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Abstract: 

Solar-driven reduction of carbon dioxide represents a carbon neutral pathway for the 

synthesis of fuels and chemicals. We report here results for solar-driven CO2 reduction using a 

gas diffusion electrode (GDE) directly powered by a photovoltaic cell. A GaInP/GaInAs/Ge 

triple junction photovoltaic cell was used to power a reverse-assembled gas diffusion electrode 

employing a Ag nanoparticle catalyst layer. The device had a solar-to-CO energy conversion 

efficiency of 19.1 % under simulated AM 1.5G illumination at 1 Sun. The use of a reverse-

assembled GDE prevented transition from a wetted to a flooded catalyst bed and allowed the 

device to operate stably for >150 h with no loss in efficiency. Outdoor measurements were 

performed under ambient solar illumination in Pasadena, CA, resulting in a peak solar-to-CO 

efficiency 18.7 % with a CO production rate of 47 mgcm-2 per day and a diurnal-averaged solar 

to fuel conversion efficiency of 5.8 %.
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3

Solar photovoltaic and wind energy conversion are rapidly growing sources of low-

carbon electric power.1 However, intermittency of the solar and wind resources over wide time 

scales ranging from minutes to months means solar electricity is not a dispatchable power 

source. Thus, efficient and inexpensive approaches for energy storage are needed for wide 

penetration of renewable energy into the power grid.2,3 While electrical energy storage in 

batteries may be important for short-term storage and grid power management, seasonal energy 

storage is unlikely to rely on batteries. Transformation of solar energy into chemical bonds 

provides a long-term energy storage strategy that opens a path for the synthesis of fuels, and 

chemicals.4 One approach to chemical energy storage is via solar-driven hydrogen generation, 

where i) photovoltaics supply carbon free electricity to the grid that is used to generate H2 by 

water electrolysis at high current densities;5 ii) photovoltaics are used to directly drive 

electrolysis at low current densities,6 or iii) an integrated photoelectrochemical device that 

performs unassisted direct water splitting to form H2.7,8 Parallel to solar hydrogen generation 

approaches, pathways for solar-driven reduction of carbon dioxide to fuels have used i) direct 

electrolysis,9 ii) photovoltaic directly driven electrolysis 10 and iii) integrated 

photoelectrochemical conversion.11,12 Of particular interest is solar-driven reduction of carbon 

dioxide using a high efficiency photovoltaic (PV) device directly coupled to an electrochemical 

cell tailored for reduction of CO2 to CO.13,14 Mixtures of solar-generated CO and H2,15 could be 

used as syngas precursors in a future Fischer-Tropsch chemical synthesis process 16 to produce 

high molecular weight hydrocarbon fuels, or chemicals as products.17 Carbon dioxide reduction 

to CO is generally more energy efficient and kinetically easier than direct reduction of CO2 to 

multicarbon products.14,18,19

Among the most efficient heterogeneous solid state catalysts for CO2 reduction to CO are 

gold,20,21 silver,22 WSe2,23 and MoS2.24 The use of high surface area morphology structures such 

as nanoparticles can improve catalytic activity.25 Other factors that impact catalytic performance 

include catalyst morphology,20 cations present in the electrolyte solution,26 electrolyte 

concentration 27 and local pH.28 The state-of-the-art CO2 to CO conversion using a Au needle 

catalyst 27 showed an operating current of 15 mAcm-2 and 95 % Faradic efficiency at -0.35 V vs. 

RHE. However, the current record efficiency device for solar conversion of CO2 to CO using a 

solution based electrochemical cell suffered from low current density (0.33 mAcm-2 at -0.6 V vs. 

RHE) due to limited catalyst activity. This required the use of large area electrodes to match the 
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photovoltaic device area.10 Table S1 shows overpotential and Faradic efficiency data at current 

densities close to 15 mAcm-2 along with the electrolyte conditions and catalyst loading for 

various Ag and Au electrodes. The catalytic activities of the catalysts shown in Table S1 

indicate that in many cases nanoparticles of Ag have a similar activity to that of Au while 

costing significantly less.

Bulk aqueous electrolyte cells can exhibit high catalyst overpotentials due to the limited 

solubility of CO2 (33.4 mM) in the electrolyte, a limited pH operating range of ~6 - 10, and slow 

ionic transport in the solution. In contrast, gas diffusion electrode (GDE) assemblies do not 

suffer these same restrictions.29-35 In a GDE using 1 atm CO2 vapor, CO2 is transported in the 

vapor phase and reacts at a thin (<100 nm) solid-liquid-gas phase interface. In this configuration 

liquid state concentration and diffusion do not limit the conversion rate, resulting in lower 

overpotentials and higher current densities for CO2 reduction.30 Simulations have also shown that 

a cell using a thin (10 nm) layer of electrolyte on the catalysts (wetted catalyst) outperform cells 

with either a completely dry or a completely flooded catalyst configuration.36 These insights 

have led to the development of gas diffusion electrodes,37 and membrane electrode assemblies 

(MEA) 38 with a humidified gas supply to facilitate ion conduction and water balance. 

Although membrane electrode assemblies systems are more scalable, they often suffer 

from short-term stability due to salt precipitation or membrane dehydration at high current 

densities.39 Hence, we chose to work with an aqueous GDE cell configuration. In this work, we 

employ a triple junction photovoltaic (PV) device directly coupled with a gas diffusion electrode 

(GDE) as the first demonstration of an electrolyte flow type PV-GDE reactor, that provides both 

high selectivity and long-term stability. For a directly driven PV-GDE system, the power 

generated by the PV is directly supplied to the GDE. In our device, the areas of the PV photo-

absorber (APV) and GDE (AGDE) were both 0.31 cm2. To match the lower current density of the 

PV cell with the operating conditions of the anode, a relatively low catalyst loading of GDE was 

chosen. A Ag nanoparticle catalyst was used owing to its relatively high activity and relatively 

low cost, Table S1.
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Figure 1 Gas diffusion electrode with Ag-NP catalyst. a Cell configuration composed of 1 NiOx 

or Pt anode, 2 Ag-NPs on Sigracet 29BC carbon paper cathode, 3 anion exchange membrane, 4 

CO2 gas inlet and CO/CO2 outlet, 5 Acrylic backplate, 6 catholyte chamber, 7 anolyte chamber, 

8 reference electrode, 9 GDE (cathode) power connector, 10 anode power connector. Black 

arrows indicate the gas flow, and white arrows indicate the electrolyte flow. Note that the 

backplate, 5, is designed to use an interdigitated wire electrode flow field to enhance the 

interaction between gas and catalysts and improve CO2 utilization. (see also Figure S1) b 

Scanning electron microscopy images of carbon paper without (top) and with (bottom) Ag-NP 

catalyst, secondary electrons image (left row) backscattered electrons image (right row). c 

Illustration of the reverse-assembled GDE cathode cross-section with wetted catalyst and 

operation for CO2 reduction.

Figure 1a is an illustration of the compression flow cell employed for the evaluation of 

gas diffusion electrode catalytic performance. Dilute silver nanoparticles (Ag-NPs) with 

diameters of ≤50 nm were drop cast onto the microporous side of the GDE substrate 

(Sigracet 29BC). The loading of Ag-NPs in this work was measured to be 0.12 mg⋅cm-2. A 

detailed description can be found in the Methods section. Scanning electron microscopy (SEM) 

images of the microporous layer with and without Ag-NPs are shown in Figure 1b. Gas was 

delivered to the GDE through an interdigitated electrode flow field (Figure 1a, and S1) against 

which the GDE is compressed to maximize the interaction of CO2 with the catalyst and gas 

utilization.40 Current to the GDE was supplied through the interdigitated electrode to the Ag-

NP/carbon paper substrate. Gaseous products were collected at the outlet of the flow field, which 

was directly connected to a gas chromatograph (for more information see Methods section). 
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An issue for aqueous GDEs is flooding or saturation of the porous catalyst layer with 

electrolyte or water during operation. This results in a thick (>1 μm) electrolyte layer and a 

diffusion-limited supply of CO2 to the electrode.41 To maintain the catalyst in a wetted but not 

flooded condition that minimizes losses of CO2 to the electrolyte and extends the operational 

lifetime, we assembled our aqueous GDE in a nontraditional manner with the catalyst coating of 

Ag-NPs facing away from the electrolyte and towards the CO2 gas supply. We denoted this 

configuration as a reverse-assembled GDE. The microporous layer of the GDE was treated with 

polytetrafluoroethylene (PTFE), which helped to prevent flooding. Needle valves in the gas and 

liquid output streams allowed separation of the liquid and gas phases as well as control of the 

pressure difference between the aqueous electrolyte and the CO2 stream. Contact angle analysis 

indicated that the Ag-NP coated surface was significantly less hydrophobic than the surface 

without Ag-NPs. Contact angle and optical microscope images of the GDE are shown in Figure 

S2. 

With both the gas inlet and outlet on the same side of the GDE, the device operates in a 

‘flow-by’ GDE configuration. The Ag-NP catalyst side of the electrode was facing the CO2 gas 

channel as illustrated in Figure 1c. This orientation of the Ag-NPs maintained a thin electrolyte 

layer on the catalyst and enhance the rate of CO2 reduction.36 The turnover frequency of the Ag-

NP catalyst for the reverse-assembled GDE at -0.6 V vs RHE was calculated as ~9 × 103 h-1, see 

Supporting information. The anode was made from either Pt or an electrochemically activated Ni 

foam for three- and two-electrode measurements, respectively. An aqueous catholyte of 1 M 

aqueous potassium bicarbonate (KHCO3) or potassium hydroxide (KOH) was used under near 

neutral or basic conditions, respectively. In all cases, 1M KOH was the anolyte. The anion 

exchange membrane (AEM) was Selemion for neutral environment or Fumasep FAA-3-50 for 

alkaline environment. Electrolyte (500 ml) was continuously pumped through the cathode 

chamber in a closed loop at a rate of 2 mL/min. A change of pH (from 14 to 13.7) was observed 

for the 1 M KOH catholyte after 150 h of continuous operation, corresponding to irreversible 

loss of 0.25 mol KOH (50% of the electrolyte, see Supporting Information). Further 

improvement to reduce CO2 loss or regenerate the electrolyte would be necessary for fully 

sustainable operation. The neutralized carbonate electrolyte can possibly be utilized in 

carbonate-to-syngas system to compensate the loss of CO2 in a gas-fed MEA cell with bipolar 

membrane. 42 
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Figure 2 Dark catalysis three-electrode measurement of Ag-NPs GDE. Faradaic efficiency 

versus GDE potential operated in 1 M KHCO3 (left half of graph) or 1 M KOH (right half of 

graph) of a the reserve-assembled Ag-NP GDE and b a standard-assembled Ag-NP GDE. c 

Overpotential versus CO partial current of Ag-NPs GDE for CO2 reduction to CO. 

Overpotential= ,  d Stability of reserve-assembled and |𝑈𝐺𝐷𝐸,𝑅𝐻𝐸+ 0.11𝑉| 𝐽𝐶𝑂≡ 𝐽𝐺𝐷𝐸 × 𝑓𝐹𝐸,𝐶𝑂
standard-assembled Ag-NPs GDE operated at -0.6 V vs. RHE in 1 M KOH. 

Results from three-electrode measurements for reverse- and standard-assembled GDEs 

are shown in Figure 2a,b, respectively, for 1 M KHCO3 (bulk pH of 8.5) and 1 M KOH (bulk pH 

of 14). Current densities are substantially lower than for earlier reported GDE devices due to the 

low catalyst loading used to match the current from the PV (current matching). For the reverse 

assembled GDE, both the Faradaic efficiency (fFE,CO) for CO and current density (JGDE) increased 

with increasing potential with fFE,CO close to 100 % at -0.6 V vs. RHE in 1 M KOH, Figure 2a. 

Similar trends of current density and Faradaic efficiency versus applied potential were found for 

the standard-assembled GDE, Figure 2b. To compare the activity of the Ag-NPs in different 
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orientations and pH, overpotential analysis for CO2 reduction to CO was preformed, Figure 2c. 

The comparable Tafel slopes (~0.23V/dec) in KHCO3 and KOH for either orientation indicate a 

similar catalytic pathway regardless of the operating conditions. The Tafel behavior plotted with 

potentials vs NHE falls on a rough single line (Figure S3) and suggests that the rate-determining 

step for the reduction on our Ag-NP GDE is not proton limited. The achievable current density 

and Faradaic efficiency (fFE,CO) for CO are higher in 1 M KOH than in 1M KHCO3 at the same 

overpotential, Figure 2c, likely due to a pH independent rate determining step. All subsequent 

measurements were, therefore, performed using 1 M KOH for the PV-GDE integrated device. 

Figure 2d shows the Faradic efficiency for CO vs. time at -0.6 V vs. RHE for the two 

GDE orientations in KOH. For the standard configuration, the fFE,CO decreasing to ~75% after 1 h 

and to 50 % after 2 h, while for the reverse configuration, the fFE,CO was ~97% for 3 h. Though 

similar in initial current density and fFE,CO, the standard assembly, with the Ag-NP catalyst 

facing the electrolyte, became flooded during the first hour of operation resulting in a reduction 

of the Faradic efficiency. 
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Figure 3 Light driven PV-GDE measurement (APV = AGDE = 0.31 cm2). a Illustration of wire 

connection between the triple junction cell and GDE cell. b J-U characteristic of Ni anode, solar 

cell with Ni anode, and Ag-NP gas diffusion cathode under 1 Sun. c Current, GDE potential vs 

RHE, and cell voltage measurement over 20 h duration. d The corresponding CO Faradaic 

efficiency and solar to fuel efficiency over the same 20 h duration.

We performed two-electrode measurements for the GDE using an electrochemically 

activated nickel foam anode coupled to the GaInP/GaInAs/Ge triple junction cell. For detailed 

information about the solar cell see the Methods section, Figures S4–S5, and Table S2. A 

schematic of the cell is shown in Figure 3a with 1M KOH as electrolyte using a Fumasep 

FAA-3-50 membrane. Both the cell potential (Ucell) and the cathode to reference electrode 

potential (UGDE) were monitored during the operation. We calculated the solar to fuel efficiency 

(STF) for CO2 reduction using equation 1.

(1)𝜂𝑆𝑇𝐹= Pout

Pin
=

𝐽GDE ∙ Δ𝑈rxn ∙ 𝑓FE,CO ∙ 𝐴GDE𝑃light ∙ 𝐴PV =
𝐽 ∙ Δ𝑈𝑟𝑥𝑛 ∙ 𝑓𝐹𝐸,𝐶𝑂.𝑃𝑙𝑖𝑔ℎ𝑡

Where ΔUrxn is the thermodynamic potential difference between the oxygen evolution half 

reaction (OER) and the CO2 reduction half reaction of 1.34 V, A is the area of the GDE or PV 

with AGDE = APV = 0.31 cm2, J (= JGDE = JPV) is the operation current density of the system, and 

Plight is the incident light irradiance (mWcm-2) on the photovoltaic. The energy efficiency for the 

GDE cell (GDE) was defined as follow:

(2)𝜂GDE= P𝑜𝑢𝑡
P𝑖𝑛 = Δ𝑈rxn ∙ 𝐽GDE ∙ 𝐴GDE ∙ 𝑓𝐹𝐸,𝐶𝑂.𝑈𝑐𝑒𝑙𝑙 ∙ 𝐽PV ∙ 𝐴PV =

Δ𝑈rxn ∙ 𝑓𝐹𝐸,𝐶𝑂.𝑈𝑐𝑒𝑙𝑙
where JGDEAGDE = JPVAPV , and Ucell is the total operating voltage of the cell. 

To evaluate the efficiency and stability, we measured cell parameters using simulated 

AM  1.5G sun illumination at 1 Sun in the laboratory, as shown in Figure 3b–3d. The blue curve 

in Figure 3b represents the performance of the electrochemically activated Ni foam anode alone, 

while the yellow curve indicates the behavior of PV plus anode. The red curve shows the 

catalytic current of the Ag-NPs GDE. The intersection between the red and yellow curves in 

Figure 3b defines the operation point, located at -0.6 V vs. RHE and 14.4 mAcm-2 with a cell 

voltage of 2.23 V. Figures 3c and 3d illustrate the cell performance over 20 hours with an 
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10

average Faradic efficiency for CO of 99  2 % and an average CO production rate of 2.3 mg/h. 

No degradation in performance was observed. From the experimental results, we calculated the 

average solar to CO efficiency for the 20 h operation as 19.1  0.2 %, with an average energy 

efficiency GDE of 59.4  0.6 %. The error bars were obtained as the variation within the 20 h of 

operation. All the experimental results are summarized in Table S3. The chemical composition 

of the Ag-NP catalyst layer was examined before and after the reaction by X-ray photoelectron 

spectroscopy as shown in Figure S6. No obvious changes were observed other than the 

absorption of potassium after operation with the Ag-NPs catalyst maintained its metallic phase.

The solar to CO efficiency of 19.1 % represents a new record efficiency. A performance 

comparison with the current state-of-the-art PV-electrolyzer for CO2 reduction to CO is shown in 

Table S4. The PV-GDE device had a CO production rate per projected cathode area 50 times 

higher than for the bulk electrolyte device (7.4 mgh-1cm-2 versus 0.145 mgh-1cm-2) with 

greatly improved stability (20 h with no degradation versus 15 % loss in 5 h).10 A similar PV-

GDE device operated under 3.25 Suns illumination with AGDE = 1 cm2, APV = 0.31 cm2, (3.25 ≈ 

AGDE/APV) showed over 150 hours of stability, with an average Faradic efficiency of 96  2 %, an 

average solar to CO efficiency of 18.9  0.5 %, and an average energy efficiency GDE of 

53.7  1.2 %, Figure S7. 
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11

Figure 4 Outdoor assessments of solar driven PV-GDE in Pasadena, CA 

(APV = AGDE = 0.31 cm2). The solar irradiance was monitored with a calibrated silicon 

photodiode. Operation current density J (= JGDE = JPV), cell voltage Ucell, GDE potential UGDE 

vs. RHE, CO Faradaic efficiency fFE,CO and solar to fuel efficiency STF were recorded for a 24h 

day cycle.

Full day outdoor tests were conducted with online gas product analysis in order to obtain 

the solar to fuel efficiency over the entire day. Results are shown in Figure 4. The triple junction 

cell and a calibrated silicon photodiode were mounted on a solar tracker to maintain optimum 

orientation toward the Sun (see illustration in Figure S8). The dips in sun intensity at 

7:00am - 9:00am and 4:00 - 6:00 p.m. in the data were the result of trees blocking the sunlight. 

The system operated at a cell voltage of 2.20 V and GDE potential of -0.57 V vs. RHE under 

natural full sun illumination. A Faradaic efficiency of 96  8 % and solar to fuel conversion 

efficiency of 18.7  1.7 % was observed over an optimal 6 h period within the day. The diurnal-

averaged solar to fuel conversion efficiency was 5.8 %. The CO production rate for one day 

under actual outdoor sun conditions was calculated to be 15 mg/day of CO. Another outdoor 
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12

demonstration used a lens to concentrate the sunlight producing an irradiance of 3.25 Suns (C = 

3.25, AGDE = 1 cm2, APV = 0.31 cm2) with data included in Figure S9 and Table S3 with a CO 

generation rate of 50 mg/day. Using this calculated rate, a system scale up to 1 m2 would result 

in a CO production rate of 0.5 kg/day.

The performance of our directly coupled PV-GDE device was compared to a DC-DC 

converter coupled PV and GDE with power-matching electronics. We simulate DC-DC 

converter output curves with the input of our solid-state PV curve as shown in Figure S10. 

Though the DC-DC converter can track the maximum power point (MPP) of the PV, a practical 

loss of 5-10 % is expected.43 The operating point for the directly driven PV-GDE cell is 

Ucell = 2.23 V, J = 14.4 mAcm-2 with a maximum efficiency of 19.3 %. With a 95 % efficient 

DC-DC converter, the operation point would be Ucell = 2.22 V, J = 13.8 mAcm-2 with a 

maximum efficiency of 18.5 %. For a 90 % efficient DC-DC converter, the operation point 

would be Ucell = 2.20 V, J = 13.2 mAcm-2 with a maximum efficiency of 17.7 %. The maximum 

efficiencies are calculated assuming 100 % CO Faradic efficiency. All systems are summarized 

in Table S3. The slightly higher efficiency of our directly driven PV-GDE device, compared to 

the same setup with integrated DC-DC converter and power matching electronics, reveals the 

potential of developing a directly coupled PV-GDE device with its reduced complexity.

In summary, we have demonstrated a highly efficient solar-driven CO2 reduction device 

for CO generation using a flow-by reverse-assembled gas diffusion electrode cell directly 

coupled to a triple junction solar cell. The reverse-assembled GDE is designed to minimize 

parasitic CO2 losses, utilizing a high CO2 concentration and low overpotential catalysts for the 

CO2 reduction reaction. The Ag-NPs based catalyst exhibited near unity Faradic efficiency 

towards CO generation at approximately -0.6 V vs. RHE in 1 M KOH electrolyte. The PV-GDE 

system was evaluated under both laboratory AM 1.5G simulated solar irradiation and outdoor 

real sun conditions. Near-unity Faradic efficiency was observed for CO2-to-CO conversion and 

an average solar-to-CO energy efficiency of 19.1 % was achieved with AM 1.5G illumination at 

1 Sun, leading to over 50 times higher CO production rate per catalyst area than the current 

record photovoltaic-driven electrolysis device. The GDE was demonstrated to be stable for over 

150 hours without degradation, supporting our hypothesis that, by using a reverse-assembled 

GDE device configuration with the catalyst layer facing towards the CO2 gas supply, we could 
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extend the system operation time without suffering a transition from a wetted to a flooded gas 

diffusion layer. Under outdoor sun conditions, the PV-GDE system exhibited a solar to CO 

conversion efficiency of 18.7 % during noontime, and yielded a CO production rate of 

15 mgcm-2 per day. This reverse-assembled PV-GDE establishes a new efficiency record for 

directly solar-driven CO2 reduction, and offers an example of a very high efficiency, stable 

device for solar CO2 conversion.
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