
C02 Increase and Climate Prediction

  Clues from Deep一Sea Carbonates

by Wolfgang H. Berger

助 e rising concentration of carbon dioxide in the

atmosphere, from the burning of coal and hydro-
carbons, is projected to produce substantial warming
in the near future. How high will the C02 content
rise? Will climate be more stable or less? How will

the Antarctic ice and sea level respond? Our geo-
logical past, as recorded in deep-sea carbonates,
offers clues to possible answers.

Link Between Atmospheric C02 and Deep-Sea Carbonates
On a time-scale of decades to millennia, the carbon budget of
the atmosphere is chiefly controlled by the carbon chemistry
of the ocean. The ocean carbon reservoir (mostly bicarbon-
ate ion) is about 60 times larger than that of the atmosphere,
and since the atmosphere is in intimate contact with the

3

Introduction

The carbon dioxide content of the atmosphere has increased
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When the expected rise in atmospheric C02 is seen in
geological perspective (Fig. 2), one gains an impression of the
tremendous acceleration of geological processes that is the
hallmark of our own time. The exact values for former C02
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surface of the seas over 70% of the planet, the ocean acts as
a major regulating device. Already roughly one half of the
newly introduced C02 has gone into the ocean, thereby
relieving the pressure on the atmosphere.

One might expect, given enough time, that the new C02
should almost all end up in the ocean, with only one part in 60
left over for the atmosphere. However, this is not so because
of the limited supply of carbonate ion, which reacts with the
invading C02. As this supply is used up, the pH drops and
back-pressure develops. As a rule of thumb, for a change of
I％ in the dissolved carbon in the ocean, the atmospheric
composition changes by 10％．This factor of ten is known as
the "buffer factor," the importance of which was recognized
by Revelle and Suess (1957).
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Excess carbon dioxide is neutralized on the sea floor when it
arrives there and dissolves carbonate:
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This reaction decreases the buffer factor to about 27％ of its

original value, according to Bacastow and Keeling (1979).
Thus, the main effect of carbonate dissolution is to increase
the ability of the ocean to hold C02 and hence to accelerate
C02 uptake (Fig. 3).
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Projections of future C02 levels depend on many assump-
tions. Especially important is the expected C02 production
from industrial activity, and for these studies an input curve
much like that in Figure I was used. Another assumption
concerns the rate at which the sea floor responds by
carbonate dissolution to new C02. The projection in Figure 3
is based on instantaneous equilibrium, that is on fast
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Figure 3:   Projected increase in atmospheric C02
艺n three model scenarios.   From Bacastow and Keeling
(1979)。

dissolution of carbonate in unlimited supply. A more realistic
assessment of this rate-limited process can be obtained by
comparing the carbonate preservation on the Atlantic and
Pacific sea floors, as recorded by the condition of the shells
of planktonic foraminifera.

On the whole, planktonic shells are in good to excellent shape
above a certain depth level, called the lysocline. As shown in
Figure 4, they deteriorate toward greater depths until they
disappear at the carbonate compensation depth (CCD). The
amount of total carbonate dissolved at the level of the

lysocline, compared with sediments well above it, is about
20% (Berger, Bonneau and Parker 1982), increasing to 100％
at the CC D.

The preservation profiles are quite different for Atlantic and
Pacific: in the Atlantic the lysocline and CCD levels are
typically about one kilometer deeper. The deep Atlantic is
better ventilated than the deep Pacific, due to the geo-
graphic location of deep water sources. Thus, the Pacific
deep waters have considerably more time in which to enrich
themselves with C02 from the oxidation of organic matter

settling from surface waters. The result is a higher content
of unbalanced C02 in the deep Pacific, that is, a greater
undersaturation. It is as though 5％of "new" C02 had been
introduced into the deep Pacific, but not the Atlantic.

Using the Atlantic/Pacific analogy, we can estimate that for
each percent of "new" C02 the lysocline and CCD will rise by
200 meters. The area of new seafloor thus subjected to
increased dissolution is not all that large, and the increase in
dissolution rate at any one depth is moderate. Calculations
based on the difference in alkalinity and in age between
Pacific and Atlantic deep water, suggest that to titrate one
third of the new C02 would take a thousand years or so. As
for shallower-water environments, the supply of carbonate
required to titrate C02 simply does not exist.

Deglaciation: A Message from the Ice Record

In order to determine the characteristics of climate dynamics
from the history of the Earth, detailed studies must be made
of periods of deglaciation. During the transition from glacial
to postglacial time, enormous masses of ice melted in North
America and in northern Europe and sea level rose by more
than 100 meters, converting shelf land to shelf sea. Sea ice
disappeared over large regions, forests expanded, and the
climate became warmer and wetter, encouraging the begin-
nings of agriculture. The C02 content of the atmosphere
apparently also changed.
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the ice, it is now tentatively accepted that the C02 concen-
tration rose from a value near 200 ppm at the glacial
maximum to an early Holocene value near 300 ppm (Fig. 5).

One way to produce the C02 increase is to lower the
productivity of the ocean, as suggested by Broecker (1982).
Ocean productivity controls the atmospheric C02 as shown in
Figure 6. In the sunlit zone, photosynthesis precipitates
organic matter, removing dissolved C02 from the sur-
roundings. Some of the organic matter is removed by set-
tliRg, and thus the surface waters on the whole are depleted
in C02. The atmosphere is in equilibrium with the surface
waters, hence it is depleted in C02 also. The deep waters
are correspondingly enriched in C02 because organic matter
there is oxidized, releasing C02. This "biological pump," a
term coined by Roger Revelle, is responsible for roughly
halving the atmospheric C02 content from an expected value

Thiede, 1983). Another approach is to analyze assemblages
of planktonic organisms to determine paleofertility. For
instance, low and high-fertility water masses have very
different communities of planktonic foraminifera.生必迎一
竺oquadrina旦些ertre主prefers productive waters, while Pul-
len些业a obliquiloeulata does quite well in waters of lo丽r
fertility. A changing ratio between these two species, there-
fore, may be taken as a change in productivity.   In the
equatorial Pacific this ratio does change in the expected
direction from glacial to Holocene sediments,
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Figure 5:   Glacial-to-Holocene   change   of   atmo-
spheric carbon dioxide as seen in ice cores (various
syrabols) from Greenland and Antarctica． Compiled in
Berger and Keir （竺 Hansen and Takahashi， 1984)·
Oxygen isotope curve from the west-equatorial Pacific
superimposed for time-scale (frora Berger, 1982)．
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There are various ways to measure changes in productivity
within the deep-sea record, for example by noting the abun-
dance of organic carbon or of siliceous fossils (e.g. Suess and
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Figure 7: Difference between the 613C values of
planktonic (PF) and benthic fora-minifera (BF) as an
indicator of atmospheric C02·Solid curve: expected
values (Keir and Berger, 1983) if a global change in
productivity parallel to a sea level change is the

sole   mechanism   for   the   glacial-Holocene   C02
change. Stippled curve: actual record from the east-

equatorial   Pacific   (Shackleton   et   al。， 1983a)。
Shaded area indicates the range Of PC02 Values from
ice core measurements (based on data in Delmas et al。
and Neftel et al。，compiled in Keir and Berger, 1983)．
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'1he good qualitative agreement between model and obser-
vation does not, of course, mean that the process is under-
stood. Other models mi沙t give an equally good fit, and
cores from many more regions have to be looked at, because
changes in the eastern equatorial Pacific (where upwelling is
important) are not necessarily representative of those for the
entire ocean. In charting the glacial to Holocene produc-
tivity fluctuations for different areas of the ocean, much will
be learned about the dynamics of the carbon system, greatly
improving our modelling of the response to C02 input.
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The Mystery of the Younger Dryas

A period of severe cooling in the middle of the last deglaci-
ation is well known from glacial readvances and other
climate indicators in northern Europe, and also from the
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land area increases, as does the vegetation and the area
covered by the ocean. The net effect is a decrease in surface
albedo, which can lead to further warming. A change in sea
ice cover must also be considered, for ice is much more
reflective than water, and it delivers less moisture (i.e. heat)
to the atmosphere. Another feedback mechanism is tied to
the carbon system- warming of surface waters makes C02
less soluble in seawater, so some of it will enter the
atmosphere.
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Greenland ice record (Dan笔aard et al., 1971). This so-called
"Younger Dryas" lasted for only a few hundred years,
between 11,000 and 10,000 years ago. It was preceded by a
period of unusual warmth, the "Alleroed," and was followed
吻 a period of very fast warming, the "Preboreal" (Mangerud
et al., 1974). The effects of this major cooling episode are
seen in many oceanic deep-sea cores from various regions
(Fig. 8). Profound changes in precipitation patterns may be
indicated, with tropical rivers running high during the warm
periods and low during the Younger Dryas. The polar front,
migrating north from its glacial position between New York
and Lisbon, apparently turned and moved south again during
the Younger Dryas (Ruddiman and McIntyre, 1973).
The Younger Dryas event may be regarded as the expression
of a major instability in the ocean-atmosphere system, one
worth studying in detail. In principle, instability can be
introduced from two sources: positive feedback with a lack
of damping, and transient reservoirs of water or carbon that
can be activated quickly to disturb the system. One powerful
source of positive feedback is albedo.When ice first melts,
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Figure 9:   Evidence for intermittent production of
deep water during deglaciation.   For the central
Atlantic 613C values are shown for Cibicidoides
wuellerstorfi near 3.5 km depths, and in the west-
equatorial Pacific at depths of 2-3 km. (Berger and
Vincent, in press)．
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How then was the major warming trend interrupted and put
into reverse? The duration of the Younger Dryas (about 500
years) may hold the clue, because it is close to deep ocean
mixing times. If mixing was strongly reduced during the
Alleroed, C02 could have been trapped in deep waters even
while warming of surface waters proceeded. With a lowered
atmospheric C02 content, the stage would have then been set
for a plunge into a brief ice-age, via positive albedo
feedback. At some point the release of the trapped C02
would have reversed the trend again, allowing the resumption
of rapid warming.

Ideas such as these are purely speculative at this point.
However, it is very likely that vertical mixing did indeed
decrease sporadically during the latest Pleistocene, due to a
reduction in sinking of surface waters in the Norwegian Sea.
Stable stratification from meltwater input during deglacia-
tion in this region has been proposed by Ruddiman and col-
laborators (Ruddiman et al., 1980; Ruddiman and McIntyre,
1981), among others. As Broecker et al. (1985) have pointed
out, a decrease in North Atlantic deep water (NADW) pro-
duction would substantially decrease the amount of heat
entering the Norwegian Sea (and northern Europe) from the
south. During glacial time, the NADW source seems to have

and Pacific deep-water 613C-values become similar, as
happened episodically between 14,000 and 11,000 years ago
(Fig. 9).

That mixing rates of the deep ocean changed during degla-
ciation and affected the carbon balance is supported by the
curious observation that deep-sea carbonate preservation is
unusually good during deglaciation, with a peak near the level
of the Younger Dryas (Fig. 10). Some of this effect may
have to be ascribed to the buildup of the biosphere, as sug-
gested by Shackleton （in Andersen and Malahoff, 1977).
However, we know that ocean mixing and productivity are
intimately tied to carbonate preservation, so that some
message about these processes is probably hidden here. A
chanve in mixina, rates is also favoured bv the unusualIv h4-Th

- u  content oi tne atm ospnere in tne earnest noiocene

(Keir, 1983).

The processes of warming and of meltwater input are, to a
large extent, dynamically equivalent as far as deep ocean
mixing is concerned. In the future there may thus be a con-
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Erlenkeuser, 1985), that
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siderable reduction of deep mixing, starting with a decrease
in the production of NADW. On the whole, this should de-
crease the stability of the global heat budget, increase the
episodicity of ocean-atmosphere exchange, and hence pro-
duce more extreme climatic conditions.
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Antarctic Ice-Buildup: the Monterey Connection

If the Antarctic ice were to melt, sea level would rise
m ore than 50 m eters. There is
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little doubt that if the
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ice will melt. The question
is at what level of C02 would we expect the Antarctic ice
sheet to be unstable.
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It seems safe to assume that the sought-for levels Of C02 and
global temperature are close to those which existed when the
Antarctic ice was forming. The most important episode of
growth was apparently within the Middle Miocene, about 15
million years ago. At this time there was a major shift in the
oxygen isotope composition of benthic foraminifera toward
heavier values, which indicate cooling and ice buildup
(Shackleton and Kennett, 1975). These two processes were
probably not entirely synchronous (Fig. 11). We have sug-
gested that cooling came first and that it represents about
two-thirds of the oxygen shift, starting at 15.5 million years
(Vincent et al., in press).

As shown in Figure 11, the cooling step is associated with a
larffe excursion of carbon iSOtODes toward heavier (hiLrher)

6,,u  vaiues. 'inis ieaLure is caiiec Tne --monterey txcursion-
because it is synchronous with the deposition of the
phosphate- and carbon-rich portion of the Monterey Forma-
tion of California, well known as a source of hydrocarbons.
The Monterey and equivalent deposits, all around the North
Pacific and elsewhere, apparently provided a large sink for
carbon at the time of their origin. The carbon isotope
excursion seen between 17 million and 14 million vears aLro

reiiecEs ine extraction oi organic carDon kenricnea in --u ) in
newlv established UDwellina, revions (Vincent and Bercer. in
6unoauisi: ana  t5roeCKer. iubo). im S  Dreierentiai extracTion

oi - -u , oi course, ieii: ine ocean  enricnea in - -u .

If the Monterey hypothesis is correct, then the sequestration
of carbon can be interpreted as a precondition for the ice-
buildup (Fig. 12). The time relationship between the two
isotope signals clearly shows that a shift in carbon isotopes
precedes one in oxygen isotopes by a million years or more
(Fig. 11). During this period of "geochemical conditioning" of
the climate, the carbon dioxide of the atmosphere would have
been slowly reduced due to the extraction of organic carbon
from the ocean. Prior to the start of cooling the mass of
carbon involved was approximately 30 times larger than the
present atmospheric carbon mass. Assuming equilibrium
conditions before the mid-Miocene ice buildup, the C02
content of the atmosphere must have been reduced by more
than one ACM in the process, making the PC02 more than
twice that of the present atmosphere.

A level of four times the present PC02 has been suggested by
Budyko (see Fig. 2), based on shallow-water carbonate abun-
dances. However, more sophisticated geochemical models
(Berner, Lasaga and Garrels, 1983) make it obvious that a
large number of assumptions must be made in the calculation
of past atmospheric C02. The reason is that on time scales
of millions of years we must consider several geochemical
cycles simultaneously. Those of P, N, S, Ca and rvIg are all
closely interwined with that of carbon. In addition, the
history of voleanism and the rates of weathering of igneous
and sedimentary rocks must be taken into account.

Fortunately, the sedimentary record of the deep-sea is quite
detailed back into the Early Miocene, and the effects of
diagenetic alteration are not too great. A substantial effort
to reconstruct the atmospheric PC02 for the last 20 million
years would add much to our understanding of the carbon
dynamics of the ocean-atmosphere system.
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