (G)

i�1
then

from Lemma 4.1,

(G+) +̀ M(G+) �
�

ri
� �` (G)

) (G) +̀ m(G) �
�

ri
� (`M (G) � `m(G)) [4: 34]

) (G) +̀ M(G) �
�

ri

)G satisfies minimum rate constraint r i.]

In order to obtain a bound on the runtime scheduler overhead, Equation 4.34 can

be unrolled until the parent graph corresponds to the (unconditionally invoked) process

model, Go for which (Go) = o. Thus,

(G) =
GoX

Gi=G+

�` (Gi) + o +
�
`m(Go)� `m(G)

�
(4: 36)

where
o
= (Go) is the bound on the delay due to the runtime scheduler.

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 89

G1

G2

r

x

y

x1 x2 x3 x4

y1 y2

γ

λ

λ (G2)

t

Rate constraint, r

bounds this

interval

G3 1

2

3

loop index

λ (G3)

λ (G2)

(G1)

Rel. rate constraint relative
to G2 bounds this interval.

Rel. rate constraint relative
to G1 bounds this interval.

A

Figure 28: Upward propagation of minimum execution rate.

Example 4.3.5. Minimum rate propagation.

Figure 28 shows the constraint model corresponding to the graph models in Exam-

ple 3.3.6. Recall

`(G1) =(3; 4) �`(G 1) =4� 3 =1

`(G2) =(9; 10; 14; 15) �̀(G 2) =15� 9 =6

`(G3) =(13; 14; 18; 19; 20; 21; 23; 24; 25; 26) �̀(G3) =26� 13 =13

First we show the intuition behind rate constraint satisfiability, followed by the use

of constraint propagation to achieve the same result.

A minimum rate constraint is specified on operation ‘A’ in G1 that constitutes loop

body of operation 2 in G2 with loop index, x, which in turn is a loop body of

operation 3 in G3. Let rA =1=100, r G1
A

=1=5, r G2
A

=1=25 and r G3
A

=1=50

cycle�1. Recall, that rG
A

refers to a minimum rate constraint relative to G.

Let us first consider, rG1
A

=1=5 cycle �1. Since this constraint is relative to G1,

therefore, there is no overhead in invocation of G1, i.e., (G1) =0. Since

[(G1)] +̀ M (G1) =4 � 1=
1

5
=5

Therefore, the constraint rG1
A

=1=5 is satisfied. Similarly, constraint r G2
A

=1=25 is

satisfied since

(G1) +̀ M (G1) = [` M(G2) + (G2)� `m(G1)] +̀ M(G1)

= [15 +0� 3] +4 =16 � 1=
1

25
=25

90 CHAPTER 4. CONSTRAINT ANALYSIS

Constraint rG3
A

=1=50 is satisfied since

(G1) +̀ M(G1) = [�̀(G 3) +�̀(G 2) + (G3) +̀ m(G3)� `m(G1)] +̀ M(G1)

= [13 +6 +0 +13� 3] +4 =33 � 1=
1

50
=50

Finally, for the minimum rate constraint rA =1=100 we should also consider the

overhead o due to the runtime scheduler which adds to the bound of 33 cycles on

successive intervals of operation ‘A’ relative to G3. Therefore, a rA is satisfied if

the delay due to the runtime scheduler is less than or equal to 100�33 =67 cycles.

Alternatively, rA =1=100 can be propagated as a rate constraint of 1
100�1

=1=99

on G2 which is in turn propagated as a rate constraint of 1
99�6 =1=93 on G 3. This

constraint on G3 is satisfied for a bound of 93 � `M(G3) =93 � 26 =67 cycles

on the delay due to the runtime scheduler. 2

Theorem 4.4 (Minimum rate constraint with no ND) A minimum rate constraint on

operation, vi 2 V (G), where Gcontains no ND operations is satisfiable if the minimum

available overhead for the runtime scheduler, avail is greater than the maximum delay

M

offered by the chosen runtime scheduler. That is,

avail
:
=

�

ri
� `M(G) �

GoX
Gi=G+

�
`M (Gi) � `m(Gi)

�
�
�
`m(Go)� `m(G)

�
� M (4: 37)

Proof: The maximum delay M due to the runtime scheduler defines

the overhead o of the process model Go.

avail
:
= �

ri
� `M(G) �

P
Go

Gi=G+

�
`M(Gi)� `m(Gi)

�
�
�
`m(Go) � `m(G)

�
� M

) �
ri
� `M(G) +

P
Go

Gi=G+
�̀ (G i) +

�
`m(Go)� `m(G)

�
+ M

) �
ri
� `M(G) +

nP
Go

Gi=G+
�̀ (G i) +

�
`m(Go)� `m(G)

�
+ o

o
) �

ri
� `M(G) + (G) [4: 36]

) r i is satisfied: [Lemma 4: 1]

]

In summary, a minimum execution rate constraint on a graph model, G, that contains

no ND operations is translated as an upper bound, , on the delay of the runtime system

which checked by comparing it against
M

. Note that if the graph Gis not a root level

graph, then there exists a parent graph G+ with a link operation that calls G. However, the

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 91

unbounded delay due to this ND operation does not affect satisfiability of the minimum

rate constraints on operations in G as shown by the example above. In general, the

delay of an ND operation affects satisfiability of a minimum rate constraint applied on

an operation other than the operations linked with the ND operation. This is included

in the case considered next.

Case II: Gcontains ND operations. In presence of ND operations in G, the latency,

�(G) can no longer be bounded by the longest path length, ` , in G. In addition, if G

is not a root-level flow graph, its the overhead (G) may also not be bounded by the

maximum path length of its parent graph. For the sake of simplicity, let us first consider

the (relative) minimum rate constraint on a graph model with zero overhead, that is,

k(G) =0 for all k >0. Such a rate constraint then bounds the latency of the graph

model and is represented as a backward edge (that is, a maximum delay constraint) from

the sink vertex to the source vertex in the constraint graph model of G. Since G is

a connected graph, such a constraint invariably leads to a ND-cycle in the constraint

graph. According to Theorem 4.2, the maximum delay constraint can be satisfied only

by bounding the delay of the ND operation, that is, by transforming the ND operation

into a non-ND operation.

Since ND operations represent synchronization or data-dependent loop delay, the

implications of developing bounds on the delay of these operations must be carefully

analyzed. While a discussion on this subject appears in Section 4.5, here we briefly

capture the motivation for developing the bounds.

� Let us first consider synchronization related ND operations. Since there are mul-

tiple ways of implementing a synchronization operation, the effect of the bound is

to choose those implementations which are most likely to satisfy the minimum rate

constraint. Thus, a bound on the delay of the synchronization refers to a bound on

the delay offered by the implementation of the ND operation. The implementation

delay of a synchronization operation is referred to as the synchronization overhead,

w. Due to the availability of multiple concurrent execution streams in hardware,

this overhead is zero. For software, w, delay is determined by the implementation

92 CHAPTER 4. CONSTRAINT ANALYSIS

of the wait operation by the runtime scheduler. For example, a common implemen-

tation technique is to force a context switch in case an executing program enters

a wait state. Here, w would be twice the context-switch delay to account for

the round-trip delay. For such an implementation, the minimum rate constraint is

interpreted as the rate supportable by an implementation. With this interpretation,

the ND operations are considered non-ND operations with a fixed delay, w.

� Next, the data-dependent loop operations use a data-dependent loop index that

determines the number of times the loop body is invoked for each invocation of

the loop operation. The delay offered by the loop operation is its loop index times

the latency of the loop body. As mentioned earlier, at the leaf-level of graph

hierarchy, the latency of the loop body is given by its path length vector. The

elements of a path length vector consists of lengths of all paths from source to sink

and these are bounded. In the case the constrained graph model contains at most

one loop operation, v, on a path from source to sink, the minimum rate constraint

can be seen as a bound on the number of times the loop body Gv corresponding

to the loop operation, v, is invoked. This bound on loop index, x, is given by

Equation 4.39 that is derived later. This bound x is then treated as a property of

the loop operation, consequently making it a non-ND operation with a bounded

delay for carrying out further constraint analysis. Verification of these bounds

requires additional input from the user.

For a relative minimum rate constraint constraint relative to G, the overhead term

(G) in Equation 4.39 is assigned zero value. In general, however, the satisfiability

of a minimum execution rate constraint also includes a bound on the invocation

delay of Gas per Equation 4.36. Clearly, a bound on (G) implies a bound on

the latency of G+ which is equivalent to a minimum rate constraint on an operation

in G+. However, this minimum rate constraint does not bound the loop index of

link operation associated with G. The constraint satisfiability is then continued

until G+ corresponds to a process body, Go.

Presence of multiple ND operations in Gand G + present a more difficult case since

a minimum rate bounds the effective delay which is now a function of multiple loop

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 93

indices. For example, consider ND operations vi and vj representing loops in the flow

graph, that have a (transitive) dependency in the flow graph model (and thus belong to

the same path from source to sink vertices). In this case the satisfaction of minimum rate

constraint requires that the combined delay due to vi and vj be bounded. This requirement

can be expressed as:
xi

xi
+

xj

xj
� 1 (4: 38)

where xi defines the bound on loop index xi assuming xj =0 for all j 6=i . Note that

the above equation also applies in the case the ND operations vi and vj belong to nested

flow graphs. The satisfiability of Equation 4.38 is answered in two ways:

Deterministically: by substituting xi by the upper bound bxi in Equation 4.38. This upper

bound is additional input from the user (in practice this can also be determined by

the bit-width of the variable used for loop index).

Statistically: by treating xi as random variables. Then the constraint is satisfied in

probability, if Inequality 4.38 is satisfied over expected values of the random vari-

ables. These expected values are the additional input from the user needed to check

satisfiability.

In both the cases, in presence of multiple ND operations that lie on the same path from

source to sink in a graph model, it is not possible to answer question about constraint sat-

isfiability without additional input from the environment with which the system interacts.

We consider this problem further in Section 4.7.

Theorem 4.5 (Minimum rate constraint with ND) Consider a flow graph Gwith an

ND operation v representing a loop in the flow graph. A minimum rate constraint ri on

operation vi 2 V (G) and v i 6 =v is satisfiable if the loop index, xv indicating the number

of times Gv is invoked for each execution of v is less than the bound xv where

xv
:
=

$
� r�1

i
� (G) � ` M(G) +�(v)

`M (Gv)

%
+1 (4: 39)

where �(v) refers to the mobility of operation v and is defined as the difference in length

94 CHAPTER 4. CONSTRAINT ANALYSIS

of the longest path that goes through v and `M .1 Gv refers to the graph model called by

the ND operation v and the overhead bound, (G) is defined by Equation 4.36.

Proof: The maximum interval between successive executions of oper-

ation vi 2 V (G) is given by the maximum latency of Gand its maximum

overhead, (G). (See Inequality 4.29 and the following discussion.). The

latency of Gis can be defined as the maximum over the lengths of all paths

from source to sink vertices. Let pv represent the longest path from source

to sink that goes through operation v.

�(G) � ` M(pv) +(x v � 1) � M̀(Gv)

Note that `M(G) is computed by treating all link vertices as call link vertices

(see Chapter 3) and, therefore, it includes the delay due to one execution

of each loop body, hence the second term in equation above represents the

additional component to the latency due to the (xv � 1) invocations of the

loop flow graph Gv .

The length of the longest path from source to sink determines the value of

`M(G). The vertex v may or may not lie on the longest path from source

to sink operations. This slack between `M(G) and the length of the longest

path through v is captured by the mobility �(v) of operation v. That is,

`M(pv) =̀ M (G) � �(v).

For satisfiability of constraint ri, we require that

 +max
k

�k(G) �
�

ri

) +f `M (G) � �(v) +(x v � 1) � M̀ (Gv)g �
�

ri

) x v �

24 �
ri
� (G) � ` M(G) +�(v)

`M(Gv)

35+1

This provides the bound on every loop index in G. In addition, following

discussion earlier in this section, if multiple ND operations lie on the same

path from source to sink, Equation 4.38 must also be satisfied.]

1The mobility is computed in O(jE(G)j) time as the difference in starting times of ALAP and ASAP

schedules of a deterministic delay flow graph constructed by considering all link vertices to be call link

vertices with delay as the maximum path length of the called graphs.

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 95

Remark 4.1 In presence of multiple ND operations, the minimum rate constraint on an

operation vi is satisfied if each loop index xv is bounded as in Equation 4.39 above for

all ND operations v 2 V (G) and v 6 =vi, and Equation 4.38 is satisfied.

Example 4.3.6. Bound on loop index due to minimum execution rate

constraint.

Consider a minimum rate constraint of 0.02 /cycle on operation ‘B’ in graph model,

G2 shown in Example 3.3.6. Let the maximum delay due to the runtime scheduler

be M = 0 (for example, hardware implementation). The bound on the loop index

for operation v2 is calculated as follows:

(G2) = �` (G3) +M + `m(G3) � m̀(G2)

= 13 + 0 + 13� 9 = 17

x2 =

$
� r�1
B
� (G2)� `M (G2) +�(v 2)

`M(G1)

%
+1

=

�
50� 17� 15 +0

4

�
+1 =5:

With this bound on loop index, the ND operation v2 has a bound on its delay of

20 cycles.

On the other hand, a relative rate constraint, rG2
B

of 0.02 /cycle leads to a bound on

loop index of

x2 =

�
50� 0� 15 +0

4

�
+1 =9:

with this bound the delay of v2 is less than 36 cycles. 2

In summary, satisfaction of the bounds on delay of ND operations requires addition-

al information from their implementations (such as context switch delay, possible loop

index values) against which the questions about satisfiability of minimum rate constraint

can be answered. Because of these bounds, there is now a certain measure of constraint

satisfiability that approaches certainty as the derived bound approaches infinity. More

importantly, having bounds derived from timing constraints makes it possible to seek

transformations to the system model which tradeoff these measures of constraint satisfi-

ability against implementation costs. In the next section, we examine conditions under

which these bounds can be extended by modifying the structure of the flow graphs with

ND cycles.

96 CHAPTER 4. CONSTRAINT ANALYSIS

4.3.1 Procedure

Given a flow graph model G with min/max delay and execution rate constraints, the

constraint analysis proceeds bottom-up. The leaf-level flow graphs do not contain any

loop ND operations. For constraint analysis purposes, the graph bodies of procedure

calls are considered flattened into the calling graph model.

The following procedure check satisfiability outlines the algorithm. The input is a

set of graph models with min/max and rate constraints along with an implementation,

I = (� ; �) . Its output is null if the constraints are satisfiable (answer 1), else either G

is unsatisfiable (answers 2 and 3) or it returns bounds on the delay of ND operations

that would make constraints satisfiable (answers 4 and 5). As discussed earlier, the

wait operation is replaced by its implementation which is either a fixed delay operation

or a loop operation (representing a busy-wait implementation). The constraint analysis

proceeds from identification of cycles in the constraint graph, GT . The cycles are found

by considering each backward edge at a time and enumerating all cycles caused by the

backward edge. If the length of a cycle is positive, the constraint graph is not feasible and,

therefore, constraints can not be satisfied. Recall that for length calculation purposes, the

loop link operations are treated same as call link operations. In presence of cycles that

contain loop link operations, the algorithm derives bounds on the loop index of each loop

link operation. In case of series or nested loop link operations verification of additional

constraints on loop indices is done separately.

check satisfiability(G) f
for v 2 V (G) f

if v = loop /* recursively go to leaf-level graph */
check satisfiability(Gv);

g
>I construct G T /* construct the constraint graph model */
>II if (cycle-set = find-cycles(G T))f /* check for min/max */

for � 2 cycle-set f /* identify cycles caused by backward edges */
if (`M (�) >0) /* find positive length cycles */

return (Gis unsatisfiable); /* not feasible */
for v 2 � and v 2 ND f /* identify ND cycles */

print �v =u� ` M (�);
bound delay of v =� v; /* bound on ND delay using constraints */
mark v as non-ND; /* now treat this delay bound as a property */

g
g

4.3. DETERMINISTIC ANALYSIS OF EXECUTION RATE CONSTRAINTS 97

g

s =d` m(G)� � � maxiR
�1
i
e /* check for max rate */

if s � 0
return (Gis satisfied);

else f /* need to add null operations – */
add NOP with � =s; /* – to ensure lower bound on delay */
update `(Go); /* modified flow graph */
check satisfiability(G);

g
if G+ exists /* check for min rate */

>III impose constraint [�
ri

� �̀ (G)] �1 on link operation in G+; /* propagate ri */

g

Example 4.3.7. Procedure check-satisfiability on Example 3.3.6. For conve-

nience the graph model is reproduced below.

0

0 0

0

0

0

+

+

+

+

v3

5 7

0

0

0

v2

1 6

0

0

0

+

+

+

+

0 1

1

y

x

G3 G2 G1

A

BC

D

b !b

!c c

!ee

g !g

2

2

2

3

2

Let us assume the following imposed constraints:

rA =1=100; r G1
A

=1=6; rG2
A

=1=40; rB =1=50; r G2
B

=1=30; rC =1=200

uC D=12; RB =0: 5; M =20.

Recall

`(G1) =(3; 4) �̀ (G 1) =1

`(G2) =(9; 10; 14; 15) �̀ (G2) =6

`(G3) =(13; 14; 18; 19; 20; 21; 23; 24; 25; 26) �̀ (G3) =13

There are three main steps to the constraint analysis procedure: construction of the

constraint graph which is done by adding forward edges for minimum delay and

98 CHAPTER 4. CONSTRAINT ANALYSIS

maximum rate constraints, and backward edges for maximum delay and (relative)

minimum rate constraints. Identification of cycles by path enumeration for each of

the backward edges in the constraint graph and finally the propagation of minimum

rate constraints up the graph hierarchy. We show these three steps for this example.

The procedure first considers G1:

>I : In the constraint graph of G 1, there are 3 backward edges with following

weights:

rG1
A

=1=6) �6

rG2
A

=1=40) �[40� (G 1)j(G2) =0]

= �[40� (G 2)� `M (G2) +̀ m(G1)]

= �[40� 0� 15 +3]

= �28

rA =1=100) �[100� (G 1)] =�(100� [(G 2)] � 15 +3)

= �(88� [�̀ (G 3) + M +̀ m(G3)� `m(G2)])

= �(88� [13 +20 +13� 9])

= �51

>II : The maximum forward path length is 4 < 6

)no positive cycles

)The constraints are feasible. Further, G T 1contains no ND cycles.

>III : Propagate minimum rate constraints to G 2)

rG1
A

) not propagated:

rG2
A

)r G2
v2

=1=(28� 1) =1=27

rA)r v2
=1=(51� 1) =1=50

For G2:

>I : In the constraint graph of G 2, there are 4 backward edges with following

weights:

rB =1=50) �(50� (G2)) =�(50� 37) =�13

rG2
v2

=1=27) �27

rv2
=1=50) �50

rG2
B

=1=30) �30

>II : r B is infeasible since it leads to a positive cycle with weight=15-13=2. Rest

are feasible. Next, the constraint graph contains ND cycles with a single ND

operation v2 for each of the three (feasible) backward edges. Of these only one,

namely rG2
B

bounds the delay due to the ND operation by the following upper

bound on loop index, x(v2) =

j
30�0�15+0

4

k
+1 =4. With this bound the delay of

the loop operation, v2 is bound below 16 cycles.

4.4. MIN/MAX CONSTRAINTS ACROSS GRAPH MODELS 99

>III : Propagate minimum rate constraints to G 3)

rB)Infeasible: Not propagated:

rG2
v2

=1=27)Not propagated:

rv2
=1=50)r v3

=1=(50� 6) =1=44

rG2
B

=1=30)Not propagated:

Finally for G3:

>I : In the constraint graph of G 3, there are 3 backward edges with following

weights:

uC D=12) �12

rC =1=200) �(200� (G3)) =�180

rv3
=1=44) �44

>II : There are no positive cycles, so the constraint graph is feasible. Further, two

backward edges lead to ND cycles. Only one of them, rC constraints the delay of

theND operation, v3. The bound on the loop index, x3 =

j
180�`M(G3) +�(v3)

`M (G2)

k
+1 =

11. With this bound the delay of v3 is � 165.

>III : There is no parent graph to propagate the minimum rate constraints. 2

4.4 Min/max Constraints Across Graph Models

The algorithm presented in the previous section carries out constraint analysis on con-

straint graphs by considering one flow graph at a time. We now consider timing constraint

between operations that belong to two separate flow graphs G1 and G2. The satisfiability

constraints that span across flow graphs is affected by the relationships between the flow

graphs. As shown in Figure 29 there are following three types of relationships between

flow graphs:

G1 G2 G1 G2

G1

G2G1 G2

∗

A. Concurrent B. Sequential C. Hierarchical

Figure 29: Relationships between flow graphs

100 CHAPTER 4. CONSTRAINT ANALYSIS

Case A: G1 and G2 are concurrent. This refers to the case when invocation paths to

G1 and G2 are disjoint. If the graphs G1 and G2 share the parent process graph,

there are referred to as single-rate models (\), otherwise the reaction rate of the

graphs can be multi-rate and is indicated by (k). See Example 4.4.8 below for an

illustration. For operations with multi-rate executions, min/max delay constraints

are considered between all execution events of the respective operations. Verifica-

tion of such constraints is a difficult problem. Such constraints are not allowed in

our formulation of hardware-software cosynthesis.

For operations with single-rate executions, a composite graph model is constructed

by merging the respective source and sink vertices of G1 and G2 into a single

source or sink vertex of G12 respectively.

Case B: G1 and G2 have a sequential dependency. In this case, a composite con-

straint graph is constructed either as a serialization from G1 to G2 or vice-versa

depending upon the ordering relation between G1 and G2. A composite constraint

graph construction G1;2 as a serialization from G1 to G2 is carried out by adding

an edge from sink of the predecessor graph G1 to the source of the successor graph

G2. The inter-graph constraints are then added and constraint analysis is carried

out on the composite constraint graph model.

Case C: G1 and G2 belong to the same hierarchy. Verification of these constraints is

carried out by propagating these constraints upwards until these are applicable to

the operations in the same graph model.

The following example illustrates the dependencies between flow graphs.

Example 4.4.8. Constraints across flow graphs.

With reference to the graph model hierarchy shown in Figure 30 the following

relations are induced:

Case A: Concurrent. G1�kG2�. That is, graphs across two separate process hier-

archies may have multiple rates of reaction. No constraints that span across

two different hierarchies are supported. Hence constraint analysis disallows

use of any constraints that span across flow graphs G11 and G22, for instance.

4.4. MIN/MAX CONSTRAINTS ACROSS GRAPH MODELS 101

G1

Process P1 Process P2

G2

v11

v12

v21

v22

G11
G21

v211
v111 G111

G12 G22

G211

*

Figure 30: Graph model hierarchy

However, it is possible that two graph models belong to the hierarchy of the

same process graph and be concurrent. This would be the case when corre-

sponding link operations belong to a conjoined fork. For example, consider

operations v21 and v22. These operations belong to the fanout of a conjoined

fork operation and, therefore, these are concurrent. Thus constraints across

G21 and G22 are analysed by the composite constraint graph constructed by

composing G21 and G22 in parallel.

Note that disjoined forks lead to mutually exclusive paths, therefore, by defi-

nition there can not be constraints on operations that belong to separate con-

ditional paths.

Case B: Sequential. Consider timing constraints that are imposed upon operations

in G11 and G12. Due to the sequential dependency v11 > v12, a composite

graph is constructed as G11;12 and the constraint analysis is carried out on the

composite constraint graph model.

Case C: Hierarchical. G1��G11��G 111 and G1��G 12. Similarly for G2. These

graphs belong to the same control hierarchy. Constraints across graph models

are considered to be constraints on respective link operations in the parent

graph. For instance a constraint that applies to an operation, vi in G1 and

another operation in G11 is treated as a constraint across operations vi and the

link operation v11 in G1.

2

102 CHAPTER 4. CONSTRAINT ANALYSIS

- u

a

b

c

Figure 31: An ND cycle in the constraint graph

4.5 ND Cycles in Constraint Graph

Figure 31 shows an ND-cycle in the constraint graph. An ND cycle in the constraint

graph is caused either by a maximum delay constraint or by a minimum execution rate

constraint. A relative minimum rate constraint on vi is not propagated above the graph

model, G, relative to which it is specified. Therefore, it leads to an ND-cycle only if

G� contains an ND operation and it is not vi.

If we consider the constraints as an additional input from the system designer about

properties of the environment in which the given system operates, then the presence of

an ND-cycle in the constraint graph of the system model implies existence of bounds

on the delay of the ND operations. Modeling ND operations then as purely unbounded

operations is restrictive and undermodels the actual design and its environment. We can

use constraints to derive bounds on delays of ND operations. With these bounds, the

constraint graph contains operations with bounded delays which is analyzed to determine

graph model reaction rates and answer question about satisfiability of constraints at the

ports.

4.5.1 Meaning of an ND cycle

With respect to a ND cycle � there are two possibilities:

� The ND operation is a wait operation. This is also referred to as synchronization-

related ND-cycle. The satisfiability of a constraint by a system implementation

refers to its ability to keep up with a reactive environment under the imposed

4.5. ND CYCLES IN CONSTRAINT GRAPH 103

constraints. Since the true delay of an ND operation is determined by the envi-

ronment, constraint satisfiability for � is interpreted as a maximum delay bound

on the active delay of the operations. In this case, instead of determining the

upper bound of delay offered by ND operation, a lower bound on this delay

is computed based on implementation choice of �. Depending upon how a ND

operation is implemented, the active delay will be related to a context-switch delay

in software, or in the worst case of busy-waiting true delay of the wait operation

(as in hardware). In the latter case, constraint satisfiability can only be answered

in probabilistic sense.

� The ND operation is a loop operation. (Deterministic) constraint satisfiability in

this case requires either an upper bound on the number of times a the loop body

can be invoked, or a lower bound on how frequently the loop operation is invoked.

Fortunately, the latter bound can be determined from the choice of implementation

of the graph model containing the loop operation.

The intuitive idea in ND-loop analysis is to use bounds from hardware-software im-

plementations to answer questions about satisfiability of constraints. Due to unconditional

invocations of process bodies and busy-wait implementation of ND operations, purely

hardware implementation can not be guaranteed to meet the minimum rate constraints in

any deterministic sense. However, for a hardware-software implementation satisfiability

of such constraints can be guaranteed under assumptions which are inherent in a mixed

implementation, for instance, finite context switch (instead of busy wait) implementation

of ND operations, finite and non-zero delay in runtime scheduling of flow graphs.2

Types of loop operation

We examined the semantics of the loop operation, and its implementation based on shared

memory and message passing in Example 3.5.10. Here we explore the conditions under

which the message-passing implementation of loop operations can be simplified, making

it amenable to multirate hardware-software implementation.

2Of course, a faster the hardware implementations is always better able to meet the same constraints at

higher implementation costs. The essential idea in co-synthesis is to achieve cost-effective implementations

while verifiably supporting the performance constraints.

104 CHAPTER 4. CONSTRAINT ANALYSIS

body control

body

control

RAW WAR

body

control

PRE−INDEXED WEAKLY PRE−INDEXED POST−INDEXED

Figure 32: Types of loop operations.

A loop body, G= (V; E) consists of two sets of operations: those relating to loop

control and those relating to loop body: V = V b + Vc. Vc consists of operations relating

to loop condition evaluation, loop register loads and modification of loop index. An

execution of loop Gconsists of a finite number of iterations of V c and Vb. We assume

that each loop is controlled by a single variable index. A loop index value, x, marks

execution of loop body until some exit condition becomes true. An operation in Gb either

reads the loop index, or writes the loop index or is independent of the loop index. That

is, the operations in the loop body can be partitioned into Vb = Vbr [Vbw [Vbn where

Vbr is the set of operations that read the loop index; Vbw is the set of operations that

modify the loop index and Vbn is the set of operations that do not read or modify loop

index. With respect to the structure of the loop operations, we now examine three cases

(Figure 32).

1. If Vbr = Vbw = ;. That is, loop body operations do not affect the loop index. We

call these loops pre-indexed loops.

2. If Vbw = ; . That is, loop body operations use but do not modify the loop index.

We call such loop weakly pre-indexed.

3. If Vbw 6 = ; . That is, the loop index is modified by the loop body. We call such

loop as post-indexed loops.

Example 4.5.9. Loop types.

4.5. ND CYCLES IN CONSTRAINT GRAPH 105

Pre-indexed.

read(v);

repeatf

write x = y

v = v-1;

g until(v);

Weakly pre-indexed.

read(v);

repeatf

write x = v

v = v-1;

g until(v);

Post-indexed.

read(v);

repeatf

v = read(x);

v = v-1;

g until(v);

2

The number of invocations of pre-indexed loops are marked by a loop index variable

that is assigned a value at run time but before the execution of the loop body is started.

This is in contrast to post-indexed loops where the number of iterations of loop body are

determined by the body of the loop operation. For pre-indexed loops depending upon

the side effects created by the body of the loop operation, it may be possible to overlap

executions of the loop body across invocations of the calling link operation. We consider

this possibility in the next section.

−u

G

Gv

x
v

ND−cycle

Producer Consumer

G Gv

Figure 33: Modeling an ND loop as a producer-consumer system

4.5.2 Problem formulation

Consider the case of a graph model Gthat contains an ND loop operation v. The body

of the loop operation is modeled by a graph model Gv . Because of the ND operation

v in G, a minimum rate constraint on any operation (other than v) in Gwill cause an

ND-cycle in the corresponding constraint graph of G. In addition, a maximum delay

constraint in Gmay also cause an ND-cycle. We saw in previous sections that constraint

satisfiability for ND-cycle leads to a bound, x, on the number of times the loop body

106 CHAPTER 4. CONSTRAINT ANALYSIS

Gv can be invoked for each invocation of the loop operation, v. We now consider the

ways in which this bound can be improved by altering the implementation of the loop

operation.

As explained in Example 3.5.9, in general, the loop body Gv consumes some data that

is produced by the calling body Gand produces some data that is consumed by G. We

are interested in cases where the data transfer happens only in one direction, for example,

from Gto G v. The data consumed by Gv is defined by the storage that is common to

both Gand G v , i.e., M(G) \M(Gv) . Further, we consider preindexed loops for which

the loop index is determined by actual execution of the loop body. Even though given all

possibilities such a choice of ND operation may seem restrictive, from our experience

in modeling systems, it defines the most frequent use of loop operations in the hardware

descriptions. For such loop operations, as shown in Figure 33, we can think of the called

graph model as a consumer and the calling body as a producer. There are various ways

of modeling the dynamics of the producer-consumer system. Here we consider a model

that explores relationships between the rate of data consumption to the values of input

data. Clearly, in general, the rates of data production and consumption are given by the

respective reaction rates of the graph models. Let x be the index variable associated with

the loop operation, indicating the number of times the loop body G is invoked for an

invocation of the loop operation. The fastest rate of production of data by the producer

model Gis given by the inverse of its minimum latency. This rate of production is fixed

by an imposed minimum rate constraint relative to G. The rate of consumption of data,

however, is variable and depends upon the actual value of the loop index. That is, the

larger the loop index, the longer it takes for the consumer to consume the data.

For a given rate constraint, the bound on the value of the loop index was computed

in Section 4.3. In order to maintain correct behavior the producer model must block

if at any time, the loop index exceeds this bound. This blocking leads to violation of

the imposed rate constraint. For this producer-consumer system, since the data transfer

occurs only from Gto G v , Gneed not block for completion of G v if the loop index is

bounded as above. Therefore, we can replace the unknown delay ND operation, v, by a

fixed delay operation which consists in transferring data to a waiting loop body without

waiting for completion of the loop operation. Let ` 0(G) be the new length vector of G.

4.5. ND CYCLES IN CONSTRAINT GRAPH 107

For any invocation of loop link operation v, the executions of the loop body Gv must

complete before the link operation is restarted. That is,

`0
m

� xv � M̀(Gv)

) x v �
`0
m

`M(Gv)

(4: 40)

This defines an upper bound on the value of the loop index, xv.

Definition 4.3 For a given producer-consumer system the blocking limit, B1, is the

upper bound on value taken by the loop index beyond which the calling body must block

before restarting.

B1 =

$
`0
m

`M(Gv)

%
(4: 41)

B1 provides a conservative bound on the loop index value based on the fastest rate of

production and the slowest rate of consumption of data. We now consider the possibility

of extending this bound by altering the structure of the loop operation.

4.5.3 Use of buffers to extend bounds on loop index

Let us now consider an implementation of the producer-consumer system that is connected

by a buffer of depth greater than one. Note that due to the semantics of the loop operation

there is always a 1-deep buffer between producer and consumer. In this case, the blocking

limit can be extended to

Bk =

$
k � `0

m

`M(G)

%
(4: 42)

where k is the number of empty spots in the buffer (� buffer depth, n). For any loop

index value greater than B1 the execution of consumer model (i.e., body of the loop) spans

across successive executions of the link operation in the producer model and, therefore,

occupies a place in the buffer. We assume that each invocation of the loop link operation

always produces a loop index value greater than or equal to one. That is, it is not the

case that an invocation of the loop link operation does not enqueue data into the buffer.

This is needed in order to keep the software synchronization simple with low overheads.

108 CHAPTER 4. CONSTRAINT ANALYSIS

Example 4.5.10. Buffering for preindexed loops.

Consider a producer-consumer system, G �G v, where the producer flow graph

G produces data at fixed intervals of `0
m = 1 and maximum path length in the

consumer flow graph is `M (Gv) = 1. The blocking limit B1 = 1. That is, for

each invocation of the producer, the graph Gv can be invoked at most once without

having to block G. Assuming 3-deep buffer, the maximum value of loop index can

be 3. The following shows a sample execution corresponding to loop index values

of 3; 1; 1; 1; 1:

3 3 1 1 1 13

1 1

1 1

1 1

1

1

Time 1 2 3 4 5 6 7 8

Buffer

Note that in hardware-software implementations the buffer between producer and

consumer can also be implemented as a serial-parallel rewording operation, where

the data to be transferred from producer to consumer is reworded as a multiple of

original data width. The producer then assembles new words which consists of

multiple invocations of the producer. 2

Clearly a buffer can help only in conditions where there is irregularity in the values of

the loop index and its average value still observes the blocking limit, B1. In other words,

given a finite depth buffer, the producer will always block eventually if the average rate

of production is greater than the rate of consumption, that is the average value of loop

index exceeds B1. However, the time it takes to fill up the buffer depends upon the

transient behavior of the producer-consumer queueing system. This transient behavior

is captured by the following simplification. The producer-consumer system itself is

conditionally invoked at a certain rate which is determined by the runtime scheduler

or the parent graph model in which the producer-consumer system resides. For each

conditional invocation of the producer consumer there is a fixed number of unconditional

invocations of the producer-consumer system and at the beginning of each conditional

invocation, the producer-consumer system is started from the initial state, that is, all

buffers are empty.

Previous work on buffer sizing under rate constraints is by Amon and Borriello

[AB91], where the producer-consumer system is modeled as a deterministic queue with

4.6. PROBABILISTIC ANALYSIS OF MIN/MAX AND RATE CONSTRAINTS 109

bounds on maximum and minimum rates of data production and consumption. Based

on these bounds, an algorithm is presented that first determines a bounded interval over

which is queue is guaranteed to be empty (that is, number of productions equals number

of consumptions). It then finds a bound on the queue depth based on the transient

behavior of the queueing system over this finite interval. The primary difference with

the producer-consumer formulation presented here that the queueing system created by

ND cycles is not deterministic, instead the rate of data consumption depends upon the

value of the data. It is more appropriately modeled as either as a queueing system with

multiple arrivals and fixed rate of consumption or as a system with fixed arrivals with

variable rate of consumption. We take the latter approach as described in the following

section.

Recently, Kolks et. al. [KLM93] have proposed use of implicit state enumeration

techniques to determine size of buffers between communicating finite state machines.

The procedure is based on representing the buffer as a finite state machine by modeling

it as a counter. State reachability analysis on the network of interacting finite state

machines is performed to determine the maximum value of the counter used and thus the

minimum size of the buffer is determined. This approach is elegant when all parts of a

system design can be conveniently modeled as finite state machines. Like the approach

in [AB91] it also considers worst case bounds by examining worst case data values.

4.6 Probabilistic Analysis of Min/max and Rate Con-

straints

So far we have considered only deterministic analysis of constraints and their effect on

each other. Such an analysis is carried out by forming algebraic relationships between

operation delays, graph lengths and respective min/max delay and rate constraints. P-

resence of conditional paths and ND operations in the flow graph model introduces

variability in these parameters that limits the scope of a deterministic analysis of the

constraints. In this section, we first present a probabilistic analysis of constraints (max

delay, min-rate) that lead to creation of ND cycles in the constraint graph. This analysis

110 CHAPTER 4. CONSTRAINT ANALYSIS

is based on a treatment of the effect of variable delay operations on the operation of the

producer-consumer model shown earlier.

Next, a general flow graph consisting of may ND operations defines a stochastic

process, that consists of several random variables. We present an analysis of the flow

graph to determine operation throughputs for rate constraint analysis by first building

an homomorphism between the flow graph representing the stochastic process and a

discrete Markov chain. This analysis is carried out to verify marginal satisfiability of the

constraints that can not be deterministically satisfiable (Section 4.7).

4.6.1 Meaning of constraint satisfiability

The notion of unbounded delay does not automatically imply infinite delay, but the pos-

sibility that for any given value, d, the delay offered by the ND operation can exceed, d.

Thus there exists a distribution of delay offered by the ND operation. The situation can

be addressed effectively by formulating the notion of possibility of violation with respect

to the possibility of exceeding a specified bound on the delay of the ND operations. Let

us consider an example to illustrate the concept.

Example 4.6.11. Constraint satisfiability underNDcycles. Consider design of

CRTFrame BufferDrawing Engine

lines/sec pixels/sec pixels/sec

50 M/sec1−2 M/sec100 K/sec

a system for generating pixel coordinates for a line drawing shown in Figure above.

The input to the system is a set of coordinates that define the end points of a line.

The system generates the pixel coordinates that lie between the two coordinates.

The number of pixel coordinates for any given line would depend upon the values

of the input coordinates. More pixel coordinates are generated for longer lines.

We are interested in constraints in the input rate (that is, the number of lines per

second that the graphics system is able to accept). This rate varies with the input

data values. In order to guarantee an absolute bound that is always observed, one

4.6. PROBABILISTIC ANALYSIS OF MIN/MAX AND RATE CONSTRAINTS 111

would have to calculate the longest line that can be input and ensure that the system

implementation meets the rate constraint under this worst case. An alternative

would be to characterize an average case of line lengths, and ensure that the system

implementation is able to meet the rate constraint within certain probability of error.

2

For a given ND-cycle, a constraint violation occurs if the delay, � , offered by the ND

operation exceeds a (deterministic) bound, f(u) , where � is a random variable. We define

violation error as max(� � f(u) ; 0) . There are various ways to orient the probabilistic

analysis. For a given distribution of � one approach would be to find supportable rate

constraints that minimize some measure (absolute, mean-square, etc.) of the violation

error.

An alternative approach is to determine supportable rate constraints that contain the

probability of constraint violation below some acceptable limit, � . Or, as is possible in

the case of preindexed loop operations, find an appropriate size of the buffer that contains

probability of a given constraint violation below a given limit. This notion also fits with

the general probability of failure for different parts of the system design. In principle,

once a constraint violation is brought below a certain error probability that is comparable

to probability of failure of other parts of system design the corresponding constraint can

be considered marginally satisfiable. We take this interpretation to solving satisfiability

problem for delay and rate constraints.

For illustration purposes, let us consider a max-delay constraint of Equation 3.17,

tk(vj) � tk(vi) � uij. In order for this constraint to be satisfiable this equation must

hold true for all values of k. We consider a max-delay timing constraint marginally

satisfiable if for a given bound �; 0 � � � 1, Prf tk(vj) � tk(vi) >uijg � � . That

is, for each k, the check for constraint satisfiability is considered a trial. A marginally

satisfiable constraint is then found to be satisfied if over a large number of such trials,

the probability of constraint violation is within a certain specified bound.

Associated with each ND operation is a variable x that represents the loop index.

Recall that for pre-indexed loops, x is computed before invocation of the loop operation.

Let us consider x to be a random variable that takes value over the set of non-negative

integers. The event space consists of all possible assignments of the loop index. Let

FX(�) be the probability distribution function associated with random variable x, that is,

112 CHAPTER 4. CONSTRAINT ANALYSIS

FX is defined over real values such that for a given c, FX(c) represents the probability

that x is below c. In other words,

FX(c) = Prf x� cg

The probability density function, fX(�) is defined as the derivative of the probability

distribution function.

Given the loop index of ND operation as a random variable we formulate the problem

of constraint satisfiability as a determination of expected number of data items waiting

and thus the size of the buffer required when the loop index has some nonzero probability

of exceeding the blocking limit. The answer depends upon the choice of the probability

distribution function for the random variable. Based on the distribution of loop index,

the buffer depth and probability of buffer being full is developed. A full buffer leads to

blocking of the producer process G. The following presents statement of the problem.

Given a constraint graph model, Gwith a preindexed ND cycle � caused

by a backward edge with weight u. Assume that the loop index is a random

variable with expected value, x and variance �x. Let `(Gv) be the length of

the loop body, Gv.

Problem P1: Find a bound N on the buffer size k such that the probability,

Prf G blocksg � �

for all k � N.

An alternative formulation of the above problem would be to determine the value of

the backward edge that would satisfy blocking limit. This value can then be propagated

to determine the achievable execution rate.

Problem P2: Given a buffer size of k find an upper bound u on the weight,

u, of the backward edge that causes the preindexed ND cycle �, such that

Prf G blocksg � �

for all u � u. Note that weight of a backward edge is a negative quantity,

therefore, an upper bound u on u refers to a lower bound on the absolute

value of the weight, u.

4.6. PROBABILISTIC ANALYSIS OF MIN/MAX AND RATE CONSTRAINTS 113

Problems P1 and P2 are related. For a given acceptable error rate, probabilistic

constraint satisfiability either seeks implementations that meet the required performance

(P1) or seeks achievable performance that meets required implementation costs (P2).

Note that in the limit � !0 the problems seek a deterministic solution.

4.6.2 Index distribution and bounds on buffer depth

Solution to problems P1 and P2 above depends upon the choice of a probability distri-

bution function, FX(�) for the random variable x. For analytic simplicity, we treat the

random variable as continuous variable and use these to derive approximations to the

value of the corresponding discrete parameters. We consider the case when the random

variable is unbounded and exponentially distributed. The exponential distribution is cho-

sen due to the fact that the value of the loop index is directly proportional to the interval

of time it takes for the consumer to consume a data from the buffer. It has been shown

that the exponential distribution has the least information (or highest entropy) and is

therefore the most random law that can be used and thus certainly the most conservative

approach [CS61]. Additionally, it is the only distribution with the Markovian property.

For an exponentially distributed loop index, the rates of data production and consumption

follow a Poisson distribution. That is, the times at which data is produced or consumed

(i.e., schedule of I/O operations) is uniformly distributed. In other words, the k start

times of an I/O operation over an interval [0, T] are distributed as the order statistics of

k uniform random variables on [0, T].

fe(x) = �e��x (4.43)

with expected value, Ee[X] =1
�

and variance �2
e
= 1

�2 . 3

3Strictly speaking, the distribution should be expressed as f e(x)�e�x �U (x) to indicate one-sided nature

of the function. In the context of flow graphs, the loop indices are always positive. Therefore, for notational

simplicity, we drop the explicit mention of the set function U() and reflect it by adjusting the integration

limits.

114 CHAPTER 4. CONSTRAINT ANALYSIS

Lemma 4.3 For a given error probability, �, the following express the bounds on buffer

depth, k

Ne =

&
ln �

ln(B1

x
) � ln(eB1=x � 1)

'
�

&
� ln �

B1

x
� ln(B1

x
)

'
(4.44)

where E[X] =x <B 1 is the expected value of the loop index, x and B 1 is the blocking

limit for 1-deep buffer.

Proof: Let k be the size of the buffer needed. The bound for the general

distribution is obtained by considering k values of the loop index random

variable. The k values are assumed to be independent and can be considered

as outcomes of k independent trials, or equivalently values of k independent

identically distributed (i.i.d.) variables, x1, x2, . . ., xk. Now the graph model

Gblocks if any value of the look index exceeds the blocking limit B k or

the sum over the k variables is greater than B 2k�1 . We derive an upper

bound on the error probability by using the necessary condition to cause

blocking if the sum of k i.i.d. variables exceeds the bound B k = k � B1.

Let y =
P

k

i=1xi. The distribution of y is given by the convolution of k

exponential distributions, each with expected value 1
�

. This is shown to be

the following Erlangian distribution of type-k [GH74]

fk(y) =
(�)k

k� 1!
xk�1e��y (4:45)

For this distribution, the expected value of x is given by E[Y] = k

�
and

variance �2
k
= k

�2 .

For a random variable, X, the moment generating function (MGF) is defined

as the expected value of etX, that is, MX(t)
:
= E[etX] which is equivalent

to Laplace transform (LT) of the probability distribution function, fX() of X

(by substituting parameter t = -s). By the property of Laplace transforms, LT

of a convolution of two functions, is a product of their Laplace transforms.

Therefore, it can be easily shown that the MGF of a sum of independen-

t random variables is equal to the product of their respective MGFs. In

particular,

MY (t) = E[etY] =
kY
i=1

E[etXi] =

�

�� t

!
k

4.6. PROBABILISTIC ANALYSIS OF MIN/MAX AND RATE CONSTRAINTS 115

We use this multiplicative property of the MGF in developing a bound on the

probability of buffer being full, by using Markov’s inequality that Prf x >

ag � E[X] =a. This bound is then improved by minimizing it using the

parameter, t as shown below.

Prf Gblocksg = Prf y >k � B1g

= Prf ety >e tkB1g for t >0

�
E[ety]

etkB1
Markov inequality:

� min
t

E[ety]

etkB1

�
E[ety]

etkB1

�����
t = 1

x �
1
B1

�

"
B1

x

e
B1
x
�1

#k
� �

The result follows by computing the lower bound on k which is defined as

Ne.]

Note that as � ! 0, N e ! 1. Figure 34 shows required buffer depth for an

� = 0:01%.

A solution to problem P2 requires determination of an achievable blocking limit, B 1

for a given buffer depth, k. From the blocking limit we can determine the fastest rate of

data production, or the maximum value of u and hence the supportable rate constraint.

The analytic solution to Equation 4.44, uses Lambert’s W function4 and thus not very

useful as a general formula. Instead the Equation 4.44 can be solved numerically using

a solver like Maple [Hec93] for the blocking limit, B1 for a given values of buffer depth

k= N e, expected loop index, x and the error probability, �.

4W function is a solution of the equation W(x)eW(x) = x.[FSC73]

116 CHAPTER 4. CONSTRAINT ANALYSIS

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10

Bu�er
depth

Loop index, x

Minimumbu�er depth for exponential distribution

B1 = 20

B1 = 15

B1 = 10

Figure 34: Buffer depth for exponential distributions (� = 0:01%)

4.7 Flow Graph as a Stochastic Process

In the previous section we have seen that a ND-cycle in the constraint graph for a flow

graph can be treated as a producer-consumer system, the queueing behavior of which

is governed by the values taken by a random variable associated with the loop ND

operation. In this section, we examine a flow graph model that consists of several ND

operations the behavior of each of these operations is governed by a random variable.

Thus, a flow graph Gwith ND operations corresponds to a stochastic process, }, with

the set of random variables, f xi : vi 2 NDg .

}= f x1(t) ; x2(t) ; . . . ; xn(t) ; t � 0g (4:46)

The process }evolves in time as random variables, x, take on actual loop index values.

It is easy to see that the random variables share the same event space. Therefore, the

random variables xi are defined over a common probability space. We develop the process

model by first associating a probability of execution with each vertex in V(G) . Recall,

from Chapter 3 that at any time a vertex can be in one of the following three states:

4.7. FLOW GRAPH AS A STOCHASTIC PROCESS 117

reset, enabled and done. We associate a probability with the transition from an enabled

state to a done state, as defined below

Definition 4.4 Transition probability, pi of a vertex, vi 2 V(G) is the probability that

a currently enabled vertex i transitions to a done state in the next cycle (or step).

This pi defines the probability that a currently executing node will complete its execution

in the next step. Clearly, for a node with a delay, �(v) = 1 the transition probability is

unity. Later in this section we show that the transition probability of a node with delay

� 6 = 0 is given by1
�

.

We now consider the behavior of the process }over time by transforming into a finite

state process where the process is in only one state at any time. We define the state of

a process by the set of operations that are enabled at any time. Note that the state of

a process is different from the definition of state of a vertex. Due to the concurrency

inherent in the flow graph model by means of conjoined forks, there may be more than

one operation executing simultaneously. For a flow graph with n vertices, that are a

maximum of 2n possible states. However, the structure of the graph limits this state

space based on the partial order on operations. The following example shows possible

states in a flow graph.

Example 4.7.12. States in a stochastic flow graph.

s

a b

c d

t

s

a b

c d

t 1

s

a b

c d

t

∗ ∗
∗

+

s, ab, ad, cb, cd, t s, ab, ad, cd, t s, a, c, b, d, t

Figure 35: States of stochastic flow graphs.

Figure 35 shows flow graphs and possible states. In the first flow graph, due to

conjoined fork, the possible states are a product of the states in the two conjoined

paths. In the second example, due to additional dependency from ‘b’ to ‘c’, the

state ‘cb’ is not possible. Finally, in the third flow graph, due to a disjoined fork,

the set of states is the union of states on the mutually exclusive paths. 2

118 CHAPTER 4. CONSTRAINT ANALYSIS

Definition 4.5 A transition process, }over a graph model, Gconsists of a set of states

W = f wi; i = 1; 2; . . . ; j Wj g and a set of probabilities, }= (W; �) where

�i j

:
= Prf Wk+1 = wjj Wk = wig (4:47)

is the probability from transition from state wi to wj in next step.

The transition probability between two states can be computed from the node transition

probabilities. The following shows an example.

Example 4.7.13. Computation of state transition probabilities. The probability

s

a b

c d

t

∗
s ab ad cb cd t

1

(1−pa)(1−pb) (1−pa)(1−pd)

pc.pd

(1−pc)(1−pd)

1

pb(1−pc)

(1−pc)(1−pb)

pa.(1−pd)

pb.(1−pa)

pa.(1−pb)

of transition from state ‘s’ to ‘ab’ (where both ‘a’ and ‘b’ are enabled) is 1. The

probability of transition from ‘ab’ to ‘ad’ is computed by the condition that vertex

‘b’ changes state from enable to done, pb, and vertex ‘a’ stays in the enabled state,

(1� pb). Since the two events are independent, the probability of state transition is

given by the product of individual probabilities. 2

We assume that the transitions from a state depend only upon the current state and

are independent of the past history of state transitions, that is, the probability of transition

from state wi to wj is independent of the past history leading up to state wi.

PrfWk+1 = wjjWk = wi; Wk�1 = . . .g = PrfWk+1 = wjjWk = wig (4: 48)

Assuming the loop index values to be exponentially distributed (which was shown to be

the case with some justification in the previous section), we are then able to construct a

Markov process from } .

4.7. FLOW GRAPH AS A STOCHASTIC PROCESS 119

Definition 4.6 A Markov chain M is characterized by a transition matrix, P = f�ijg

where

�ij = PrfWk+1 = wijWk = wjg

We consider time homogenous Markov changes for which the transition probability is

independent of the time step, k .

The Markov chain can be shown to form a positive dynamical system (that is, the

state vector also takes on positive values) [Lue79]. It can be shown the largest eigenvalue

of P is �0 = 1. Constraint analysis using Markov chain attempts to determine the average

length of time to reach a specified state. Due to the fact that the flow graph model is a

connected graph with a path between every (non-conflicting) vertices (assuming an edge

from sink to source operation indicating restart operation), therefore, the Markov chain

is regular, irreducible and closed. However, it is not always the case that the chain is

aperiodic. But it can be made aperiodic by addition of a variable delay vertex in series

from sink to source operations. For mixed implementation using both hardware and soft-

ware, the software component always contains a runtime scheduler and hence the it can

be modeled as a variable delay vertex in series from sink to the source operations. This

is, however, not true for purely hardware implementations, where the runtime scheduler

operation is zero, and, therefore, the corresponding Markov process may be non-ergodic.

In a regular Markov chain, after a sufficiently large number of steps there exists a

nonzero probability of transition between any two states. From the basic limit theorem, for

a regular Markov chain the normalized eigenvector of the transition matrix corresponding

to its largest eigenvalue determines the steady state occupation probabilities. From ergodic

theory, the inverse of the steady state transition probability gives the interval of visitation

to the state.

Based on this model, the procedure for constraint analysis of a flow graph model,

G, is to first construct a Markov chain M by computing all possible states in which

the equivalent process model, } can be. Recall, a state of } at any time is the set of

enabled vertices at that time. For this finite state model, we construct the probability of

state transitions based on conditional transition probabilities of vertices in a state. The

Markov chain M is then analyzed to obtain steady state transition probabilities and thus

120 CHAPTER 4. CONSTRAINT ANALYSIS

the expected visitation interval NDoperations. Since a loop NDoperation constitutes

a producer-consumer subsystem, these intervals determine the average times between

invocations of the producer-consumer subsystems, which are then used to obtain bounds

on buffer depths assuming that the producer consumer system is started in the initial state

at the beginning of each visit to a state.

Example 4.7.14. Consider the graph model, G shown below. Assume the

loop body for each of the three loop operations takes one cycle.

L1

L2

L3

r1

r2

r3

S1 S2 S3
p1

1-p1 1-p2

p2

1-p3

p3

Stochastic Model

X(t) = { r1(t), r2(t), r3(t) }

r1, r2, r3 are random variables

Corresponding Markov Chain

Figure 36: Loops in a serialized model.

The corresponding Markov chain is a reachable, closed and irreducible Markov

process.

For exponentially distributed random variables with r1 = 10; r2 = 20 r3 = 50 the

transition matrix of the Markov chain is

P =

264 0: 9 0 0: 02

0: 1 0: 95 0

0 0: 05 0: 98

375
Steady state probabilities are given by the normalized eigenvector corresponding to

the largest eigenvalue, that is,

lim
m!1

Pm � ei = [0: 125 0: 245 0: 625]

Where ei is a column vector with a 1 in the ith row. Now from ergodic theory, the

mean recurrence time for a state in the closed Markov chain is inverse of its steady

state probability. From this we deduce that steady state interval between end of a

4.7. FLOW GRAPH AS A STOCHASTIC PROCESS 121

loop to its restart (and therefore, the min-rate of operations in that particular loop)

for L1; L2; L3 would be 10
0:125 �10 = 70, 60 and 30 respectively.

Therefore, for marginally satisfiable rate constraints for G, G1, G2 and G3 would

be 80, 70, 60 and 30 cycles/sec respectively. Note that for G, the expected delay

is the sum of expected delays of L1; L2; L3. Distribution of the delay is given by

the convolution of individual probability distributions. 2

Example 4.7.15. Consider loop operations in a fork shown by by the flow

graph below. Again assume that loop bodies are one cycle long.

L1r1

L2r2 L3r3

S1

1-p1

S2

1-p2

S3

1-p3

p1*pc
p2

p3

p1*(1-pc)

Figure 37: Loops in a fork.

In case of a conjoined fork, states S2 and S3 belong to the same class. Thus these

states are merged before proceeding. In case of a disjoined fork, pc is the probability

of associated conditional transition. For r1 = 10; r2 = 20 r3 = 50, the transition

matrix is given by

P =

264 0: 9 0: 05 0: 02

0: 1pc 0: 95 0

0: 1(1�pc) 0 0: 98

375
The steady state probabilities are [0.22 0.22 0.56] and [0.208 0.167 0.625] for

pc = 0: 5 and pc = 0: 4 respectively.

Therefore, marginally satisfiable minimum rates are as follows:

pc = 0: 4 pc = 0: 5

Graph model (cps) (cps)

G1 30.08 35.45

G2 99.76 70.91

G3 30 49.29

G 55.71 55.71

122 CHAPTER 4. CONSTRAINT ANALYSIS

Note that latency of G is expressed as r1 + max(r2; r3) . Its distribution function is

fR1 ? (fR2 FR3 + fR3 FR2) with expected value = 20 + 50� 1
1

20
+ 1

50

= 55: 71. Here

? is the convolution function. 2

Limitations and possible extensions

The stochastic analysis of graph models is not new and has been carried out before by

several researchers for different types of network models. For related work on timed

and stochastic Petri nets see for example [Sha79] [Mol82]. The chief limitation is in

the construction of the possible states for the process which requires enumeration of all

possible paths of execution, and this can lead to explosion in the number of states in

M. Further, the assumption of exponential distribution of loop index values may be fine

for truly ‘random’ loop indices. However, for loops with indices that have deterministic

relationships, this assumption is harder to justify. Aperiodicity of the constructed is not

always guaranteed. However, it can be guaranteed by adding a dummy ND operation

whose corresponding state has a path to every other state in the Markov chain, and

therefore, it belongs to the same class as others in M and is aperiodic, therefore, making

all states in M aperiodic.

A large number of states in a Markov chain makes it harder to analyze the resulting

stochastic matrix for the steady state behavior. The following transformation to collapse

a chain of states in the Makov process can be used to achieve reduction in the number

of states. This reduction is based on a notion of equivalence of Markov chains such that

for a given state in the two chains, the steady state occupation probabilities are the same.

The following defines the concept.

Definition 4.7 Markov processes M1 and M2 are considered homomorphic in steady-

state, (HSS), if steady state transition probabilities of states common in M1 and M2 are

identical.

Theorem 4.6 [State reduction] A chain of states, s1; s2; . . . ; sk with transition proba-

bilities

�ij =

8<: 1 j = i + 1

0 otherwise

4.7. FLOW GRAPH AS A STOCHASTIC PROCESS 123

can be reduced to a single state with probability of exiting the state = 1
k

.

Proof: Consider M1 and M2 with transition matrices:

1 2 3 k k+1 1 2

p

1-p

1 1 1 1 1

p

1-p

q

1-q

P1 =

266666664
0T

k

... p

: : : : : : : : : : :

Ik
... 0k�1

... 1�p

377777775
(4.49)

P2 =

24 1�q p

q 1�p

35 (4.50)

where 0k is zero column vector of dimension k and Ik is a k �k identity

matrix.

M1 and M2 are HSS , eT1 � P
1
1 � ek+1 = eT1 � P

1
2 � e2 (4: 51)

where ei is a column vector with a 1 in the ith place, rest being zero. The

largest eigenvalue of P1 and P2 are 1. The eigenvectors corresponding to

this eigenvalue for P1 and P2 are

v1 = [1 1 � � � 1
1

p
]

v2 = [1
q

p
]

The steady state probabilities of the state k + 1 in M1 and 2 in M2 are given

by the normalized eigenvector. That is,

eT1 � P
1
1 � ek+1 =

1= p

k + 1
p

eT1 � P
1
2 � e2 =

q = p

1 + q

p

124 CHAPTER 4. CONSTRAINT ANALYSIS

Therefore,

M1 and M2 are HSS , q = 1= k

]

4.8 Summary

We have developed several notations and concepts in this section. Let us summarize the

main points. The notion of constraint satisfiability is developed based on the ability to

discern existence a potential schedule of operations that meets the constraint.

For reasons of simplicity, scheduling is considered in two parts: operation scheduling

(or the short term scheduling) and task scheduling (or the long term process scheduling).

While the former can be subject to deterministic constraint satisfiability analysis, such

analysis for the latter is limited in applicability due to the additional non-determinism

inherent in this kind of scheduling. We attempt to capture this non-determinism and

analyze it together with the non-deterministic delay operations.

The run-time scheduler models uncertainty in invocation of graph models and thus

attempts to merge this uncertainty with that of delay of NDoperations. This ‘merge’ in

uncertainty is accomplished by redefining short-term constraint satisfiability over active

computation times rather than total execution times. Thus a NDoperation is transformed

into a fixed-active-delay operation while the uncertainty associated with its actual delay

is delegated to the runtime (or long term) scheduler. Since the idea of active computation

time is naturally suited to a software execution environment the implementation of two

step scheduler is restricted only to software. However, it is conceivable that with appro-

priate control generation scheme this idea can be used for hardware implementation as

well.

The data-dependent delay operations are similarly transformed into fixed delay op-

erations by means of buffers. Probabilistic analysis is used to determine likelihood of

constraint violation based on probability of buffer overflow. It is reasoned that such

analysis is more relevant to answering satisfiability questions of constraints that involve

application of the long term scheduler. The probabilistic analysis is done by construct-

ing a probabilistic producer-consumer system whose behavior is controlled by a random

4.8. SUMMARY 125

variable. Next, we construct a stochastic process by collecting a number of random

variables each corresponding to non-deterministic delay operation. This process is then

transformed into a stationary Markov chain. The Markov chain is analyzed to determine

steady state probabilities. Then using results from ergodic theory we find average interval

between visits to various states which is used to determine satisfiability of constraints on

min-rate of the corresponding flow graph model.

There are several limitations of the producer-consumer formulation on which the

probabilistic analysis is based upon. Firstly, use of buffer in case of preindexed loops

alters the input/output behavior of the modeled system. Specifically, the events at system

ports are reordered such that the sequence of events at any port still follow the same order,

however, events across ports may be interleaved. In other words, if we consider a port

operation to be an action and specific instances of execution to be events, the partial order

imposed by the system model is the order on actions and not on events. Intuitively this

altered behavior would be acceptable as long as the environment contains no interactions

between separate input/output events (for example synchronization). This may not be true

in general for all systems. As safe approach would be to construct buffered producer-

consumer systems only for those systems where input/output operations do not contain

any explicit sequencing dependencies (i.e., only inter-iteration dependencies).

In this dissertation we concern ourselves only to systems where operations and de-

pendencies are static. In general, long term scheduling also depends on dynamic and

runtime factors and information needed for an efficient schedule is available only at run-

time. These runtime factors include data-dependent dependencies between operations,

data availability and synchronization. These complexities make dynamic scheduling

problem difficult to formulate and analyze. In practice heuristic solutions are sought

for solving such problems. The biggest drawback of runtime scheduling methods is per-

formance loss due to the overheads. Dynamic scheduling techniques are out of the scope

of this research work.

Chapter 5

Software and Runtime Environment

In this chapter we focus on the problem of synthesis of the software component of sys-

tem design. We consider the software portion to be of limited size and mapped to real

memory so that the issues related to virtual memory management are not relevant to this

problem. The objective of software implementation is to generate a sequence of processor

or machine instructions from the set of flow graph models. Due to significant differences

in processor abstractions at the levels of graph model and machine instructions, this task

is performed in two separate steps: (1) generation of a program in a high-level program-

ming language, C; followed by (2) compilation of the program into machine instructions

by software compiler and assembler for the processor. We assume that the processor is a

predesigned general-purpose component with available compiler and assembler. There-

fore, the important issue in software synthesis is generation of the source-level program.

Most of this chapter is devoted to this step of software synthesis. Towards the end of

this chapter, we discuss important issues related to software compilation and linking.

This chapter is organized as follows. We first present a cost model of the processor in

Section 5.1. In Section 5.2 we present a model of software that allows for satisfaction of

timing constraints for a target architecture that consists of a single processor. Estimation

of software performance in view of the cost model of the target processor is presented in

Section 5.3. Software performance is also affected by the allocation and management of

storage for program and data portions of the software. Estimation of software storage and

its effect on performance is discussed in Section 5.4. Section 5.5 presents an overview

126

5.1. PROCESSOR COST MODEL 127

of the steps in synthesis of the software component. These steps are presented in detail

in Sections 5.6, 5.7 and 5.8. Section 5.9 presents practical issues in generation of the

software. We conclude this chapter by a summary in Section 5.10.

5.1 Processor Cost Model

An implementation of a flow graph in software is characterized by assignment of delays

to operation vertices and choice of a runtime scheduler. The delay of an operation is de-

pendent on the set of processor instructions and delays associated with these instructions.

The instruction set and associated delays are determined by the choice the processor. We

capture processor specific information into a cost model described in this section. The

intermediate format for capturing this cost model is presented in Appendix C.

Processors are the predesigned hardware components that execute general-purpose

software. To a compiler, a processor is characterized by its instruction set architecture

(ISA) which consists of its instructions and the memory model. We make following

assumptions on the ISA:

� The processor is a general purpose register machine with only explicit operands in

an instruction (no accumulator or stack). All operands must be named. This refers

to the most general model for code generation. General purpose register machines

is the most dominant architecture in use today and is expected to remain so in

forseeable future [HP90].

� The memory addressing is based on byte-level addressing. This is consistent with

the prevailing practice in the organization of general-purpose computer systems.

A processor instruction consists of an operation and a set of operands on which to

perform the specified operation. While the actual instruction sets for different processors

are different, a commonality can be established based on the types of instructions sup-

ported. For our purposes we assume a basic set of instructions listed in Table 3. This set

of basic instructions groups together functionally similar operations. In addition, it also

contains macro-operations that may not be available as single instructions, for example,

128 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

call and return. These operations help in software delay estimation by providing addi-

tional information which may not be available purely from looking at the instruction set

of a processor.

There is a significant variation in the types of operands supported on different pro-

cessors. Following the taxonomy in [HP90] we classify ISA in to following categories:

Load-Store (LS): This refers to an ISA where memory operations are confined to two

types of instructions (LOAD) and (STORE). All other instructions use non-memory

operands.

Register-Memory (RM): In this ISA, all instructions may have up to one memory

operand.

Memory-Memory (MM): All operands in an instruction may be memory operands.

Based on this understanding of processor and instruction set architecture we develop

a cost model to represent the target processor,

� = (�op ; �ea ; tm; ti) (5: 52)

where the

� Execution time function, �op , represents instruction delay times in cycles for oper-

ations listed in Table 3,

� Address calculation delay function, �ea , represents effective address calculation

delay times in cycles,

� Memory access time tm is the time in cycles for a memory access. Note that tm

can also be used to model a memory access with wait states,

� Interrupt response time, ti, is the maximum time between the activation of an

external interrupt and the beginning of execution of the corresponding interrupt

service routine.

5.1. PROCESSOR COST MODEL 129

Instruction type Meaning DLX Example

load Load from memory lb, lbu, lh, lhu, lw, lwl, lwr, *la, *li

store Store to memory sb, sh, sw, swl, swr, *ulh, *ulhu, *ulw,

*ush, *usw

move Move registers mfhi, mthi, mflo, mtlo, *mov

xchange Exchange registers –

alu ALU operations addi, addiu, andi, ori, xori

add, addu, sub, subu, and, or, xor, nor

sll, srl, sra, sllv, srlv, srav

lui, *abs, *neg, *negu, *not, *rol, *ror

*seq, *sle, *sleu, *sgt, *sgtu, *sge,

*sgeu, *sne

mpy Integer multiply mult, multu

div Integer divide div, divu, *rem, *remu

comp Compare slti, sltiu, slt, sltu

call Call –

jump Jump j, jal, jr, jalr

branch Branch beq, bne, *bgt, *gge, *bgeu, *gbtu,

*blt, *ble, *bleu, *bltu

bc true Branch taken –

bc false Branch not taken –

return Call return –

seti set interrupt –

cli clear interrupt –

int response Interrupt response –

halt Halt –

* = synthesized instruction.

Table 3: Basic instruction set

130 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

The execution time function, �op , maps assembly language instructions to positive

integer delays. The assembly language instructions are generated by the high-level lan-

guage compiler. These instructions usually correspond to instructions supported by the

processor instruction set. However, some assembly language instruction may refer to a

group of processor instructions. These macro-assembly language instructions are some-

times needed for compilation efficiency and to preserve the atomicity of certain operation

in the flow graph model. The effect of internal hardware pipelining in microprocessors

is modeled as follows. The function, �op represents a pipelined operation delay (which

is usually 1 cycle for most operations). A penalty of p �1 cycles is added to the delay

of the overall program. In addition, a pipeline stall penalty is added for instructions

with latencies greater than p . The interrupt response time, ti, is the time that processor

takes to become aware of an external hardware interrupt in a single interrupt system (that

is, when there is no other maskable interrupt is running). For cost model description

purposes, this parameter can be specified as a part of the operation delay function (as

shown by entry int response in Table 3).

The address calculation function, �ea , maps a memory addressing mode to the integral

delay (in cycles) encountered by the processor in computing the effective address. An

addressing mode specifies an immediate data, register or memory address location. In

the last case, the actual address used to access the memory is called the effective ad-

dress. Table 4 lists common addressing modes. Square brackets ([]) indicate contents,

for example, [R1] indicates contents of register R1, mem[10] indicates the contents of

memory at address 10.

For completeness sake, this table lists addressing modes that are encountered in

general programs. However, when generating programs from HDL descriptions some of

these modes are never used. For example, a computed reference (register indirect) usually

occurs when the data value is created dynamically or a local variable (stack) is referred

to by means of a pointer or an array index. Neither of these conditions occur when

generating code from HDL. Further, not all the addressing modes may be supported by a

given processor. For example, the DLX processor supports only immediate and register

addressing modes, while the x86 instruction set supports all mentioned addressing modes

5.1. PROCESSOR COST MODEL 131

Mode Notation Explanation Usage

immediate #4 value = 4 Constants

register R1 value = [R1] Register values

direct (100) value = mem[100] Static data

register indirect (R1) value = mem[[R1]] Pointer/computed address

register offset (40)R1 value = mem[[R1]+40] Local variables

memory indirect @(R1) value = mem[mem[[R1]]] Pointer access

indexed 100(R1)(R2) value = mem[100+[R1]+d*[R2]] Array elements

Table 4: Addressing modes

(though with restrictions on which registers can be used in a certain addressing mode).

Storage alignment

Storage alignment is a side-effect of the byte-level addressing scheme assumed for the

processor/memory architecture. Because the smallest object of a memory reference is

a byte, references to objects smaller than a byte must be aligned to a byte. Further,

for memory efficiency reasons, the objects that occupy more than a byte of storage are

assigned an integral number of bytes, which means their addresses must also be aligned.

For example, address of a 4-byte object (say integer) must be divisible by 4.

Table 5 lists data types and alignment requirements which are taken into account in

the determination of the data size. The size of a structure is determined by the total

of size requirements of its members. In addition, the structure must end at an address

determined by the most restrictive alignment requirement of its members. This may

result in extra storage (upto a maximum 3-bytes per member) for padding. In the case

of a structure consisting entirely of bit fields, there is no padding if the total number

of bits is less than 32 bits. In case of structure widths greater than 32 bits, additional

32-bit words are assigned and members that lie on the boundary of two words are moved

to the subsequent word leaving a padding in the previous word. It is assumed that no

member takes more than 32-bits. Variables with size greater than 32-bits, are bound to

multiple variables represented by an array. The size and alignment requirements are then

multiplied by the number of array elements.

132 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Data type Size Address alignment Unsigned range Signed range

int 32 %4 �2 31 . . . 231 �1 0 . . . 232 �1

short 16 %2 �32; 768 . . . 32; 767 0 . . . 65; 535

char 8 %1 �128 . . . 127 0 . . . 255

pointer 32 %4 NA 0 . . . 232 �1

struct variable. see text.

Table 5: Variable types and storage

Example 5.1.1. Variable storage assignments.

The following shows the set of variables used in the definition of a flow graph
and the corresponding storage assignments in the software implementation of the
graph.

a[1], b[2], c[3], d[4], e[5] structf a:1; b:2; c:3; d:4; f:5 g

f[33] int f[2]

Minimum storage used in the flow graph model is 8 bytes. However, due to align-

ment requirements the actual data storage is 12 bytes. 2

5.2 A Model for Software and Runtime System

The concept of a runtime system applies to systems containing a set of operations or tasks

and a set of resources that are used by the tasks. Operations may have dependencies that

imposes a (partial) ordering in which the tasks can be assigned to resources. In general

a runtime system consists of a scheduler and a resource manager. The task of the

runtime scheduler is to pick up a subset of tasks from the available set of tasks to run

at a particular time step. The resource manager can be thought of consisting of two

components: a resource allocator and a resource binder. The allocator assigns a subset

of resource to a subset of tasks, whereas a binder makes specific assignments of resources

to tasks. The results of the scheduling and resource management tasks are interdependent,

that is, a choice of a schedule affects allocation/binding and vice versa. Depending upon

the nature and availability tasks and resources some or all of these activities can be done

5.2. A MODEL FOR SOFTWARE AND RUNTIME SYSTEM 133

either statically or dynamically. A static schedule, allocation or binding make the runtime

system simpler.

In this general framework, most synthesized hardware uses static resource alloca-

tion and binding schemes, and static or relative scheduling techniques as described in

Chapter 4. Due to this static nature, operations that share resources are serialized and the

binding of resources is built into the structure of the synthesized hardware, and thus there

are always enough resources to run the available set of tasks. Consequently, there is no

need for a runtime system in hardware. Similarly, in software, the need for a runtime

system depends upon the whether the resources and tasks (and their dependencies) are

determined at compile time or runtime.

Since our target architecture contains only a single resource, that is, the processor,

the tasks of allocation and binding are trivial, i.e., the processor is allocated and bound

to all routines. However, a static binding would require determination of a static order

of routines, effectively leading to construction of a single routine for the software. This

would be a perfectly natural way to build the software given the fact that both resources

and tasks and their dependencies are all statically known. However, due to the presence

of NDoperations in software, a complete serialization of operations may lead to creation

of NDcycles which would make satisfiability determination impossible.

Example 5.2.2. Static linearization leads to creation of NDcycles.

constraint maxtime from op1 to op2 = u cycles;

−u

op1

op2

wait

 n1

n2

α

 n1

α

n2

−u

d1

Partially ordered constraint graph Completely ordered constraint graph

op1

op2

Extra dependency
created due to
static serialization.

Consider a part of the flow graph shown in figure above. Any ordering of operations

op1 and op2 that puts an NDoperation � between these two operations creates an

134 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

λ1

λ2

λ3 ASIC

Bus

r1

r2

r3

ρ1 ρ2 ρ3

Figure 38: Software model to avoid creation of NDcycles.

ND-cycle in the corresponding constraint graph. 2

A solution to this problem is to think of software as a set of concurrent program

threads as sketched in Figure 38. A thread is defined as a linearized set of operations

that may or may not begin by an NDoperation. Other than the beginningNDoperation,

a thread does not contain any NDoperations. The latency of a thread is defined as sum

of the delay of its operations without including the initial NDoperation whose delay is

merged into the delay due to the runtime scheduling function, � .

The use of multiple concurrent program threads instead of a single program to im-

plement the software avoids the need for complete serialization of all operations which

may create unbounded cycles. In addition it also makes it possible to share resources, in

this case the processor, dynamically.

Example 5.2.3. Consider the concurrent execution of following two graphs in

a system model.: Here the function f() represents call a resource that is common

G1 G2

while (c1 > 0) {
 a = f(a,b);
 write x = a;
 c1−−;
}

while(c2 > 0) {
 c = f(c,d);
 write y = c;
 c2−−;
}

A B

to G1 and G2. “A” and “B” are operation tags on the write operations in the two

5.3. ESTIMATION OF SOFTWARE PERFORMANCE 135

graphs. Assume that operations, “A” and “B” are rate constrained. Let us consider

the trace of execution for operations “A” and “B”. A static resource allocation

strategy between G1 and G2 requires serialization between G1 and G2 since there is

only one resource available to implement the function f() . This serialization leads

to either of the following traces:

A; A; A; . . . ; A; B; B; B; . . . ; B

or

B; B; B; . . . ; B; A; A; A; . . . ; A

On the other hand, when using dynamic allocation of the processor to two pro-

gram threads corresponding to G1 and G2, it possible to obtain following trace of

execution:

A; B; A; B; A; B; . . . ;

where the interval between consecutive A and C operations can be determined

statically and, therefore, it can be constrained. This allows us the possibility to

support execution rate constraints on the write operation at ports x and y . In the

former case, due to static serialization of G1 and G2 an execution rate constraint

would lead to an ND-cycle that would only be marginally satisfiable by bounding

the loop indices of the two loop operations. By using dynamic resource allocation,

the rate constraints can now be satisfied deterministically. 2

In this model of software, satisfiability of constraints on operations belonging to

different threads can checked for marginal satisfiability as defined in Chapter 4 (that

is, assumed a bounded delay on scheduling operations associated with NDoperations).

Constraint analysis for software depends upon first arriving at an estimate of the software

performance and size of register/memory data used for the software. We discuss these

two issues next.

5.3 Estimation of Software Performance

A program is compiled into a sequence of machine instructions. Therefore, timing proper-

ties of a program are related to the timing properties of the machines instructions to which

it is eventually translated. Any variability in machine instruction timings is reflected on

the variability of timing of programming-language statements. One approach to software

estimation would be to generate such estimates directly from synthesized and compiled

136 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

machine instructions for a given graph model. However, the process of compilation of

high-level language programs is time intensive and may not be a suitable step when

evaluating tradeoffs among software and hardware implementations.1 Therefore, alterna-

tive methods are sought for estimating software timing properties directly from programs

written in high-level languages. When deriving timing properties from programs, several

problems are encountered due to the fact that popular programming languages provide

an inherently asynchronous description of functionality, where the program output is de-

pendent on the timing behavior of its components and of its environment. Attempts

have been made to annotate programs with relevant timing properties [Sha89, Mea89].

Syntax-directed delay estimation techniques have been tried [PS90] which provide quick

estimates based on the language constructs used. However, syntax-directed delay estima-

tion techniques lack timing information that is relevant in the context of the semantics

of operations.

We perform delay estimation on flow graph models for both hardware and software,

using the semantics interpretations of operations in our estimation procedures. A software

delay consists of two components: delay due operations in the flow graph model, and

delay due to the run-time environment. We discuss the run-time environment on constraint

satisfiability in the next chapter. Here we focus on the first component, that is, the delay

of a software implementation of the operations in the flow graph model. For this purpose,

it is assumed that a given flow graph is to be implemented as a single program thread.

Multiple program thread generation is achieved similarly by first identifying subgraphs

corresponding to program threads. This identification of subgraphs is discussed in next

chapter. Software delay then depends upon the delay of operations in the flow graph

model and operations related to storage management.

Calculations of storage management operations is described in Section 5.4.2.

5.3.1 Operation delay in a software implementation

In order to make effective tradeoffs during partitioning, it is necessary to be able to make

good estimates about software and hardware performance. Such estimates often require

1Vulcan-II does provide commands to perform exact software delay estimations based on direct synthesis

and compilation. See Chapter 7.

5.3. ESTIMATION OF SOFTWARE PERFORMANCE 137

simplifying assumptions that tradeoff modeling accuracy against speed. In estimating

software performance, we make the following assumptions.

1. The system bus is always available for instruction/data reads and writes.

2. All memory accesses are aligned.

3. All memory accesses are to a single-level memory.

Each operation v in the flow graph is characterized by a number of read accesses,

mr(v), a number of write accesses, mw(v) and a number of assembly-level operations,

no(v). The software operation delay function, �, is computed as follows:

�(v) =
no(v)X
i =1

to pi +(m r(v) +m w(v)) �mi (5: 53)

where the operand access time, mi, is the sum of effective address computation time and

memory access time for memory operands. For some instruction-sets, not all possible

combinations of ALU operations and memory accesses are allowed and often operand

access operations are optimized and overlapped with ALU operation executions thus

reducing the total execution delay. Due to this non-orthogonality in ALU operation

execution and operand access operations, the execution time function of some operations

is often overestimated from real execution delays. In the one-level memory model, the

number of read and write accesses depends upon the fanin and fanout of the operation.

Example 5.3.4. Software delay estimation.

nop

addadd

mul

add

For the graph model shown above, assuming addition delay 1 cycle, multiplication

delay is 5 cycles and memory delay 3 cycles.

138 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Assuming that each non-NOP operation produces a data, that is, mw(v) =1 and

that the number of memory read operations are given by the number of input edges,

the software delay associated with the graph model is 3�t++t �+(5+4)�m i =35

cycles. 2

Use of operation fanin and fanout to determine memory operations provides an ap-

proximation for processors with very limited number of available general purpose reg-

isters. Most processors with load-store (LS) instruction set architectures feature a large

number of on-chip registers. Therefore, we develop a model of register usage in these

processors in Section 5.4.2. Based on this model, we determine the memory access

operations and their contribution to the software delay.

ND operations

Wait operations in a graph model induce a synchronization operation in the correspond-

ing software model. Thus, the software delay of wait operations is estimated by the

synchronization overhead which is related to the program implementation scheme being

used. One implementation of a synchronization operation is to cause a context switch in

which the waiting program thread is switched out in favor of another program thread. It

is assumed that the software component is computation intensive and thus the wait time

of a program thread can be overlapped by the execution another program thread. After

the communication operation associated with the wait operation is complete, the waiting

program thread is resumed by the runtime scheduler using any specific scheduling policy

in choosing among available program threads. Alternatively, the completion of commu-

nication operation associated with wait operation can also be indicated by means of an

interrupt operation to the processor. In this case, the synchronization delay is computed

as follows:

�i nt r(v) =t i +t s +t o (5: 54)

where ti is interrupt response time, ts is interrupt service time, which is typically the

delay of the service routine that performs input read operation and to is concurrency

overhead. The notion of concurrency overhead is discussed in Section 5.7.

Link operation are implemented as call operations to separate program threads corre-

sponding to bodies of the called flow graphs. Thus the delay due to these operations is

5.4. ESTIMATION OF SOFTWARE SIZE 139

accounted for as the delay in implementation of control dependencies between program

threads as discussed in Section 5.6.

5.4 Estimation of Software Size

A software implementation of a flow graph model, G=(V; E) is characterized by a

software size function, S� , that refers to the size of program, S�

p
, and static data, S�

d
,

necessary to implement the corresponding program on a given processor, �. For an

system model, �,

S�(�) =
X
Gi2�

S�(Gi) =
X
Gi2�

[S�
p
(Gi) +S

�

d
(Gi)] (5: 55)

The set S�
d

consists of storage required to hold variable values across operations

in the flow graph and across the machine operations. This storage can be in the form

of specific memory locations or the on-chip registers, since no aliasing of data items is

allowed in input HDL descriptions2. In general, S�
d
(G) would correspond to a subset of

the variables used to express a software implementation of G, that is,

S�
d
(G) � j M(G)j +j P(G)j (5: 56)

where M(G) refers to the set of variables used by the graph G and P(G) is the set

of input and output ports of G (as defined in Chapter 3). This inequality is because

not all variables need be live at the execution time of all machine instructions. At the

execution of a machine instruction, a variable is considered live if it is input to an future

machine instruction. Interpretation of variables in relation to flow graph is discussed in

Section 5.4.2.

In case S�
d
(G) is a proper subset of the variables used in software implementation

of G, that is, M(G), additional operations (other than the operation vertices in G) are

needed to perform data transfer between variables and their mappings into the set S�

d
(G).

In case S�
d
(G) is mapped onto hardware registers, this set of operations is commonly re-

ferred to as register assignment/reallocation operations. Due to a single-processor target

2Register storage of an aliased variable will lead to incorrect behavior due to possible inconsistency in

values stored in the register and the value stored at the memory.

140 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

G

Π

Linearize GI
Storage
allocation

Flow graph

Processor cost model

Variable interval graph

Ξ

Spill set

Runtime

Overhead

estimation
Software delay

of G

(Chapter 3)

(5.1)

(5.4.1) (5.4.2)

(Chapter 6)

Figure 39: Software delay estimation flow.

architecture, the cumulative operation delay of V (G) would be constant under any sched-

ule. However, the data set S�
d
(G) of Gwould vary according to scheduling technique

used. Accordingly, the number of operations needed to perform the requisite data transfer

would also depend upon the scheduling scheme chosen. Typically in software compil-

ers a schedule of operations is chosen according to a solution to the register allocation

problem.

The exact solution to the register assignment problem requires solution to the vertex

coloring problem for a conflict graph where the vertices correspond to variables and an

edge indicates simultaneously live variables. The number of available colors corresponds

to the number of available machine registers. It has been shown that this problem is

NP-complete for general graphs[GJ79]. Hence heuristics solutions are commonly used.

Most popular heuristics for code generation use a specific order of execution of successor

nodes (e.g., left neighbour first) in order to reduce the size of S�
d

[ASU86].

In contrast to the register assignment in conventional software compilers which per-

form simultaneous register assignment and operation linearization, we devise a two step

approach to estimation of data storage and software delays resulting from additional

memory operations.

1. linearize operations, that is, find a schedule of operations.

2. Estimate register/memory data transfer operations.

This two-step approach is taken to preserve the flexibility in operation scheduling which

may be constrained by timing constraints not present in traditional software compilers.

5.4. ESTIMATION OF SOFTWARE SIZE 141

Figure 39 illustrates the steps in estimation of software performance.

5.4.1 Operation linearization

Linearization of G refers to finding a complete order of operations in V (G) that is

topologically consistent with the partial order in G. This complete order corresponds to

a schedule of operations on a single resource, that is, the processor. In the presence of

timing constraints, the problem of linearization can be reduced to the problem of ‘task

sequencing of variable length tasks with release times and deadlines’ which is shown

to be NP-complete in the strong sense [GJ79]. It is also possible that there exists no

linearization of operations that satisfies all timing constraints. Exact and heuristic ordering

schemes under timing constraints are described in [KM92a].

We use a simplified version of the heuristic ordering in [KM92a] based on topological

sorting of the vertices in the acyclic flow graphs. This sorting is performed based on

a vertex elimination scheme that repetitively selects a zero in-degree vertex (i.e., a root

vertex) and outputs it. The following procedure linearize outlines the algorithm. The

input to the algorithm is a constraint graph model consisting of forward and backward

edges as defined in Section 4.2 of Chapter 4. Recall, a backward edge represents a

maximum delay constraint between the initiation times of two operations, whereas a

forward edge represents a minimum delay constraint between the operation initiation

times. By default, a non-zero operation delay leads to a minimum delay constraint

between the operation and its immediate successors.

The algorithm consists of following three steps indicated by the symbol (>):

1. Select a root operation to add to the linearization,

2. Perform timing constraint analysis to determine if the addition of the selected root

operation to the linearization constructed thus far leads to a feasible complete order,

else select another root vertex,

3. Eliminate selected vertex and its dependencies, update the set of root operations.

The main part of the heuristic is in selection of a vertex to be output from among a

number of zero in-degree vertices. This selection is based on the criterion that the induced

serialization does not create a positive weight cycle in the constraint graph. Among the

142 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

linearize(G=(V; E f [Eb)) f

�(s) =0; Q =f source vertex of Gg ; /* initialize */

if positive cycle(G)

exit; /* no valid linearization exists */

repeat f

>I v = extract head(Q); /* vertex with smallest urgency label */

G0
=G; /* construct new constraint graph */

add edge (s; v) in G0 with weight = �(s); /* select a candidate vertex */

for all w 2 Qand w 6=v /* linearize candidates’s siblings */

add edges (v; w) in G 0 with weight = �(v);

>II if positive cycle(G 0) /* not a feasible linearization */

mark and move v to tail of Q; /* discard candidate */

else f /* we have a good candidate */

>III if v is head of an edge, (u; v) 2 Eb

�(u; v) =�(u; v)� �(s);

for all w2 succ(v) s.t. pred(w) =;

Q=Q+f wg ; /* update Qwith new root vertices */

remove v from Q; output v; /* delete vertex v and its successor- */

�(s) =�(s) +�(v); /* -edges in G 0 */

G=G 0;

sort Qby urgency labels;

g

g until Q=; ;

g

5.4. ESTIMATION OF SOFTWARE SIZE 143

available zero in-degree vertices, we select a subset of vertices based on a two-part criteria.

One criterion is that the selected vertex does not create any additional dependencies or

does not modify weights on any of the existing dependencies in the constraint graph.

For the second criterion, we associate a measure of urgency with each source operation

and select the one with the least value of the urgency measure. This measure is derived

from the intuition that a necessary condition for existence of a feasible linearization (i.e.,

scheduling with a single resource) is that the set of operations have a schedule under

timing constraints assuming unlimited resources. A feasible schedule under no resource

constraints corresponds to an assignment of operation start times according the lengths

of the longest path to the operations from the source vertex. Since a program thread

contains no ND operations, the length of this path can be computed. However, this

path may contain cycles due to the backward edges created by the timing constraints.

A feasible schedule under timing constraints is obtained by using the operation slacks

to determine the longest path delays to operations. The length of the longest path is

computed by applying an iterative algorithm such as Bellman-Ford algorithm or more

efficiently Liao-Wong algorithm [LW83] that repetitively increases the path length until

all timing constraints are met. This scheduling operation is indicated by the procedure

positive cycles() that either fails when it detects a positive cycle in the constraint graph

or returns a feasible schedule. In case, if the algorithm fails to find a valid assignment

of start times, the corresponding linearization also fails since the existence of a valid

schedule under no resource constraints is a necessary condition for finding a schedule

using a single resource. In case a feasible schedule exists, the operation start times under

no resource constraints define the urgency of an operation.

The two criteria for vertex selection are applied in reverse order if a linearization

fails. At any time, if a vertex being output creates a serialization not in the original flow

graph, a corresponding edge is added in the constraint graph with weight equals delay of

the previous output vertex. With this serialization, the constraint analysis is performed

to check for positive cycles, and if none exists, the urgency measure for the remaining

vertices is recomputed by assigning the new start times, else the algorithm terminates

without finding a feasible linearization.

Since the condition for a feasible linerization used in the urgency measure is not

144 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

sufficient, therefore, the heuristic may fail to find any feasible linearization. It is also

possible for this heuristic to fail while there may exist a valid ordering. Under such

conditions an exact ordering search that considers all possible topological orders can be

applied. The following example illustrates the linearization procedure.

Example 5.4.5. Operation linearization.

v1

v2

v3

v4 v6

v5

v7

2
2

−4
1

33

−2
1

2

1

2 2 2

3

1

operation delay

Consider the flow graph shown in the figure above.

Initialize: Q=f v 1g , �(s) =0.

By applying the procedure positive cycle on this graph, we get the following as-

signment of operation urgency labels, �.

operation v1 v2 v3 v4 v5 v6 v7

label, �(v) 0 4 2 5 3 6 6

Iteration = 1:

>I: v =v 1. Add edge (s; v1) with weight = 0.

>II: no positive cycle. Feasible.

>III: Q=f v 2; v3g , output = v1 . �(s) =0 +�(v 1) =2. Since �(v 2) =4 and

�(v3) =2, Q is sorted to be Q=f v 3; v2g where the first element represents the

head of Q.

Iteration = 2:

>I: Candidate v =v 3. The new constraint graph G0 is shown below:

v2

v3

v4 v6

v5

v7

−4
1

33

−2
1

1

2 2 2

3

1

s

2

1

>II: no positive cycle. Feasible. The assignment of the urgency labels:

5.4. ESTIMATION OF SOFTWARE SIZE 145

operation s v2 v3 v4 v5 v6 v7

label, �(v) 0 4 2 5 3 6 6

>III: (v 7; v3) 2 Eb) �(v 7; v3) =�4 � 2 =�6. Q=f v 2; v5g . output = v3 .

�(s) =2+�(v 3) =3. Urgency, �(v 2) =4; �(v 5) =3. Qis sorted as Q=f v 5; v2g .

Iteration = 3:

>I: Candidate v =v 5. Add edge (s; v5) with weight = �(s) =3. The new

constraint graph G0 is shown below:

v2

v4 v6

v5

v7

33

−2
1

1

2 2 2

3

s

3
−6

3

>II: no positive cycle. Feasible. The assignment of the urgency labels:

operation s v2 v4 v5 v6 v7

label, �(v) 0 6 7 3 6 6

>III: Q=f v 2; v6; v7g . output = v5 . �(s) =3 +�(v 5) =6. Urgency, �(v 2) =

�(v6) =�(v 7) =6.

Iteration = 4:

>I: Candidate v =v 2. Add edge (s; v2) with weight = �(s) =6. The new

constraint graph G0 is shown below:

v2

v4 v6 v7

−2
1

1

2 2 2

s

−6

6

1

1

>II: positive cycle. Mark and move v 2 to tail of Q. Q=f v 6; v7; v2g .

Iteration = 5:

>I: Candidate v =v 6. The new constraint graph G0 is shown below.

>II: positive cycle. Q=f v 7; v2; v6g .

146 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

v2

v4 v6 v7

−2
1

1

2 2

2

s

−662

2

Iteration = 6:

>I: Candidate v =v 7. The new constraint graph is shown below.

>II: no positive cycle. Feasible. The assignment of the urgency labels:

operation s v2 v4 v6 v7

label, �(v) 0 8 9 8 6

>III: Q=f v 2; v6g . output = v7 . �(s) =6+2 =8. Urgency, �(v 2) =�(v 6) =8.

v2

v4 v6 v7

−2
1

1

2 2

2

s

−6

2

2

6

Iteration = 7:

>I: Candidate v =v 2. The new constraint graph is shown below:

v2

v4 v6

−2
1

1

2 2

s

8

1

>II: no positive cycles. Feasible. The assignment of urgency labels: �(s) =

0; �(v2) =8; �(v 4) =9; �(v 6) =9.

>III: Since (v 6; v2) 2 Eb) �(v 6; v2) =�2 � 8 =�10. output = v2 . Q=

f v6; v4g .

5.4. ESTIMATION OF SOFTWARE SIZE 147

Iteration = 8:

>I: Candidate v =v 6. The new constraint graph is shown below:

>II: no positive cycles. Feasible. �(s) =0; �(v 6) =10; �(v 4) =12.

>III: Q=f v 4g , �(s) =9 +2 =11. output = v6 .

v4 v62

2

s

9

2

−10

Iteration = 9:

>I: Candidate v = v4. The new constraint graph is shown below:

v42

s

11

>II: no positive cycles. Feasible.

>III: Q = ;. output = v4 .

Thus, the linearization returned by the algorithm is v1; v3; v5; v7; v2; v6; v4. 2

5.4.2 Estimation of register, memory operations

The number of read and write accesses is related to the amount and allocation of static

storage, S�

d
(G). Since it is difficult to determine actual register allocation and usage,

some estimation rules are devised.

Let GD =(V; ED) be the data-flow graph corresponding to a flow graph model,

where every edge, (vi; vj) 2 ED represents a data dependency, that is, vi � v j. Vertices

with no predecessors are called source vertices and vertices with no successors are defined

as sink vertices. Let i (v); o(v) be the indegree and outdegree of vertex v . Let ni =

j f source verticesg j and no =j f sink verticesg j . Let rr and rw be the number of register

read and write operations respectively. Finally, recall that mr represents the number of

memory read operations and mw represents the number of memory write operations.

148 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Each data edge corresponds to a pair of read, write operations. These read and write

operations can be either from memory (Load) or from already register-stored values.

Register values are either a product of load from memory or a computed result. Clearly, all

values that are not computed need to be loaded from memory at least once (contributing to

mr). Further, all computed values that are not used must be stored into the memory at least

once (and thus contribute to mw). Let R be the total number of unrestricted (i.e., general

purpose) registers available (not including any registers needed for operand storage). In

case the number registers R is limited, it may cause additional memory operations due

to register spilling. A register spill causes a register value to be temporarily stored to

and loaded from the memory. This spilling is fairly common in RM/MM processors

and coupled with non-orthogonal instruction sets, result in a significant number of data

transfers either to memory or to register operations (the latter being the most common).

The actual number of spills can be determined exactly given a schedule of machine-level

operations. Since this schedule is not under direct control, therefore, we concentrate on

bounds on the size of the spill set, � .

Case I: R=0 In this case, for every instruction, the operands must be fetched from

memory and its result must be stored back into the memory. Therefore,

mr = j Ej (5.57)

mw = j V j (5.58)

Note that each register read results in a memory read operation and each register

write results in a memory write operation, (rr =m r) and (rw =m w).

Case II: R�R l where Rl is the maximum number of live variables at any time. In

this case no spill occurs as there is always a register available to store the result

of every operation.

mr = n i � j V j � j Ej (5.59)

mw = n o � j V j (5.60)

5.4. ESTIMATION OF SOFTWARE SIZE 149

Case III: R<R l At some operation vi there will not be a register available to write

the output of vi. This implies that some register holding the output of operation vj

will need to be stored into the memory. Depending upon the operation vj chosen,

there will be a register spill if output of vj is still live, that is, it is needed after

execution of operation vi. Of course, in the absence of a spill, there will be no

effect of register reallocation on memory read/write operations.

Let S � V be the set of operations that are chosen for spill.

mr = n i +
X
S

o (vi) �
X
V

o (vi) =j Ej (5.61)

mw = n o +j Sj � j V j (5.62)

Clearly, the choice of the spill set determines the actual number of memory read and

write operations needed. In software compilation, the optimization problem is then to

choose a spill set, S such that
P

S o(v) is minimized. This is another way of stating the

familiar register allocation problem. As mentioned earlier, the notion of liveness of an

output o (v) of an operation, v can be abstracted into a conflict graph.

The optimum coloring of this graph would provide a solution to the optimum spill

set problem. This problem is shown to be NP-complete for general graphs [Cha82]. In

case of a linearized graph with no conditionals, nodes in the corresponding conflict graph

correspond to intervals of time and an edge indicates an overlap between two intervals.

Therefore, the conflict graph is an interval graph. For linearization purposes, operations

on conditional paths are treated as separate subgraphs that are linearized separately. Recall

that no timing constraint are supported on operations that belong to separate conditional

paths. For interval graphs, the coloring problem can be solved in polynomial time. That

is, a coloring of vertices can be obtained that uses the minimum number of colors, for

example, by using the left-edge algorithm [HS71]. However, a problem occurs when the

number of registers available is less than the minimum number of registers needed. In

this case, outputs from a set of vertices should be spilled to memory and the conflict graph

modified accordingly so that the new conflict graph is colorable. We use the following

heuristic to select operations for the spill. First, a conflict graph, GI for a given schedule

is built by drawing an edge between vi and vj if any of the output edges of vi span across

150 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

vj. From this conflict graph, we select a vertex, v with outdegree less than R. This vertex

is then assigned a register different from its neighbours. From this we construct a new

conflict graph G0
I

by removing v and its fanout edges from GI . The procedure is then

repeated on G0
I

until we have a vertex with outdegree greater than or equal to R. In

this case, a vertex is chosen for spilling and the process is continued. Example 5.4.6

illustrates the procedure.

For these calculations, we assume that each v is implemented as a closed sequence of

assembly language instructions, though it is possible that the source language compiler

may rearrange operations. The effect of this rearrangement, however, can assumed to be

only to reduce the total register usage requirements.

Effect of multiregister nodes

The register usage of compilers is determined by the generation of rvalue and lvalue

[ASU86]. The rvalue is the result or value of evaluation of an expression (or simply the

right-hand side of an assignment). In the case of logic nodes, the (recursive) organization

of equations gives an estimate of the number of rvalues needed (plus additional rvalues

due to shifts). For most assignment statements, the left side generates a lvalue and the

right side generates a rvalue. However, in case of pointer assignments and structure

and indirect member references (common in logic nodes) left hand side also generates

rvalues which are subsequently assigned to appropriate lvalue also generated by the left

side. This generation of an rvalue by the left side happens in two cases:

1. Write operation

2. Logic operations

In both cases, the left hand side generates a rvalue that is assigned to a left hand generated

lvalue.

We extend our estimation procedure for the spill set in the case of operation vertices

with multiple register usage simply by using a weighted graph model where the weight

of each vertex is given by the number of rvalues it generates, that is, GD =(V; E; !)

where !(v) =j r v al ue (v)j and !(e =vi � v j) =!(v i). The above relations hold by

5.4. ESTIMATION OF SOFTWARE SIZE 151

replacing

j V j =
X
V

!(v) (5.63)

j Ej =
X
E

!(e) (5.64)

The following procedure single thread static storage(G) determines maximum num-

ber of live variables, Rl, in a linearized graph model, G. We assume that each operation

vertex requires at least one cycle and hence any data transfer across operation vertices in

the flow graph requires a holding register.

Input: flow graph model, G(V ; E)

Output: S (G), static storage for a linear code implementation of G
single thread static storage(G) f

H = linearize(G) /* linearize vertices */
count = storage = 0 ;
8 u 2V (H) f /* determine max live variables */

8 v 2 succ(u)
count = count + !(u > v) ; /* add new registers */

8 v 2 pred(u)
count = count - ! (v > u) ; /* subtract registers for completed operations */

storage = max(count, storage) ;
g
return storage

g

RM ISA Architectures

Practical RM ISA architectures feature small register sets with non-orthogonal instruc-

tions. That makes register spills a very common occurrence in the compiled code. But

more importantly, due to non-orthogonality of instructions, a substantial number (up to 27

%) of inter-register data transfer instructions are generated to position data to appropriate

registers from other registers [HP90]. These instructions do not affect the data storage,

S�

d
, but these alter the size of the program thread and its delay. It is hard to model such

instructions since these are dependent upon actual algorithms used in software compila-

tion. A better technique would be to perform compilation of the assembly code within

152 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

the system. This provides a greater handle over the estimation of generated instructions.

The following conjecture is suggested to estimate the additional operations.

Conjecture 5.1 For a given graph model, G=(V; E), the following sum

� =m r +m w +r m =j V j +j Ej (5: 65)

is constant for all architectures. Here rm represents the number of inter-register transfer

operations.

The intuitive reasoning behind this conjecture is that for a machine with no general

purpose registers, there will be no need for inter-register operations since operands can

be loaded directly into the required operand registers, and thus rm =0. This corresponds

to the case I discussed earlier. In the other two cases, the total number of data movement

operations can not be worse than the case with no registers.

Based on this conjecture, we can estimate the inter-register transfer operations by first

computing mr +m w =f (R) as a function of the number of available registers, R and

then applying Equation 5.65 above.

Example 5.4.6. Linearization and data transfer operations.

Consider the flow graph, G, shown in figure below consisting of 11 vertices and 12

edges with ni =3 and n o =2.

a b c

d e f

h

i

j

x y

1

2

3

4

5

6

7

8

9

10

11

12

Each vertex produces an output variable that is named by the vertex label. Vertices

a, b, c are input read operations, and vertices x , y are output write operations. A

depth-based linearization results in the following order

c ; f ; b ; e ; a ; d; h; i ; y ; j; x

5.4. ESTIMATION OF SOFTWARE SIZE 153

Rl Spill set, � Memory operations, mr +m w

� 4 f g 5

3 f 9g 7

2 f 9; 3; 11g 11

which gives the maximum number of live variables, R l =4 according to algorithm

single thread storage. Rl is the size of the largest clique in the interval graph shown

below. In the interval graph, Gi, vertices represent edges of G and an edge between

1 5 10

2

6

11

7

3

4

8

9

12

two vertices in Gi indicates overlap between the corresponding edges in G.

For R �R l =4: register assignment can be done in polynomial time. The spill

set, � =;. Therefore, m r =n i =3 and m w =n o =2. Total number of memory

operations = 5.

For R =3 the largest clique in G i should be of cardinality 3 or less. For � =f9g,

the total number of memory operations = 7. For � =f9; 3; 11g, the maximum

number of live registers is reduced to 2, while the number of memory operations

increases to 11. Note that in the worst case of static storage assignment for all

variables in G, there would be 11+12 =23 memory operations. 2

Note that we are not directly trying to minimize total register usage by the object

program since that abstraction level belongs to the software compiler. The objective

of spill set enumeration is to arrive at an estimate of memory operations assuming that

the program is compiled by a reasonably sophisticated software compiler that achieves

optimum register allocation when the maximum number live variables is less than the

154 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

number of available registers. Clearly this is only an estimate since the actual register

allocation will vary from compiler to compiler. In order to get insight into the effect of

software compilers, we briefly mention the common optimizations performed by most

software compilers in the following section. This discussion is not directly relevant to

the hardware-software co-synthesis scheme proposed by this thesis and for more detailed

discussions on the subject the reader is referred to [ASU86] [HP90].

5.4.3 Compiler effects

Compiler directed optimizations fall into following categories:

� Source level optimizations, for example, like procedure inlining.

� Basic-block level optimizations: common subexpression elimination (CSE), con-

stant propagation, expression tree height reduction.

Structure preserving transformations: dead-code elimination; renaming of tempo-

rary variables; interchange of two independent adjacent statements.

Note that these two categories of transformations are already taken care of by the

HDL compiler.

� Global optimization: copy propagation, code motion, induction variable elimination

(and other loop related optimizations)

� Machine register allocation

� Machine related optimizations: operator strength reduction, pipeline scheduling,

branch offset minimization

Of these, machine register allocation accounts for perhaps the most increase in effi-

ciency (20-50 %). Register allocation is possible and most effective for local variables

which are conventionally stored in the runtime stack. These locals are defined by the

storage M(G) associated with the flow graph model.

5.5. SOFTWARE SYNTHESIS 155

5.4.4 Software data size and performance tradeoffs

There exists a tradeoff between code size and data size for a given graph implementation

into software. The storage used by G can be packed to yield smaller data size, but this

results in a larger code size and therefore, greater execution times. On the other hand,

unpacked storage leads to larger data size but the code size is small. The key problem,

therefore, is to choose variables to be packed. One heuristic is to make a distinction

between data and control variables by treating variables that are assigned and tested to

be control variables. An alternative is to use a memory cost function, C , that assigns a

cost value for a given memory size. This cost function is based on a model of storage

chips which come in various sizes m1 to mk (e.g., 4K, 16K, 256K, 1M, 4M, 16M) with

cost per chip of c1 to ck.

C (M(G)) =
�
M

mi

�
� ci mi �M<m i +1 (5: 66)

Based on this cost model for the memory storage, we can determine the cost of the

minimum possible data storage based on packing of all the variable. The minimum data

storage is given by:

Mmi n=

&P
N

1 bi

W

'
(5: 67)

where W is the width of the memory. Similarly, we can determine the maximum data

storage based on no packing, that is, every data is aligned to a word boundary:

Mma x=
X&

bi

W

'
(5: 68)

The size of the software is given as the sum of the data size and the program size. In

case of a packed data, the program size increases somewhat due to additional operations

needed to access a packed data value. Between these two extremes of data storage, a set

of variables to be packed can be selected that leads to a lower cost of the memory.

5.5 Software Synthesis

The task of synthesis of software from flow graphs is divided into the following four

steps as shown in Figure 40:

156 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Program Threads Program RoutinesFlow graphs

Figure 40: Steps in generation of the software component

Step 1: Generation of linearized sets of operations or program threads from flow

graphs. The operations that belong to a program thread are identified by system

partitioning (described in Chapter 6). The task of program thread generation to

ensure correct dependencies between program threads based on operation depen-

dencies. An optimization called convexity serialization is applied to reduce the

overhead due to these dependencies. Convexity serialization is followed by lin-

earization of operations in subgraphs of the flow graph models. Program thread

generation is discussed in Section 5.6.

Step 2: Generation of program routines from program threads. In addition to oper-

ations in the program threads, a program routine also contains operations that make

it possible to achieve concurrency and synchronization between program threads.

The essential problem in program routine generation is implementation of various

program threads for execution on a processor that supports only a single thread of

control at any time. This issue is discussed in Section 5.7.

Step 3: Code generation from program routines. As mentioned earlier, for purposes

of retargetability, we generate C-code from program routines. Code generation re-

quires translation of operations defined in the flow graph model into corresponding

operations in C, a high-level programming language, identification of memory lo-

cations, binding of variables to memory addresses. This is discussed in Section 5.8.

5.6. STEP I: GENERATION OF PROGRAM THREADS 157

Step 4: Compilation of program routines into processor assembly and object code.

C-programs are compiled using existing software compiler for the target proces-

sors. Some issues related to the interface of the object code to the underlying

processor and ASIC hardware must be resolved at this level. These are discussed

in Section 5.9.

5.6 Step I: Generation of Program Threads

A program thread refers to a linearized set of operations in the flow graph model. Op-

erations in a program thread are identified as a result of system partitioning discussed in

next chapter. By construction, a program thread is initiated by a synchronization opera-

tion, such as a blocking communication or a loop synchronization operation. However,

within each thread all operations have a fixed delay. The (unknown) delay in executing

the synchronization operation appears as a delay in scheduling the program thread and

it is not considered a part of the thread latency. Therefore, for a given re-programmable

device the latency of each thread is known statically.

Recall that the wait operation is referred as a synchronization operation. Depending

upon the number of synchronization operations in a flow graph, the graph model can be

implemented as a single or multiple program threads. In the absence of any synchroniza-

tion, a simple graph model can be translated into a single program thread by ordering

all the operations of the graph model (assuming that such an order exists under timing

constraints).3 On the other hand, a hierarchical system model is implemented as a set of

program threads where each thread corresponds to a graph in the model hierarchy.

A partitioning of the system model results in identification of subgraphs in a flow

3Note that if no linearization of a graph model without ND operations exists under timing constraints,

then there does not exist any linearization using multiple program threads that would meet the timing con-

straints. This is due to the fact that the constraint graph model can be partitioned into strongly-connected-
components (SCCs), such that a linearization of the graph model exists if and only if linearization for each

SCC exists [Ku91]. Since the SCC contains no synchronization operations, therefore, any implementation

into multiple threads will only be worse than a single thread implementation due to additional runtime

overheads required.

158 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

graph model that belong to separate program threads. There may be dependencies be-

tween operations that belong to separate subgraphs and hence separate threads. Repre-

sentation and incorporation of these dependencies is discussed next.

Control Flow in the Software Component

Since multiple program threads may be created out of a graph model each starting with

an ND operation, software synchronization is needed to ensure correct ordering of op-

erations within the program threads and between different threads. Some threads may

be hierarchically related, that is, dependent whereas some program threads may need

to be executed concurrently based on the concurrency among the corresponding graph

models. Concurrency between program threads can be achieved by using an inter-leaved

computation model as explained later in this section.

Example 5.6.7. Concurrent and dependent program threads.

T1 T2

T3

Figure above shows subgraphs and corresponding program threads, T1, T2 and T3.

Bold circles indicate synchronization operations. Threads T1 and T2 are concurrent

where as thread T3 is dependent upon T1 and T2. 2

Since the total number program threads and their dependencies are known statically,

the programs threads are constructed to observe these dependencies. A program thread

is in one of the following three states detached, enabled or running. While the details

of the mechanism to enable and select from a set of program threads are described in

Chapter 7, it is sufficient to note here that a detached thread is first enabled before it is

5.6. STEP I: GENERATION OF PROGRAM THREADS 159

able to run. The dependencies between program threads are, therefore, implemented by

altering the enabling condition for program threads. In our implementation of hardware-

software systems, this enabling of program threads is achieved by a special run-time

first-in/first-out (FIFO) structure, called control FIFO. A thread is enabled only when its

located in the control FIFO. Before detaching, a thread performs one or more enqueue

operations to this FIFO for its dependent threads as shown in Example 5.6.8 below.

Example 5.6.8. Inter-thread control dependencies.

T1

T2 T3

Flow Graph Control FIFO

T1

T2 T3

before T1

after T1

Thread

Thread T1

<body>
enqueue (T2) on cFIFO
enqueue (T3) on cFIFO
detach

Figure 41: Use of enabling condition to build inter-thread dependencies.

Figure 41 shows program threads T2 and T3 that are enabled by the program thread

T1. The <body> refers to the (linearized) set of operations from the corresponding

graph models for program thread T1. Control dependency from thread T1 to T2 is

built into the code of T1 by the enqueue operation on the control FIFO. 2

A thread dependency on more than one predecessor thread (that is a multiple indegree

(fanin) node in the flow graph) is observed by ensuring multiple enqueue operations for

the thread by means of a counter. For example, a thread node with a indegree of 2 would

contain a synchronization preamble code as indicated by the while statement shown in

Example 5.6.9 below.

Example 5.6.9. Thread with multiple input control dependencies.

Here thread T1 is enabled by threads T2 and T3. This is accomplished by two

enqueue operations by T2 and T3 before the thread T1 is ready to run. 2

Control transfer for multiple fanin nodes entails program overheads that add to the

latency of the corresponding threads. For this reason, an attempt should be made to reduce

160 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

T1

T2 T3
Thread T1

while (count != 1)
{
 count = count + 1;
 detach
}
<body>
count = 0
enqueue <successor threads> on cFIFO
detach

multiple dependencies for a program thread through a careful dependency analysis. In

case of multiple outdegree nodes in the flow graph, a necessary serialization among

enabling of successor threads occurs. However, this serialization is of little significance

since there exists only a single re-programmable component.

Convexity serialization

In case there is a dependency between two program threads caused by a dependency

between two operations within the bodies of the program threads, this leads to an enabling

operation for the successor thread within the body of the enabling thread. The dependent

thread is run to its execution until just before the dependent operation and then it is

detached before executing the dependent operation. This leads to overheads in execution

of dependent program threads that must be resumed by the runtime scheduler before

completion. An alternative is to modify these ‘in-body’ dependencies between program

threads by making the subgraphs corresponding to program threads convex.

We define a subgraph to be convex if the subgraph has a single entry and exit op-

erations. For a convex subgraph, the corresponding program thread once invoked can

run its execution to completion without any need to detach in order to observe the de-

pendencies. A convexity serialization is based on the property of partial orders that an

edge from operation u to v indicating dependency, u >v can be sufficiently replaced by

either a dependency u >w where w is a (transitive) predecessor of v , that is, w> � v ;

or by a dependency w > v where w is a (transitive) successor of u, that is, u > � w.

Convex serialization is used to obtain convex subgraph. This results in a potential loss of

concurrency, and timing constraint analysis must be performed on the modified constraint

graphs to ensure constraint satisfiability is maintained. However, it makes the task of

5.6. STEP I: GENERATION OF PROGRAM THREADS 161

routine implementation easier since all the routines can be implemented as independent

programs with statically embedded control dependencies.

Example 5.6.10. Convex subgraphs.

Figure 42 below shows a flow graph that is to be implemented in software. Op-
erations ‘b’ and ‘c’ represent synchronization operations (defined as anchors in
Chapter 4. Recall that the anchor set of an operation refers the set ofND oper-
ations that the operation (transitively) depends upon. The determination of which
thread an operation belongs to is made by examination of its anchor set. Operations
with the same anchor set belong to the same program thread. In this example, the
shaded vertices share the same anchor set containing operations ‘b’ and ‘c’.

b c

d e f
g

h

i

j

k

l

b c

d e f
g

h

i

j

k

l

b c

d e f
g

h

i

j

k

l

Tb Tc Tb Tc

Tb
Tc

Tf

Figure 42:Convexity serializations and possible thread implementations.

There are three possible ways to implement the program threads as shown. In all
three cases the dependencies created due to convexity serialization are shown by
dashed arrows. Let consider the first case that leads to two program threads,Tb

andTc. The edge(e ; f) can be replaced by an edge(e ; c) sincec is a predecessor
of f . Similarly, edge(e ; k) can be replaced by(e ; c). This convexity serialization
has two effects: one, it creates two dependent program threads, whereTc depends
uponTb and secondly, the edge(e ; c) creates additional dependency(e ; g) that was
not present in the original flow graph. This leads to a potential loss of concurrency
mentioned earlier.2

Though only a feature of representation, the use of hierarchy to represent control flow

is well suited to eventual implementation of the software component as a set of program

routines. Since all the operations in a given graph model are eventually executed, the

corresponding routines can be constructed with known and fixed latencies as explained

162 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

earlier. As with the graph model, the uncertainty due to data-dependent loop operations

is related to invocations of the individual routines corresponding to the loop body.

Rate constraints and loop implementations

A software implementation consisting of dynamic invocations of fixed latency program

threads simplifies the task of software characterization for satisfaction of data rate con-

straints. Satisfaction of imposed data rate constraints depends on the performance of the

software component. It was shown in previous chapter that minimum rate constraints on

flow graphs withND operations lead toND-cycles which can be checked for marginal

satisfiability of the rate constraints. The resulting producer consumer system can be

transformed by means of buffers such that it is better able to meet the rate constraints. In

the following we describe the software realization of these transformations. The simplest

case occurs forweakly preindexed loop operations, for which the loop index is computed

before invocation of the loop and is unaffected by the body of the loop operation. For

these loops, thedynamic loop execution model can be transformed into apseudo-static

loop execution model as follows. Consider, for example, a software component that

consists of reading a value followed by anND loop operation shown in Example below.

Example 5.6.11. Consider a mixed implementation shown by the figure below.

Processor

ASICport x

ρ samples/sec

The ASIC component sends to the processor some data on portx at an input rate
constraint of� samples/sec. The function to be implemented by the processor is
modeled by the following HDL process fragment.

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE]; |

{ | read <loop_body>
... | enqueue T2 x = x - 1
read x ; | detach if not (x <= 0)
repeat | enqueue T2
{ | detach

<loop-body> |
x = x - 1 ; |

} until (x <= 0); |
}

5.6. STEP I: GENERATION OF PROGRAM THREADS 163

x is a boolean array that represents an integer. In its software implementation,
this behavior is translated into a set of two program threads shown on the right,
where one thread performs the reading operations, and the other thread consists of
operations in the body of the loop. For each execution of thread T1 there arex

execution of thread T2.2

Due toND loop operation, the input data rate at portx is variable and is dependent

upon value ofx as a function of time. For each invocation of thread T1 there arex

invocations of thread T2. In other words, thread T1 can be resumed afterx invocations

of thread T2. In absence of any other data-dependency to operations in the loop body,

thread T1 can be restarted before completing all invocations of thread T2 bybuffering

the data transfer from thread T1 to T2. Further, if variablex is used only for indexing the

loop iterations (that is, weakly preindexed loops), the need for inter-thread buffering can

be obviated by accumulating value ofx into a separate loop counter as shown in example

below. We call such an implementation of a loop construct in software apseudo-static

loop based on the fact that an upper bound on the number of iterations of the loop body

is statically determined by the data rate constraints on inputs and outputs that are affected

by theND loop operation.

Example 5.6.12. Transformation of theND loop in Example 5.6.11 into a
pseudo-static loop

process test(x, ...) | Thread T1 Thread T2
in port x [SIZE] |

{ | read <loop-body>
integer repeat-count = 0 ; | add op repeat-count--
read x ; | enqueue T2 if !(repeat-count <= 0)
repeat-count = repeat-count + x ; | detach enqueue T2
repeat | detach
{ |

<loop-body> |
repeat-count = repeat-count-1; |

} until (repeat-count <=0); |
}

For each execution of thread T1 there are max(x; m) execution of thread T2 where
constantmis determined by input data rate constraint,�, on the read operation in
T1 given by the relation:1

�
=(� T1 +m� � T2) � � where the thread latencies�T1 and

�T2 include synchronization overheads (). � denotes cycle time of the processor.
2

In this case, we can provide a bound on the rate at which port is read by ensuring

that the read thread, T1, is scheduled, say after utmostm iterations of the loop body.

164 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

Due to accumulation of repeat-count additional care must be taken to avoid any potential

overflow of this counter. [Generally, overflow can be avoided ifm is greater than or

equal to the average value ofx. In the extreme, it can be guaranteed not to overflow if

m is at least maximum ofx which is equivalent to assigning worst-case delay to the loop

operation].

5.6.1 Implementation of inter-thread buffers

With concurrent program threads, to a certain extent, we can insulate the input/output data

rates from variable delays due to other threads by buffering the data transfers between

threads. Thus, theinter-thread buffers hold the data in order to facilitate multiple

executions among program threads. Threads containing specific input/output operations

are scheduled at fixed intervals via processorinterrupts as shown in the Example 5.6.13

below. In this scheme, finite-sized buffers are allocated for each data-transfer between

program threads. In order to ensure the input/output data rates for each thread, we

associate a timer with every I/O operation that interrupts the processor once the timer

expires. The associated interrupt service routine performs the respective I/O operation

and restarts the timer. In case a data item is not ready the processor can send the previous

output and (optionally) raise an error flag.

Example 5.6.13.

Thread T2 Timer Process T1 (interrupt service routine)

<loop_body> timer-- per clock tick read x
x = x - 1 if (timer == 0) load timer = CONSTANT
if not (x <=0) interrupt enqueue (x) on dFIFO

enqueue T2 enqueue T2
else detach

x = dequeue dFIFO
detach

Thread T1 is now implemented into an interrupt service routine that is invoked
at each expiration of the timer process. The timer process represents a processor
timer (or an external hardware timer) that is used to generate interrupts at regular
intervals. The interruption intervalCONSTANT is determined by the rate constraint
and latencies of interrupt service routines. dFIFO in the interrupt service routine
refers to the buffer between threads T1 and T2.2

5.7. STEP II: GENERATION OF PROGRAM ROUTINES 165

This scheme is particularly helpful in the case of widely non-uniform rates of production

and consumption. In this case, the data transfer from processor to ASICs is handled by

the interrupt routines, thereby leading to a relatively smaller program size for the cost of

increased latencies of the interrupt service routines. Chapter 8 presents implementation

costs and performance of this scheme.

Next, we consider the problem of software synchronization and scheduling mecha-

nisms to make a hardware-software system design feasible.

5.7 Step II: Generation of Program Routines

Since the processor is completely dedicated to the implementation of the system model

and all the program threads are known statically, the final program can be generated in

one of following two ways.

1. Generate a single program routine that incorporates all the program threads. This

approach is discussed in Section 5.7.2.

2. Provide for multiple-thread executions by means of operation interleaving as dis-

cussed in Section 5.7.1.

In the first case, we attempt to merge different routines and schedule all the operations

in a single routine. The unbounded delay operations are explicitly handled either by

busy-waiting or by executing specific context-switch operations. In the second case,

concurrency between threads is achieved by interleaved execution on a single processor.

In principle, operation interleaving can be as “finer-grained” as the primitive operations

performed by the processor, that is the assembly instructions. However, we make a

further assumption that interleaving is performed at the level of operations used in the

flow graph model. This assumption is made to avoid otherwise excessive overheads due

to implementation of concurrency at processor instruction level which is out of the scope

of this work.

166 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

5.7.1 Concurrency in software through Interleaving: Coroutines

The problem of concurrent multi-thread implementation is well known[AS83]. In general,

multiple program threads may be implemented as subroutines operating under a global

task scheduler. However, subroutine calling adds overheads4 which can be reduced by

putting all the program fragments at the same level of execution. Such an alternative

is provided by implementing different threads as coroutines [Con63]. In this case, the

routines maintain aco-operative rather than ahierarchical relationship by keeping all

individual data as local storage. The coroutines maintain a local state and willingly

relinquish control of the processor at exception conditions which may be caused by

unavailability of data (for example, a data dependency on another thread) or an interrupt.

In case of such exceptions the coroutine switch picks up the processes according to a

predefined priority list. Upon resumption a coroutine execution starts execution from the

position where its was detached last. Implementation of the code for such a scheduler for

coroutines takes approximately 100 bytes in an instruction set that supports both register

and memory operands. To implement a coroutine in a general purpose microprocessor,

each coroutine must have its own stack. There can be two approaches to make the context

switch. One, each process in software knows which process will be executed next, so it

may transfer directly to the next process. In this case, the coroutine transfer is executed

in 34 instructions or 364 clock cycles (for the 8086). The second approach assumes a

third process called atask manager whose function is to provide some priority scheme

to the execution of the processes. This transfer in this case is more expensive, taking

728 clock cycles plus the task manager execution time.

5.7.2 Software implementation using description by cases

Any sequential program can be thought of as a finite-state machine with program counter

acting as a state variable. Based on this concept, we can merge different routines and

describe all operations in a single routine using the method ofdescription by cases

[Kin67]. This scheme is simpler than the coroutine scheme presented above. Here we

construct a single program which has a unique state assignment for each synchronization

4The overheads are mostly due to operations to carry out runtime storage management.

5.7. STEP II: GENERATION OF PROGRAM ROUTINES 167

Implementation Processor type Overhead cycles

Subroutine R/M 728
Coroutine R/M 364
Restricted Coroutine R/M 103
Description by cases R/M 85
Restricted Coroutine L/S 19
Description by cases L/S 35

Table 6: Comparison of program thread implementation schemes

operation. A global state register is used to store the state of execution of a thread.

Transitions between states are determined by the runtime scheduling of differentND

operations based on the data received.

This method is restrictive since it precludes use of nested routines and requires de-

scription as a single switch statement, which in cases of particularly large software de-

scriptions, may be too cumbersome. Overhead due to state save and restore amounts

to 85 clock cycles for every point of non-determinism when implemented on a 8086

processor. Consequently, this scheme entails smaller overheads when compared to the

general coroutine scheme described earlier.

Table 6 summarizes program overhead for different implementation schemes. The

processors are categorized based on their instruction set architectures as described in

Section 5.1.Overhead cycles refers to the overhead (in cycles) incurred due each transfer

operation from one program thread to another. ASubroutine implementation refers to

translation of program threads to program subroutines that operate under a global task

scheduler (or themain program). ACoroutine implementation reduces the overhead by

placing routines in a co-operative, rather than hierarchical, relationship to each other. A

Restricted coroutine implementation reduces the overhead further by suitably partitioning

the on-chip register storage between program threads such that program counter is the

only register that is saved/restored during a thread transfer. In case of R/M processors the

case description scheme reduces the overhead by reducing amount of ALU operations

in favor of a slight increase in memory input-output operations. By default, Vulcan

generates coroutine based implementation of software.

168 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

5.8 Step III: Code Synthesis

This section describes the translation of program threads into corresponding C-code.

Since, a program thread essentially consists of a sequence of assignments. Therefore,

its translation into a corresponding imperative language like C can be performed as a

syntax-directed translation of the program threads into C source-code. Thelvalue for

each assignment can be either a variable, or a bit-vector with a range. Thervalue of an

assignment is an expression which either a variable or one or two operands with a unary

or binary operation respectively.

This translation procedure is described using extended BNF notation. The following

describes the terminal, non-terminal symbols and the printing actions associated with the

syntax-directed translations of the program threads.

Terminal Symbols:
VAR = symbol
SVAR = symbol[h:l]
CONST = value

UOP = ~ | -
BIOP = + | - | * | / | @ | >> | << | & | && | | | || | ˆ

print_assignment()
{
assignment: lvalue = rvalue

lvalue : VAR
print symbol = print_rvalue()

| SVAR
print symbol &= CLEAR_MASK

print symbol |= print_rvalue() << l

}
print_rvalue()
{
rvalue : opnd

| UOP {print UOP} opnd
| opnd BIOP {print BIOP} opnd

| FUNCTION {print name(} opnd opnd ... {print) }

opnd : VAR
print symbol

| SVAR
print symbol >> l & ~(~O << h-l+1)

| CONST
print value

}

5.9 Issue in Code Synthesis from Program Routines

As mentioned earlier, we generate C-code from partitioned graph models. The use of a

high-level programming language for software generation provides the ability to generate

5.9. ISSUE IN CODE SYNTHESIS FROM PROGRAM ROUTINES 169

the corresponding object code for most commonly used processors. While thisretar-

getability can be realized for most of the software component, there are certain program

implementation issues that must be addressed while compiling and loading the generated

C-programs. In this section, we address the major practical implementation issues.

5.9.1 Memory allocation

The C-compiler uses two kinds of memory structures: astack for storing local variables

in order to facilitate subroutine calls; and aheap for dynamically allocating memory

space to run-time generated data structures. When using target systems with limited

available memory (especially in case of microcontrollers where the on-chip memory

is severely constrained), the unconstrained use of stack and heap space may lead to

runtime exceptions that may make the software component non-functional. Fortunately,

the use of both stack and heap can be avoided by performing static memory allocation

in the generated program. Static memory allocation makes the generated programnon-

recursive and non-reentrant. The non-recursive nature of the software component is

not an issue since the input graph models are themselves non-recursive, thus ruling out

the possibility of recursion in the generated programs. A non-reentrant program cannot

be entered by more than one task. This is usually a problem in case of general-purpose

computing systems where a program execution must co-exist with other programs and

the operating system software. In our application, the only restriction placed by non-

reentrant code is that the main program and the interrupt service routines must not share

any procedure calls.

5.9.2 Data types

The standard C programming languages supports the following data types: char, short

int, int, long int, float and double. Format compatibility for the encoded/interpreted

data types (types other than bit-vectors) becomes an issue when interfacing a general-

purpose processor to external hardware such as A/D converters. Further, most standard

C-compilers support declaration prefixesconst and volatile. A const-declared data set

170 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

can be mapped to on-chip read-only memory (ROM). For variables declared as shared-

storage between program threads and as memory-mapped I/O variables, the use of a

volatile declaration preserves these variables from any compiler-driven optimizations.

5.9.3 The C Standard Library

The standard C-library contains procedures that are called by most C-programs. Most

of these procedures are coded as C-programs thus making them portable across systems.

However, some of these procedures are written as assembly programs. Commonly used

assembly routines aregetchar() and putchar() that are used for most I/O operations.

These routines must be written for the target processor.

5.9.4 Linking and loading compiled C-programs

When using the routines from the standard C-library, only the routines used by the pro-

gram are loaded into the object image. The object image consists of memory-relocatable

modules. A hardware-software interface often contains fixed memory locations for in-

terface semaphores, hardware devices addresses et cetera. When using relocatable object

code, fixed addresses can be generated and used by the program by creating special re-

locatable modules that are loaded at fixed addresses during executions. Use of smaller

relocatable modules for fixed-address generation avoids the problem of having to create

fixed-address object modules for the entire software component. Example 5.9.14 shows

how such modules can be used to address a fixed location interrupt vector table.

Example 5.9.14. Using relocatable modules to generate fixed-address locations

The interrupt-vector table is located at a fixed address 0xffd6. The following re-
locatable modulevector-table contains pointers to various service routines.
vector-table is compiled separately and loaded at address 0xffd6.

extern void reset();
extern void sci();
extern void spi();
...
void (* const vector-table[])() = {

sci(), /* SCI service routine */
spi(),
...
reset,
};

5.9. ISSUE IN CODE SYNTHESIS FROM PROGRAM ROUTINES 171

Program Relocatable module Memory

Fixed
Location

Interrupt Vector Table

Figure 43:Generating fixed addresses from C-programs

2

5.9.5 Interface to assembly routines

For a variety of reasons, assembly routines are often needed to simplify the task of

hardware-software interface tasks. Most common examples of assembly programs are

programs for runtime startup to setup the environment for the execution of C-coded

programs. A startup routine typically performs the following functions:

1. Load stack pointer (if using a stack)

2. Manipulation of hardware registers. Sometimes, a hardware register must be ini-

tialized within a certain time interval of power-up, and this can only be performed

by an assembly routine.

3. Initialize global variables either by initializing theautomatic initialization block in

static RAM memory generated by the C-compiler for auto-initialized variables, or

by using initialized values from a ROM.

The use of in-line assembly routines in C-programs simplifies the task of interfacing

object code to the underlying processor hardware. A common example of in-line assembly

is in enabling/disabling interrupts as shown by the Example below.

Example 5.9.15. Use of in-line assembly.

172 CHAPTER 5. SOFTWARE AND RUNTIME ENVIRONMENT

main()
{

...
_asm("di\n");
<critical code>
_asm("ei\n");

}

2

As a matter of programming convenience, in-line assembly instructions need not use

explicitly assigned processor registers. Most C-compilers allow the use of C-expressions

as operands to assembly instructions. This allows us to use critical functions as assembly

macros in C source programs as shown by the example below.

Example 5.9.16. C functions as assembly macros

#define sin(x) \
({double _value, _arg = (x) ; \
asm ("fsinx %1, %0" : "=f" (_value) : "f" (_arg)); \
_value; })

The assembly instructionfsinx uses C expressionx as an operand. Type declaration
‘f’ indicates that a floating point register must be used for this operand. A‘=f’

declaration indicates that output is a floating point register. The output operand
value must be a write-onlyl-value. 2

5.10 Summary

While it is relatively straightforward to generate the actual program code from flow

graphs, synthesis of software is complicated by the timing constraints. A model for the

software and the runtime system is presented that consists of a set of program threads

which are initiated by synchronization operations. Use of multiple program threads avoids

need for a complete serialization of operations which may otherwise createND cycles

in the constraint graph.

Under timing constraints, linearization of a part of a flow graph may also not be pos-

sible. A heuristic linearization algorithm is suggested to perform operation linearization

as a topological sort with a measure of urgency of scheduling operations based on timing

constraint analysis on an unconstrained implementation.

5.10. SUMMARY 173

The software generation is performed in steps, whereby first we create a linearized

set of operations collected into program threads. The dependencies between program

threads is built into the threads by means of additional enabling operations for depen-

dent threads. Further additional overhead operations are added to facilitate concurrency

between program threads either by means of subroutine calling, or as coroutines or as

a program with case descriptions. Finally, the routines are compiled into machine code

using compiler for the processor.

Chapter 6

System Partitioning

In this chapter we address the problem of partitioning of system functionality with the

objective of achieving an implementation into separate components. The partitioning

problem is of two types:homogenous or heterogenous. The objective of homogenous

partitioning is to partition a system functionality into minimal number of parts such that

all parts are implemented completely in hardware or software. Homogenous partitioning

for hardware is typically done under size constraints on each of the parts, whereas for

software implementations, the objective of partitioning is typically to increase resource

utilization in order to achieve speedup in overall execution time.

We focus here on the heterogenous partitioning problem, where the objective is to

partition the system model for implementation into hardware and software components.

One approach to heterogenous partitioning would be to consider it as a generalization of

the homogenous partitioning problem by treating the processor as ageneralized resource,

i.e., a resource that can implement multiple types of operations. However, there are in-

herent differences in the model of computation used for implementation of hardware and

software models. As was discussed in Chapter 3 the software component implements

model functionality as aninstruction-driven computation with a statically allocated mem-

ory space. On the other hand, hardware components essentially operate asdata-driven

reactive components. Further, due differences in the primitive operations in hardware and

software components, the two computations proceed at very different instantaneous rates

of execution. Because of these differences in the models and rates of computation used

174

175

by hardware and software components, it is necessary to allow multiple executions of

individual hardware and software models with respect to each other to achieve efficient

hardware-software system implementation. Further, the difference in the rates of compu-

tations causes variations in the rates of communication between hardware and software

components and thus entails a higher communication overhead than purely hardware or

software partitions, due to necessary handshake and buffering mechanisms.

Clearly, the problem of partitioning into hardware and software is much more com-

plex than partitioning for implementations into purely hardware or software. Often this

partitioning is carried out at levels of abstraction that are higher than what can be mod-

eled using conventional modeling schemes. In absence of requisite modeling capability,

the system partitioning simply can not be carried out without human interaction. Thus,

there exists a strong relationship between the models used for capturing system function-

ality and the abstraction level at which the partitioning is carried out. Fortunately, to a

great extent partitioning at various levels of abstraction can be carried out independently

so long as the objectives of partitioning are kept distinct. For example, a partition of

functionality into electrical and mechanical components can be carried out without obvi-

ating a need for subsequent partitioning of the electronic components into multiple chips

or boards. The partitioning procedure presented in this chapter attempts to perform a

division of functionalityat the level of operations specified in the hardware description

language and is by no means a substitute for ‘conceptual’ partitioning usually carried out

at higher levels of abstractions. Indeed, it attempts to supplement the conceptual design

process by providing the system designer a means to handle the complexity associated

with a detailed design description consisting of language-level operations.

Against this broad context, the problem of system partitioning refers specifically to

a partition of the system model as described in Chapter 3. Recall that a system model

consists of a set of flow graphs. A flow graph model refers to the hierarchy of flow

graphs that implements a function or a process. This partitioning can be developed as

a collective set oftransformations on the flow graph model that achieve the correct

separation of functionality as embodied by the flow graphs. Since the flow models are

developed to allow estimation of performance and constraint analysis for hardware and

software, this analysis can be used in conjunction with partitioning transformations to

176 CHAPTER 6. SYSTEM PARTITIONING

ensure that partitioning objectives are met.

The partitioning problem for a flow graph refers to the assignment of operations in

the graph to hardware or software. This assignment to hardware or software determines

the delay of the operation. Further, the assignment of operations to a processor and

to one or more application-specific hardware circuit involves additional delays due to

communication overheads. Any good partitioning scheme must attempt to minimize this

communication. Further, as operations in software are implemented on a single processor,

increasing the number of operations in software increases the degree of utilization of the

processor. Consequently, the overall system performance is determined by the effect of

hardware-software partition on performance parameters that go beyond the area and delay

attributes described in Chapter 3. Therefore, the key to achieving an effective partition

is to develop an appropriatecost model that captures relevant performance parameters

from the attributes of the flow graphs. This cost model is described next.

6.1 Partition Cost Model

The partition cost model is built upon the processor cost model�and the software model

using multiple program threads both described in Chapter 5. Figure 44 illustrates the

software model shown in Figure 38 in Section 5.2 further and shows various components

of the partition cost model and their relationship to the target architecture. The software

component is characterized by following properties:

1. Thread latency, �i (seconds) indicates the upper bound on the execution delay of

a program thread.

2. Thread reaction rate, %i (per second) is the invocation rate of the program thread.

A bound on the reaction rate of the program thread is determined by the imposed

rate constraints on the operations within the program thread.

3. Size of software, S� is the size of memory and data to implement the software.

The hardware component is characterized by its size. The hardware size,SH is

expressed in terms of number of cells needed to implement hardware using a specific

library of gates. It provides a measure of the actual area of hardware implementation.

6.1. PARTITION COST MODEL 177

λ1

λ2

λ3 ASIC

Bus

r1

r2

r3

ρ1 ρ2 ρ3

Bus utilization, B = Σ r

SW model HW model

Processor

Processor utilization, P = Σ λ . ρ Size, SH

Latency

Reaction rate

Size, S
Π

Π

ρ
n

rm

Figure 44:Components of the partition cost model

A hardware-software implementation is characterized by the following parameters.

1. Processor utilization, P indicates utilization of the processor. It is defined as

P :
=

nX
i =1

�i � %i (6: 69)

2. Bus utilization, B (per second) is a measure of the total amount of communication

taking place between the hardware and software. For a set ofmvariables to be

transferred between hardware and software,

B
:
=

mX
j =1

rj (6: 70)

rj is the inverse of the minimum time interval (in seconds) between two consecutive

samples for variablej . This interval is determined by the rate constraint on the

input/output operation associated with a variable.

A partition of the system model� is refers to a partition of the flow graphs in� into

two groups such that one is implemented into hardware and the other into software. Since

a flow graph may be partitioned into hardware-software implementations, this separation

is modeled by transformations on the flow graph that generate two separate interacting

178 CHAPTER 6. SYSTEM PARTITIONING

flow graphs. Since these transformations may, in general, require replication of vertices

and edges in order to correctly model functionality, a partition of the flow graph is not

exactly a partition of graphs in the mathematical sense, that is, there may be an overlap of

vertices across partitions. This situation is not peculiar to hardware-software partitioning

but a necessary side-effect of partitioning at a behavioral level of abstraction.

Given the partitioning cost model, the problem of partitioning a specification for

implementation into hardware and software can then be stated as follows:

Problem P1: Given a system model, � as set of flow graphs, and timing

constraints between operations, create a partition $(�) =� S[� H in to two

sets of flow graph model, �H and �S such that a hardware implementation

of �H and a software implementation of �S implements � and the following

is true:

1. Timing constraints are satisfied for all flow graphs in �H and �S,

2. Processor utilization, P�1,

3. Bus utilization, B� B. The bound on bus utilization is a function of

bus bandwidth and memory latency.

4. A partition cost function,

f ($) =a 1 � SH(�H)�a 2 � S
�(�S) +b � B�c � P+d � jmj (6: 71)

is minimized. Here jmj defines the cumulative size of variables mthat

are transferred across the partition, and a1; a2; b ; c and d are positive

constants.

Parametersa1; a2; b ; c andd represent desired tradeoff among size of hardware, soft-

ware implementation, processor and bus utilization and the communication overheads.

Let us first consider the size metrics:SH andS�. The size of hardware is computed

from the size attribute of a operation.

SH(�H) =
X

Gi2�H

SH(Gi) =
X

Gi2�H

X
v2V (Gi)

S(v) (6: 72)

6.1. PARTITION COST MODEL 179

SinceS(v) is a local property of the vertex, it does not include hardware costs for

control and scheduling logic circuits. Next, the software size is computed as

S�(�S) =
X

Gi2�S

S�(Gi) =
X

Gi2�S

[S�
d
(Gi) +S

�

p
(Gi)]

We use the following (worst case) approximation for the program size as the number of

rvalues, denoted by!, associated with a vertex. That is,

S�
p
(v) =O(!(v)) =O(jr val ue (v)j)

whereO() refers to the order-of approximation. This approximation is based on the

observation that the number of instructions generated by a compiler would be related

to the number ofrvalues. Of course, global optimizations will reduce the number of

instructions below this bound. However, use of this bound gives us a measure of the

software size during partitioning phase. It should be pointed out that in some compilers,

the number of instructions generated for a language-level operation may be more than

rvalues, specially if certainrvalues lead to more than one assembly instructions. This may

happen especially during transformation that change the underlying operator, for example,

operator strength reduction. Still, the proportionality assumption for the program size to

the number ofrvalues is valid.

The data sizeS�
d
(v) is harder to calculate from operation-level attributes, since reg-

ister allocation affects the total data storage globally. From Inq. 5.56 in Section 5.4 we

have a bound on the data size as:

S�
d
(G) �jM(G)j +jP(G)j

whereM(G) is the storage variables associated withG and P(G) is the set of input

and output ports ofG. When partitioning a flow graph model into two models, to the

first order we can assume that the data setM(G) is replicated in both partitions in order

to ensure correct functionality of the resulting partitioned graph models. The effect of

a move of an operation on data storage is to change the set of input and output ports

of G. Even though this change increases the software size, it does not help the goal of

maximization of operations in the software. Instead, this change is accounted for as an

180 CHAPTER 6. SYSTEM PARTITIONING

adverse effect on the quality of the partition by increasing its communication overhead,

m. Therefore,

S�
d
(v) =0)S �(�S) =

X
Gi2�S

X
v2V (Gi)

O(w(v)) (6: 73)

The next three parameters in the cost function,B; Pand m are related to the

communication cost of the partition and the number of operations in the program threads.

All of these parameters can, therefore, be calculated from operation dependencies and

their attributes in the flow graph. Let us assign a weight,c (u; v) to the edge(u; v) as

the size of data transfer from vertexu to vertexv . For our implementations, a control

transfer from is simulated by means a data transfer on a port. The communication cost

jmj refers to the sum of edge weights over the edges that lie across the partition,$.

The task of hardware-software partitioning requires evaluation and selection of op-

eration vertices in the individual flow graphs. An exact solution to the constrained

partitioning problem, that is, a solution that minimizes the partition cost function requires

evaluation of a large number of operation groupings which is typically exponentially

related to the number of operations in the system model. As a result, heuristics to find

a ‘good’ solution are often used with the objective of finding an optimal value of the

cost function. This optimality of the cost function is defined over grouping of opera-

tions achieved by some neighbourhood selection operations. Our heuristics to solving

the partitioning problem starts with a constructive initial solution which is then improved

by an iterative procedure by moving operations across the partition as explained by the

following pseudo-code.

>I construct initial partition,$ $ 0

computef ($0)
repeatf

>II select a group of operations to move
create new partition,$0

>III computef ($ 0)
if f ($0) <f ($)

accept move:$ $ 0

guntil no more operations to move

6.2. LOCAL VERSUS GLOBAL PROPERTIES 181

Before describing the heuristics, let us first take a look at the nature of the cost

function that is used to direct the heuristic search. The cost function consists of a set

of properties, for example,SH; S�; P; B; min our case. Since a large number of group

of operations are possible candidates for iterative improvement, the computation of the

cost function,f ($) significantly affects the overall time complexity of the procedure. A

cost function consisting of properties that require evaluation of the entire graph model at

each step of the iteration would add to the complexity of the search procedure. On the

other hand, an ideal case would be a cost function that can beincrementally updated from

previous value, that is, the change in the cost function can be computed quickly. Such

a quick estimation also allows for variable-depth neighbourhood search methods also

such as Kernighan-Lin [KL70] or Fidducia-Matheysis [FM82], where many hypothetical

alternatives can be explored to select the ‘best’ group of operations to move. Let us first

examine the type of properties that constitute a cost function.

6.2 Local versus Global Properties

We need to capture not only the effects ofsizes of hardware and software parts but

also the effect oftiming behavior of these portions, as captured by processor and bus

utilization, into the partition cost function. During partitioning iteration, a movement of

an operation across the partition causes a change in its delay and therefore the latency of

the flow graph.

In general, it is hard to capture the effect of a partition on timing performance during

partitioning stage. Part of the problem lies in the fact that timing properties are usually

global in nature, thus making it difficult to make incremental computations of the partition

cost function which is essential in order to develop effective partition algorithms. For

each local move, the timing properties must be calculated for the entire graph model,

which adds to the computational complexity of the heuristic search process.

Traditionally, there exists a spectrum of techniques in partitioning, and use of timing

properties in driving the partitioning search process. On one end of the spectrum are

partitioning schemes for hardware circuits which are mostly focussed on optimizing area

(and pinout) of resulting circuits and do not use timing properties. On the other end of

182 CHAPTER 6. SYSTEM PARTITIONING

Scheduling flexibility

STATIC DYNAMIC

T
im

in
g

 p
ro

p
e

rt
ie

s
 i
n

 p
a

rt
it
io

n
 c

o
s
t

fu
n

c
ti
o

n

NONE

STATISTICAL

Logic-level

Program-level

PARTIAL

Deterministic

Bounds
Hardware-

Software

Figure 45:Use of timing properties in partition cost function

the spectrum are partitioning schemes in software world where the objective of parti-

tioning is to create a set of programs to execute on multiple processors. These schemes

do make extensive use of statistical timing properties in order to drive the partitioning

algorithm [Sar89]. The distinction between these two extremes of hardware and software

partitioning is drawn by the flexibility to schedule operations. Hardware partitioning

attempts to divide circuits which implement scheduled operations, therefore, there is not

much need to consider the effect of partition on overall latency which is to a great extent

dependent upon the choice of schedule for the operations.1 In contrast, the program-level

partitioning problem addresses operations that are scheduled at run-time. Because of this

ability to schedule operations at run time, the timing properties are more complex and

dependent upon the operating environment and external input to the software. Thus, a

statistical measure is often used to capture the timing properties of a partition.

As shown in Figure 45, we take an intermediate approach to partitioning for hard-

ware/software systems, where we use deterministic bounds to compute timing properties

that are incrementally computable in the partition cost function, that is, the new partition

cost function can be computed in constant time. This is accomplished by using a software

1Partitioning for unscheduled flow graphs was considered in [GM90] that considers a cost function
using latency and size properties. The update of the latency in the inner loop of search for the best group
of operations was achieved by an approximation technique that allowed for incremental update of the
latency, even though it is a global property.

6.3. PARTITIONING FEASIBILITY 183

model in terms of a set of program threads as shown in Figure 44 and a partition cost

function, f , that is a linear combination of its variables. Thus, the characterization of

software using�; %; PandBparameters makes it possible to calculate static bounds

on software performance. Use of these bounds is helpful in selecting appropriate parti-

tion of system functionality between hardware and software. However, it also has the

disadvantage of overestimating performance parameters. For example, the actual proces-

sor and bus utilization depends upon the distribution of data values and communication

based on actual data values being transferred across the partition. Instead we determine

the feasibility of a partition based on the worst case scenario and ensure that this worst

case scenario is handled by the partition alternatives being evaluated by the partition cost

function.

6.3 Partitioning Feasibility

A system partition into an application-specific and a re-programmable component is

consideredfeasible when it implements the original specifications and it satisfies the

performance constraints. We assume that the hardware and software compilation, done

using standard tools, preserves the functionality. We, therefore, concentrate on constraints.

There are two kinds of constraints that are used to determine feasibility of a partition:

1. Timing constraints as min/max delay and execution rate constraints, and

2. Performance constraints in terms of processor and bus utilization and ensuring that

the a given runtime scheduler is able to meet constraints on software.

As mentioned earlier, when partitioning system model into hardware and software

components the data rates may not be uniform across models. The discrepancy in data-

rates is caused by the fact that the application-specific hardware and re-programmable

components may be operated off different clocks and the system execution model supports

multi-rate executions that makes it possible to produce data at a rate faster than it can be

consumed by the software component when using a using a finite sized buffer. In presence

of multi-rate data transfers, feasibility of hardware-software partition is determined by

the fact that for all data transfers across a partition, the production and consumption

184 CHAPTER 6. SYSTEM PARTITIONING

data rates are compatible with a finite and size-constrained interface buffer. That is, for

any data transfer across partition, data consumption rate is at least as high as the data

production rate. The production and consumption rates for a data transfer are defined by

the reaction rate of the corresponding flow graphs.

6.3.1 Effect of runtime scheduler

The runtime scheduler refers to themain program in software that integrates calls to

various program threads implemented as coroutines. As explained in Chapter 5, the

runtime system used here mainly consists of a scheduler that invokes program threads at

runtime. This scheduler can be of the following two types:

� Non-preemptive runtime scheduler. Here a program thread executes either to

its completion or to the point when it detaches itself voluntarily (for example, to

observe dependence on another program thread). Most common examples of non-

preemptive schedulers are first-in-first-out (FIFO) or round-robin (RR) schedulers.

FIFO schedulers select a program thread strictly on the basis of the time when it

is enabled. A RR scheduler repetitively goes through a list of program threads

arranged in a circular queue. A non-preemptive scheduler may also beprioritized

or non-prioritized. Priority here refers to the selection of program threads from

among a set of enabled threads. Both strict FIFO and RR maintain the order to data

arrival and data consumption, no starvation is possible. A prioritized discipline may

however lead to starvation. Alterations in scheduling discipline are then sought to

ensure fairness, that is, the best prioritized discipline leads to least likelihood of a

starvation.

� Preemptive runtime scheduler. These schedulers provide the ability to preempt

a running program thread by another program thread. Preemption generally leads

to improved response time to program threads at increased cost of implementation.

This ability to preempt is tied to an assignment of priorities to program threads.

The primary criterion in design of a preemptive scheduling scheme is in select-

ing appropriate priority assignment discipline that lead to most feasible schedules.

Priority selection can bestatic where the priorities do not change at run time, for

6.3. PARTITIONING FEASIBILITY 185

example rate-monotonic priorities [LL73], ordynamic, for example deadline-driven

priorities [LW82].

We have so far considered only non-preemptive runtime scheduling techniques. The

reason for this is to keep the synthesized software simple. As was discussed in Chapter 5,

the implementation of multiple program threads in a preemptive runtime environment

leads to additional states for the program threads which adds to the overhead delay

caused by the runtime scheduler. This is not to say that non-preemptive scheduling

techniques are always sufficient for embedded systems. However, the very ability to do

runtime scheduling of operations provides a substantial departure from static scheduling

schemes used in hardware synthesis, and for the co-synthesis approach formulated here as

an extension of high-level synthesis techniques, the choice of a non-preemptive runtime

system provides a first step towards synthesizing embedded systems.

The basis for analysis of the runtime scheduler is provided by the intuition that its

is sufficient to show the feasibility of the scheduler by considering the case when all

threads are enabled at the same time. This observation has been used in analysis of

several runtime scheduling algorithms and has been formalized by Mok [Mok83].

A necessary condition to ensure that the reaction rates of all program threads can

be satisfied by the processor is given by the constraint that processor utilization is kept

below unity, i.e.,

P�1 (6: 74)

However, this condition is not sufficient. Consider the following example.

Example 6.3.1. Program threads and processor utilization.

Consider a software consisting of two program threads,T1 andT2:

�1 = 10 cycles ; %1 = 0: 01=
1

100
per cycle

�2 = 100 cycles ; %1 = 0: 001=
1

1000
per cycle

The processor utilization,P = 10� 0: 01+ 100� 0: 001 = 0: 2 is well below
unity. However, in the worst, using FIFO scheduling, threadT1 is enabled after
10+ 100= 110 cycles. Thus supportable reaction rate forT1 is 0: 0091 or 1

110 per
cycle which is less than%1. 2

186 CHAPTER 6. SYSTEM PARTITIONING

For a program thread in a non-preemptive non-prioritized FIFO runtime scheduler, a

sufficient condition to ensure satisfaction of its reaction rate,% is given by the following

condition:
1
%
�
X

8 threadsk

�k (6: 75)

This inequality follows from the case when all the program threads are enabled simulta-

neously. In this case, a program thread is enabled again only after completing execution

of all other program threads. Note that this condition is only sufficient. It is also neces-

sary and sufficient for independent threads. In case of dependent program threads, only

a subset of the total program threads are enabled for execution, that is, those threads that

do not depend upon execution of the current thread. Therefore, the necessary condition

will be weaker and can be estimated by summation over enabled program threads in

Inq. 6.75.

From Inq. 6.75, a sufficient condition for software reaction rate satisfiability is to

ensure that
1
%max

�
X

8 threadsk

�k (6: 76)

where%max =max i %i defines the maximum reaction rate over all program threads. It is

interesting to note that the same condition for worst case reaction rate also applies for

RR schedulers, though the average case performance differs.

Remark 6.1 (Prioritized runtime scheduler) A prioritized FIFO sched-

uler consists of aset of FIFO buffers that are prioritized such that after

completion of a thread of execution the scheduler goes through the buffers

in the order of their priority. The program threads are assigned a specific

priority and are enqueued in the corresponding FIFO buffer. Thus, among

two enabled program threads, the one with the higher priority is selected. The

effect of this priority assignment is to increase theaverage reaction rates for

the program threads with higher priority at the cost of decrease in theaver-

age reaction rate for the low priority threads. Recall that in a non-prioritized

scheduler the supportable reaction rate is fixed for all threads as the inverse

of the sum over all thread latencies. Unfortunately, the worst case scenario

6.3. PARTITIONING FEASIBILITY 187

gets considerably worse in case of a prioritized scheduler: it is possible that

a low priority thread may never be scheduled due to starvation.

The average case performance improvement can be intuitively understood by

the following analysis. Consider a software ofn threads,T1; T2; . . . ; Tn

with reaction rates,%1; %2; . . . ; %n respectively. Let (Ti) be the priority

assignment of one of the levels from 1 tol , with l being the highest priority

and 1 being the lowest priority. For each thread, let us definebackground

processor utilization as

� (Ti) =
X

8 Tk 3 (Tk) < (Ti)

�k � %k (6: 77)

That is, � (Ti) provides a measure of the processor utilization by the set of

program threads with priority strictly lower than (T i). Thus theavailable

processor utilization for threads with priorities greater than equal to (T i) is

given by 1�� (T i). On an average, this can be seen as an extension in the

latency of program threads. Let us define aneffective latency, �0 as

�0
i
=

�i

1�� (T i)
(6: 78)

The average case feasibility condition is now defined as

1
%(Ti)

�
X

threadTk 3 (Tk) � (Ti)

�0
k

(6: 79)

As an aside we note that a prioritized scheduler can be used in conjunction

with a preemptive scheme. Here, the effect of priority assignment on support-

able reaction rates can be estimated by considering a reduction in available

processor utilization for a thread, caused by scheduling of higher priority

threads. This reduction in processor utilization can be modeled as increase

in the effective latency of the program threads, with the difference that the

execution of a program thread is now spread over a non-contiguous time

interval. For a review of the scheduling analysis using preemptive schemes

please see [SR88].

188 CHAPTER 6. SYSTEM PARTITIONING

To summarize, the notion of feasibility of a partition between hardware and software

buids upon the feasibility of each of the two components and additional constraints on

processor and bus utilization. To be specific, a flow graph,Gi 2� H is considered

feasible if it meets the timing constraints under the assignment of hardware operation

delays and no runtime scheduler. A flow graph,Gi 2� S is considered feasible if it

meets the imposed timing constraints under the assignment of software operation delays

and software storage operations and there exists a feasible linearization of operations

in Gi under the timing constraints. Timing constraint satisfiability can be checked by

the procedurescheck satisfiability as described in Chapter 4. Similarly, linearization can

be checked by the procedure outlined in Chapter 5. A partition of� in � S and�H is

considered feasible if:

1. for all Gi 2� H , Gi is hardware feasible,

2. for all Gi 2� S, Gi is software feasible,

3. For all program threadsTi in software,�S

1
max%(Ti)

�
X
k

�k

This condition also ensures that processor utilization is below unity.

4. Bus bandwidth,B� B.

We now consider possible approaches to realizing a partition of the system model in

to flow graphs for hardware and software.

6.4 Partitioning Based on Separation of Control and Ex-

ecute Procedures

A partition of functionality can be obtained by considering the system model as consisting

of interactingcontrol andexecution procedures. The execution procedures perform data

manipulation where as the control procedures direct the flow of execution and data. There

are two possibilities:

6.5. PARTITIONING BASED ON DIVISION OFNDOPERATIONS 189

Hardware Control

Data FIFO

Software Data

SW Entry Points

Figure 46:Partitioning into Hardware Control and Software Execute Processes

1. The hardware generates the address and data values for software execute process

to start executing. In Figure 46 the software consists of a set of looping routines.

The input data and loop counts are provided to the software addressing unit by the

hardware.

2. The software control provides a mechanism to dynamically schedule hardware

resources. This case is similar to microcoded machines where microcode uses

different hardware resources to control flow of execution.

While promising, neither these approaches are considered further since the system model

does not explicitly make a distinction between control and execute procedures. Thus

separation of control and execute portion would require an extensive set of transformations

to the flow graph model.

6.5 Partitioning Based on Division of ND Operations

Our procedure for partitioning a flow graph model is based on the iterative improvement

procedure presented in Section 6.1. There are three main components to this procedure:

I. Creation of initial partition. The initial partition is constructed by creating program

threads for each of theNDloop operations in the flow graph model. It is assumed

that for all the external synchronization operations, a corresponding rate constraint

is provided, which is used as a property of the environment with which the system

interacts. Due to this property, rates of data transfer for all inputs to the software is

190 CHAPTER 6. SYSTEM PARTITIONING

known. This rate of data transfer then defines the reaction rate of the corresponding

destination program thread. On the other hand, the rate of data production from the

software is determined by achievable reaction rate of the associated program thread.

Feasibility of a partition is checked by applying the routinecheck feasibility.

II. Selection of a group of operations to move across partition. Selection of opera-

tions requires a check for partitioning feasibility. Among the available vertices we

pick operation vertices with known and bounded delay. With this vertex moved

across the partition to software, its attributes are updated and the corresponding

graph model is checked for constraint satisfiability by applying the procedure

check satisfiability in Chapter 4. If the move is a partitioning feasible more, the

next vertex to be selected is one of the immediate successors of the vertex moved.

This way, the group of vertices selected for a move constitutes path in the flow

graph. This heuristic selection is made to reduce the communication cost.

III. Update of the cost function. After the initial computation of the cost function,

changes to the cost function are computed incrementally. A vertex move from

hardware to software, entails the following changes to the partition cost function:

�f =a 1 �S H �a 2 �S
� +b �B�c �P+d �jmj (6: 80)

1. Hardware sizeSH is reduced by the size attribute of the vertex according to

Equation 6.72. So the reduction in cost function due to move of vertex,v

into software is given by

�f j SH =a 1 � S(v)

2. Software sizeS� is increased by thervalue attribute,! of the vertex according

to Equation 6.73. So the reduction in cost function is given by

�f j S� =a 2 � !(v)

Note that the effect of an operation move into software is to increase the size

of the software which decreases the cost function.

6.5. PARTITIONING BASED ON DIVISION OFNDOPERATIONS 191

3. The change in communication cost,�m, is computed by examining the neigh-

bours of vertex,v . This is also used to compute the change in bus utilization,

�B.

4. Processor utilization,Pis computed by considering two cases. One where the

reaction rate of the destination thread is unaffected. In this case the reduction

in cost function due to vertex move,v to threadk is given by

�f j P =c � % k� (v)

where� (v) refers to the software delay of operationv . In case, the operation

move changes the reaction rate of a thread to%0
k
, the effect on cost function

reduction is given by

�f j P =c [% 0
k
� (v) +(% 0

k
�% k)�k]

The algorithm to perform graph-based partitioning is described by the following

pseudo-code. Starting with a system model, it examines flow graph models that in

� corresponding to each process model for possible partition. Proceduregraph partition

returns atagged graph indicating its partition into two graphs. Vertices in a tagged graph

are labeled according to their partition membership. This graph is then subject to parti-

tion transformations described later in Section 6.6 such that the resulting graphs correctly

implement the specified functionality.

Input: System model,� = f Gig , Processor model,� , Bus bandwidthB, Runtime overhead,
Output: Partitioned system graph model,� = � S [�H

partition(�) f
�S = �H = ; ;
for each process graph inGi 2 � f

graphpartition(Gi); /* returns a tagged graph,Gi */
(GH ; GS) = partition transformation(Gi); /* create separate graphs */
�S = �S [f GSg ;
�H = �H [f GHg ;

g
g

192 CHAPTER 6. SYSTEM PARTITIONING

graph partition(G) f
VH = V ;
VS = ; ;

>I for v 2 V (G) f /* create initial partition */
if v is anND link operation

VS = VS + f vg ;
g
create software threads (VS); /* create initialj VSj routines */
compute reaction rates,% for each thread; /* based on rate constraints */
if not checkfeasibility(VH; VS) /* no feasible solution exists */

exit ;
fmin = f(VH ; VS); /* initialize cost function */
repeatf

for vertexv 2 VH andv is notND f /* pick a det. delay operation from hw */
>II f min = move(v); /* select operations to move to sw */
g until no further reduction in fmin;

return(VH ; VS);
g

g
move(v) f /* considerv for move fromVH to VS */

if check feasibility(VH � f vg ; VS + f vg)
>III if �f >0

VH = VH � f vg ; /* move this operation to sw */
VS = VS + f vg ;
fmin = fmin ��f;
update software threads;
update thread reaction rate of the destination thread;
for u 2 succ(v) andu 2 VH /* identify successor for move */

move(u);
return fmin;

g
check feasibility(�H ; �S) f /* check partition feasibility */

for all Gi 2 �H /* check timing constraints for hardware */
if not checksatisfiability(Gi);

return not feasible;
for all Gi 2 �S /* check timing constraint for software */

if not checksatisfiability(Gi);
return not feasible;

for all Ti 2 �S

if (1
max%(Ti)

<
P

k
�k) /* runtime scheduler */

return not feasible;
if B >B /* check bus utilization */

return not feasible;
return feasible;

g

6.6. PARTITION RELATED TRANSFORMATIONS 193

The markers> indicate the main steps of the algorithms as described earlier in the

beginning of this section. The algorithm uses a greedy approach to selection of vertices

for move into�S. There is no backtracking since a vertex moved into�S stays in that

set throughout rest of the algorithm. For each vertex move, the change in the partition

cost function,�f is computed in constant time. The constraint satisfiability algorithm

check satisfiability computes the all pair longest paths in the constraint graph which using

Floyd’s algorithm runs inO(jV j 3) time. Since this satisfiability check is done for each

possible vertex move, therefore, the complexity of the algorithm isO(jV j 4).

6.6 Partition Related Transformations

From a partition of vertices in the input flow graph, a set of behavior-preserving graph

transformations are applied in order to generate resulting interacting flow graphs. These

transformations implement the abstract cut of the graph model. The following transfor-

mations are applied:

Replication - refers to replication of a vertex. This usually done to preserve the behavior

of the conditional paths to a vertex.

Insertion of IBC vertices - An edge that crosses a partition represents a communica-

tion between hardware and software. Depending upon the reaction rate of the

producing and consumer graph models, this communication can be either blocking,

nonblocking or buffered. Implementation of these communications is discussed in

Section 7.2.2. Appropriate interblock communication (IBC) vertices are added to

support the communication and synchronization between operations across parti-

tions.

In order to preserve the original sequencing dependencies for correct behavior, when

the called model is partitioned into two sets of operations it is essential to duplicate the

link vertex corresponding to the two model calls as shown in Figure 47. The link vertex,

C, is duplicated into two link vertices,C1 andC2 each of which calls the respective graph

model. Note that dependency edges(a; c); (c ; b); (d; c); (c ; e) are modified accordingly in

order to preserve the original sequencing dependencies.

194 CHAPTER 6. SYSTEM PARTITIONING

C
C1 C2

a

b

d

e

a

b

d

e

Link vertex

Figure 47:Partition of link vertices

When the partitioned vertices that lie on conditional paths, it is important to maintain

the semantics of the conditional vertex by ensuring that the conditional logic associated

with the path to the operation is properly replicated in both partitions. In case of link

vertices related to loops, these vertices also contains logical conditions to either terminate

the call. In this case also the link vertex replication with additional control edges is

necessary in order to preserve the original behavior. Partitioning of a condition vertex

is achieved by duplicating first the condition vertex (which represents the operation that

computes the conditional clause) and corresponding join vertex in the (well-formed) flow

graph. The original and replicated vertices are assigned to different partitions.

6.7 Summary

Partitioning of a system model into hardware and software is a difficult problem due

the local and global properties of the costs involved in partitioning. Our approach to

partitioning is characterized by development of a suitable partition cost model that makes

it possible to incorporate both size and performance parameters into the partitioning

objective function, while at the same time allowing efficient incremental computation of

the cost function. This capability achieved by means of using deterministic bounds on

performance parameters such as processor and bus utilization using worst case analysis. A

disadvantage of this approach is the possible overestimation of the utilization parameters.

Based on our analysis of the runtime scheduler, we develop constraints on partitions that

6.7. SUMMARY 195

ensure feasibility of the partition to meet imposed constraints. This feasibility makes

use of the notion of constraint satisfiability as developed in Chapter 4 and proceeds by

performing graph analysis on individual hardware or software constraint graph models.

Our partitioning procedure is one of building an initial partition based on loopND

operations, and then developing an iterative improvement procedure that uses partitioning

feasibility in selecting operations to be moved across the partition while maintaining

satisfiability of the imposed timing constraints.

Chapter 7

System Implementation

Hardware-software cosynthesis is not a single task but consists of a series of tasks.

These tasks are related to modeling of functionality and constraints, analysis of con-

straints, model transformations to ensure constraint satisfiability, partitioning of the model

and partitioning-related transformations, synthesis of hardware and software components,

simulation of the final system design. These subtasks have been implemented in a general

framework, calledVu l c a n , that allows user interaction at each step of the cosynthesis

process and guides the system designer to the goal of realizing a mixed system design.

This chapter discusses the implementation of the Vulcan system and its relationship to

other tools to accomplish synthesis and simulation of hardware-software systems.

Further, the target architecture presented in Section 1.7.1 of Chapter 1 is simple

and leaves open many different possible ways of implementing the hardware-software

interface and communication mechanisms. We present the architectural choices made by

Vulcan and possible extensions and alternatives. We conclude this chapter by a discussion

of our approach to the cosimulation of hardware-software systems.

7.1 Vulcan System Implementation

Vulcan is written in the C programming language and consists of approximately 60,000

lines of code. Through its integration with the Olympus Synthesis System [MKMT90]

and DLX processor compilation and simulation tools [HP90], it provides a complete path

196

7.1. VULCAN SYSTEM IMPLEMENTATION 197

Assembly

Program

HDL

Specification

Graph

Model

compilation

constraint
analysis

partitioning

code synthesis

Program

Graph

C

Program

compilation

ASIC

Graph

Model

interface gen

Interface

strctural synthesis

ASIC Netlist

DLXCC

HEBE CERES

VULCAN

HERCULES

Input description and compilation

Co−synthesis tasks

Software compilation
Hardware synthesis

Figure 48:Co-synthesis flow.

for synthesis of hardware and software formHardwareC descriptions. A block diagram

of the co-synthesis flow was shown in Figure 11 in Chapter 1 and is reproduced in

Figure 48 for convenience.

The input to Vulcan consists of two components: a description of systemfunctionality

and a set ofdesign constraints. The design constraints consists of timing constraints and

constraints on parameters used during the co-synthesis process. Timing constraints are

specified along with the system functionality inHardwareC by means of theattribute

mechanism. These attributes make use of statementtags that identify the operation

subject to constraints.

198 CHAPTER 7. SYSTEM IMPLEMENTATION

Example 7.1.1. HardwareC description is annotated by the following attribute
commands to specify minimum and maximum execution rate constraints, identify
loop index variables, and specify clock names and cycle times.

.attribute “constraint<minrate—maxrate> [<num>] of <tag> = <num> cps” Rate constraints

.attribute “loop-index<str> [<num>]” Index variable

.attribute “clock<str> [<num>]” Clock signal

.constraint mintime from<tag> to <tag> = <num> cycles Min delay

.constraint maxtime from<tag> to <tag> = <num> cycles Max delay

2

This input is first compiled into a sequencing graph model (SIF) using the program

Hercules [KM90b] by applying a series of compiler-like transformations. The se-

quencing graph model is then translated into the bilogic flow graph model by performing

the following operations:

1. Identify signal wait operations: these operations are specified as loop operations

with an empty loop body, e.g., “while(reset);” which defines just a (busy-

wait) implementation of the corresponding wait operation. The signal wait opera-

tions are unimplemented by defined as an atomicwait operations.

2. Merge SIF graphs on conditional hierarchies.

3. Identify storage variables for each graph body.

4. Classify loop operations as pre- or post-indexed.

Some guidelines must be observed when specifying HardwareC inputs for cosynthesis

purposes. The arithmetic operations must be bound to resources in order to prevent

Hercules from generating combinational logic operations to implement the respective

operations. This can be done by mapping and binding arithmetic operations to specific

library functions or to ‘dummy’ operators which are translated into respective operators

without associated function calls. This limitation has to do with the fact that even though

the semantics of SIF is general enough to support arithmetic operations on multi-bit

variables, the hardware synthesis of these operations must be carried out by explicit

function/procedure calls to specific library modules.

7.1. VULCAN SYSTEM IMPLEMENTATION 199

Model Attributes

Hierarchy Attributes

Partitioning Attributes

Interface

Algorithms

&

Operations

applications

routines

queries

model information

Hardware/Software

Model

Auxiliary models

Processor cost model

Hardware/software cost
models

Figure 49:Data Organization inVu l c a n

7.1.1 Data organization in Vulcan

The organization of data in Vulcan is shown in Figure 49. Vulcan maintains a list of

hierarchically connected graph models. The flow graph models may be implemented or

unimplemented. In addition, Vulcan maintains a list of processor cost models and cost

models for implementation of software and hardware. The format of the processor cost

model is described in Appendix C. The cost model for hardware and software store

the results of actual hardware and software synthesis and are updated by the mapping

results from hardware synthesis, and by parsing the dissembler output respectively. The

algorithms for analysis and transformations are applied on these graph models. At this

time, all transformations of the graph model are user driven. The model manipulation

routines automatically update the list of models after transformations and update the cost

models and attributes with the result of analysis.

200 CHAPTER 7. SYSTEM IMPLEMENTATION

7.1.2 Command organization in Vulcan

Vulcan provides an interactive menu-driven interface that is modeled after the UnixTM

shell and was originally developed by Frederic Mailhot [MKMT90]. This interface pro-

vides the typical shell commands related to directory and file management, input/output

redirection, aliasing and history commands. Three levels of command complexity is

supported and command abbreviation is provided for advanced users. In addition, the

interface provides a ‘freeze’ command that saves the state of Vulcan system and data into

a dump file that can be restored later in case there is a need to back to some previous

step of the co-synthesis process. This user interface is supported across all the tools in

the Olympus Synthesis System, thus making it convenient for the user to move among

the tools in the same session.

Figure 50 shows the organization of Vulcan subsystems and their relationship to

hardware and software synthesis. Vulcan consists of following sub-systems. For each

of these sub-systems a command menu is presented that lists the commands relevant

to the subsystem. A history stack maintains the subsystems being used by the user.

This allows for excursions into different subsystems as needed (for example, model

manipulations related to constraint analysis may use synthesis results instead of using

estimation routines).

1. Model maintenance and manipulations (commandEnter model) supports ma-

nipulations and constraint satisfiability analysis on the flow graph model. The

maintenance functions include reading and writing of graph models, and cost mod-

el for the processors, identification of data and control dependencies and types of

loop operations.

2. Model partitioner (commandEnter partitioner) Partitioning is accom-

plished by first ‘tagging’ a flow graph model, followed by creation of individual

flow graph models through partitioning transformations. Assignment of graphs is

made on the basis of partitioning feasibility analysis that checks for constraint sat-

isfiability of hardware and software implementations of the individual flow graphs,

and feasibility of the runtime scheduler to support the hardware and software por-

tions based on processor and bus utilization.

7.1. VULCAN SYSTEM IMPLEMENTATION 201

HDL (HardwareC)

Timing constraints

Resource constraints

Resource bindings

HERCULES

− HDL Parser

− Compiler front optimizations

− Generate sequencing graphs

HEBE

− Hardware synthesis

− Explore alternative resource
 bindings

CERES

− Technology mapping

− Generate netlist

System definition

Sequencing graph model

Structural model

Hardware netlist

Flow graph model

CONSTRAINT ANALYSIS

− Generation of constraint model

− Constraint satisfiability

PARTITIONER

− Feasibility analysis

SOFTWARE SYNTHESIS

SOFTWARE COMPILATION

H
A

R
D

W
A

R
E

 S
Y

N
T

H
E

S
IS

Model

Xlater

INTERFACE GENERATION

− Generate Poseidon input

− Tag graphs

MODEL TRANSFORMATIONS

Interface description

Tagged graph

Tagged graph

Flow graphsPartition

Flow graphs
Main block

SIF

SIF

Assembly code

UPDATE FLOW GRAPH MODEL ATTRIBUTESMapping results Analyze dissembler output

Figure 50:Vulcan subsystems and the Olympus Synthesis System

202 CHAPTER 7. SYSTEM IMPLEMENTATION

Generate program threads

− convexity linearization

− thread transformations

− generate program flow graph

− add thread dependencies

Generate program routines

− add scheduler operations

− generate code for thread
 dependency operations

Generate C code

− variable binding

− generate main program

Compile C code

DLX COMPILER

Marked flow graphs

Simulation code

Figure 51:Flow of software synthesis in Vulcan

3. Hardware synthesis (commandEnter hardware) is performed by passing the

corresponding sequencing graph model to programsHe b e andCe r e s in the Olym-

pus synthesis system.

4. Software synthesis (commandEnter software) consists of tasks of program

thread identification, serializations, generation of routines. Figure 51 shows the

command flow in generation of the software component. The software synthesis

also performs generation of scheduling routines (enqueue, dequeue) and hardware-

software interface routines (transferto) for the runtime system.

7.2. IMPLEMENTATION OF TARGET ARCHITECTURE IN VULCAN 203

5. Interface synthesis and model simulations (commandEnter interface) In-

terface description is currently entered manually from specified models and inter-

face protocols. Simulation of the mixed hardware-software system is performed

by the program Poseidon described in Section 7.3.

The supported commands in each of the subsystem are listed in Table 7.

7.2 Implementation of Target Architecture in Vulcan

As mentioned earlier, there are several issues that must be resolved in order to bring the

target architecture described in Section 1.7.1 closer to a realization. Among the important

issues in iits implementation are use of communication and synchronization mechanisms

and the architecture of the interface between hardware and software components. We

assume that the communication across hardware-software is carried out over a commu-

nication bus. We further assume that only the processor is the bus master, thus obviating

a need for implementation of bus arbitration logic in the dedicated hardware.

7.2.1 System synchronization

System synchronization refers to mechanism for achieving synchronization between con-

currently operation hardware and software components. Due to pseudo-concurrency in

the software component, that is, concurrency simulated by means of operation interleav-

ing, a data transfer from hardware to software must be explicitly synchronized. Using

a polling strategy, the software component can be designed to performpre-meditated

transfers from the hardware components based on its data requirements. This requires

static scheduling of the hardware component so that the software is able to receive the

data when it needs it. In cases where the software functionality is communication limit-

ed, that is, the processor is busy-waiting for an input-output operation most of the time,

such a scheme would be sufficient. Further, in the absence of anyND operations, the

software component in this scheme can be simplified to a single program thread and a s-

ingle data channel since all data transfers are serialized. However, this would not support

204 CHAPTER 7. SYSTEM IMPLEMENTATION

Command Description

Model maintenance and manipulations

buildrp Build resource utilization pool
checksatisfiability Constraint satisfiability analysis
dataflow Extract data-flow dependencies
flatten Flatten a flow graph
hierarchy Display hierarchy
list, rename, delete, printModel maintenance
readsif, readcpu Read sequencing model, processor cost model

Model partitioner

augment Augment a model with partitioning info
checkfeasible Partitioning feasibility analysis
cut Cut a tagged flow graph into two graphs
cuthier Show cut hierarchy
readattr, writeattr Read/write partitioning attributes
setp Set partitioning parameters
kl KL based partitioning heuristic to tag graphs
untag Untag a partitioned graph

Hardware synthesis

eval logic Evaluate hardware cost usingHe b e andCe r e s
mkblock Make an interconnection block for partitioned models
synthesize Pass model toHe b e andCe r e s for synthesis into hardware
readcost Read synthesis cost model fromHe b e

Software synthesis

linearize Linearization heuristic under timing constraints
blinearize Perform a breadth-based linearization heuristic
dlinearize Perform a depth-based linearization heuristic
estim spill Determine the spill set
estim delay Estimate delay for software implementation of a flow graph
mkconvex Convexity serialization for a flow graph
mkthreads Generation threads
mkmain Write runtime scheduler
packboolean Pack storage of boolean variables
printcode C-code translation from flow graph
read/writeasm Read/write an assembly file
read/writedis asm Read/write a dissembler output

Interface

write poseidon Write interface description toPo s e i d on

Table 7: Vulcan (Rev 0) subsystems and commands.

7.2. IMPLEMENTATION OF TARGET ARCHITECTURE IN VULCAN 205

any branching nor reordering of data arrivals since dynamic scheduling of operations in

hardware would not be supported.

In order to accommodate different rates of execution of the hardware and the software

components, and due toND operations, we look for adynamic scheduling of different

threads of execution. Such a scheduling is done based on the availability of data. This

scheduling is by means of acontrol FIFO structure which attempts to enforce the policy

that the data items are consumed in the order in which they are produced. The hardware-

software interface consists of data queues on each channel and a FIFO that holds the

identifiers for the enabled program threads in the order in which their input data arrives.

The control FIFO depth is sized with the number of threads of execution, since a program

thread is stalled pending availability of the requested data. Thus the maximum number

of places in the control FIFO buffer would be the maximum number of threads in the

system. Example 7.2.2 below shows an example of the interface between hardware and

software.

Example 7.2.2. Hardware-Software Interface

Processor

ASIC

ControlFIFO

Data
Queue

FIFO
control
logic

up_en

up_ab

gn cf_ak

q_rq

0xee000

System Bus

Figure 52:Control FIFO schematic

Figure 52 shows schematic connection of the FIFO control signals fora single data

queue. In this example, the data queue ismemory mapped at address 0xee000
while the data queue request signal is identified by bit 0 of address 0xee004 and
enable from the microprocessor (upen) is generated from bit 0 of address 0xee008.

The control logic needed for generation of the enqueue is described by a simple
state transition diagram shown in Figure 53. The control FIFO is ready to enqueue

206 CHAPTER 7. SYSTEM IMPLEMENTATION

wait

enqueuedone

up_en & q_rq

cf_ak

up_ab

gn=0

gn=1gn=0

Figure 53:FIFO control state transition diagram

(indicated bygn = 1) a process id if the corresponding data request (q rq) is
high and the process has enabled the thread for execution (up en). Signalup ab
indicates completion of a control FIFO read operation by the processor.

In case of multiple fanin queues, theenqueue rq is generated by OR-ing the
requests of all inputs to the queues. In case of multiple-fanout queues, the signal
dequeue rq is generated also by OR-ing all dequeue requests from the queue.2

The control FIFO and associated control logic can be implemented either in hardware

as a part of the ASIC component or in software. In the case that the control FIFO is

implemented in software, the FIFO control logic is no longer needed since the control flow

is already in software. In this case, theq rq lines from the data queues are connected to

the processor unvectored interrupt lines, where the respective interrupt service routines

are used to enqueue the thread identifier tags into the control FIFO. During the enqueue

operations, the interrupts are disabled in order to preserve integrity of the software control

flow. The protocol governing the enqueue and dequeue operations to the control FIFO

are described using guarded commands in a interface description file that is input to the

system co-simulator described in Section 7.3. Example 7.2.3 below shows a specification

for the control FIFO based on two threads of execution.

Example 7.2.3. Specification of the control FIFO based on two threads of
execution.

queue [2] controlFIFO [1];
queue [16] line_queue [1], circle_queue [1];

when ((line_queue.dequeue_rq+ & !line_queue.empty) & !controlFIFO.full) do
controlFIFO enqueue #1;
when ((circle_queue.dequeue_rq+ & !circle_dequeue.empty) & !controlFIFO.full)
do controlFIFO enqueue #2;
when (controlFIFO.dequeue_rq+ & !controlFIFO.empty) do controlFIFO dequeue
dlx.0xff000[1:0];

dlx.0xff000[2:2] = !controlFIFO.empty;

7.2. IMPLEMENTATION OF TARGET ARCHITECTURE IN VULCAN 207

In this example, two data queues with 16 bits of width and 1 bit of depth,
line queue and circle queue, and one queue with 2 bits of width and 1
bit of depthcontrolFIFO are declared. The guarded commands specify the con-
ditions on which the number 1 or the number 2 are enqueued– here, a ‘+’ after

a signal name means a positive edge and a ‘-’ after the signal means a negative

edge. The first condition states that when a request for a dequeue on the queue

line queue comes and the queue is not empty and the queue controlFIFO is

not full, then enqueue the value 1 in the controlFIFO. The last command just

specifies a direct connection between signal not controlFIFO.empty and bit

2 of signal dlx.0xff000. 2

7.2.2 Communication protocols

The hardware-software interface protocol is classified as one of blocking, non-blocking

or buffered. A blocking communication protocol is expressed as a sequence of simpler

operations on ports and additional control signal to implement the necessary handshake.

For example, to implement a blocking read operation on a channel ‘c’ additional control

signals ‘c rq’ and ‘c ak’ would be needed as shown in the Example below.

Example 7.2.4. A blocking read operation.

bread(c) => [
write c_rq = 1;
wait(c_ak);
< read(c);
write c_rq = 0; >
]

2

While it is easy to connect two blocking or two non-blocking read-write operations,

connection of two disjoint read/write operations on a channel requires handling of special

cases. For example, consider a connection between blocking read and non-blocking write

operations below.

Example 7.2.5. Blocking/Non-blocking channel connections.

Blocking read and non-blocking write

Blocking read Non-blocking write

[[

208 CHAPTER 7. SYSTEM IMPLEMENTATION

c c

c_rq

c_ak

c_ak

c_rq

Producer Consumer

write c_rq = 1; write c_rq = 1;
wait(c_ak); < write c = value; write c_rq = 0; >
< read(c); write c_rq = 0; >]
]

Blocking write and non-blocking read

Non-blocking read Blocking write

[[
write c_rq = 1; write c_rq = 1;
< read(c); write c_rq = 0; > wait(c_ak);
] < write c = value; write c_rq = 0; >

]

A non-blocking/non-blocking read/write connection results in one cycle read and
write operations. However, a blocking/non-blocking connection requires two clock
cycles for the non-blocking operation.2

A buffered communication is facilitated by a finite-depth interface buffer with corre-

sponding read and write pointers. The communication protocol consists of I/O operation

as well as manipulation of the read, write pointers as shown by the example below.

Example 7.2.6. Buffered communication protocol.

c c

Producer Consumer

read_ptr

write_ptr

[[
read (buff[read_ptr]); write buff[write_ptr] = value;
read_ptr++ modulo N; write_ptr++ modulo N;
]]

Under normal operation,read ptr 6= write ptr. Violation of this condition
indicates either a buffer is full or empty depending on whether the increment of
write ptr causes violation or the increment ofread ptr causes the violation.
2

7.2. IMPLEMENTATION OF TARGET ARCHITECTURE IN VULCAN 209

7.2.3 Hardware-software interface architecture

The choice of the hardware-software interface protocol depends on the corresponding

data transfer requirements imposed on the system model. In the case of known data-rates

where (non-blocking) synchronous data transfers are possible, the interface contains an

interface buffer memory for data transfer. A different policy-of-use for the interface buffer

is adopted when transferring data or control information across the hardware-software

partition. Therefore, the interface buffer consists of two parts: a data-transfer buffer and

a control-transfer buffer (Figure 54). The data-transfer buffer uses an associative memory

with statically determined tags, while the control-transfer buffer uses a FIFO policy-of-use

in order to dynamically schedule multiple threads of execution in the software. Associated

with each data-transfer we assign a unique tag which consists of two parts, software thread

id and the specific data-transfer id. Since all the threads and all input/output operations

are known, the tags are determined statically. The tag of a thread can be, for example, its

entry point in the memory in case of a ROM code. In addition, the data-buffer contains

a request flag (RQ bit) associated with each tag to facilitate the demand scheduling of

various threads in software. Figure 55 explains themodus operandi of data transfer across

a hardware-software partition. In the software, a thread of execution is in the compute

state as long as it has all the available data as shown in Figure 55(a). In case of a

dependency on another program thread or a graph model in hardware, the corresponding

RQ bit is raised and the thread is detached as shown Figure 55(c). The processor then

selects a new thread of execution from the control FIFO as shown in Figure 55(b). In

case of data arrival to the interface buffer, if the corresponding RQ bit is on, its tag is

put into the control FIFO as shown in Figure 55(c).

Note that the interface architecture described here shows only amechanistic view

of the hardware-software synchronization concepts presented before. Its implementation

may be made simpler and yet achieve the same effect. For example, the functionality

of the associative memory buffer can be translated into a software thread while using a

simpler memory structure.

210 CHAPTER 7. SYSTEM IMPLEMENTATION

TAG RQ

 MW

DW

d0 d1 d2 d3

DATADIRECT-MAPPED BUFFER FOR
DATA TRANSFER:

1. Tags determined statically

2. RQ used for demand scheduling
of SW

3. MW/DW ratio to support
multiple HW executions

FIFO BUFFER FOR DYNAMIC
CONTROL FLOW:

1. Control flow modifications from:

a. Memory Read or
b. Interrupt driven or
c. A dedicated Input Port

INTERFACE BUFFER POLICY-OF-USE

Figure 54:Hardware and Software Interface Architecture

receive compute

initial
compute

Hit
Miss

detach

i:= nextp

Miss

Hit
ready(i)

ENQUEUE(i) DEQUEUE
read nextp −nextp

wait(i) ready(i)

PROCESS MODEL TASK SWITCH MODEL INTERFACE BUFFER MODEL

+data(i)

miss +data(i)

hit

Control FIFO:

DM Buffer (i)

(a) (b) (c)

RQ(i)=1 RQ(i)=0

i refers to the program thread associated with ND operation, i

Figure 55:Hardware and Software Interface Model

7.3. CO-SIMULATION ENVIRONMENT. 211

7.3 Co-simulation Environment.

In this section, we briefly review major simulation concepts and techniques followed by

a presentation of our approach to simulation of hardware-software systems.

Most simulators fall into one of the two categories: continuous or discrete event

simulators. Continuous simulations occur frequently in control and systems engineering.

In the context of underlying synchronous digital components, we are interested in dis-

crete event simulations. In discrete event simulation, a simulation model of the system is

exercised based on events on the inputs. Most discrete event simulators maintain a time-

ordered queue of events. The queue may be centralized in a synchronous discrete event

simulation or it may be distributed based on an asynchronous discrete event simulation.

Examples of event-driven simulators using a global time scale are most simulators used

for VHDL language [Sha86]. A frequent alternative to dynamic scheduling of events

in discrete event simulation iscompiled code simulation [WHPZ87]. In some circles, it

is also known as a statically-scheduled or an oblivious simulator. In a compiled code

simulation, there is no dynamic selection of events, as events are scheduled statically by

a preprocessing step before the simulation begins. This avoids the overheads associated

with management of event queue and event dispatch in event driven simulations at the

potential cost of increased number of component evaluations. This can be done, for

example, by treating components in a VHDL description as subroutines and their inter-

connection as variables. The resulting code can then be simulated by merely following

the execution of the compiled code without the need for detailed event queues. This

approach, also lacks detailed simulation information which may be needed to capture the

so-called ‘transient events’.

Simulation of a system consisting of interacting hardware and software components

faces a practical problem in concurrent simulation due to a large disparity in the time

scales over whichrelevant hardware and software actions are defined. An event driv-

en simulation will seem to obviate this problem since it only simulates a network or

component only when some events are generated, irrespective of the actual time scales.

However, in practice large number of events are generated at the smallest interval of

time granularity, hence a discrete event simulation is excessively slowed down due to its

212 CHAPTER 7. SYSTEM IMPLEMENTATION

need to evaluate all the events. A common approach to handling complexity in concur-

rent simulations is to perform aprocess-oriented simulation as opposed to event-oriented

simulations. A process-oriented simulation can be thought of as a level of abstraction

above event-orient simulations [Fis91] where the input specification in terms of concur-

rent processes is eventuallycompiled into an event-oriented simulation. This approach,

however, does not make actual simulations any faster.

As a result of the above-mentioned practical problems in simulation of large systems,

the design of a fast simulator applicable to co-simulation of hardware and software

systems is an active area of research [BHLMar] [OH93].

We use programPos e i don [GCM92b] that provides a practical environment for

co-simulation of multiple functional models. Figure 56 shows the organization of the

simulator. The input to Poseidon consists of specification of a collection of functional

models and their associated simulators. Also, associated with each model, is a clock signal

that is specified as an in-phase multiple of a common clock signal. Thus a hardware-

software system is assumed to be centrally clocked.

The models specified in Poseidon can be implemented either in hardware or software.

The software component is compiled into the assembly code of the target processor.

Poseidon currently supports simulation of the assembly code for the DLX microprocessor.

The hardware component can be simulated either before or after structural synthesis phase

by using their respective simulators.

Poseidon carries out the hardware-software simulation by concurrently executing re-

spective simulators for different input models. This is achieved by invoking each of the

individual simulators at every cycle of the basic system clock, of which all other clock are

a multiple. It maintains a queue of events which stores all simulation events on specified

signals sorted by their activation times. After simulating an event, the resulting events

are enqueued in the simulation queue. For each simulation cycle, all of the different

simulators are invoked.

An input specification to Poseidon consists of following parts:

1. Model declarations: These consist of declarations of the concurrently executing

simulation models. Models can be either software or hardware models. Each model

has an associated clock signal and clock cycle-time used for its simulation. It is

7.3. CO-SIMULATION ENVIRONMENT. 213

DLX Assembly Code
SLIF Netlist

Implements:

a. Interface protocol between models
b. event-driven simulation of multiple models
c multiple clocks and clock rates between models

Ariadne

System Graph Model

(Gate-level Description)

DLX Simulator MercuryPOSEIDON

Figure 56:Event-driven Simulation of a Mixed System Implementation

assumed that the clock cycle-times are a rational multiple of a basic system clock.

Further it is assumed that different models supply (latch) data at the interface using

flip-flops at the interface edge-triggered by their respective clock signals.

2. Model interconnections: The interface between different system components is

specified byconnections among models. A connection between two models may be

either a direct connection through a wire, or a port connection through a register or

a queue. Queues can have multiple fanins and fanouts. Signal assignments indicate

direct connections between respective models. For connections such as queues that

require existence of additional control signals for synchronization, it is possible to

group signals having identical synchronization requirements together for a given

set of synchronization signals.

3. Communication protocols: Interface protocol for data-transfer is specified via

guarded commands [Dij75]. A guarded command is a command which is executed

only when some precondition is true. Each precondition is specified as a logic

214 CHAPTER 7. SYSTEM IMPLEMENTATION

equation of signal values and transitions. There are four commands recognized by

the connection types.Enqueue anddequeue are used for queues port connections

and load andstore are used for register port connections.

4. System outputs: Outputs to be observed during simulation runs may be indicated

by direct connections to the internal signals in the system model.

For illustration purposes, we consider a simple example of two models,Producer

andConsumer that are connected by means of a finitely sized queue as shown in the

Figure 57 in the following example.

Example 7.3.7. A producer-consumer system.

ProducerConsumer

InRq

OutAk

outPort

inChannel

comm

Figure 57:Producer consumer system.

Let us consider the case when the the producer model is implemented in software
and the consumer model in hardware. The follow lists the interface description for
this implementation.

Models
model IO io 1.0 /local/ioDir IO;
model P dlx 1.0 /local/ProducerDir Producer;
model C mercury 3.0 /local/ConsumerDir Consumer;

Connections
queue [4] comm[3];
C.RESET = IO.RESET;
C.r[0:0] = IO.r[0:0];

Communication protocol
P.0xff004[0:0] = !comm.full;
C.b_rq = !comm.empty;
when (P.0xff000_wr+ & ! comm.full) do comm[0:3] enqueue P.0xff000[0:3];
when (C.b_ak+ & ! comm.empty) do comm[0:3] dequeue C.b[0:3];

Outputs
IO.inChannel[0:3] = P.0xff000[0:3];
IO.outPort[0:3] = C.c[0:3];
IO.InRq = P.0xff000_wr;
IO.OutAk = C.b_ak;

The three first lines of the specification declare the models to be simulated. Model
io models the external system inputs and outputs. The following parameter specifies

7.3. CO-SIMULATION ENVIRONMENT. 215

the clock period of the clock signal associated with the respective model. A value
of 3.0 for the consumer model indicates that consumer is implemented in an ASIC
technology that uses a clock signal that is three times slower than the clock used
by the reprogrammable component, which is usually a custom designed component.
The system input/outputs are sampled here at the same rate as the consumer. The last
two parameters specify the directory location where the model description can be
found and the model name. Thequeue statement declares a queue named,comm,
which is 4 bits wide and 3 words deep. We userq andak signals to implement
a blocking communication protocol as indicated by the guarded commands. A
‘+’ suffix indicates rising edge transition of the corresponding signal. A ‘-’ suffix
indicates falling edge transition. Symbols ‘&’ and ‘!’ indicate the Booleanand and
not operations.

The remaining commands are related to the interconnection of the interface. The
meaning of an assignment is as follows:bind the r-value coming from the output

of some event,queue or register to the input of the l-value of the assignment. The
first assignment,P.RESET = C.RESET = IO.RESET;, for example, binds the
signalRESET coming from IO to the signalRESET going to P and C. The last
assignments specify the signals which will be seen at the end of the simulation.

Figure 58 showsPoseidon simulation results for the case when the software producer
model is slower than the consumer model implemented in hardware. As shown in
Figure 57,inChannel refers to the output of the producer model, whileoutPort
refers to the output of the consumer model. As expected, consumer being the faster
process is always ready for the new data by asserting the signalOutAk.

Figure 59 shows the simulation results for the case when the consumer model is
slower than the producer model. In this case a three-deep queue is rapidly filled
slowing down the enqueuing of data.2

As mentioned, Poseidon provides cycle-by-cycle simulation of concurrent models.

This approach to hardware-software co-simulation in Poseidon has the advantage of sim-

ulating and verifying accurate relationships in time ordering of operations across models.

It is also necessary in the context of our target system architecture that uses the same

bus for interface to memory and ASIC hardware. Because of this commonality, explicit

cycle-by-cycle simulations of all transactions over the common bus are required in order

to be able to simulate the entire system. However, it has the disvantage of long simulation

times since it simulates the mixed system at every cycle-step.

A more efficient model of simulation would be to use a distributed clock system

in which the individual clocks perform local synchronizations. The primary advantage

in such anevent-driven co-simulation the individual simulation time-scales may not be

216 CHAPTER 7. SYSTEM IMPLEMENTATION

Figure 58:Example simulation: software producer, hardware consumer

Figure 59:Example simulation: software consumer, hardware producer

7.4. SUMMARY 217

synchronized. Recent work has shown the limited possibility of distributed clock event-

driven simulations for hardware-software systems [tHM93]. In order to make such a

simulation possible, it will be necessary to separate and hide the processor-level events

from events related to hardware-software interactions. This is important since there may

be numerous processor-level events that have very little or no impact on the interaction

of the processor with the dedicated hardware.

We conclude by noting that the choice of the target architecture also determines the

type of simulator needed for co-simulation A target architecture such as used in this work,

exposes the hardware components to events on the common system bus.

7.4 Summary

In this chapter, we have presented the Vulcan framework that allows explorations into the

system co-synthesis by evaluating hardware and software alternatives and their respective

constraint satisfiability as developed in previous chapter. Due to the choice of a simple

target architecture, many possible system realizations are possible. We have presented

our choice of system implementation and organization of the interface and hardware-

software synchronization mechanisms. Co-simulation of mixed systems remains to be a

hard problem due to disparity in the time scales over which relevant events for hardware

and software defined. Alternative means of achieving co-simulation are discussed.

Chapter 8

Examples and Results

This chapter presents results of system co-synthesis for benchmark examples. We

present following two case studies in hardware-software co-design and compare hardware-

software implementations against purely hardware implementations:

Graphics controller design. The purpose of the graphics controller is to provide a dedi-

cated controller for generating actual pixel coordinates from parameters for different

geometries. The input to the controller is a specification of the geometry and it-

s parameters, such as end points of a line. The current design handles drawing

of lines and circles. However, it is a modular design, where additional drawing

capabilities can be added. The controller is intended for use in a system where

the graphics controller accepts input geometries at the rate of 200 thousand per

second, and outputs at about 2 million sample per second to a drawing buffer that

is connected to a (CRT) device controller. Typically the path from the drawing

buffer to the CRT controller runs at a substantially higher rate of about 40 million

samples per second.

Network controller design. This controller implements the functionality of a carrier-

sense, collision-detection protocol for handling multiple accesses over a shared

communication medium. The controller works under specified timing constraints.

However, a deterministic resolution of the timing constraints is difficult due to

non-deterministic operations involved in handling multiple, variable-length data

218

8.1. GRAPHICS CONTROLLER 219

TRIANGLE SCAN
CONVERSION

LINE DRAWING

CIRCLE DRAWING

WINDOW REGS

2D TRANS MATRIX

PIXEL DRAWING

DMA

SCREEN REFRESH

VRAM

LUT

DAC

TO CRT

E
 X

 E
 C

 U
 T

 I
 O

 N

 U

 N
 I
 T

POLYGON DWG

SCREEN REGS

Figure 60:Graphics controller block diagram

packets.

8.1 Graphics Controller

Figure 60 shows the architecture of the graphics controller. The controller outputs pixel

coordinates for lines and circles given the end coordinates (and radius in case of circle).

The input to the controller is a queue of coordinates that are picked by the controller as

soon as the previous drawing is finished. The rate at which these coordinates are picked

up defines the input data rate. At the output of the controller is a video random access

memory (RAM) buffer that provides for a high bandwidth path to the CRT controller.

8.1.1 Implementation

A mixed implementation of the controller design consists of line and circle drawing

routines in the software component while the ASIC hardware performs initial coordinate

generation and coordinates the transfer of data to the video RAM. The software component

consists of two threads of execution corresponding to the line and circle drawing routines.

220 CHAPTER 8. EXAMPLES AND RESULTS

Control FIFO

PROCESSOR ASIC Hardware

Line

Circle

Scheduler

Coordinate
Generatorcircle data queue

line data queue

FIFO Control

Figure 61:Graphics controller implementation

Both program threads generate coordinates that are used by the dedicated hardware. The

data-driven dynamic scheduling of the program threads is achieved by a 3-deep control

FIFO. The circle and line drawing program threads are identified by id numbers 1 and 2

respectively. The program threads are implemented using the coroutine scheme described

in Section 5.7.1.

Figure 62 shows the main program in case of a hardware control FIFO implementation.

Like the line and circle drawing routines, this program is compiled using existing C-

compiler. The transfer routines are coded manually. Appendix D lists the transfer routines

for hardware and software implementations of the control FIFO buffer.

Table 8 compares the performance of different program implementations using control

FIFO either in hardware or in software component. The hardware implementation of a

control FIFO with fanin 3, when synthesized into hardware and mapped to LSI 10K library

of gates, costs 228 gates. An equivalent software implementation adds 388 bytes to the

overall program size of the software component. Note that the cost of hardware control

FIFO increases as the number of data queues increases. On the other hand, software

implementation of control FIFO using interrupt routines (as described in Section 5.6.1)

to perform the control FIFO enqueue operations offers lower implementation cost for a

50% increase in the thread latencies.

In case of a software implementation of control FIFO, the enqueue and dequeue

8.1. GRAPHICS CONTROLLER 221

#include "transfer_to.h"

int lastPC[MAXCOROUTINES] = {scheduler, circle, line,main};
int current=MAIN;

int *controlFIFO_out = (int *) 0xaa0000;
int *controlFIFO = (int *) 0xab0000;
int *controlFIFO_outak = (int *) 0xac0000;

#include "line.c"
#include "circle.c"

void main(){
 resume (SCHEDULER);
};

int nextCoroutine;

void scheduler() {
 resume (LINE);
 resume (CIRCLE);
 while (!RESET) {
 do {
 nextCoroutine = *controlFIFO;
 } while ((nextCoroutine & 0x4) != 0x4);
 resume (nextCoroutine & 0x3);
 }
}

Figure 62:Graphics controller software component using hardware control FIFO

operations are written in C programming language, which are then compiled for DLX

assembly. Figure 63 shows the main program in case of a software control FIFO. The

overhead due to enqueue and dequeue operations is reduced further by manually optimiz-

ing the assembly code as indicated by the entry ‘Opt. Software CFIFO’. This one time

optimization of enqueue and dequeue routines, which does not affect the C-code descrip-

tion of the program threads, leads to a reduction in the program size and program thread

overhead to 29.4% thereby improving the rate at which the data is output. Note that data

input and output rates have been expressed in terms of number of cycles it takes to input

or output a coordinate. Due to a purely data-dependent behavior of program threads, the

actual data input and output rates would vary with respect to value of the input data. In

this example simulation, the input rate has been expressed for a simultaneous drawing of

a line and 5 pixel radius with width of 1 pixel each and the results are accurate to one

pixel. An input rate of 81 cycles/coordinate corresponds to approximately 0.25 million

samples/sec for a processor running at 20 MHz. Similarly, a peak circle output rate of

30 cycles/coordinate corresponds to a rate of 0.67 million samples/sec.

222 CHAPTER 8. EXAMPLES AND RESULTS

#include "transfer_to.h"

int *int1_ak = (int *) 0xb00000;
int *int2_ak = (int *) 0xc00000;

int controlFIFO[16]; /* Definition of queues */
int queuein=0, queueout=0, empty=1, full=0;

enqueue(id)
 int id;
{
 queuein = (queuein + 1) & 0xf;
 controlFIFO[queuein] = id;

 empty = 0;
 full = (queuein == queueout);
}

dequeue()
{
 queout = (queout + 1) & 0xf;

 full = 0;
 empty = (queuein == queueout);
 return controlFIFO[queueout];
}

int lastPC[MAXCOROUTINES] = {scheduler, circle, line,main};
int current=MAIN;

#include "line.c"
#include "circle.c"

void main(){
 resume (SCHEDULER);
};

int nextCoroutine;

void scheduler() {
 resume (LINE);
 resume (CIRCLE);
 while (1) {
 while (empty);
 transfer_to (dequeue());
 }
}

Figure 63:Graphics controller software component using software control FIFO

8.1. GRAPHICS CONTROLLER 223

Scheme Program Synchronization Input Output data rate�1

size overhead data rate�1 (cycles/coordinate)
delay (cycles per line circle

(bytes) (% cycles) coordinate) ave. peak ave. peak

Hardware CFIFO 5972 0 81 535.2 330 76.4 30
Software CFIFO 6588 50 95 749.5 502 106.8 31
Opt. Software CFIFO 6360 29.4 95 651 407 94 31

Table 8: A comparison of control FIFO implementation schemes

Figure 64:Graphics controller simulation

224 CHAPTER 8. EXAMPLES AND RESULTS

Implementation Size Performance

Complete hardware implementation10,642 gates 14.70
Mixed implementation 228 gates, 5972 bytes 0.25

Table 9: Graphics controller implementations.

Figure 64 shows a simulation of the mixed implementation.x out andy out are

the coordinates generated by the line thread routine.xcircle andycircle are the

coordinates generated by the circle thread routine. Note that these latter coordinates are

generated in burst mode, since the circle thread routine explores symmetries to generate

the coordinates. The values at the top of thecontrolFIFO are also shown in the figure.

CF ready signals that thecontrolFIFO is never empty after initialization. We show

also the synchronization between the data queues, the lines and circle threads and the

scheduler.controlFIFO rd shows when the scheduler polls thecontrolFIFO to

obtain the next thread id.controlFIFO wr shows the transfer of control-flow from

the line and circle threads. Finally,ol rq (oc rq) shows when the data fifo for the line

(circle) enqueues the corresponding thread ids to signal that new coordinates are already

available.

Table 9 presents a comparison of hardware and mixed implementation of the con-

troller. Performance here is related to the input rate expressed in million samples/sec.

Performance of a pure software implementation of the controller depends strongly upon

the choice of the runtime system. A conventional subroutine based scheduler would

add substantial overheads due to storage management operations. On the other hand, a

software control FIFO implementation can be treated as a form of pure software imple-

mentation (using interrupts) which gives an input rate of 0.21 million samples/sec for a

software size of 6360 bytes.

8.2. NETWORK CONTROLLER 225

8.2 Network Controller

The network controller manages the processes of transmitting and receiving data frames

over a network under CSMA/CD protocol, commonly used in Ethernet networks. CS-

MA/CD refers to Carrier Sense Multiple Access with Collision Detection protocol used

to facilitate communication among many stations over a shared medium (or channel). It

is defined by IEEE 802.3 standard. Briefly, CS means that any station wishing to transmit

‘listens’ first and defers its transmission until the channel is clear. MA implies simulta-

neous accesses by multiple stations is allowed without the use of any central arbitration.

CD refers to collision detection protocol used to detect simultaneous transmission by two

or more stations.

The purpose of this controller is to off-load the host CPU from managing commu-

nication activities. The controller contains two independent 16 byte wide receive and

transmit FIFO buffers. The controller provides a small repertoire of eight instructions

that let the host CPU program the machine for specific operations (transmit some data

from memory, for example). The controller provides following functions:

� Data Framing and De-Framing

� Network/Link Operation

� Address sensing

� Error Detection

� Data Encoding

� Memory Access

8.2.1 Host CPU-controller interface

Both the CPU and the controller share a bus which can be controlled either by CPU or

by the controller. The exclusivity of bus-master is ensured by handshake signals used

between the two. The shared bus consists of all Address and Data lines.

In additions to CPU and controller, the bus is also connected to system memory. The

controller contains a PC which contains the address from where its next instruction fetch

occurs.

8.2.2 Controller operation

A typical controller operation consists of the following steps:

226 CHAPTER 8. EXAMPLES AND RESULTS

1. host cpu invokes the controller by write and a memory mapped address,

2. the controller responds by making a request for bus control,

3. once acknowledged the controller initiates memory read operation to receive com-

mand operations,

4. once initialized the controller relinquishes control of the bus to host cpu.

In the event of acollision, the controller manages the ‘jam’ period, random wait

and retry process by re-initializing the DMA pointers without CPU intervention. In case

of any errors in the received data, the controller re-initializes the DMA pointers and

reclaims any data buffers containing the bad frame. All the transmitted and received data

is manchester encoded/decoded.

Host
CPU

Memory

System
Bus

Local Memory

Micro-
Processor

Local Bus

DMA-RCVD

RCVD-FRAME RCVD-BUFFER RCVD-BIT

DMA-XMIT XMIT-FRAME XMIT-BIT

ENQUEUE EXEC-UNIT

RXE

RXD

TXD

TXE

CRS

CDT

Receive Unit

Transmit Unit

Execute Unit

Network Coprocessor

Figure 65:Network controller block diagram

8.2. NETWORK CONTROLLER 227

Command Description
start address to store frame in global memory
stop no parameter is needed
ctaddr controller address on network domain
sifr interframe spacing in bytes
jam time in bytes jam is inserted on line

jam inserted in the network line
preamble number of preamble bytes

preamble byte sent
frdelim end of frame byte

start of frame byte

Table 10:Network controller instruction set

8.2.3 Controller architecture

The controller architecture is modeled after the target system architecture shown in Sec-

tion 1.7.1. A modification is addition of a local memory and local bus in order to reduce

the system bus bandwidth. The controller can be thought of logically consisting of fol-

lowing functional units: execute, transmit and the receive unit. The network controller

block diagram is shown in Figure 65.

The Execute unit provides for fetching and decoding of controller instructions. It

provides a repertoire of eight instructions listed in Table 10. TheReceive unit receives

frames and stores them into memory. The host cpu sets aside an adequate amount of buffer

space and then enables the controller. Once enabled, frames arrived asynchronously. The

controller must always be ready to receive the data and store them into a free memory

area. The controller checks each received frame for an address match. If a match occurs,

it stores the destination and source address and length field in the next available free

space. Once an entire frame is received without errors, the controller does the following:

� updates the actual count of the frames received

� fetches address of the next free receive buffer

� interrupts the cpu

228 CHAPTER 8. EXAMPLES AND RESULTS

n bytes 1 2 2 1 m bytes 2 1

Preamble Destination

SourceStart of frame

Data length

Data

CRC

End of frame

Figure 66:Format of an ethernet frame

Given a pointer to the memory, theTransmit unit generates the preamble start frame

delimiter, fetches the destination address and length field from the transmit command,

inserts its unique address as the source address, fetches data field from buffers pointed

by the transmit command, computes and appends CRC at the end of the frame.

Figure 66 shows the format of the transmit frame. After sending a frame, the trans-

mission unit waits some time until it starts the transmission of another frame. This

interframe spacing is set by the command SIFR.

The important rate and timing constraints on the controller design are: the maximum

input/output bit rate is 10 Mb/sec; maximum propagation delay is 46.4�s; maximum

jam time is 4.8�s and the minimum inter-frame spacing is 67.2�s.

8.2.4 Network controller implementation results

The network controller is modularly described as a set of 13 concurrently executing

processes which interact with each other by means of 24 send and 40 receive operations.

The totalHardwareC description consists of 1036 lines of code.

A mixed implementation following the approach outlined in Section 6.5 was attempt-

ed by describing the software component as a single program using case descriptions.

Table 11 shows the results of synthesis of application-specific hardware component of

the system implementations that was synthesized in the Olympus Synthesis System and

mapped using LSI logic 10K library of gates. Table 12 shows synthesis results using

ACTEL library of gates. The software component is implemented in a single program

containing case switches corresponding to 17 synchronization points as described in Sec-

tion 5.7.2. With reference to Figure 65, the software component consists of the execution

8.2. NETWORK CONTROLLER 229

Host
CPU

Memory

Micro-
Processor

Local Memory

DMA-RCVD

RCVD-FRAME

DMA-XMIT

SYNCHRONIZATION BUFFERS

RCVD-BUFFER RCVD-BIT

XMIT-FRAME XMIT-BIT

CRS
CDT

RXE

RDX

TXD

TXE

Figure 67:Network controller implementation

unit and portions of theDMA rcvd andDMA xmit blocks. The reception and transmis-

sion of data on the network line is handled by the application-specific hardware running

at 20 MHz. The total interface buffer cost is 314 bits of memory elements. Table 13 lists

statistics on the code generated by existing software compilers for the network controller

software component implementation.

By contrast, a purely hardware implementation of the network controller requires

10882 gates (using LSI 10K library). Thus by a mixed hardware-software implementa-

tion, we are able to achieve a 20 MHz controller operation while decreasing the overall

hardware cost to only one application-specific chip (or 23% in terms of gate count). The

reprogrammability of software components makes it possible to increase the controller

functionality, for example addition of self-test and diagnostic features, with little or no

230 CHAPTER 8. EXAMPLES AND RESULTS

Unit Process Area Delay

Transmit Unit xmit bit 271 14.31 ns
xmit frame 3183 37.15 ns
DMA xmit 2560 45.06 ns

Receive Unit DMA rcvd 400 27.51 ns
rcvd bit 282 12.30 ns
rcvd buffer 127 22.09 ns
rcvd frame 1571 38.12 ns

Controller 8394 45.06 ns

Table 11:Network controller synthesis results using LSI library gates

Unit Process Area Delay

Transmit Unit xmit bit 268 128.10 ns
xmit frame 2548 246.0 ns
DMA xmit 2028 472.85 ns

Receive Unit DMA rcvd 563 236.65 ns
rcvd bit 211 115.50 ns
rcvd buffer 121 199.28 ns
rcvd frame 1226 298.40 ns

Controller 7022 472.85 ns

Table 12:Network controller synthesis results using Actel gates

Target Processor Pgm & Data Size Max Delay

R3000, 10 MHz 8572 bytes 56 cycles, 5.6�s
8086, 10 MHz 1295 bytes 115 cycles, 11.5�s

Table 13:Network controller software component

8.2. NETWORK CONTROLLER 231

increase in dedicated hardware required. Finally, we note that a purely software imple-

mentation of the controller would allow for a maximum of 2 cycles for sampling the

input bit stream, and therefore, is quite unlikely to meet the performance constraints.

Figure 68 shows a results of simulation of the final network controller design. This

simulation portion shows when the controller is being programmed for transmission.

Instructions are supplied to the controller by external programmer (the host CPU) which

are enqueue in a 1-deep queue,ctqueue. The last pulse on signalctqueue ak

indicates transmission enable instruction after which data is transmitted serially through

signal TXD.

Figure 68:Network controller simulation

Chapter 9

Summary, Conclusions and Future

Work

We have addressed the broad problem of hardware-software co-synthesis for digital sys-

tems. This formulation of the co-synthesis problem is based on the extension of the

high-level synthesis techniques to system-level by generalizing the concept the resources,

and treating the processor as anotherresource. This treatment of processor in a system

design proves to be fundamentally different mindset than is the case in the conventional

system design, where most of the system design issues revolve around utilizing the max-

imum performance out of the processor. However, due to the differences in the execution

rate and timing of operations, the problems of software generation and its interface to the

hardware are much more complicated than the problems of operation scheduling and re-

source allocation in high-level synthesis. Our extension of high-level synthesis approach

toward system cosynthesis is nowhere more apparent than in the input language used.

We start with a description of system functionality in a hardware description language

(HDL). This choice of HDL is made for two primarily practical reasons. One, it provides

us a means of comparison to an existing path from purely hardware implementations

starting from the same input. Two, it constrains the scope of input description well e-

nough so that a simple graph based model can be used to abstract this specification on

which systematic analysis and transformations needed for cosynthesis can be developed.

But this choice of a hardware description language is far from being ideal. The chief

232

233

limitation being use of extensive control flow structure necessary to describe the func-

tionality in an algorithmic manner. These control flow structures ultimately translate into

an hierarchical organization of graph models, that is not easy to alter. In particular, these

structures strongly influence the system partitioning and program thread generation and

alternative specifications of the same system functionality lead to different cosynthesis

results.

From the input description using a HDL, we develop a graph based model that is

applicable to synthesis of both hardware and software due to its explicit treatment of

operation-level concurrency and synchronization. The graph model is devised to sup-

port implementations of graph models that execute at very different speeds by means

of message-passing based communications between models. The absence of any shared

memory between different process models obviates the need for lock-step executions of

separate graph models. At the same time, the operations within a graph model commu-

nicate by means of shared memory, providing a way for efficient individual hardware

or software implementations. Through this dichotomy of communication implementa-

tion, a hardware-software system is described at the level of individual graphs as being

implemented in either hardware or software.

Based on this graph based model, the problem of cosynthesis is broken into subprob-

lems of performance modeling and estimation for hardware and software, the identifica-

tion of hardware and software and finally the synthesis and integration of hardware and

software components. Identification of hardware and software is based on an analysis of

the timing constraints. The timing constraints are of two types: minimum and maximum

delay constraints between time of execution of pairs of operations and upper and lower

bounds on the rate of execution of an operation. In conventional terms, the min/max

delay constraints are ‘latency-type’ constraints, whereas the execution rate constraints

are ‘throughput-type’ constraints, though the definitions of latency and throughput must

be clearly understood in the context of multiple rate systems modeled by the flow graphs.

Constraint analysis proceeds by attempting to determine if the constraints are satisfied

by an an implementation by performing graph analysis on the constraint graph model.

However, such an analysis is not always conclusive. The cases when the deterministic

constraint analysis fails are identified by presence of cycles containing data-dependent

234 CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE WORK

loop or synchronization operations (collectively referred to asNDoperations). A notion

of marginal satisfiability of constraints is developed that determines probabilistic satisfac-

tion of timing constraints under a specified bound on the probability of violations. This

constraints analysis is made a part of the partitioning procedure in determining which

flow graphs should be implemented either in hardware or in software.

Synthesis of hardware is carried out by use of high-level synthesis techniques. Though

central to the task of hardware-software cosynthesis, synthesis of hardware forms a part of

the previous research on Olympus synthesis systems, and is not considered in this disser-

tation. Synthesis of software poses challenging issues due to the need for serialization of

all operations and development of a low overhead runtime system. We use a FIFO-based

runtime scheduler to implement the software as a set of multiple concurrent coroutines.

The overhead due to such a scheduler is characterized. Finally, the hardware-software

system is put together by design of a low overhead hardware-software interface.

It is clear that research in hardware-software co-synthesis spans several disciplines

from CAD-theoretic aspects of algorithms for constraint analysis and partitioning to

system implementation issues of concurrency and run-time systems to support multi-

programming and synchronization. This dissertation makes one of the first attempts at

developing the various sub-problems that are solved in an effort to develop an effective

and practical co-synthesis approach. In the process, several simplifications are made, all

in an attempt to keep the focus on essentials of the co-synthesis problem while delegat-

ing peripheral (though sometimes no less important) problems to a workable engineering

solution. As a result, we are able to put together a complete co-synthesis solution for

system designs that are modeled using hardware description languages. We have demon-

strated the feasibility of achieving co-synthesis, thus validating the basic hypothesis of

the thesis.

9.1 Future Work

Due to the broad scope of transformations needed to realize interacting hardware and

software components that can execute at widely different rates, which synchronize only

when necessary, what is needed is a representation of the system model that is structurally

9.1. FUTURE WORK 235

as simple the flow graph model used here, and yet it supports ease in implementation of

a variety of transformations primarily related to altering the flow of control and data. For

control purposes an algebraic approach appears to be promising. For example, consider

the following two pieces of code, the outer most while statement explicitly models the

infinite repetition:

while(1) f
if (condition)

a: A;
b: B;

g

while(1) f
while (condition)

a: A;
b: B;

g

While it is hard to reason about their equivalence when abstracted as graph models,

it is easy to capture them algebraically, for example, as path expressions where simplifi-

cations based on axiomatic rules can be made. For the example, the control flow can be

shown to be equivalent by proving the following equivalence:(a +b) ! =(a �b)! where

! represents infinite repetition. However, this abstraction is not sufficient either since

it completely ignores the data flow. In this context, models that provide encapsulation

of both data and control flow, albeit as different levels of abstraction would find more

appeal in system cosynthesis.

Hardware-software interface remains to be a key area where the need for appropriate

abstractions is most keenly felt. This is perhaps because in our formulation of the

cosynthesis problem the abstraction of interface takes a step backwards due to the choice

of hardware description language to specify system functionality. Most HDLs either

ignore the interface abstraction completely or mix the issues in interface functionality and

its format, in a manner which akin to the similarity indata types anddata formats in low

level program languages. An unfortunate side-effect of inadequate interface abstraction

is the strong dependence of the hardware functionality upon the type of interface chosen

for the system design, and in most HDLs, the functionality must be completely rewritten

once the system interface or the protocol(s) used to implement interface are altered. To

be sure, the problem of interface abstraction at system-level is more complicated than

the development of data types in programming languages, due to the fact that interface

formats are intimately tied to the timing behavior of system. Thus a need exists to

devise abstraction mechanisms that not only consider spatial format of data in terms of

236 CHAPTER 9. SUMMARY, CONCLUSIONS AND FUTURE WORK

organization and encoding of bits and words, but also temporal relationships, for example,

multiplexing and synchronization relationships between data objects.

Finally, several extensions of the target architecture are possible and must be explored

in order to broaden the applicability of cosynthesis to embedded systems. We have so

far considered only single processor systems. However, there is no reason that multiple

processor can not be used in such systems to improve performance. However, a multi-

level memory model must be supported in order to efficiently implement a multiple

processor target architecture.

Bibliography

[AB91] Tod Amon and Gaetano Borriello. Sizing Synchronization Queues: A Case

Study in Higher Level Synthesis. InProceedings of the 28t hDesign Au-

tomation Conference, pages690–693, June 1991.

[AFR80] K. Apt, N. Francez, and WW. De Roever. A Proof System for Communi-

cating Sequential Processes. ACM Trans. on Programming Languages and

Systems, 27(2):359–385, July 1980.

[AS83] G. R. Andrews and F. Schneider. Concepts and Notations for Concurrent

Programming. ACM Computing Surveys, 15(1):3–44, March 1983.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,

Techniques and Tools. Addison Wesley, 1986.

[Bad93] M. L. Bader. Market survey. Bader Associates, Mountain View, California,

1993.

[BCM+88] R. K. Brayton, R. Camposano, G. De Micheli, R. Otten, and J. van Eijnd-

hoven. The Yorktown Silicon Compiler System. In Daniel Gajski, editor,

Silicon Compilation, pages 204–310. Addison Wesley, 1988.

[BEW88] David Bustard, John Elder, and Jim Welsh. Concurrent Program Structures,

page 3. Prentice Hall, 1988.

[BHLMar] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A Frame-

work for Simulating and Prototyping Heterogeneous Systems. International

Journal of Computer Simulations, to appear.

237

238 BIBLIOGRAPHY

[BK90] J. A. Bergstra and J. W. Klop. Applications of Process Algebra. In J. C. M.

Baeten, editor,An introduction to process algebra, pages1–21. Cambridge

University Press, 1990.

[BL90a] F. C. Belz and D. C. Luckham. A new approach to prototyping ada-based

hardware/software systems. In Proceedings of TRI-Ada, pages 141–155,

December 1990.

[BL90b] F. C. Belz and D. C. Luckham. A new language-based approach to the rapid

construction of hardware/software system prototypes. In Proc. Third Inter-

national Software for Strategic Systems Conference, pages 8–9, February

1990.

[BRV89] P. Bertin, D. Roncin, and J. Vuillemin. Introduction to Programmable Active

Memories. In J. McCanny, J. McWhirter, and E. Swartzlander Jr., editors,

Systolic Array Processors, pages 300–309. Prentice Hall, 1989.

[BRX93] E. Barros, W. Rosenstiel, and X. Xiong. Hardware/Software Partitioning

with UNITY. In Notes of Workshop on Hardware/Software Co-design, Oc-

tober 1993.

[BV92] K. Buchenrieder and C. Veith. Codes: A practical concurrent design en-

vironment. In Notes from Internation Workshop on Hardware-Software

Codeign, 1992.

[BW90a] J. C. M. Baeten and W. P. Weijland. Process Algebra. Cambridge University

Press, 1990.

[BW90b] A. Burns and A. Wellings. Real-Time Systems and Their Programming

Languages. Addison-Wesley, 1990.

[Cam90] Raul Camposano. Path-based scheduling for synthesis. IEEE Transactions

on CAD/ICAS, 10(1):85–93, January 1990.

[Cer72] V. Cerf. Multiprocessors, Semaphores and a Graph Model of Computation.

PhD thesis, UCLA, April 1972.

BIBLIOGRAPHY 239

[CGH+93a] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Luciano

Lavagno, and Alberto Sangiovanni Vincentelli. A formal specification mod-

el for hardware/software codesign. Memorandum UCB/ERL M93/48, UC

Berkeley, June 1993.

[CGH+93b] Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila Jurecska, Lu-

ciano Lavagno, and Alberto Sangiovanni Vincentelli. Synthesis of mixed

software-hardware implementations from CFSM specifications. Memoran-

dum UCB/ERL M93/49, UC Berkeley, June 1993.

[Cha82] G. J. Chaitin. Register Allocation and Spilling via Graph Coloring.SIG-

PLAN Notices, 17(6):201–207, 1982.

[CK86] R. Camposano and A. Kunzmann. Considering Timing Constraints in Syn-

thesis from a Behavioral Description. In Proceedings of the International

Conference on Computer Design, pages 6–9, 1986.

[CKR84] R. Camposano, A. Kunzmann, and W. Rosenstiel. Automatic Data Path

Synthesis from DSL Specifications. In Proceedings of the International

Conference on Computer Design, pages 630–635, 1984.

[CM88] K. Chandy and J. Misra. A Foundation of Parallel Programs Design.

Prentice-Hall, 1988.

[COB92] Pai Chou, Ross Ortega, and Gaetano Borriello. Synthesis of the Hard-

ware/Software Interface in Microcontroller-Based Systems. In Proceedings

of the IEEE International Conference on Computer-Aided Design, pages

488–495, Santa Clara, November 1992.

[Con63] M. E. Conway. Design of a Separate Transition-Diagram Compiler. Comm.

of the ACM, 6:396–408, 1963.

[CPTR89] C. M. Chu, M. Potkonjak, M. Thaler, and J. Rabaey. HYPER: an inter-

active synthesis environment for high performance real time applications.

In Proceedings of the International Conference on Computer Design, pages

432–435, Cambridge, MA, October 1989.

240 BIBLIOGRAPHY

[CR89] R. Camposano and W. Rosenstiel. Synthesizing Circuits from Behavioral

Descriptions. IEEE Transactions on CAD/ICAS, 8(2):171–180, February

1989.

[CS61] D. R. Cox and Walter L. Smith. Queues. John Wiley and Sons, 1961.

[Das85] B. Dasarathy. Timing Constraints of Real-Time Systems: Constructs for

Expressing Them, Method of Validating Them. IEEE Transactions on Soft-

ware Engineering, SE-11(1):80–86, January 1985.

[Dij75] E. W. Dijkstra. Guarded Commands, Nondeterminacy, and Formal Deriva-

tion of Programs. CACM, 18(8):453–457, August 1975.

[Fis91] P. A. Fishwick. Heterogeneous Decomposition and Coupling for Combined

Modeling. In 1991 Winter Simulation Conference, pages 1199–1208, 1991.

[FKD92] D. Filo, D. C. Ku, and G. De Micheli. Optimizing the control-unit through

the resynchronization of operations. INTEGRATION, the VLSI Journal,

13:231–258, 1992.

[FM82] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for improving

network partitions. In Proceedings of the Design Automation Conference,

pages 175–181, 1982.

[Fos72] J. B. Fosseen. Representation of Algorithms by maximally Parallel Schema-

ta. Thesis, EE, MIT, 1972.

[FSC73] F. N. Fritsch, R. E. Shafer, and W. P. Crowley. Solution of the transcendental

equation wew =�. Communications of the ACM, 16:123–124, 1973.

[GCM92a] Rajesh K. Gupta, Claudionor Coelho, and G. De Micheli. Program Im-

plementation Schemes for Hardware-Software Systems. In International

Workshop on Hardware-Software Co-design, October 1992.

BIBLIOGRAPHY 241

[GCM92b] Rajesh K. Gupta, Claudionor Coelho, and G. De Micheli. Synthesis and

Simulation of Digital Systems Containing Interacting Hardware and Soft-

ware Components. InProceedings of the 29t hDesign Automation Confer-

ence, pages225–230, June 1992.

[GCM94] Rajesh K. Gupta, Claudionor Coelho, and G. De Micheli. Program Im-

plementation Schemes for Hardware-Software Systems. IEEE Computer,

January 1994.

[GH74] Donald Gross and Carl M. Harris. Fundamentals of Queueing Theory. John

Wiley and Sons, 1974.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman and Company,

1979.

[GM90] R. Gupta and G. De Micheli. Partitioning of Functional Models of Syn-

chronous Digital Systems. In Proceedings of the IEEE International Con-

ference on Computer-Aided Design, pages 216–219, Santa Clara, November

1990.

[GM91] Rajesh K. Gupta and G. De Micheli. Vulcan - A System for High-Level

Partitioning of Synchronous Digital Systems. CSL Technical Report CSL-

TR-471, Stanford University, April 1991.

[GM92] Rajesh K. Gupta and G. De Micheli. System-level Synthesis Using Re-

programmable Components. In Proceedings of the European Design Au-

tomation Conference, pages 2–7, March 1992.

[GM93] Rajesh K. Gupta and Giovanni De Micheli. Hardware-Software Cosynthesis

for Digital Systems. IEEE Design & Test of Computers, pages 29–41,

September 1993.

[Hal93] Nicolas Halbwachs. Synchronous programming of reactive systems. Kluwer

Academic Publishers, 1993.

242 BIBLIOGRAPHY

[Har92] David Harel. Biting the silver bullet.IEEE Computer, pages8–20, January

1992.

[HE92] J. Henkel and R. Ernst. Ein softwareorientierter Ansatz zum Hardware-

Software Co-Entwurf. In Proceedings Rechnergestuetzter Entwurf und Ar-

chitektur mikroelektronischer Systeme., pages 267–268, Darmstadt, Ger-

many, 1992.

[Hec93] Andre Heck. Introduction to Maple. Springer-Verlag, 1993.

[HHR+91] R. W. Hartenstein, A. G. Hirschbiel, M. Riedmuller, K. Schmidt, and M. We-

ber. A novel ASIC design approach based on a new machine paradigm.

IEEE Journal of Solid-State Circuits, 26(7):975–989, July 1991.

[HHW89] Reiner W. Hartenstein, Alexander G. Hirschbiel, and Michael Weber. Map-

ping Systolic Arrays onto the Map-oriented Machine. In J. McCanny, J. M-

cWhirter, and E. Swartzlander Jr., editors, Systolic Array Processors, pages

320–336. Prentice Hall, 1989.

[HLN+90] D. Harel, H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman,

A. Shtull-Trauring, and M. Trakhtenbrot. Statemate: a working environ-

ment for the development of complex reactive systems. IEEE Transactions

on Software Engineering, 16(4):403–414, April 1990.

[HP90] John L. Hennessy and David A. Patterson. Computer Architecture: A Quan-

titative Approach. Morgan-Kaufman, 1990.

[HS71] A. Hashimoto and J. Stevens. Wire routing by optimizing channel assign-

ment within large apertures. In Proceedings of the Design Automation Con-

ference, pages 155–163, 1971.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, 1979.

[IEE87] IEEE. IEEE Standard VHDL Language Reference Manual, Std 1076. IEEE

Press, New York, 1987.

BIBLIOGRAPHY 243

[JJ93] K. P. Juliussen and E. Juliussen.The 6th Annual Computer Industry Al-

manac 1993. The Reference Press, Austin, TX, 1993.

[JMP89] R. Jain, M. J. Mlinar, and A. Parker. Area-time model for synthesis of non-

pipelined designs. InProceedings of the IEEE International Conference on

Computer-Aided Design, pages48–51, November 1989.

[Joh83] Steven D. Johnson. Synthesis of Digital Designs from Recursion Equations.

MIT Press, Cambridge, Mass., 1983.

[Kin67] P. J. H. King. Decision Tables. The Computer Journal, 10(2), August 1967.

[KL70] Brian W. Kernighan and S. Lin. An efficient heuristic procedure for parti-

tioning graphs. Bell System Technical Journal, 49:291–307, February 1970.

[KL93] Asawaree Kalavade and Edward A. Lee. A Hardware-Software Codesign

Methodology for DSP Applications. IEEE Design and Test Magazine, pages

16–28, September 1993.

[KLM93] Tilman Kolks, Bill Lin, and Hugo De Man. Sizing and Verification of

Communication Buffers for Communicating Processes. In Proceedings of

the IEEE International Conference on Computer-Aided Design, pages 660–

664, November 1993.

[KM90a] D. Ku and G. De Micheli. HardwareC - A Language for Hardware Design

(version 2.0). CSL Technical Report CSL-TR-90-419, Stanford University,

April 1990.

[KM90b] D. Ku and G. De Micheli. High-level Synthesis and Optimization Strategies

in Hercules and Hebe. In Proceedings of the European ASIC Conference,

pages 111–120, Paris, France, May 1990.

[KM90c] D. Ku and G. De Micheli. Relative Scheduling under Timing Constraints.

In Proceedings of the 27t hDesign Automation Conference, pages 59–64,

Orlando, June 1990.

244 BIBLIOGRAPHY

[KM92a] David Ku and Giovanni De Micheli.High-level Synthesis of ASICs under

Timing and and Synchronization Constraints. Kluwer Academic Publishers,

1992.

[KM92b] David Ku and Giovanni De Micheli. Relative Scheduling Under Timing

Constraints: Algorithms for High-Level Synthesis of Digital Circuits.IEEE

Transactions on CAD/ICAS, 11(6):696–718, June 1992.

[KR93] F. J. Kurdahi and C. Ramachandran. Evaluating layout area tradeoffs for

high level applications. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 1(1):46–55, March 1993.

[Ku91] David C. Ku. Constrained Synthesis and Optimization of Digital Integrated

Circuits from Behavioral Specifications. PhD thesis, Stanford University,

June 1991.

[LHG+89] Edward A. Lee, W.-H. Ho, E. Goei, J. Bier, and S. Bhattacharyya. Gabriel:

A design environment for dsp. In IEEE Transactions on Acoustics, Speech

and Signal Processing, volume 37, pages 141–146, November 1989.

[LL73] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming

in a hard real-time environment. Journal of the ACM, 20(1):46–61, January

1973.

[Lue79] David G. Luenberger. Introduction to dynamic systems: theory, models and

applications. Wiley, 1979.

[LVBA93] D. C. Luckham, J. Vera, D. Bryan, and L. Augustin. Partial Ordering of

Event Sets and Their Application to Prototyping Concurrent Timed Systems.

Journal of Systems and Software, July 1993.

[LW82] J. Leung and J. Whitehead. On the complexity of fixed-priority scheduling

of periodic, real-time tasks. Performance Evaluation, 2, 1982.

BIBLIOGRAPHY 245

[LW83] Y. Liao and C. Wong. An algorithm to compact a VLSI symbolic layout with

mixed constraints.Proceedings of the IEEE Transactions on CAD/ICAS,

2(2):62–69, April 1983.

[McF78] M. C. McFarland. The Value Trace: A Data Base for Automated Digital

Design. Technical Report DRC-01-4-80, Design Research Center, Carnegie-

Mellon University, November 1978.

[Mea89] A. Mok and et. al. Evaluating Tight Execution Time Bounds of Programs

by Annotations. In Proceedings of the Sixth IEEE Workshop Real-Time

Operating Systems and Software, pages 74–80, May 1989.

[Mic94] Giovannni De Micheli. Synthesis and Optimization of Digital Circuits.

McGraw-Hill, 1994.

[Mil90] Robin Milner. Handbook of Theoretical Computer Science, chapter Opera-

tional and Algebraic Semantics of Concurrent Processes. Elsevier-Science

Publishers, 1990.

[MKMT90] G. De Micheli, David C. Ku, Frederic Mailhot, and Thomas Truong. The

Olympus Synthesis System for Digital Design. IEEE Design and Test Mag-

azine, pages 37–53, October 1990.

[Mok83] A. Mok. Fundamental Design Problems of Distributed Systems for the

Hard-Real-Time Environment. PhD thesis, M.I.T., 1983.

[Mol82] Michael K. Molloy. Performance Analysis using Stochastic Petri Nets. In

IEEE Transactions on Computers, pages 913–917, September 1982.

[OG76] S. Owicki and D. Gries. Verifying Properties of Parallel Programs. Com-

munications of the ACM, 19(5):279–285, May 1976.

[OH93] Kunle Olukotun and Rachid Helaihel. Automating architectural exploration

with a fast simulator. In Notes of the Workshop on Hardware-Software

Co-design, 1993.

246 BIBLIOGRAPHY

[oS88] United States National Bureau of Standards.Data encryption standard.

National Technical Information Service, 1988.

[PPM86] A. Parker, J. Pizarro, and M. Mlinar. A Program for Data Path Synthesis.

In Proceedings of the 23r dDesign Automation Conference, pages461–466,

June 1986.

[PS90] C. Y. Park and Alan C. Shaw. Experiments with a Program Timing Tool

Based on Source-Level Timing Schema. In Proceedings of the 11t hIEEE

Real-Time Systems Symposium, pages 72–81, December 1990.

[RMV+88] J. Rabaey, H. De Man, J. Vanhoof, G. Goosens, and F. Catthoor. Cathedral

II: A Synthesis System for Multiprocessor DSP Systems. In Daniel Gajski,

editor, Silicon Compilation, pages 311–360. Addison Wesley, 1988.

[Sar89] Vivek Sarkar. Partitioning and scheduling parallel programs for multipro-

cessors. MIT Press, Cambridge, Mass., 1989.

[SB88] M. E. Smid and D. K. Branstad. Data encryption standard: past and future.

Proceedings of the IEEE, 76(5):550–559, May 1988.

[SB91] M. B. Srivastava and R. W. Broderson. Rapid-Prototyping of Hardware and

Software in a Unified Framework. In Proceedings of the IEEE International

Conference on Computer-Aided Design, pages 152–155, Santa Clara, 1991.

[Sch90] H. D. Schwetman. Introduction to process-oriented simulation and csim. In

Proc. Winter Simulation Conference, New Orleans, LA, December 1990.

[Sch92] David Scholefield. The Formal Development of Real-Time Systems. Tech-

nical report, (ch. 4), University of York, York, Heslington, February 1992.

[Sha79] S. D. Shapiro. A stochastic Petri net with applications to modeling occu-

pancy times for concurrent task systems. Networks, 9:375–379, 1979.

[Sha86] Moe Shahdad. An overiview of vhdl language and technology. In Proceed-

ings of the Design Automation Conference, pages 320–326, July 1986.

BIBLIOGRAPHY 247

[Sha89] A. Shaw. Reasoning about Time in Higher Level Language Software.IEEE

Trans. Software Engg., 15(7):875–889, July 1989.

[SJR+91] C. S. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srivastava, E. Lettang, S. K.

Azim, P. N. Hilfinger, J. Rabaey, and R. W. Broderson. An integrated CAD

system for algorithm-specific IC design. IEEE Transactions on CAD/ICAS,

pages 447–463, April 1991.

[SR88] John A. Stankovic and K. Ramamritham. Hard real-time systems. Computer

Society Press, 1988.

[Sri92] M. B. Srivastava. Rapid-Prototyping of Hardware and Software in a Unified

Framework. PhD thesis, UC Berkeley (and Memorandum No. UCB/ERL

M92/67), June 1992.

[SSM+92] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and

A. L. Sangiovanni-Vincentelli. Sequential circuit design using synthesis and

optimization. In Proceedings of the International Conference on Computer

Design, pages 328–333, 1992.

[SSR89] Roberto Saracco, J. R. W. Smith, and Rick Reed. Telecommunications

systems engineering using SDL. North-Holland, 1989.

[Tar81] R. E. Tarjan. A Unified Approach to Path Problems. Journal of the ACM,

28(3):577–593, July 1981.

[tHM93] K. ten Hagen and H. Meyr. Timed and untimed hardware/software co-

simulation: Application and efficient implementation. In Internation work-

shop on hardware-software codesign, 1993.

[TLW+90] D. Thomas, E. Lagnese, R. Walker, J. Nestor, J. Rajan, and R. Blackburn.

Algorithmic and Register-Transfer Level: The System Architect’s Workbench.

Kluwer Academic Publishers, 1990.

[TM91] D. Thomas and P. Moorby. The Verilog Hardware Description Language.

Kluwer, 1991.

248 BIBLIOGRAPHY

[TRS+89] L. Thon, K. Rimey, L. Svensson, Paul Hilfinger, and R. W. Broderson. From

C to Silicon with LagerIV. InIEEE/ACM Physical Design Workshop, May

1989.

[Wal90] S. Walters. Reprogrammable hardware emulation automates system-level

ASIC validation. InWESCON/90 Conference Record, pages650–653, Ana-

heim, California, November 1990.

[Wat84] I. Watson. Architecture and performance (fundamentals of dataflow). In

F. B. Chambers et. al., editor, Distributed Computing, pages 21–32. Aca-

demic Press, 1984.

[WHPZ87] L. T. Wang, N. E. Hoover, E. H. Porter, and J. J. Zasio. Ssim: A software

levelized compiled-code simulator. In Proceedings of the Design Automa-

tion Conference, pages 2–8, 1987.

[WTH+92] Wayne Wolf, A. Takach, C.-Y. Huang, R. Manno, and E. Wu. The Princeton

University Behavioral Synthesis System. In Proceedings of the 29t hDesign

Automation Conference, pages 182–187, June 1992.

Appendix A

A Note on HardwareC

HardwareC was developed by Ku and De Micheli [KM90a] as an input language for

specification for synchronous digital circuits.HardwareC follows much of the syntax

and semantics of the programming language, C with modifications necessary for correct

and unambiguous hardware modeling. Like C, the primitive operation inHardwareC

consists of an assignment operation with a procedural call being the means of abstraction

of sub-specifications. Procedural calls correspond to modular specification of different

components of the hardware. No recursive calls of any form are allowed.

A HardwareC specification consists ofblocks of statements which are identified by

enclosing parentheses. The blocks are structured so that no two blocks are overlapped

partially. That is, given any two blocks, they are either disjoint or one block is contained

by the other block. Like C, no nested procedure declarations are allowed. Therefore, any

variable that is non-local to any procedure is non-local to all procedures. Local variables

are scopedlexically with the inner-most nested rule for structured blocks.

The basic entity for specifying system behavior is aprocess. A process executes

concurrently with other processes in the system specification. A process restarts itself

on completion of the last operation in the process body. Thus, there exists an implied

outer-most loop that contains the body of the process. In other languages, this loop

can be specified by an explicit outer loop statement. Operations within a process body

need not be executed sequentially (as is the case in a process specification in VHDL, for

example). A process body can be specified with varying degrees of parallelism such as

249

250 APPENDIX A. A NOTE ON HARDWAREC

parallel (<>), data-parallel (fg) or sequential ([]).

In addition, the HDL uses specification ofdeclarative model calls as blocks that

describe physical connections and structural relationships between constituent processes.

For hardware modeling purposes, both timing and resources constraints are allowed in

the input specifications. Timing constraints are specified as min/max delay attributes

between labeled statements whereas resource constraints are specified as user-specified

bindings of process and procedure calls to specific hardware model instances.

Timing semantics. It is assumed that operations are performed synchronously using a

global clock with a fixed cycle time. Accordingly, loop and procedure calls are assumed

to be synchronous operations. There is no explicit delay associated with individual as-

signment statements (except in case of explicit register/port load operations as mentioned

later). An assignment operation may take zero or non-zero delay time. This actual delay

depends upon the delay characteristics of the resource(s) used to implement specified

operation(s).

In case of multiple assignments to the same variable there are two possible interpre-

tations:

1. the last assignment or

2. an assignment after some delay

. Resolution of which interpretation is to be used is performed by a reference stack

algorithm [KM92a]. This algorithm performs variable propagation by instantiating values

of the variables in the right-hand side of the assignments. In the case of variables that must

be used before being reassigned a new value, second interpretation is adopted where ‘some

delay’ corresponds to delay of ‘at least’ one cycle time. In addition, this interpretation can

also be enforced on some assignments regardless of whether the assignment is referenced

or not, by use of an explicit ‘load’ prefix that assigns a delay of precisely one cycle time

to the respective assignment operation.

Appendix B

Bilogic Graphs

Bilogic flow graphs were introduced in Chapter 3. These graphs are similar control

graphs [Cer72] which direct the flow of control in the following three ways:

1. Sequencing by means of directed edges between vertices;

2. Concurrent branching and merge is achieved by means of a conjoined fork or

merge;

3. Conditional branching and merge is achieved by means of a disjoined fork and

merge.

In a bilogic graph all vertices can have multiple fanin and fanout edges which are either

conjoined or disjoined. In this thesis we concern ourselves with well-formed bilogic

graphs, that is, graphs where a forks/merge is either conjoined or disjoined but not both.

Bilogic flow graphs can be made well-formed by introduction of additional fork and

merge vertices.

Theorem B.1 Given a bilogic graph, Gb i l o g i c, let Guni l o g i cbe a graph created by treating

all fanin and fanout edges to be only conjoined. Then,

`M(Gb i l o g i c) =` (G uni l o g i c) (B: 81)

Proof: For a given bilogic graph,Gb i l o g i c, is length vector is defined as an

expression over scalars representing fixed delays associated with operations

251

252 APPENDIX B. BILOGIC GRAPHS

in the graph. This expression is constructed using the composition rules

described earlier. We show by induction, that any disjoined composition in

the expression can be replaced by a conjoined expression without altering

the maximum value of the expression.

For the base case, when two scalars are disjoined, the maximum refers to the

largest of the two scalars elements, which is also the largest element in case

of conjoined composition of two scalars. Next, at any step, let us suppose

that the maximum over subexpressions`1 and `2 is same for both unilogic

and bilogic graphs, then the maximum over their composition is expressed

as:

max(`1 �` 2) = max(` 1[i] ; `2[j]); i =1 . . .j `1j ; j =1 . . .j 2̀j

) = max(max(` 1[i] ; `2[j]))

) = max(` 1
` 2)

Thus, the maximum of path length over the composition is identical for both

disjoined and conjoined compositions. Therefore, by induction the maximum

over any expression using conjoined and disjoined operators is same when

the disjoined operators are replaced by conjoined operators, that is,

max`(Gb i l o g i c=max` (Gb i l o g i c)j�!
 =max` (Guni l o g i c)

]

Bilogic graphs are series-parallel graphs. Based on this property, the following out-

lines the procedure for computing the paths lengths.

253

compute-length(v)
f

switch j succ(v)j
case 0: return�(v); break
case 1: return�(v) �` (suc c (v)); break;
case�2: switch fork-type

case conjoined; return�(v) �[
N

w2s uc c (v)̀(w)] ; break;
case disjoined; return�(v) �[

L
w2suc c (v)(̀w)] ; break;

g

�(` 1; 2̀)
f

k = 1
for i =1 . . .j 1̀j do

for j =1 . . .j `2j do
dk =` 1[i] +̀ 2[j] ;
k =k +1;

return(d)
g

�(` 1; 2̀)
f for i =1 . . .j 1̀j do

di =` [i] ;
for j =1 . . .j `2j do

di +j =̀ [j] ;
return(d)

g

(` 1; 2̀)
k = 1
for i =1 . . .j 1̀j do

for j =1 . . .j `2j do
dk =max(` 1[i] ; `2[j]);
k =k +1;

return(d)
g

Appendix C

Processor Characterization in Vulcan

The follows the syntax of the CPU characteristics file with typical values for the DLX
microprocessor indicated by comments. Comments begin with symbol ‘#’.

.cpumodel <processor_name> ;

.cycle_time <num> ns ; # 40 ns

.load <num> cycles ; # 2

.address [<str>]* ; # a0 a1 ...

.data [<str>]* ; # d0 d1 ...

.interrupt [<str>]* ; # int0 int1 ..

.reset <str> ; # RESET

.max_gpr <num> ; # 31

.bus_model ;
.address_size <num> ; # 32
.data_size <num> ; # 32
.type [<muxed> , <de_muxed>] ; # de_muxed

.de_muxed ;
.mem_read <str> ; # rd
.mem_write <str> ; # wr
.io_read <str> ; # iord
.io_write <str> ; # iowrite

.end_de_muxed ;

.muxed ;
.read <str> ;
.write <str> ;
.io <str> ;
.mem <str> ;

.end_de_muxed ;

.bus_hold <str> ;

.bus_ack <str> ;

.end_bus_model ;

.timing_model ;

254

255

timing model

.read_access <num> cycles ; # 1

.write_access <num> cycles ; # 1

.load <num> cycles ; # 2, Note CPI = 1.4 cycles.

.store <num> cycles ; # 2

.move <num> cycles ; # 1

.xchange <num> cycles ; # 1

.alu <num> cycles ; # 1

.mpy <num> cycles ; # 6

.div <num> cycles ; # 24

.comp <num> cycles ; # 1

.call <num> cycles ; # 1, Note CPI = 1.2 cycles.

.jump <num> cycles ; # 1

.branch <num> cycles ; # 1

.bc_true <num> cycles ; # 2

.bc_false <num> cycles ; # 1, CPI = 1.5 cycles.

.return <num> cycles ; # 1

interrupts are all fixed target locations
.seti <num> cycles ; # 1
.cli <num> cycles ; # 1
.int_response <num> cycles ; # 10 cycles

.halt <num> cycles ; # 10 cycles

EA calculation delays
.address_modes ;

.immediate <num> cycles ; # 0

.register <num> cycles ; # 0

.direct <num> cycles ; # 1

.reg_indirect <num> cycles ; # 1

.mem_indirect <num> cycles ;

.indexed <num> cycles ;

.other <num> cycles ; # 10

.end_address_modes ;
.end_timing_model ;

.endcpumodel ;

Appendix D

Runtime Scheduler Routines

This appendix lists the routines used to implement the context switch or the

“transfer to” function in the runtime scheduler. We consider two implementations:

hardware implementation of control FIFO, and software implementation of control FIFO.

Hardware Control FIFO. The FIFO buffer and the associated control logic are syn-

thesized in hardware. This leads to a simple runtime scheduler.

.global _transfer_to

;; void transfer_to (newroutine)

;; int newroutine;

_transfer_to:

;; lastPC[current] = r31;

lhi r3,(_current>>16)&0xffff

addui r3,r3,(_current&0xffff)

add r6,r0,r3

lw r3,0(r3)

lhi r4,(_lastPC>>16)&0xffff

addui r4,r4,(_lastPC&0xffff)

add r7,r0,r4

slli r3,r3,#2

add r3,r4,r3

sw 0(r3),r31

;; r31 = lastPC[newroutine];

lw r3,0(r14)

slli r3,r3,#2

add r3,r7,r3

lw r31,0(r3)

;; current = newroutine;

256

257

lw r5,0(r14)

sw 0(r6),r5

jr r31

nop

Software Control FIFO. The FIFO buffer and control are implemented in software. A

data transfer from hardware to software is facilitated by means of an interrupt operation.

.align 4

.global _transfer_to

;; void transfer_to (newroutine)

;; int newroutine;

_transfer_to:

cli

;; lastPC[current] = r31;

lhi r3,(_current>>16)&0xffff

addui r3,r3,(_current&0xffff)

add r6,r0,r3

lw r3,0(r3)

lhi r4,(_lastPC>>16)&0xffff

addui r4,r4,(_lastPC&0xffff)

add r7,r0,r4

slli r3,r3,#2

add r3,r4,r3

sw 0(r3),r31

;; r31 = lastPC[newroutine];

lw r3,0(r14)

slli r3,r3,#2

add r3,r7,r3

lw r31,0(r3)

;; current = newroutine;

lw r5,0(r14)

sw 0(r6),r5

movi2s r31

rfe

nop

.align 4

.global _int1

_int1:

sw -4(r14),r3

sw -8(r14),r4

sw -12(r14),r5

; *int1_ak = 0

lhi r3,0x00b0

258 APPENDIX D. RUNTIME SCHEDULER ROUTINES

addui r3,r3,0

sw 0(r3),r0

; empty = 0

lhi r3,(_empty>>16)&0xffff

addui r3,r3,(_empty&0xffff)

sw 0(r3),r0

; queuein = (queuein + 1) & 0xf

lhi r5,(_queuein>>16)&0xffff

addui r5,r5,(_queuein&0xffff)

lw r3,0(r5)

add r3,r3,#1

and r3,r3,#15

sw 0(r5),r3

add r5,r0,r3

; controlfifo[queuein] = 1

lhi r4,(_controlfifo>>16)&0xffff

addui r4,r4,(_controlfifo&0xffff)

slli r3,r3,#2

add r3,r4,r3

addi r4,r0,#1

sw 0(r3),r4

; full = (queuein == queueout)

lhi r4,(_queueout>>16)&0xffff

addui r4,r4,(_queueout&0xffff)

lw r4,0(r4)

seq r5,r5,r4

lhi r3,(_full>>16)&0xffff

addui r3,r3,(_full&0xffff)

sw 0(r3),r5

;; Restore the saved registers

lw r5,-12(r14)

lw r4,-8(r14)

lw r3,-4(r14)

rfe

nop

< similarly for other interrupts >

Appendix E

Index of Notations

Symbol Description x
N Set of natural numbers
Z+ Set of positive integers
G Flow graph model 3.3
V Set of vertices in graph 3.3
E Set of edges in graph 3.3
� Enabling expression 3.3
v A operation vertex 3.3
e A directed edge 3.3
> Dependency 3.3
�� Control dependency 3.3
� Data dependency 3.3
>� Transitive dependency 3.3
� System model 3.3
G� Hierarchy relation 3.3.2
G>� Transitive closure ofG 3.3
& State of a vertex 3.3.3

259

260 APPENDIX E. INDEX OF NOTATIONS

Symbol Description x
sr; se; sd Vertex state values 3.3.3
I(G) Implementation ofG 3.3.4
� Runtime scheduler 3.3.4
S Hardware size of an operation 3.3.4
M(G) Variables used byG 3.3.4
P(G) Graph model pinout 3.3.4
� Operation delay function 3.3.4
�(G); �(T) Graph/Thread latency 3.3.4
` Path length 3.3.4
` Path length vector 3.3.4
`m Smallest element of̀ 3.3.4
`M Largest element of̀ 3.3.4
� Sequential composition operator 3.3.4

 Conjoined composition operator 3.3.4
� Disjoined composition operator 3.3.4e� Instantaneous rate of execution 3.3.4b� Discrete rate of execution 3.3.4
� Cycle time associated with a model 3.3.4
� Rate of execution 3.3.4
% Rate of reaction 3.3.4
 Overhead delay 3.3.4
ND Non-deterministic delay operation 3.4.2
tk Execution start time 3.6
l ; u Min/max delay constraints 3.6
r ; R Rate constraints 3.6
rG Relative rate constraint 3.6
� Runtime scheduler 4.1

 Operation scheduler 4.1

s Static schedule function 4.1

r (Unilogic) relative schedule 4.1

r b (Bilogic) relative schedule 4.1
� Offset 4.1
A Anchor set 4.1
Ab Bilogic anchor set 4.1
j � j1 Infinity norm 4.1
CD Conditional delay operation 4.1
GT Constraint graph 4.2
G+ Parent graph ofG 4.3
Go Parent process graph ofG 4.3
 Upper bound on overhead 4.3

261

Symbol Description x
�̀ `M �` m 4.3
w Overhead due to context switch 4.3
x Loop index variable 4.3
�(v) Mobility of operationv 4.3
pv Longest path from source to sink throughv 4.3
k Multi-rate concurrency 3.5
\ Single-rate concurrency 3.5
� NDcycle 4.5
B1 Blocking limit 4.5.2
Bk Blocking limit for k -deep buffer 4.5.3
Prfg Probability of an event 4.6
FX() Probability distribution function of r.v.x 4.6
fX() Probability density function of r.v.x 4.6
� Acceptable probability of constraint violation 4.6
Ne Buffer depth for exponentially distributed loop index 4.6.2
x; E[X] Expected value of r.v.x 4.6.2
fk(x) Erlangian distribution of typek 4.6.2
MX(t) Moment generating function of r.v.x 4.6.2
W Lambert’s W function 4.6.2
} Stochastic process 4.7
pi Transition probability 4.7
w State of a transition process 4.7
�i j State transition probability 4.7
P State transition matrix 4.7
M Markov Process 4.7
0 Event space 4.6bx Upper bound on loop index 4.6
? Convolution function 4.7
ek Column vector withkt h entry as 1 rest 0 4.7
Ik k �k identity matrix 4.7
0k Zero column vector of sizek 4.7
o (!) Set of terminal output nodes for!
�(!) Set of terminal input nodes for!
� Processor cost model 5.1
�op Execution time function 5.1
�e a Address calculation delay function 5.1
tm Memory access time 5.1
ti Interrupt response time 5.1
ISA Instruction set architecture 5.1
RM ISA with register/memory operands 5.1

262 APPENDIX E. INDEX OF NOTATIONS

Symbol Description x
LS ISA with load/store operations 5.1
MM ISA with memory/memory operands 5.1
� Operation delay in software 5.3.1
mr Number of memory read operations 5.3.1
mw Number of memory write operations 5.3.1
no Number of assembly operations 5.3.1
�i nt r Synchronization delay of an operation 5.3.1
S� Software size for processor� 5.4
S�

p
Software program size for processor� 5.4

S�

d
Software data size for processor� 5.4

GD Flow graph with only data dependencies 5.4.2
rr Number of register read operations 5.4.2
rw Number of register write operations 5.4.2
� Spill vertex set 5.4.2
GI Conflict (interference) graph 5.4.2
! Number ofrvalues 5.4.2
Rl Maximum number of live variables 5.4.2
C Memory cost model 5.4.4
P Processor utilization 6.1
B Bus utilization 6.1
$ A partition of the system model 6.1
 Priority of a program thread 6.3

