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Abstract. In this paper, we propose a new shape/object retrieval al-
gorithm, co-transduction. The performance of a retrieval system is criti-
cally decided by the accuracy of adopted similarity measures (distances
or metrics). Different types of measures may focus on different aspects
of the objects: e.g. measures computed based on contours and skeletons
are often complementary to each other. Our goal is to develop an al-
gorithm to fuse different similarity measures for robust shape retrieval
through a semi-supervised learning framework. We name our method
co-transduction which is inspired by the co-training algorithm [1]. Given
two similarity measures and a query shape, the algorithm iteratively re-
trieves the most similar shapes using one measure and assigns them to
a pool for the other measure to do a re-ranking, and vice-versa. Using
co-transduction, we achieved a significantly improved result of 97.72%
on the MPEG-7 dataset [2] over the state-of-the-art performances (91%
in [3], 93.4% in [4]). Our algorithm is general and it works directly on
any given similarity measures/metrics; it is not limited to object shape
retrieval and can be applied to other tasks for ranking/retrieval.

1 Introduction

Shape-based object retrieval is an important task in computer vision. Given a
query object, the most similar objects are retrieved from a database based on
a certain similarity/distance measure, whose choice largely decides the perfor-
mance of a retrieval system. Therefore, it is critically important to have a faithful
similarity measure to account for the large intra-class and instance-level varia-
tion in configuration, non-rigid transformation, and part change. Designing such
a measure is a very difficult task. Fig. (1) gives an illustration where a horse
might have a smaller distance to a dog (based on their contours) than another
horse, whereas our human vision systems can still identify them correctly.

In this paper, we refer to shape as the contour of an object silhouette. Our al-
gorithm, however, is general and not limited to any particular similarity measure
or representation. Building correspondences is often the first step in computing
shape difference but it is challenging: two shapes may not have the direct corre-
spondences in representation, regardless if they are represented by sparse points,
closed contours, or parametric functions. For example, two shapes with the same
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Fig. 1. A horse in (a) may look more similar to a dog in (b) than another horse in (c)

contour but different starting points typically are considered as the same one.
Therefore, measuring the similarity between two shapes often can be done in two
ways: (1) computing direct difference in features extracted from shape contours,
which are invariant to the choice of starting points and robust to certain degree of
deformation, such as moments and Fourier descriptors; (2) performing matching
to find the detailed point-wise correspondences to compute the differences [5,6].
The latter recently becomes dominate due to their ability of capturing intrin-
sic properties, and thus leading to more accurate similarity measures. Recently,
Yang et al. [3] explored the group contextual information of different shapes to
improve the efficiency of shape retrieval on several standard datasets [2,7]. The
basic idea was to use shapes as each others’ contexts in propagation to reduce
the distances between intra-class objects. The implementation was done by a
graph-based transduction approach [8]. Later, several other graph-based trans-
duction methods were suggested for shape retrieval [4,9]. Different similarity
measures have different emphasis: for example, similarities computed on match-
ing the skeletons of two objects may be robust against non-rigid transformation,
but are hard to capture the rich variability in part change; similarities computed
on matching the contour parts can capture subtle change but may not be robust
against articulation. It would be natural to think to fuse/combine different com-
plementary metrics together to achieve better performance. A straight-forward
way is to linearly combine a few measures together. However, this often requires
certain level of supervision or manual tuning and will not necessarily produce
the best results (we will see a comparison in the experiments).

This paper provides a different way of fusing similarity/distance measures
through a semi-supervised learning framework, co-transduction. The user input
is a query shape and our system returns the most similar shapes by effectively
integrating two distance metrics computed by different algorithms, e.g. Shape
Contexts [5] and Inner-Distance [6]. Our approach is inspired by the co-training
algorithm [1]. The difference though is that, in co-training, it requires having two
conditionally independent views of the data samples. In our problem, each data
only has one view but different algorithms report measures by exploring differ-
ent aspects of the data. Therefore, they may lead to different retrieval results
for the same query, which can be helpful to each other. For example, as shown
in Fig. (2), the retrieval results of Shape Contexts (SC) [5] in the first row and
Inner-Distance Shape Contexts (IDSC) [6] in the second row are very different as
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their different shape representation, even they can gain the comparable Bull-eyes
retrieval rate (SC: 86.8%1, IDSC: 85.4%) in MPEG-7 Shape dataset [2].

Fig. (3) shows another example for illustrating the motivation of the pro-
posed method: In Fig. 3(1), the SC distances between query shape A and B/C
are not small due to articulation. However, in Fig. 3(2), IDSC reports different
result as it is more stable than SC for articulation changes (it uses the inner
distance to replace the Euclidean distance in SC’s representation). As shown in
Fig. 3, the SC distance between B and C is small as they have the same pose.
Even though C is thicker than B, the SC distance still finds a good match be-
tween C and B. We use IDSC to retrieval B out firstly, and then put B and
query A together as labeled data; a new classifier based on SC distance trained
by A and B will give high confidence to C as shown in Fig. 3(4). Our algorithm is

Fig. 2. The first column shows the query shape. The remaining 10 columns show the
most similar shapes retrieved from the MPEG-7 data set. The 1st-4th rows are the
retrieval results of SC [5], IDSC [6], SC+LP [3], IDSC+LP [3], respectively. The 5th
row is the result of the proposed method by integrating two distance metrics computed
by SC and IDSC.

Fig. 3. The motivation of the proposed method

1 Here we use Dynamic Programming (DP) to replace thin plate spline (TPS) as
Belongie et al. did in [5] for the matching process and achieve 86.8% on MEPG-7
dataset. The new distance measure by DP based on SC descriptor is used as the
input for our retrieval framework.
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inspired by co-training [1]. However, unlike co-training in which two independent
views (sets of features) are assumed, our algorithm deals with single-view but
multiple classifiers; each transduction algorithm on a given similarity measure
is a classifier and they help each other by sending most similar results to the
others. Co-Transduction is also related to [10] but with the difference: (1) [10]
tackles a regression problem; (2) kNN was used in [10]; (3) we focus on fusing
different metrics for object retrieval.

2 Co-transduction Algorithm

We first briefly review the graph-based transduction algorithm (label propaga-
tion) [8] applied in shape retrieval [3]. Given a set of objects X = {x1, ..., xn} and
a similarity function sim: X × X → R+ that assigns a positive similarity value
to each pair of objects. Assume that x1 is a query object (eg., a query shape),
{x2, ..., xn} is a set of known database objects(or a training set). Then by sorting
the values sim(x1, xi) in decreasing order for i = 2, ..., n we can obtain a ranking
for database objects according to their similarity to the query. A critical issue
is then to learn a faithful sim. Yang et al. [3] applied label propagation (diffu-
sion map) to learn a new similarity function simT that drastically improves the
retrieval results of sim for the given query x1. They let wi,j = sim(xi, xj), for
i, j = 1, ..., n, be a similarity matrix, then obtain a n×n probabilistic transition
matrix P as a row-wise normalized matrix w.

Pij =
wij∑n

k=1 wik
(1)

where Pij is the probability of transit from node i to node j.
A a new similarity measure s is computed based on P . Since s is defined

as similarity of other elements to query x1, we denote f(xi) = s(x1, xi) for
i = 1, . . . , n. A key function is f and it satisfies

f(xi) =
n∑

j=1

Pij f(xj) (2)

Thus, the similarity of xi to the query x1, expressed as f(xi), is a weighted
average over all other database objects, where the weights sum to one and are
proportional to the similarity of the other database objects to xi. In other words
a function f : X → [0, 1] such that f(xi) is a weighted average of f(xj), where
the weights are based on the original similarities wi,j = sim(xi, xj).

Note that LP is not limited to only one query object, which also can be used
for 2 or more queries as it’s a classification method (see the case in Fig. 3(4),
there are two query objects A and B). Assume that {x1, ..., xl} is a group of
query objects, and {xl+1, ..., xn} is a set of known database objects. Then the
LP algorithm for computing the new similarity can be shown in Fig. 4.

In a general situation, graph-based transduction can be viewed as performing
manifold regularization [11]. f∗ = argminf∈HK

∑l
i=j V (xj , yj, f) + λ1||f ||2HK

+
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Input: The n×n row-wise normalized similarity matrix P with the query {x1..., xl},
f1(xi) = 1 for i = 1, ..., l, and f1(xi) = 0 for i = l + 1, ..., n.
while: t < T.
for i = l + 1, ..., n,

ft+1(xi) =
∑n

j=1 Pij ft(xj)
end
ft+1(xi) = 1 for i = 1, ..., l.

end
Output: The learned new similarity values to the query {x1, ...xl}: fT .

Fig. 4. The pseudo-code of LP algorithm when the query includes a group of objects

λ2fT L which is an approximation to the continuous function space of f based on
the labeled (query objects in our case) and unlabeled data (database objects).
L is the Laplacian map computed from the similarity measures P . V (xj , yj , f)
measures classification error of f on the supervised data and ||f ||2HK

is a regu-
larize of f . Now we view LP as a tool to improve an input similarity function by
taking the contextual information between objects. The key problem we want to
address in this paper is how to build a robust retrieval system, if there are two
(even more) input similarity measures. A straight-forward solution is to linearly
combine different measures and use LP to gain further improvement. We will
later show that this yields less encouraging results than the proposed algorithm,
co-transduction.

Input: the labeled training set L
the unlabeled training set U

Process:
Create a pool U ′ of examples by choosing u examples at random from U
Loop for k iterations:

Use L to train a classifier h1 that considers only the x1 portion of x
Use L to train a classifier h2 that considers only the x2 portion of x
Allow h1 to label p positive and n negative examples from U ′

Allow h2 to label p positive and n negative examples from U ′

Add these self-labeled examples to L
Randomly choose 2p + 2n examples from U to replenish U ′

Fig. 5. Co-training Algorithm by Blum and Mitchell [1]

Fig. (5) and Fig. (6) give the pseudo-code for co-training [1] and the proposed
co-transduction algorithm respectively. Same as in Yang et al. [3], a query ob-
ject x1 and database objects {x2, .., xn} are respectively considered as labeled
and unlabeled data for graph transduction. In spirit, co-transduction is in the
co-training family; unlike the original co-training algorithm, co-transduction em-
phasizes single view but different metrics (in a way classifiers). It uses one metric
to pull out confident data for the other metric to refine the performance. In im-
plementation, the nearest neighbors of the query object are added to labeled
data set for graph transduction in the next iteration based on the other shape
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similarity. The final similarity simF of co-transduction is the average of all the
similarities: simF = 1

2 (simm
1 + simm

2 ).

Input: a query object x1 (a labeled data)
the database objects X = {x2, ...xn} (unlabeled data)

Process:
Create a n × n probabilistic transition matrix P1 based on one

type of shape similarity (eg. SC)
Create a n×n probabilistic transition matrix P2 based on another

type of shape similarity (eg. IDSC)
Create two sets Y1, Y2 such that Y1 = Y2 = {x1}
Create two sets X1, X2 such that X1 = X2 = X
Loop for m iterations:

Use P1 to learn a new similarity simj
1 by graph transduction

when Y1 is used as the query objects (j = 1, ..., m is the iteration index)
Use P2 to learn a new similarity simj

2 by graph transduction
when Y2 is used as the query objects

Add the p nearest neighbors from X1 to Y1 based on the
similarity simj

1 to Y2

Add the p nearest neighbors from X2 to Y2 based on the
similarity simj

2 to Y1

X1 = X1 − Y1

X2 = X2 − Y2

(Then X1, X2 will be unlabeled data for graph transduction
in the next iteration)

Fig. 6. Co-transduction algorithm

When the database of known objects is large, computing all the n objects
becomes impractical; in practice, we construct similarity matrix w using the
first M << n most similar objects to the query x1 according to the original
similarity, which is similar to Yang et al. [3]. Let S denote the first M similar
objects to the query x1. As different shape similarity often have different S,
we use S1 and S2 to represent the first M similar objects to x1 according to
two kinds of shape similarity respectively. Then the Pseudo code of an efficient
version of Co-Transduction algorithm is shown in Fig. 7, which is used in all our
experiments. In our experiments, M is always setting as 300.

Theoretical justification
Next, we provide a brief theoretical discussion of our algorithm. We borrow
the analysis from [12], which mostly follows the PAC (probably approximately
correct) learning theory. Let H0

1 and H0
2 be two classifiers (the two transduction

algorithms on different metrics in our case) at round 0. They are respectively
bounded by generalization errors a0 < 0.5 and b0 < 0.5 with high probability,
1 − δ, in PAC. Then H0

1 selects u number of unlabeled data samples (database
objects) and put them into σ2 for training H1

2 using transduction. Let l be the
number of labeled data and G = u × a0. If l × b0 ≤ e G

√
G! − G, then

Pr[d(H1
2 , H∗) ≥ b1] ≤ δ,
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Input: a query object x1 (a labeled data)
the database objects X = {x2, ...xn} (unlabeled data)

Process:
Create a M ×M probabilistic transition matrix P1 based on one

type of shape similarity with the data from S1

Create a M × M probabilistic transition matrix P2 based on
another type of shape similarity with the data from S2

Create two sets Y1, Y2 such that Y1 = Y2 = {x1}
Create two sets X1, X2 such that X1 = X2 = X
Loop for m iterations:

Use P1 to learn a new similarity simj
1 by graph transduction

when Y1 is used as the query objects (j = 1, ..., m is the iteration index)
Use P2 to learn a new similarity simj

2 by graph transduction
when Y2 is used as the query objects

Add N1

⋂
S2 (N1 denotes the p nearest neighbors from X1 to

Y1 based on the similarity simj
1) to Y2

Add N2

⋂
S1 (N2 denotes the p nearest neighbors from X2 to

Y2 based on the similarity simj
2) to Y1

X1 = X1 − Y1

X2 = X2 − Y2

(Then X1, X2 will be unlabeled data for graph transduction
in the next iteration)

Fig. 7. Co-transduction algorithm for a large database

where H∗ is the ideal classifier to retrieve all the correct answers, and d(H1
2 , H∗)

measures the difference between learned H1
2 and H∗. The new error is then

b1 = max[
l × b0 + u × a0 − u × d(H0

1 , H1
2 )

l
, 0].

As we can see, the general guidance to achieve a small b1 is to: (1) reduce the
errors of the original learners (good input metrics); (2) increase the complemen-
tariness of the metrics. Our algorithm does not necessarily improve the overall
performance if the input metrics are not so good at the first place and they are
not so different from each other.

From a different perspective, different measures explore different aspects about
similarity; the top M most similar objects w.r.t each measure are often not all
correct; however, the most similar one (nearest neighbor) is likely be the case;
pulling out the best match by one measure to the other helps to further retrieve
similar ones by the other complementary measures. This intuition explains why
co-transduction works. Our work is also related to the diffusion map [13] which
obtains improved similarity measures for clustering by performing Markov ran-
dom walks. Our transductive learning component improves similarity measures,
just like the diffusion map algorithm, and the fusion of different metrics gives
further improvement. By exchanging the improved similarity measures of two
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transductive learning algorithms, we gradually achieve a fused similarity by let-
ting two originally different measures to meet with each other, which realizes
a fusion process. A more detailed theoretical analysis will be left in a longer
version.

3 Experimental Results

In this section, we show results on three datasets: MPEG-7 shape dataset [2],
Tari’s shape dataset [14], and Wei’s trademark dataset [15]. In addition, we show
our algorithm has a potential to bag-of-feature image search.

3.1 Results on Shape Datasets

The MPEG-7 shape dataset consists of 1400 silhouette images grouped into
70 classes with class having 20 different shapes. Usually the retrieval rate for
this dataset is measure by “Bull’s eyes test”. Every shape in the database is
compared to all other shapes, and the number of shapes from the same class
among the 40 most similar shapes is reported. The bulls eye retrieval rate is
the ratio of the total number of shapes from the same class to the possible
number (which is 20 × 1400). We use the similarities computed by SC [5] and
IDSC [6] as the original distance measures. The new similarity obtained by co-
transduction resulted in 97.72% on Bull’s eyes test, which outperforms existing
state-of-the-art algorithms; to further illustrate that our algorithm is indepen-
dent of specific algorithms, we also use the similarity computed by data-driven
general model (DDGM) [16] proposed by Tu and Yuille together with SC or
IDSC as the distance measures for co-transduction; we achieve scores 97.45%
and 97.31% respectively. These improvements show that the performance gain
of our method is general, and not tied to any specific similarity measures. Our
results and the scores by several other recent methods on the MPEG-7 dataset
are shown in Table 3.1. We observe that co-transduction significantly outperform
the alternatives. This demonstrates that integrating different shape similarities
is an important direction for shape recognition.

In order to visualize the gain in retrieval rates by our method compared to
SC or IDSC , we plot the percentage of correct results among the first k most
similar shapes in Fig. 8(a). For example, we plot the percentage of the shapes
from the same class among the first k-nearest neighbors for k = 1, ..., 40. Recall
that each class has 20 shapes and this is the reason for curve k > 20. We observe
that not only does the proposed method increase the bull’s eye score, but also
the ranking of the shapes for all k = 1, ..., 40 gets improved. In Fig. 8(a), we also
plot the curves of retrieval rates for SC/IDSC with graph transduction [3] (eg.
SC + LP and IDSC + LP).

Tari’s dataset [14] consists of 1, 000 silhouette images grouped into 50 classes
with 20 images per class. Tari’s dataset has more articulation changes within
each class than MPEG-7 dataset as shown in Fig. 9, and consequently IDSC
achieved better results than SC on this dataset (see Table 3.1). The retrieval
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Table 1. Bull’s eyes scores on MPEG-7 dataset [2] and Tari’s dataset [14]

Algorithm MPEG-7 dataset Tari’s dataset

SC [5] (DP) 86.8% 94.17%

IDSC [6] 85.4% 95.33%

DDGM [16] 80.03%

Planar Graph Cuts [17] 85%

Shape-tree [18] 87.7%

Contour Flexibility [19] 89.31%

IDSC + LP [3] 91% 99.35%

SC + LP [3] 92.91% 97.79%

IDSC + LCDP[9] 93.32% 99.7%

SC + GM + Meta [20] 92.51%

IDSC + Mutual Graph [4] 93.40%

SC + IDSC + Co-Transduction 97.72% 99.995%
IDSC + DDGM + Co-Transduction 97.31%
SC + DDGM + Co-Transduction 97.45%

Fig. 8. The curves of retrieval rates for SC, IDSC, SC+LP, IDSC+LP, and Co-
Transduction on MPEG-7 shape dataset (a) and Tari’s dataset (b)

Fig. 9. Sample images in Tari dataset
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performance on this dataset is also measured by “Bull’s eyes test”. Only one
error was made when retrieving all the shapes from the dataset, which means
we achieve nearly perfect retrieval rate: 99.995%. Table 3.1 also lists several
results of Tari’s dataset in comparison with other approaches; we observe that
the second highest result by IDSC+LCDP [9] is 99.7% with 60 errors. Same as
in Fig. 8(a), the retrieval curves in Fig. 8(b) are plotted to clearly show the
performance gain by co-transduction algorithm.

3.2 Results on Trademark Images

We also tested our method on a trademark dataset [15] consisting of 14 different
classes with 1, 003 trademark images in all. Fig. 10 shows typical some examples
from the trademark dataset. To evaluate the performance of trademark retrieval,
we use the precision-recall curves. The x-axis and y-axis represent recall and pre-
cision rates, respectively. Precision is the ratio of the number of relevant images
retrieved to the total number of images retrieved while recall is the number of
relevant images to the total number of relevant images stored in the database.
For each query image input to the system, the system returns 11 pages of hits
with descending similarity rankings, each page containing nine trademark im-
ages. This allows the performance of our system to be evaluated on a page-wise
manner. Since there are only five classes containing more than 99 images, we only
report the precision-recall graph on these five classes. Each curve consists of 11
data points, with the ith point from the left corresponding to the performance
when the first i pages of hits are taken into consideration. A precision-recall line
stretching longer horizontally and staying high in the graph indicates that the
corresponding algorithm performs relatively better. Here, we use two distance
measures: moment invariants [21], Zernike [22], which are two kinds of region-
based shape features. Then we use our method on these two distance measures.
In Fig. 11, the data points shown on the curve for co-transduction are the average
precisions and recalls over the five classes. The curves shows that our method can
improve the performance of trademark retrieval significantly, which also prove
that co-transduction algorithm is good fit for trademark images and different
shape distance measures.

Fig. 10. Sample images in Wei’s trademark dataset

3.3 Improving Bag-of-Features Image Search with Co-transduction

In this section we show that co-transduction can improve the accuracy of im-
age search. Bag-of-features image representation [23,24] is usually suggested for
image search problem. Recently, Jegou et al. [25] proposed a distance learning
method called contextual dissimilarity measure (CDM), which can significantly
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Fig. 11. The precision/recall curves for trademark images

Fig. 12. Sample images of N-S dataset [26]

improve the similarity computed by bag-of-features. We compare our method
with CDM on the Nistér and Stewénius (N-S) dataset [26]. The N-S dataset
consists of 2, 550 objects or scenes, each of which is imaged from 4 different
viewpoints. Hence the dataset has 10, 200 images in total. A few example im-
ages from N-S dataset are shown in Fig. 12.

We adopt the method in [25] to compute the similarity for image search.
The image descriptor is a combination of Hessian-Affine region detector [27]
and SIFT descriptor [28]. A visual vocabulary is obtained using the k-means
algorithm on the sub-sampled image descriptors. As co-transduction requires
two kind of similarity measures, we proposed a new similarity named reverse
similarity based on the one by [25]. Let wi,j denote the similarity between
objects i and j computed by [25], the reverse similarity wr

i,j = 1
dβ , where d is

the ranking number of i when using j as a query for the dataset, and β is a
weight factor setting with a constant 10. Reverse similarity is motivated the
phenomenon pointed out by [25]: a good ranking is usually not symmetrical
in image search, which tells us two objects can be very likely from the same
category when they both obtain a good ranking position when using each other
as a query. With w and wr, we can apply co-transduction to image search on N-S
dataset, and the measure score is the average number of correct images among
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Table 2. The results on N-S dataset

number of distinct vocab. original N-S score N-S score with
visual vocab. size N-S score with CDM co-transduction

1 30000 3.26 3.57 3.66

the four first images returned. Table 3.3 lists the results on N-S dataset. We can
observe that co-transduction significantly increases the score from 3.26 to 3.66,
which is also better than CDM’s result when the number visual vocabulary is
1 and vocabulary size is 30000. Our result demonstrates that co-transduction is
also able to improve the performance of image search problem.

3.4 The Parameter Setting and Discussion

As introduced in [29], there are two key parameters for label propagation: α and
K. Beside α and K, there are two additional parameters for co-transduction:
the iteration number m and the number of nearest neighbors p. For the MPEG-
7 and Tari’s dataset, we use the following parameter settings: α = 0.25, K =
14, (which are consistent with the setting in [29]), m = 4, and p = 3. For the
trademark dataset, since the input distance measures are different from the ones
for MEPG-7 dataset, the parameter setting is α = 8, K = 8, m = 2, and p =
2. For the N-S dataset, the parameters are α = 0.25, K = 10, m = 3, and p =
1. Since [29] has introduced a supervised learning method for determining the
parameters α and K in details, we no longer review it here. We only need to
focus on m and p. As both m and p are integer, the values of them are very
easily to set. Table 3.4 shows the scores on MPEG-7 dataset when setting m, p
with the integers from 1 to 5. We observe that all these scores are around 97%,
which demonstrates the insensitiveness of co-transduction to parameter tuning.

Now we want to discuss why co-transduction is essential. We iteratively run
LP on MPEG-7 dataset based on only one type of similarity with the same
parameter setting for co-transduction (the p most similar objects will be added
into the query set for the next iteration), and we get the bull’s eyes scores
92.68% and 91.79% based on SC and IDSC respectively. Compared to the LP’s
results in Table 3.1, there is not so much change. Let sim′

SC and sim′
IDSC

denote the similarities obtained in the above experiments. We obtain a new
similarity sim′

c by linearly combining sim′
SC and sim′

IDSC as follows: sim′
c =

Table 3. The bull’s eyes scores on MEPG-7 dataset with different parameter setting

m = 1 m = 2 m = 3 m = 4 m = 5

p = 1 96.89% 97.05% 97.30% 97.32% 97.34%

p = 2 97.06% 97.24% 97.36% 97.45% 97.36%

p = 3 97.20% 97.54% 97.63% 97.72% 97.67%

p = 4 97.13% 97.30% 97.42% 97.37% 97.32%

p = 5 97.24% 97.55% 97.58% 97.20% 96.92%
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λsim′
SC+(1−λ)sim′

IDSC, where λ is a weight factor. We tuned λ, and the highest
score based on sim′

c is 92.0% when λ is 0.9. These results are much lower than
the ones by co-transduction, and this illustrates that the performance achieved
by co-transduction can not be reached by simply combining the similarities.

4 Conclusion

We have proposed a shape retrieval framework named co-transduction which
combines two (our algorithm is actually not limited to just two) different distance
metrics. The significant performance improvement on four large datasets has
demonstrated the effectiveness of co-transduction for shape/object retrieval.Our
future work includes the extension to other problems and providing deeper un-
derstanding of the approach.
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