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Abstract: Enhancing energy efficiency is globally regarded as an effective way to reduce carbon
emissions. In recent years, the energy efficiency of China has gradually improved; however, energy
consumption and CO2 emissions are still increasing. To better understand the reasons for this, we
evaluated the energy rebound effect (RE) of 30 provinces in China over the period 2001–2017 by
employing stochastic frontier analysis (SFA) and the system generalized method of moments (system-
GMM) approach, and explored the extent to which the RE affects CO2 emissions. Asymmetric and
regional heterogeneity analyses were also conducted. The results indicate that the national average
RE was 90.47% in the short run, and 78.17% in the long run, during the sample period. Most of
the provinces experienced a partial RE, with a backfire effect occurring in some provinces such as
Guangxi and Henan. The RE was associated with significant increases in CO2 emissions; specifically,
a 1% increase in the short-run RE led to an increase in CO2 emissions of approximately 0.818%, and a
1% increase in the long-run RE resulted in an increase in CO2 emissions of approximately 0.695%.
Moreover, significant regional differences existed in the impact of the RE on CO2 emissions; in regions
with high emissions and a high RE, the CO2 reduction effect from the marginal decline in the RE was
much more pronounced than that in other regions.

Keywords: energy rebound effect; CO2 emissions; system generalized method of moments; regional
heterogeneity

1. Introduction

In recent years, global warming has become a crucial issue worldwide [1,2]. As the
main contributor to increasing temperatures, CO2 emissions, and their reduction, have
become the primary focus. Governments hope to achieve the goals of energy conservation
and emission reduction by implementing energy efficiency improvement policies. However,
the existence of the rebound effect poses a potential challenge to the emission reduction
targets. The rebound effect (RE) refers to the fact that the expected energy savings resulting
from the improved energy efficiency may be offset to a certain degree due to the additional
energy demand caused by the change in economic agents’ behavior [3–5]. A study by
Fowlie et al. [6] highlighted that the actual energy savings resulting from the enhancement
of energy efficiency are lower than the expected energy savings due to the existence of the
RE, resulting in misalignment between energy policies and energy-saving goals. In view of
the additional energy demand generated from the RE, special attention deserves to be paid
to the environmental impacts (i.e., CO2 emissions) of the RE.

During the past two decades, the Chinese government has implemented a series of
policies to improve energy efficiency to reduce energy consumption and CO2 emissions.
As Figure 1 shows, China′s energy efficiency has gradually improved under these policies
in recent years. However, contrary to our expectations, although China’s energy efficiency
improved over this period, its overall energy consumption did not decline, but increased
(see Figure 2). Specifically, China’s total energy consumption nearly tripled from 2001 to
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2021, from 1555 million tons of coal equivalent (Mtce) in 2001 to 5240 Mtce in 2021 [7]. At
the same time, CO2 emissions in China also increased over this period. From 2001 to 2019,
total carbon emissions in China increased by nearly 3.7 times, from 3284 metric tons (Mt)
in 2001 to 12,290 Mt in 2019 [8]. Figure 3 depicts the evolution trend in CO2 emissions in
30 provinces in China; it can be seen from Figure 3 that CO2 emissions gradually increased
during the past decades.

The main driver behind this trend is the RE, which offsets potential energy savings
from improved energy efficiency by generating new energy demand and thereby carbon
emissions. However, the potential impact of the RE on CO2 emissions is often overlooked by
energy policies. Since China is the world’s major CO2 emitter, it is worth paying attention
to the impact of the RE on CO2 emissions, which would also provide valuable references
for other countries with a high RE and high emissions.
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In recent years, estimating the magnitude of the RE has become the focus of this
research. Many scholars have evaluated the RE based on various approaches [9–12];
however, there is still a debate about its magnitude due to the lack of unified evaluation
mechanisms both in theory and practice [13,14]. Furthermore, to date, much research
has been undertaken to detect the potential drivers of CO2 emissions in terms of various
aspects [15,16]; however, the potential impacts of RE on CO2 emissions have rarely been
systematically investigated, especially for the case of China. To this end, several questions
aroused our interest: (1) What is the extent of China′s current energy RE? Does the RE
behave differently in the short and long term? (2) To what extent does the RE impact
CO2 emissions in the short and long term? What is the direction of this impact? (3) Does
the RE have asymmetric and heterogeneous regional impacts on CO2 emissions? It is
essential to examine the above issues for a deeper understanding of the RE and its role
in CO2 emissions, and thus provide new insights for policymakers to formulate emission
reduction policies.

Accordingly, we first assessed the RE of 30 provinces in China from 2001 to 2017
by employing stochastic frontier analysis (SFA) and the system generalized method of
moments (system-GMM) approach, and explored the extent to which the RE affects CO2
emissions. Asymmetric and regional heterogeneity analyses were also conducted. The
contributions of this study are as follows: (1) By constructing a dynamic comprehensive
energy efficiency index, we calculated the economy-wide RE of 30 provinces in China for
the short and long terms. To the best of our knowledge, RE estimates are still lacking
a consensus, and economy-wide RE studies at the sub-national level in China are rare.
Considering the vast territory, resource endowment, and economic development differences
in China, it is still necessary to investigate the RE at the sub-national level for a deeper
understanding of the RE and to provide policymakers with new insights to formulate
specific measures to control the RE. (2) To date, many studies have examined the potential
drivers of CO2 emissions; however, very few studies have systematically explored the
potential impacts of the RE on CO2 emissions, especially for the case of China. To make
a marginal contribution to the existing literature based on this insight, we systematically
explored the dynamic impacts of the RE in the short and long term on CO2 emissions based
on the balanced panel dataset of 30 provinces in China, which offers strong evidence for
capturing the potential drivers behind the continuous increase in CO2 emissions. This
also provides valuable references for other countries with a high RE and high emissions,
by offering policymakers new insights for designing short- and long-run policies from
the perspective of the RE to reduce the carbon emissions. (3) Taking into account the
regional heterogeneity, we also investigated the potential asymmetry and heterogeneity in
the impact of the RE on CO2 emissions by dividing the full sample into four regions based
on the distribution of the RE and CO2 emissions. This provides detailed evidence to design
more specific regional policies to control the RE and CO2 emissions.

The remainder of the paper is organized as follows. Section 2 presents a brief literature
review of the RE and determinants of CO2 emissions. Section 3 evaluates the RE of
30 provinces in China based on the stochastic frontier analysis (SFA) and system generalized
method of moments (system-GMM) approach. In Section 4, we present an econometric
model to explore the potential impacts of the RE on CO2 emissions; the data sources of
all relevant variables are also reported in this section. Then, we discuss the impacts of
the RE in the short and long run on CO2 emissions according to the econometric model
estimation results in Section 5. In Section 6, we further conduct asymmetric and regional
heterogeneity analysis of the impact of the RE on CO2 emissions. The final section presents
the conclusions of this study.

2. Literature Review
2.1. Existing Research on the Energy Rebound Effect

In recent years, as a result of the increasing prominence of climate change, the energy
rebound has attracted many scholars’ attention. The concept of the rebound effect dates
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back to Jevons [17]. In his book “Coal problem”, Jevons [17] noted that the increment
in natural resource efficiency would result in increased consumption of such resources,
rather than a decrease, which is known as the “Green paradox”. Subsequently, Daniel
Khazzoom [18] and Brookes [19] initiated the modern rebound effect theory and debated
the existence of a backfire effect in the real economy. Since then, many scholars have
significantly explored the rebound effect.

In the literature, the measurement methods of the rebound effect are classified into
two strands: computable general equilibrium (CGE) models and non-CGE models. In
contrast to non-CGE models, CGE models are based on social accounting matrices for
the relevant economies, and they consist of a set of simultaneous equations describing
the behavior of producers, consumers, and other economic actors, together with the inter-
dependencies and feedback between the different sectors [20]. Specifically, Bye et al. [9]
calculated the energy rebound of Norway by employing a CGE model, and results indicate
that Norway’s RE reaches 40% for the sample period. On the basis of a CGE model, Anson
and Turner [21] investigated the RE of UK′s commercial transport sector. His study found
that a 5% increase in energy efficiency in the commercial transportation sector resulted
in a 39% rebound in the use of petroleum commodities in this industry and the whole
economy. Based on the same method, Hanley et al. [22] explored the RE of Scotland’s
economy and identified a backfire effect in Scotland’s power and non-power sectors, with
rebounds of 131% and 134%, respectively. However, the CGE approach has been criticized
by some scholars due to its strict assumptions, such as constant substitution elasticity
between different input factors and complete market clearing [20], and it poses high re-
quirements for data quality [23]. Therefore, some scholars also explored non-CGE models
to estimate the RE, such as macroeconomic models, econometric analysis, and the growth
accounting approach. Specifically, based on the macroeconomic model, i.e., the Solow
growth model, Saunders [10] estimated Sweden’s energy RE for a long period between
1850 and 2000, and found that the average rebound value was approximately 60%. On
the same basis, Barker et al. [24] explored the global RE for the period of 2010–2030 and
indicated that the average value of the energy RE was 52%. With regard to economet-
ric analysis, Adetutu et al. [11] explored the RE of 55 countries by employing stochastic
frontier analysis and found that the RE reaches 90% in the short term, and −36% in the
long term. Wei et al. [12] estimated the RE of 40 regions for the period 1995–2009 by
decomposing the change in output caused by energy intensity variation, and found that
the average RE is 150%. Some scholars also tried to evaluate the RE based on the growth
accounting approach. For instance, Lin and Liu [25] estimated China’s RE between 1981
and 2009 by employing the growth accounting approach, and indicated that the average
value of the RE was 53.2%. By utilizing the same technique, Shao et al. [14] evaluated
China’s RE for the period 1954–2010 and found that the average value was 47% before
2000, and 37% after 2000. In summary, compared to the complex CGE model, studies
based on non-CGE models have also contributed valuable insights; however, they also
present a number of significant limitations. For instance, Saunders [10] and Wei et al. [12]
adopted aggregate production functions, which were not believed to be appropriate by
some scholars [26,27]. The growth accounting studies underestimated rebound effects,
owing to their assumption that increases in output are the primary driver of rebound,
which neglects other mechanisms of RE [5,28]. Overall, a large amount of work has been
conducted to examine the rebound effect by developing different approaches; however,
estimation results are still not consistent due to the lack of unified evaluation mechanisms,
both in theory and practice [20,29].

As China has become the world’s major energy consumer, China’s energy rebound
has also attracted many scholars’ attention. The related literature has mainly concen-
trated on exploring the RE (direct or indirect) of different industries, regions, or sectors
(e.g., households). Specifically, Lin and Zhu [4] evaluated the direct RE of Chinese residents’
electricity consumption for the period 2010–2018, and the results indicate that the average
RE was 48%. Based on the time series data of 1991–2016, Shao et al. [30] explored the RE of
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Shanghai, China, and found the total RE during this period reached 93.96%. Liu et al. [31]
evaluated the RE of the coal industry in China from 2009 to 2019, and the results indicate
that the average RE of the industry was 30.27%. Meng and Li [32] estimated the direct RE
of the electricity sector in 30 Chinese provinces for the period 2009–2018, and found that
the average RE was 75.21%. On the basis of a panel dataset over the period 2003–2013,
Zhang and Lin [33] calculated the RE of the transport sector in China, and showed the
extent of the RE varied from 7.2% to 82.2%. In addition, Du et al. [34] estimated the RE level
of the Chinese urban residential sector for the period 2001–2014, and the results indicate
that the average RE was 65.4%. Li and Lin [35] conducted a comparative study of the RE
of light and heavy industries in China, and found the average RE of heavy industry was
larger than that of light industry. In contrast to the above studies, a few scholars have also
made efforts to investigate the economy-wide RE of China. For instance, Shao et al. [14]
explored the economy-wide RE of China based on the time series data of 1954–2010, and
the results indicated that the national average RE was 47.24% before 1978, and 37.32%
after 1978. Zhang and Lin Lawell [36] calculated the macroeconomic RE of China during
the period of 1991–2009, and found that the national average RE was −0.1421. Notably,
studies of the economy-wide RE of China are relatively rare and the sizes of the RE are
still not consistent. Considering the vast territory, resource endowment, and economic
development differences in China, it is still necessary to investigate the economy-wide
RE at the sub-national level for a deeper understanding of the RE. This will be helpful for
providing policymakers with new insights to formulate specific measures to control the
regional RE.

2.2. Research on the Determinants of CO2 Emissions

As a result of global warming, carbon reduction has become the primary task to
deal with climate change. Many scholars have explored the drivers of CO2 emissions in
terms of different aspects, such as economic growth, energy structure, urbanization, and
trade openness. More specifically, the economic growth–CO2 nexus, which is known as
the environmental Kuznets curve (EKC), has been examined extensively in the existing
research. For example, by employing the ARDL approach on a panel dataset from 1971 to
2011, Shahbaz et al. [37] investigated the EKC hypothesis for Malaysia and found that there
is significant inverted-“U”-type relationship between economic growth and CO2 emis-
sions. This relationship was also confirmed by Esteve and Tamarit [38], Farhani et al. [16],
Haisheng et al. [39], Iwata et al. [40], and Plassmann and Khanna [41]. Contrarily, some
studies found little evidence supporting the EKC hypothesis. For instance, Zilio and Re-
calde [42] investigated the EKC hypothesis for the case of Latin America and the Caribbean
for the period of 1970–2007, and found no support for this hypothesis. Based on the
Engle–Granger test, Day and Grafton [43] also found little evidence for the validity of the
EKC hypothesis for Canada. Notably, the nexus between economic growth and carbon
CO2 emissions is still controversial. Moreover, studies have emphasized the important role
of the energy structure on CO2 emissions. Specifically, by analyzing China’s energy con-
sumption structure over the period 1980–2006, Feng et al. [44] suggested that reducing the
proportion of fossil energy in total energy consumption and transforming to clean energy
can effectively mitigate carbon emissions. This conclusion was confirmed by Xu et al. [45]
and Wang et al. [46].

Furthermore, a significant amount of work has been undertaken to examine the re-
lationship between urbanization and CO2 emissions, since the development of the urban
economy requires sufficient energy input. Empirical results vary between studies, which
have presented various views on the urbanization–CO2 emissions nexus. For instance,
using a sample of developing countries over the period 1975–2003, Martínez-Zarzoso
and Maruotti [47] examined the relationship between urbanization and CO2 emissions,
and the research results indicate that there is an inverted-U-shaped relationship between
urbanization and CO2 emissions. Contrarily, Shahbaz et al. [48] identified a significant
U-shaped urbanization–CO2 emissions nexus for the case of Malaysia over the period of
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1970–2011. In addition, Fan et al. [49] found a negative relationship between urbanization
and CO2 emissions for the sample of developing countries, and Liddle and Lung [50]
found a positive insignificant relationship between urbanization and CO2 emissions for the
developed countries. In summary, the results regarding the relationship between urban-
ization and CO2 emissions have not been conclusive. In addition, scholars also examined
the relationship between trade openness and CO2 emissions. Specifically, Mutascu [51]
noted a one-way direction of causality from trade openness to carbon emissions in France
over the period 1960–2013. Conversely, Shahbaz et al. [15] identified one-way causality
running from CO2 emissions to trade openness in China over the period 1970–2012. Fur-
thermore, some studies have also detected two-way causality [52,53]. Notably, the trade
openness–CO2 nexus is still controversial within the literature. Furthermore, scholars also
examined other influencing factors of CO2 emissions. For example, the research results of
Wójcik-Jurkiewicz et al. [54] and Drożdż et al. [55] identified significant roles of knowledge
diffusion and public perception on decarbonization in Poland. In conclusion, to date, many
studies have explored the drivers of CO2 emissions in terms of various aspects; however,
very few studies have systematically examined the potential impacts of the RE on CO2
emissions, especially for the case of China. In the context of a low-carbon economy, it is
necessary to systematically explore the extent to which the RE influences CO2 emissions.

3. Materials and Methods
3.1. Measurement Procedure for Rebound Effect

As defined by Saunders [56], the rebound effect is:

RE = 1 + η (1)

where η = dlnE
dlnDEPI (E is the energy consumption, DEPI denotes energy efficiency), which

represents the elasticity of energy consumption to the energy efficiency. We can obtain the
RE by estimating η.

We assumed that the optimal energy consumption of an enterprise is influenced by its
output level, energy price, and energy efficiency. Following the work of Yan et al. [23] and
Adetutu et al. [11], we constructed an optimal energy consumption function as follows:

lnE∗it = g(lnPit, lnYit, lnDEPIit) + νi + µit (2)

where E∗it represents optimal energy consumption, and Pit, Yit, and DEPIit represent energy
prices, real GDP, and energy efficiency, respectively. νit and µit are the constant term and
the disturbance term, respectively.

For a given improvement in energy efficiency, enterprises require a certain amount of
time to adjust their energy use. Therefore, we also considered the actual energy consump-
tion in the process of dynamic adjustment:

nEit − lnEi,t−1 = (1− σ)(lnE∗it − lnEi,t−1) (3)

where Eit represents the actual energy consumption, and (1− σ) is the adjustment propor-
tion. Combining Equations (2) and (3), we obtained:

lnEit = σlnEi,t−1 + (1− σ)g(lnPit, lnYit, lnDEPIit) + αi + πit (4)

where αi = (1− σ)νi, πit = (1− σ)µit. By performing the second-order Taylor expansion
on g(lnPit, lnYit, lnDEPIit), we obtained:

lnEit = σlnEi,t−1 + β1lnPit + β2lnYit + β3lnDEPIit

+ β4
2 lnPitlnDEPIit +

β5
2 lnYitlnDEPIit +

β6
2 lnPitlnYit

+ β7
2 [lnPit]

2 + β8
2 [lnYit]

2 + β9
2 [lnDEPIit]

2 + αi + πit

(5)
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According to the estimation parameters of Equation (5), we calculated the short- and
long-run efficiency elasticity as follows:

Short-run : ηE
SR =

dlnEit
dlnDEPIit

= β3 +
β4

2
lnPit +

β5

2
lnYit + β9lnDEPIit (6)

Long-run: ηE
LR = β3 +

β4
2 lnPit +

β5
2 lnYit + β9lnDEPIit

1− σ
(7)

Therefore, the RE in the short and long run can be obtained according to Equations (6) and (7):

Short-run RE = 1 + ηE
SR (8)

Long-run RE = 1 + ηE
LR (9)

Notably, we selected the price index of fuels (P2000 = 100) as the proxy for the energy
price due to the absence of energy price data; this was derived from the CSY (2018) [57].
The data on energy efficiency were obtained from the calculation results in Section 3.2.
The data on energy consumption were taken from the CESY (2018) [58], and the GDP data
originated from the CSY (2018) [57], and are deflated based on the 2000 constant price.

3.2. Measurement Procedure for Energy Efficiency

To estimate efficiency elasticity (η), we first need to measure the energy efficiency level.
To this end, we constructed a dynamic comprehensive energy efficiency indicator (DEPI)
that fully considers various input factors and changes in energy technology progress. To
calculate the DEPI, we first needed to evaluate the Shephard energy distance function,
which identifies the extent to which energy input factors decrease when other input factors
remain the same in the production possibility set. We assumed that each decision-making
unit, i.e., each province of China (DMUj, j = 1, 2, . . . , 30), yields the desired output GDP
(Y) based on the three inputs: capital (K), energy (E), and labor (L); where K is determined
based on the perpetual inventory method using 2000 constant prices. E is determined using
the provincial aggregate energy consumption. Each province′s employee count at the end
of the year represents L, and Y is measured by real GDP using 2000 constant prices. All
data were derived from China’s various statistical yearbooks. Following the work of Boyd
and Pang [59] and Wu et al. [60], the Shephard energy distance function is expressed as:

lnDt
E

(
Kt

j , Lt
j, Et

j , Yt
j

)
= f

(
lnKt

j , lnLt
j, lnEt

j , lnYt
j , t
)
+ ηj + νjt (10)

where f (·) is an unknown function, ηj represents an unobserved individual effect, and
νjt represents a random disturbance term. Using its second-order Taylor expansion, we
approximated Equation (10) as follows:

lnDt
E

(
Kt

j , Lt
j, Et

j , Yt
j

)
= αklnKt

j + αl lnLt
j + αelnEt

j + αylnYt
j + αtt

+ αkl
2 lnKt

j lnLt
j +

αke
2 lnKt

j lnEt
j +

αky
2 lnKt

j lnYt
j

+ αkt
2 lnKt

j t +
αle
2 lnLt

j lnEt
j +

αly
2 lnLt

j lnYt
j +

αlt
2 lnLt

jt

+
αey
2 lnEt

j lnYt
j +

αet
2 lnEt

j t +
αyt
2 lnYt

j t + αkk
2

[
lnKt

j

]2

+ αll
2

[
lnLt

j

]2
+ αee

2

[
lnEt

j

]2
+

αyy
2

[
lnYt

j

]2

+ αtt
2 t2 + ηj + νjt

(11)

Due to the linear homogeneity of the Shephard energy distance function with respect
to energy factor inputs, the following relationship exists:

lnDt
E

(
Kt

j , Lt
j, Et

j , Yt
j

)
= lnDt

E

(
Kt

j , Lt
j, 1, Yt

j

)
+ lnEt

j (12)
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By combining Equations (11) and (12), we obtained:

−lnEt
j = αklnKt

j + αl lnLt
j + αylnYt

j + αtt

+ αkl
2 lnKt

j lnLt
j +

αky
2 lnKt

j lnYt
j +

αkt
2 lnKt

j t

+
αly
2 lnLt

j lnYt
j +

αlt
2 lnLt

jt +
αyt
2 lnYt

j t

+ αkk
2

[
lnKt

j

]2
+ αll

2

[
lnLt

j

]2
+

αyy
2

[
lnYt

j

]2

+ αtt
2 t2 + ηj − µjt + νjt

(13)

where µjt represents the inefficiency of energy use, which follows N+
(

0, σ2
µ

)
. Considering

the stochastic frontier analysis (SFA) has obvious advantages in dealing with statistical
noise and the heterogeneity of the reaction technology, we adopted the SFA method to
estimate Equation (13). According to the parameter estimation results of Equation (13), we
can estimate the static energy efficiency of each DMUj using the following equation:

E f f jt = E
[
exp
(
−µjt

)∣∣ε jt
]

(14)

where ε jt = νjt − µjt. Thus, the static energy efficiency change is calculated by the follow-
ing equation:

E f f cht,t+1
j =

E f f j,t+1

E f f jt
(15)

Then, the change in energy technology progress is obtained by calculating the follow-
ing equation:

Teccht,t+1
j =

[
exp(αt + αtkKt+1

j + αtl Lt+1
j + αtyYt+1

j + αtt(t + 1)

×exp
(

αt + αtkKt
j + αtl Lt

j + αtyYt
j + αttt

) ]1/2

(16)

Finally, the product of E f f cht,t+1
j and Teccht,t+1

j is the dynamic comprehensive energy
efficiency (DEPI), which is presented in Figure 1.

3.3. Econometric Model

After evaluating the RE, we empirically explored the potential impacts of the RE
in the short and long term on CO2 emissions, and determined the validity of the CO2–
EKC (environmental Kuznets curve) hypothesis. To avoid false regression problems, we
considered the following control variables: economic development level, energy structure,
urbanization, and trade openness. Thus, we constructed the CO2–EKC model as follows:

lnCO2it = β0 + β1lnCO2i,t−1 + β2lnSREit + β3lnPgdpit + β4(lnPgdpit)
2

+β5lnENSit + β6lnUrbit + β7lnTrait + µit
(17)

lnCO2it = β0 + β1lnCO2i,t−1 + β2lnLREit + β3lnPgdpit + β4(lnPgdpit)
2

+β5lnENSit + β6lnUrbit + β7lnTrait + µit
(18)

where CO2 represents the CO2 emissions of each province. SRE and LRE represent the short-
run and long-run RE, respectively. Pgdp represents the economic development level, and Tra
represents trade openness. ENS and Urb represent the energy structure and urbanization,
respectively. β1 − β7 are the parameters to be estimated by the model. β0 is the constant
term, and µit represents the random disturbance term.
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3.4. Variable Selection and Data Sources

A panel dataset of 30 provinces in China, from 2001 to 2017, was used in this study for
empirical analysis. The sample excluded Tibet, Taiwan, Hong Kong, and Macao because
of data unavailability. The data on CO2 emissions were taken from the China Emission
Accounts and Database [8]. The RE data for the key explanatory variables (represented by
SRE and LRE, respectively), in the short and long run, were derived from the calculation
results in Section 4.1.

Regarding the control variables, economic development (Pgdp) was measured by GDP
per capita, energy structure (ENS) was measured by coal consumption as a percentage of
total energy consumption, urbanization (Urb) was calculated by the ratio of permanent
urban population to total population, and trade openness (Tra) was presented as the ratio
of net trade imports and exports to aggregate GDP. All data were derived from various
statistical yearbooks of China, which are reported in Table A1 in Appendix A. Detailed
descriptive statistics are provided in Table 1 for all of the above variables.

Table 1. Descriptive statistics of each variable.

Variables Obs. Mean Std. Min Max

lnCO2 510 5.231302 0.9563584 −0.0725707 7.347306
lnSRE 510 4.493737 0.1548966 3.781551 4.816922
lnLRE 510 4.343329 0.1830008 3.352524 4.612049
lnENS 510 3.628914 0.3499347 2.471484 3.971046
lnPgdp 510 8.987297 1.097089 5.704116 11.42572
lnUrb 510 3.881446 0.2867018 3.136033 4.516998
lnTra 510 1.25809 0.8342213 −0.4123573 4.315205

Note: Std. indicates the standard deviation; Min and Max represent minimum and maximum, respectively.

4. Results
4.1. Rebound Effect Estimation Results

We used the system generalized method of moments (SYS-GMM) to evaluate the
parameters in Equation (5), considering the dynamic feature of this model. The results are
reported in Table 2. To ensure the estimation results were robust, the differential generalized
method of moments (D-GMM) estimation results are also reported. The AR test showed no
second-order autocorrelation existed, as shown in Table 1. Based on the Sargan test results,
all instrumental variables selected by the model satisfied the exogenous conditions, which
implies the validity of all instrumental variables. Moreover, compared to the D-GMM
method, the estimation results of the SYS-GMM approach were significantly improved,
which supports the appropriateness of utilizing the SYS-GMM method for this model.

Table 2. Parameter estimation results.

Variables Parameter
D-GMM SYS-GMM

Value Std. Value Std.

L.lnE σ 0.8507 *** 0.0101 0.4302 *** 0.0143
lnP β1 0.1076 *** 0.0283 0.2038 *** 0.0341
lnY β2 0.2245 *** 0.0172 0.2988 *** 0.0152

lnDEPI β3 −0.0591 * 0.1805 −0.1493 *** 0.0249
0.5 × (lnP·lnDEPI ) β4 0.1386 * 0.1633 0.0789 ** 0.0442
0.5 × (lnDEPI·lnY ) β5 0.0957 *** 0.0184 0.1067 ** 0.0814

0.5 × (lnP·lnY ) β6 0.1104 * 0.0639 −0.0780 *** 0.0204
0.5 × [lnP]2 β7 −0.1926 0.1868 −0.3167 ** 0.0197
0.5 × [lnY]2 β8 −0.0081 0.1445 −0.0129 *** 0.0133

0.5 × [lnDEPI]2 β9 −0.0936 *** 0.0667 −0.1467 *** 0.0025
_Cons α −0.1452 *** 0.0538 −0.3877 *** 0.0981
AR (1) 0.0251 0.0013
AR (2) 0.1476 0.1885

Sargan test 0.9841 1.000
Obs. 448 478

Note: ***, **, * means the parameters are significant at the levels of 1%, 5%, and 10%, respectively; Std. represents
standard errors.
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Based on the parameter estimation results in Table 1, the RE value of each province
was calculated in the short and long term. Figure 4 presents the average value of the RE
in each province from 2001 to 2017. As clearly shown in Figure 4, most of the provinces
experienced a partial RE during this period, but some provinces, such as Guangxi and
Henan, experienced a backfire effect. The average RE across the nation was 90.47% in the
short term, and 78.17% in the long term.
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To clearly identify the evolution track of China′s RE, we drew spatial distribution
maps of China’s RE, both in the short and long run, for 2001, 2006, 2012, and 2017, which
are presented in Figure 5. Notably, two interesting phenomena attracted our attention
from Figure 5. First, the RE was greater in the short run than in the long run. This may be
because, in the context of low energy prices and marketization in China, energy prices have
not adjusted in the short term to reflect the improvements in energy efficiency.

Therefore, improving energy efficiency will greatly stimulate energy demand to a large
extent in the short term, which leads to a steep discount of the potential energy savings from
improved energy efficiency. In the long run, energy prices may adjust to some extent; in
addition, knowledge accumulation and increased awareness of environmental conservation
among economic agents, and environmental regulation policies, will encourage end-users
to make more efficient use of energy. As a result, the energy-saving benefits of improved
energy efficiency will be gradually realized in the long run.
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Second, Figure 5 shows that most of the high-RE provinces are located in the central
and eastern regions of the country. According to Orea et al. [61], energy prices and income
levels are the main factors affecting the energy rebound. Because energy prices are relatively
low and market oriented in China, this finding can be discussed further with consideration
of regional economic development differences. Eastern China is a developed region having
the highest GDP per capita (CNY 20,660.34 billion), whereas that of the central region
is moderate (CNY 11,739.36 billion GDP per capita) and the western region is relatively
poor (CNY 6952.39 billion GDP per capita) [62]. In light of the fact that rapid industrial-
ization and urbanization are taking place in China at present, there are still no signs of a
decoupling between regional economic growth and energy consumption. Due to the high
income levels and large economic scale in the eastern and central regions, their energy
consumption demand is far greater than that in the poorer western regions. Therefore, the
rapid improvement in energy efficiency in these regions (as shown in Figure 1) stimulates
significant energy demand. In the sample period, the average energy consumption in the
eastern and central regions reached 139.96 and 109.94 Mtce, respectively, whereas that of
the western region was only 68.88 Mtce [7]. Correspondingly, as shown in Figure 1, energy
efficiency improvements in the western region are not obvious, and energy efficiency even
deteriorated in some provinces. Therefore, the RE in the western region is not obvious due
to the low energy efficiency and poor income level.

4.2. Econometric Model Estimation Results
4.2.1. Cross-Sectional Dependence Test Results

Grossman and Krueger [63] noted that ignoring cross-sectional dependence within
panel data will affect the credibility of the estimation results, which may result in inconsis-
tent evaluation results. Therefore, it is essential to perform a cross-sectional dependence
test before empirical analysis is conducted [64]. For this purpose, we employed the Pe-
saran cross-sectional dependence test [65], Breusch–Pagan Lagrange multiplier test [66],
Friedman test [67], and Frees test [68] to identify whether cross-sectional dependence exists.
Table 3 reports the test results, and shows that, at the 1% significance level, all four tests
rejected the null hypothesis of no cross-sectional dependence. Therefore, it was necessary
to take into account cross-sectional dependence when performing the empirical analysis in
this study.

Table 3. Results of the cross-sectional dependence test.

Test Statistics Prob.

Pesaran CD test 93.612 *** 0.0000
Breusch–Pagan LM test 491.382 *** 0.0000

Friedman test 57.898 *** 0.0000
Frees test 4.898 *** 0.0000

Note: *** indicates statistical significance at 1%.

4.2.2. Panel Unit Root Test Results

A stationarity check is necessary for each variable before empirical analysis is con-
ducted to avoid invalid regression problems. We utilized the CIPS tests and Pesaran CADF
test [69], which permit the existence of cross-sectional dependence [70], to detect stationar-
ity for each variable in this study. Table 4 reports the results of the above two tests, and
shows that only some variables (e.g., CO2, ENS, and Pgdp) are significant at the tested level.
Therefore, we took the first-order difference for each variable. After taking the first-order
difference, each variable rejected the null hypothesis (existence of a unit root) at the 1%
significance level. Thus, each variable should be transformed into a variable having an
order of one in the subsequent estimation procedure.
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Table 4. Panel unit root test results.

Variable
Level 1st Difference

Intercept Intercept and Trend Intercept Intercept and Trend

Pesaran CIPS test
lnCO2 −2.631 *** −2.940 *** −4.199 *** −4.270 ***
lnSRE −2.053 −2.567 −3.563 *** −3.643 ***
lnLRE −1.905 −2.558 −3.584 *** −3.630 ***
lnENS −2.104 * −2.442 ** −3.874 *** −3.787 ***
lnPgdp −2.489 ** −2.790 ** −2.605 *** −3.220 ***
lnUrb −1.641 −1.759 −2.587 *** −2.828 ***
lnTra −1.992 −2.780 ** −3.900 *** −3.866 ***

Pesaran CADF test
lnCO2 −2.533 *** −3.153 *** −3.459 *** −3.533 ***
lnSRE −1.921 −2.491 −2.876 *** −3.123 ***
lnLRE −1.924 −2.478 −2.877 *** −3.104 ***
lnENS −2.080 ** −2.575 * −3.122 *** −2.958 ***
lnPgdp −2.073 ** −2.439 ** −3.300 *** −3.726 ***
lnUrb −1.817 −1.981 −2.481 *** −2.574 ***
lnTra −1.334 −2.175 −2.097 *** −3.768 ***

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

4.2.3. Benchmark Regression

We first drew the correlation plot between the RE and CO2 emissions, as presented in
Figure 6, which shows that the RE measures (lnSRE and lnLRE) are positively correlated
with CO2 emissions. Their goodness of fit values (R2), however, are only 0.2789 and 0.2854,
respectively. Therefore, more accurate and efficient methods are needed in a further step to
fully understand the impact of the RE on CO2 emissions.
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The GMM method is more suitable for dynamic panel models (Equations (17) and
(18)) considering their dynamic features, because it can solve the endogeneity problem
by introducing reasonable instruments, thus effectively improving estimation results [71].
Specifically, the system GMM (SYS-GMM) approach can be used to introduce more effective
instrumental variables, and to simultaneously estimate the level and difference equations,
which improves the validity of estimation results compared with the difference GMM
(D-GMM) method [72]. Therefore, we adopted the SYS-GMM estimation method as a
benchmark and report the D-GMM estimation results due to their robustness. Table 5
presents the results; the AR test results indicate that second-order autocorrelation does not
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exist. All of the instrumental variables used in the model meet the exogenous conditions
based on the results of the Sargan test, and thus are valid.

Table 5. Results of modeling the impact of RE on CO2 emissions.

Variables
Short-Run RE Long-Run RE

SYS-GMM D-GMM SYS-GMM D-GMM

lnCO2,t−1
0.333 ***
(19.32)

0.289 ***
(16.06)

0.331 ***
(19.14)

0.286 ***
(15.87)

lnSRE 0.818 ***
(5.57)

0.543 ***
(4.38)

lnLRE 0.695 ***
(5.53)

0.493 ***
(4.66)

lnENS 0.805 ***
(14.55)

0.745 ***
(16.85)

0.843 ***
(14.48)

0.726 ***
(16.85)

lnPgdp 0.645 ***
(8.87)

0.424 ***
(5.96)

0.543 ***
(4.84)

0.705 ***
(5.99)

lnPgdp2 −0.025 **
(−2.06)

−0.020 *
(−1.72)

−0.027 **
(−2.18)

−0.023 **
(−2.07)

lnUrb 0.303 **
(2.28)

0.288 ***
(8.23)

0.341 **
(2.10)

0.311 ***
(8.27)

lnTra 0.045 ***
(6.15)

0.038 ***
(5.75)

0.052 ***
(6.16)

0.041 ***
(5.83)

_Cons −2.01 ***
(−12.53)

−3.32 ***
(−9.40)

−2.92 ***
(−11.68)

−2.23 ***
(−9.11)

AR (1) 0.010 0.011 0.007 0.007
AR (2) 0.461 0.498 0.462 0.469

Sargan test 0.996 0.999 0.998 1.000
Obs. 480 450 480 450

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively; z value in parentheses.

As can be seen in Table 5, both the short-run and long-run RE have significant positive
impacts on CO2 emissions in China. Specifically, a 1% increase in the short-run RE leads to
an increase in CO2 emissions of 0.818%, whereas a 1% increase in the long-run RE causes
CO2 emissions to rise by approximately 0.695%. These results warrant great concern. The
increasingly significant RE poses a potential challenge to the carbon reduction goals. To
strengthen environmental protection and reduce greenhouse gas emissions, the central
government of China proposed a “double control policy” in October 2015, which specifically
aimed to control the total energy consumption and energy intensity. Improving energy
efficiency is the key to reducing energy intensity and, subsequently, reducing total energy
consumption. Driven by the strong national energy policy, China′s energy efficiency has
gradually improved, as shown in Figure 1. However, the results of this study imply that
the existence of a large RE is a potential challenge to achieving the energy-saving objectives
outlined in the policies by solely relying on improved energy efficiency. Due to China′s
vast territory, large population, and unbalanced regional development, many provinces
are still at a stage of rapid industrialization and urbanization, which requires enormous
energy input. Therefore, the rapid improvement in energy efficiency greatly stimulates
energy consumption in the context of low energy prices and marketization in China, which
results in more CO2 emissions.

Regarding the control variables, there is a significant positive effect of the energy
structure on CO2 emissions, which indicates the urgency of the energy structure adjustment.
The coefficient of per capita income is positive, but its quadratic term is negative; this
implies the existence of an inverted-U-shaped nexus between per capita income and CO2
emissions, which proves the validity of the CO2–EKC hypothesis. Saboori et al. [73] and
Dong et al. [74] also came to the same conclusions. In addition, urbanization presents a
significantly positive effect on CO2 emissions. In light of China’s rapid urbanization, many
rural laborers are migrating to cities, which creates demand for services such as housing
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and medical services. These additional demands inevitably propel energy consumption,
and thus promote CO2 emissions. Finally, a positive estimate of trade openness implies
that trade openness positively impacts China′s CO2 emissions. The possible reason for this
is that increasing domestic and international trade may result in increased CO2 emissions
due to the flow of factors between regions [75].

4.2.4. Robustness Checks

We performed a robustness test by introducing a new dependent variable, per capita
CO2 emissions (denoted as PCO2), to determine the validity and reliability of the bench-
mark regression results. The test results from the SYS-GMM and D-GMM approaches are
presented in Table 6. A comparison of the estimation results in Tables 5 and 6 indicates
that the core explanatory variables, e.g., short-run RE (lnSRE) and long-run RE (lnLRE), in
addition to the other control variables, exhibit consistency, both in terms of coefficient size
and statistical significance. This indicates the reliability and credibility of the benchmark
regression results presented in Section 4.2.3.

Table 6. Robustness test results using an alternative variable.

Variables
Short-Run RE Long-Run RE

SYS-GMM D-GMM SYS-GMM D-GMM

lnPCO2,t−1
0.345 ***
(23.65)

0.298 ***
(17.12)

0.336 ***
(19.88)

0.295 ***
(16.85)

lnSRE 0.756 ***
(5.93)

0.502 ***
(3.94)

lnLRE 0.630 ***
(8.21)

0.475 ***
(4.25)

lnENS 0.781 ***
(23.22)

0.639 ***
(29.50)

0.714 ***
(22.66)

0.688 ***
(29.26)

lnPgdp 0.603 ***
(4.61)

0.571 ***
(6.60)

0.718 ***
(5.85)

0.625 ***
(5.99)

lnPgdp2 −0.023 **
(−2.01)

−0.017 ***
(−2.79)

−0.028 ***
(−3.12)

−0.021 ***
(−5.07)

lnUrb 0.318 **
(2.22)

0.262 ***
(8.93)

0.325 **
(2.09)

0.301 ***
(12.82)

lnTra 0.040 ***
(4.78)

0.048 ***
(5.01)

0.057 ***
(3.84)

0.044 ***
(8.29)

_Cons −3.71 ***
(−5.06)

−3.58 ***
(−10.24)

−2.11 ***
(−9.73)

−5.25 ***
(−27.66)

AR (1) 0.001 0.010 0.011 0.006
AR (2) 0.483 0.423 0.503 0.539

Sargan test 1.000 0.955 0.996 1.000
Obs. 480 450 480 450

Note: ***, ** indicate statistical significance at the 1% and 5% levels, respectively; z value in parentheses.

5. Discussion
5.1. Regional Heterogeneity Analysis

The distribution map of the RE and CO2 emissions exhibits obvious regional hetero-
geneity among different regions in China, as displayed in Figures 1 and 3. Therefore, to
understand whether the impacts of the RE on CO2 emissions differ across various regions,
we grouped the whole sample based on the average value of the RE and the CO2 emissions
of each province. Considering that the spatial distributions of short-run and long-run
RE exhibit similar characteristics (as shown in Figure 5), the mean value of the two RE
measures was utilized to represent the total RE for the groups. Therefore, the full sample
was categorized into four groups: (1) the high-RE region, which includes the provinces
having an RE greater than the national average; (2) the low-RE region, which includes
the provinces having an RE lower than the national average; (3) the high-emission region,
which includes the provinces having CO2 emissions higher than the national average;
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(4) and the low-emission region, which includes the provinces having CO2 emissions lower
than the national average. The specific provinces in each group are presented in Figure 7.
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Accordingly, on the basis of the SYS-GMM method, we explored the impacts of the RE
on CO2 emissions across the four regions, and the results are reported in Table 7. It can be
seen from this table that there are significant regional differences in the impact of the RE on
CO2 emissions. In further detail, the RE positively affects CO2 emissions in both the high-
emission and low-emission regions at the 1% significance level. Specifically, a 1% increase
in the RE will lead to increases in CO2 emissions of approximately 0.655% in the high-
emission region and 0.332% in the low-emission region. Notably, this positive impact in
the high-emission region is greater than that in the low-emission region. A possible reason
for this may be that, in high-emission regions, provinces such as Shanxi and Shandong are
dominated by large-scale heavy industry, and urbanization is rapidly developing, both of
which require great amounts of energy. Therefore, improved energy efficiency (as shown in
Figure 1) increased energy consumption in these areas, resulting in a large RE (as shown in
Figure 4), which caused an increase in CO2 emissions. In summary, reducing the RE will be
conducive to mitigating CO2 emissions in both high-emission regions and low-emission
regions in China. Furthermore, there is more scope for emissions reductions from the
perspective of the energy rebound, especially for high-emission regions.

In addition, the RE still contributes significantly to CO2 emissions, in both the high-RE
and low-RE regions. More specifically, a 1% increase in the RE will lead to increments
in CO2 of approximately 0.731% in the high-RE region and 0.406% in the low-RE region.
Provinces in the high-RE region, such as Guangxi and Henan, are currently experiencing
rapid industrialization and urbanization, and thus the energy demand of these areas is
still increasing. Therefore, improving energy efficiency in these areas leads to a significant
increment in energy consumption, which subsequently results in large energy rebounds
and carbon emissions. As shown in Figure 4, none of the provinces showed excellent
energy savings, but all showed partial rebounds, and some provinces even experienced the
backfire effect. This indicates that the potential energy savings resulting from the energy
efficiency improvement are offset by the additional new energy demand, which leads to
faster carbon emissions.
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Table 7. Results of the regional heterogeneity analysis.

Variables High-Emission Region Low-Emission Region High-RE Region Low-RE Region

lnCO2,t−1
0.749 ***

(6.09)
0.308 ***

(5.54)
0.422 ***

(3.56)
0.301 **
(2.21)

lnRE 0.655 ***
(2.94)

0.232 ***
(3.87)

0.731 ***
(4.06)

0.356 ***
(5.37)

lnENS 0.737 ***
(2.71)

0.401 ***
(2.93)

0.505 ***
(8.12)

0.427 ***
(7.91)

lnPgdp 0.681 ***
(3.26)

0.307 **
(2.46)

0.755 ***
(5.33)

0.362 *
(1.73)

lnPgdp2 −0.018 *
(−1.23)

−0.020 ***
(−3.08)

−0.013
(−1.01)

−0.027 **
(−2.00)

lnUrb 0.438 ***
(3.19)

0.211 **
(2.30)

0.037 ***
(5.85)

0.028 **
(2.35)

lnTra 0.053 ***
(4.36)

0.040 **
(2.18)

0.043 ***
(5.61)

0.032 ***
(3.39)

_Cons −1.055 ***
(−10.12)

−1.741 ***
(−9.90)

−0.599 ***
(−8.21)

−3.63 ***
(−7.28)

AR (1) 0.002 0.001 0.021 0.011
AR (2) 0.3595 0.460 0.759 0.673

Sargan test 1.000 0.922 0.913 0.945
Obs. 272 208 272 208

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively; z value in parentheses.

5.2. Asymmetric Analysis

We examined the overall impact of the RE on CO2 emissions on the basis of the
SYS-GMM technique. To explore the asymmetric impacts of the RE on CO2 emissions,
we re-estimated the benchmark models (Equations (17) and (18)) based on the two-step
quantile regression method; these results are reported in Table 8. We also plotted the
changing track of each variable’s coefficients at the 10th, 25th, 50th, 75th, and 90th quantile
levels, as shown in Figure 8.

Table 8. Two-step quantile regression results.

Dependent variable: lnCO2

Variable 10th 25th 50th 75th 90th

lnRE 0.056
(0.29)

0.083
(0.73)

0.503 ***
(4.47)

0.805 ***
(7.49)

0.846 ***
(7.83)

lnENS 0.856 ***
(16.41)

0.839 ***
(18.99)

0.784 ***
(32.10)

0.745 ***
(21.61)

0.733 ***
(18.68)

lnPgdp 0.332
(1.25)

0.719 ***
(8.27)

0.796 ***
(8.22)

0.561 ***
(3.86)

0.549 **
(2.34)

lnPgdp2 −0.026 **
(−2.35)

−0.025 ***
(−5.33)

−0.026 ***
(−5.85)

−0.031 ***
(−5.52)

−0.033 ***
(−5.45)

lnUrb 0.221 *
(1.72)

0.211 **
(2.36)

0.301 ***
(3.46)

0.423 ***
(7.09)

0.664 ***
(5.93)

lnTra 0.050 *
(1.88)

0.045 ***
(3.23)

0.034 **
(2.41)

0.067 **
(2.07)

0.113 **
(2.27)

_Cons −5.240 ***
(−19.21)

−4.753 ***
(−10.41)

−3.601 ***
(−13.30)

−2.621 ***
(−7.50)

−2.059 ***
(−7.74)

R-squared 0.6933 0.6795 0.6755 0.6633 0.6280
Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively; t value in parentheses.

As shown in Table 8, the influences of different variables on CO2 emissions exhibit
significant heterogeneity. More specifically, at the 10th and 25th quantiles, the coefficient
of the RE is not significant, but becomes significant at higher quantiles with an obvious
increase in coefficient size. This implies that the marginal decrease in the RE in the provinces
located at higher quantiles (i.e., 50th, 75th, and 90th) promotes a greater CO2 reduction
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than that in the provinces located at the lower quantiles, which supports the findings of the
regional heterogeneity analysis in Section 5.1. In terms of the control variables, an inverted-
U-type nexus still exists between per capita income and CO2 emissions, except at the 10th
quantile. The coefficients of energy structure (lnENS), urbanization (lnUrb), and trade
openness (lnTra) at all quantiles are statistically significant, and the signs are consistent
with the benchmark estimation results, as discussed in Section 4.2.3. This indicates CO2
emissions in China are significantly affected by energy structure, urbanization, and trade
openness at all quantile levels.
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Notably, an interesting finding can be seen from Figure 8, namely, that the energy
structure coefficient shows a downward trend in all quantiles. This implies that the impact
of the energy structure (measured by coal′s share of total energy consumption) on CO2
emissions is gradually weakening. The reason for this may be that, in recent decades, the
central government of China implemented a series of policies, such as applying structural
reforms to the supply side of the energy sector and prioritizing the development of renew-
able energy industries. As a result, the proportion of traditional fossil energy gradually
declined, thus weakening the positive role of the energy structure on CO2 emissions.

5.3. Panel Causality Analysis

To enable more precise and targeted energy policies to be drawn up, we further
conducted causal relationship checks for all variables based on the D-H panel causality test,
which was proposed by Dumitrescu and Hurlin [76]. Table 9 shows the results. In addition,
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to clearly identify the causal relationship between variables, we also plotted the causality
relationship flow, as shown in Figure 9.

Table 9. Results of the D-H panel causality test.

Null Hypothesis High-RE Region Low-RE Region High-Emission Region Low-Emission Region Full Panel

lnCO2 =⇒ lnRE 2.9107 ** 0.1270 2.0124 ** 0.2229 2.0829 **
lnCO2 =⇒ lnPgdp 6.1083 *** 3.7953 *** 2.9116 *** 4.5193 *** 2.7809 ***
lnCO2 =⇒ lnENS 6.1812 *** 7.2909 *** 6.9740 *** 7.9234 *** 8.4656 ***
lnCO2 =⇒ lnUrb 0.4335 5.3971 *** 5.6496 *** 1.5581 5.2785 ***
lnCO2 =⇒ lnTra 2.0406 ** 1.6888 * 4.0267 *** 0.6234 3.4415 ***
lnRE =⇒ lnCO2 6.8348 *** 4.1580 *** 7.2673 *** 4.1341 *** 8.1920 ***
lnRE =⇒ lnPgdp 12.6820 *** 7.9743 *** 11.5729 *** 6.0417 *** 12.6889 ***
lnRE =⇒ lnENS 8.7596 *** 3.2904 *** 3.6172 *** 9.8422 *** 9.2018 ***
lnRE =⇒ lnUrb 13.4453 *** 5.0089 *** 12.7378 *** 4.1964 *** 12.3511 ***
lnRE =⇒ lnTra 13.3164 *** 5.5044 *** 16.2709 *** 2.6374 *** 13.9845 ***

lnENS =⇒ lnCO2 3.1805 *** 2.6810 *** 5.6215 *** 3.2625 *** 4.4045 ***
lnENS =⇒ lnRE 5.7292 *** 4.4023 *** 5.9382 *** 0.3936 4.2568 ***

lnENS =⇒ lnPgdp 4.4640 *** 0.9366 2.9863 *** 2.4564 ** 3.2693 **
lnENS =⇒ lnUrb 2.5844 *** 4.7457 *** 3.6127 *** 3.6407 *** 2.8578 ***
lnENS =⇒ lnTra 5.4698 *** 0.4124 4.9429 ** 1.0796 2.0021 **

lnPgdp =⇒ lnCO2 15.4203 *** 7.7656 *** 12.9959 *** 8.0352 *** 15.0723 ***
lnPgdp =⇒ lnRE 14.1972 *** 13.5024 *** 5.4679 *** 19.4541 *** 16.9224 ***

lnPgdp =⇒ lnENS 0.1276 7.4647 *** 0.7568 5.2976 *** 3.2119 ***
lnPgdp =⇒ lnUrb 11.6523 *** 8.7414 *** 8.8450 *** 6.9433 *** 11.2289 ***
lnPgdp =⇒ lnTra 4.4646 *** 2.8363 *** 6.1700 *** 2.2988 ** 6.1578 ***
lnUrb =⇒ lnCO2 2.1959 *** 2.2606 *** 2.2588 ** 2.1676 *** 1.9816 **
lnUrb =⇒ lnRE 2.7156 *** 5.1254 *** 2.6830 *** 5.3219 *** 5.5230 ***

lnUrb =⇒ lnPgdp 4.5637 *** 6.0518 *** 5.7973 *** 5.0844 *** 7.7110 ***
lnUrb =⇒ lnENS 2.5722 *** 4.0354 *** 3.0429 *** 2.3809 ** 3.8579 ***
lnUrb =⇒ lnTra 3.1687 *** 4.4792 *** 3.3938 *** 3.8554 *** 5.0927 ***
lnTra =⇒ lnCO2 4.8353 *** 6.8901 *** 9.8784 *** 7.0257 *** 6.8802 ***
lnTra =⇒ lnRE 7.0087 *** 0.3475 0.5365 9.9738 *** 5.2016 ***

lnTra =⇒ lnPgdp 9.2717 *** 7.0601 *** 5.3041 *** 6.4698 *** 4.2115 ***
lnTra =⇒ lnENS 2.7430 *** 5.8916 *** 3.3907 *** 4.7269 *** 5.7968 ***
lnTra =⇒ lnUrb 5.5479 *** 2.7532 *** 8.7199 *** 7.3233 *** 2.4655 ***

Note: ***, **, * indicate statistical significance at the 1%, 5%, and 10% levels, respectively; The values represent
Wald statistics; lnA⇒ lnB denotes lnA does not cause lnB; bold values indicate no significant relationship exists
between the variables.

Specifically, for the full sample, bidirectional causality was detected between variables,
including the RE and CO2 emissions, which again supports the significant impacts of the
RE on CO2 emissions, as shown in Section 4.2.3. In addition, the bidirectional causality
among all of the four control variables (i.e., ENS, Pgdp, Urb, Tra) and CO2 emissions verified
the robustness of the regression results presented in Section 5.3. Moreover, it was observed
that there is heterogeneous causality link among the variables across the four regions. In
the high-RE and high-emission regions, the RE and CO2 emissions exhibit a significant
bidirectional causal relationship. Nevertheless, one-way causality from the RE to CO2
emissions exists in the low-RE and low-emission regions. This implies full consideration
should be given to the regional differences when formulating RE and emission reduction
policies for each region by effectively controlling the influence channels.
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6. Conclusions

The existence of an RE poses a potential challenge to energy-saving and emission-
reduction goals that solely rely on improvements in energy efficiency. In the context of
lowering carbon emissions, attention should be paid to the RE in terms of its adverse impact
on the environment. To understand the potential impacts of the RE on greenhouse gases,
we attempted to evaluate the China’s provincial RE values over the period 2001–2017, for
the short and long run, and to explore the extent to which RE contributes to the increment in
CO2 emissions. Considering regional heterogeneity, asymmetric and regional heterogeneity
analyses were further conducted. The main conclusions are as follows.

First, based on the calculation results of this study, China’s national average rebound
level was 90.47% in the short run, and 78.17% in the long run, during the 2001–2017 period.
Most of the provinces experienced a partial RE, whereas some provinces experienced a
backfire effect, such as Guangxi and Henan. Furthermore, the RE in the short run was
greater than that in the long run for the whole sample. Most of the provinces having high
energy rebounds were concentrated in the central and eastern regions.

Second, the empirical results indicate that an increase in the short-run RE leads to an
increment in CO2 emissions of approximately 0.818%, whereas a 1% increase in the long-run
RE leads to an increment in CO2 emissions of approximately 0.695%. Accordingly, reducing
the RE can mitigate China’s CO2 emissions. With respect to the regional heterogeneity
analysis, the CO2 emissions in each of the four types of region (e.g., high-emission region,
low-emission region, high-RE region, and low-RE region), particularly the high-emission
and high-RE regions, are significantly and positively affected by the RE.
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Third, the asymmetric analysis implies that a marginal decrease in the RE in the
provinces located at higher quantiles (i.e., 50th, 75th, and 90th) promotes a greater CO2
reduction than that in the provinces located at lower quantiles. In addition, the energy
structure exerts a gradually reducing impact on CO2 emissions across all quantiles. The D-
H panel causality test indicates there is a heterogeneous causality link among the variables
across the four regions. In the high-RE and high-emission regions, the RE and CO2 emis-
sions have a significant bidirectional causal relationship. Nevertheless, one-way causality
exists from the RE to CO2 emissions in the low-RE and low-emission regions.

Notably, this study only examined the preliminary empirical relationship between
the rebound effect and CO2 emissions, and is subject to some limitations. One limitation
is associated with the specific influence mechanism in the rebound effect–CO2 emissions
relationship. Exploring how the rebound effect influences CO2 emissions can help pol-
icymakers to accurately formulate specific strategies. Thus, in future research, we will
discuss the internal direct and indirect impact mechanisms between the rebound effect and
CO2 emissions.
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Abbreviations

RE Energy rebound effect GDP Gross domestic product
DEPI Dynamic comprehensive energy efficiency index CEADs China Emission Accounts and Database
Mtce Million tonnes coil equivalent CSY China Statistical Yearbook
EKC Environmental Kuznets curve CESY China Energy Statistical Yearbook
CADF Cross-sectionally augmented Dickey–Fuller D-GMM Differential generalized method of moments
CD Cross-section dependence SYS-GMM System generalized method of moments
Effch Energy efficiency change Tech Technological progress change
k Capital stock L Labor
CIPS Cross-sectionally augmented Im, Pesaran, and Shin CO2 Carbon dioxide

Appendix A

Table A1. Descriptions and data sources of the variables.

Variable Definition Data Sources

RE Energy rebound effect Calculation in Section 4.1
CO2 CO2 emissions of each province China Emission Accounts and Database
GDP Gross domestic product (GDP) of each province CSY (2018)

P Energy price (P) was measured by the price index of fuels CSY (2018)
E Total energy consumption of each province CESY (2018)
K Capital input (K) was calculated based on the perpetual inventory method CSY (2018)

L Labor input (L) was measured by employee number of each province at the
end of the year CSY (2018)

DEPI Dynamic comprehensive energy efficiency index Calculation in Section 4.1
Pgdp Per capita gross domestic product (GDP) of each province CSY (2018)

ENS Energy structure (ENS) was measured by coal consumption as a percentage
of total energy consumption CESY (2018)

Urb Urbanization (Urb) was calculated by the ratio of permanent urban
population to total population CSY (2018)

Tra Trade openness (Tra) was presented as the ratio of net trade imports and
exports to the aggregate GDP CSY (2018)
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transformation of the energy sector: The case of poland. Energies 2021, 14, 1217. [CrossRef]
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