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Mixed antiestrogens, such as 4-hydroxytamoxifen

(4HT), act as either partial agonists or antagonists of

estrogen receptor (ER) function in a tissue-, cell-, and

promoter-specific manner, suggesting that intracel-

lular factors modulate their ability to regulate tran-

scription. To determine whether coactivators and

corepressors have the capacity to modulate the rel-

ative agonist/antagonist activity of 4HT, ER-depen-

dent gene expression was measured in the absence

or presence of expression vectors for SRC-1 (steroid

receptor coactivator-1) or SMRT (silencing mediator

of retinoic acid and thyroid hormone receptors). In

Hep G2 cells in which 4HT is an agonist, exogenous

SRC-1 enhanced estradiol (E2)- and 4HT-stimulated

transcription in a dose-dependent manner, while

SMRT overexpression strongly reduced basal and

4HT-stimulated gene expression with no effect on E2

activity. These observations were not cell- or pro-

moter-specific inasmuch as similar results were ob-

tained in HeLa cells under conditions in which 4HT is

an antagonist. A protein-protein interaction assay in-

dicated that the full-length ER binds to SMRT in vitro.

To assess whether relative coactivator and core-

pressor expression within a given cell could modu-

late the balance of 4HT agonist/antagonist activity,

SRC-1 and SMRT were coexpressed. SMRT overex-

pression blocked SRC-1 coactivation of 4HT-stimu-

lated gene expression and preferentially inhibited

4HT agonist activity whether or not exogenous

SRC-1 was present. The cumulative data in this

model system indicate that the relative expression of

coactivators and corepressors can modulate 4HT

regulation of ER transcriptional activity and suggest

they could contribute to the tissue-specific ability of

mixed antiestrogens to activate or inhibit ER-medi-

ated gene expression. (Molecular Endocrinology 11:

657–666, 1997)

INTRODUCTION

The estrogen receptor (ER) is a member of a super-
family of transcription factors that serve as nuclear
receptors for small hydrophobic ligands (1, 2). Estro-
gen binding to its receptor induces the ligand-binding
domain to undergo a characteristic conformational
change, whereupon receptor dimerizes, binds to DNA,
and subsequently stimulates gene expression (3–6).
Two distinct activation functions (AFs) contribute to
the ER’s transcriptional activity. The first, AF1, is lo-
cated within the amino-terminal portion of the receptor
whereas the second, hormone-dependent AF2 is lo-
cated in the latter half of the molecule overlapping the
ligand-binding domain (6, 7). The ability of these re-
gions to contribute to ER transcriptional activity varies
with the cell and promoter examined. In some con-
texts, individual activation domains are the major de-
terminants, but in most cases AF1 and AF2 synergize
with one another to stimulate ER trans-activation of
gene expression (6, 8, 9).

In addition to hormone, the ER binds ligands that
serve as antiestrogens. The pure (type II) antiestro-
gens, exemplified by ICI 164,384 and ICI 182,780, are
unable to activate the ER in nearly all instances and
efficiently antagonize ER function (10, 11). In contrast,
mixed antiestrogens, such as trans-4-hydroxytamox-
ifen (4HT), inhibit ER activity in a selective manner and
may even activate transcription under certain condi-
tions (12). The latter group of antihormones engender
a conformational change in the ligand-binding domain
distinct from that induced by estradiol (E2) and are
thought to inhibit the activity of the hormone-depen-
dent AF2 but not AF1 (3, 13, 14). The biocharacter
(agonist versus antagonist activity) of mixed antiestro-
gens varies among different tissues, cells and promot-
ers, but it may also deviate within a given biological
context. For example, tamoxifen, the metabolic pre-
cursor of 4HT, is initially an antagonist of MCF-7
breast cancer cells grown in nude mice but eventually
stimulates tumor growth via an ER-agonistic action
that can be blocked by the pure antiestrogen, ICI
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164,384, and is not dependent upon the host animal
(15–17).

When steroid receptors are occupied with agonists,
the AF2 domain is thought to serve as a focal point
for interaction with coactivator proteins, which are
thought to act as adapters to the general transcrip-
tional machinery and modulators of chromatin struc-
ture (18–20). In addition, it is hypothesized that the
distinct, antiestrogen-induced conformation of the li-
gand-binding domain does not promote AF2-coacti-
vator interactions and thereby impedes the ability of
the DNA-bound receptor to activate transcription (21).
However, the ER can stimulate transcription via its AF1
domain, and in some contexts 4HT is a relatively good
ER agonist (8), suggesting that a mechanism(s) must
exist to enable the ER and the general transcription
machinery to productively associate under these con-
ditions. In addition, the acquisition of agonist activity
by 4HT in cells in which it formerly was an antagonist
suggests that the differential expression of cell-spe-
cific factors may facilitate a shift in 4HT biocharacter.

Therefore, to test whether increased expression of a
positively acting factor could enhance the agonist ac-
tivity of a mixed antiestrogen, we examined the ability
of a coactivator for the steroid receptor superfamily,
steroid receptor coactivator-1 (SRC-1; Ref. 22) to
stimulate ER transcriptional activity in cell/promoter
contexts where 4HT is either an agonist or antagonist
of ER function. We found that SRC-1 overexpression
stimulated the agonist activity of 4HT, but was unable
to reverse the antagonist action of this antiestrogen.
We also have demonstrated that the silencing media-
tor of retinoic acid and thyroid hormone receptors
(SMRT) protein (23), identified as a corepressor of
several members of the nuclear receptor superfamily
including the thyroid hormone receptor (TR) and reti-
noic acid receptor (RAR), could negatively influence
the ability of a mixed antiestrogen to activate ER-
dependent gene expression.

RESULTS

SRC-1 Increases ER Transcriptional Activity

Stimulated by 4HT

In Hep G2 (human hepatocellular carcinoma) cells, the
mixed antiestrogen 4HT acts as a relatively good ER
agonist (8). To determine whether coactivators could
contribute to this transcriptional activity, the ability of
SRC-1 to enhance the ER-dependent transcription of
a synthetic target gene was examined. A human ER
(hER) expression vector, pSVMT-wER, and a pC3-Luc
synthetic target gene, which consists of a portion
(21807 to 158) of the promoter for the third compo-
nent of human complement (C3) fused to the firefly
luciferase (Luc) gene, were transiently transfected into
Hep G2 cells with or without an expression vector for
SRC-1. As expected, 4HT was a relatively good ER
agonist in the absence of exogenous coactivator (8,

24) and, under our assay conditions, 100 nM 4HT stim-
ulated ER transcriptional activity to an extent similar to
that achieved by 10 nM E2. Although 4HT can stimulate
transcription via the AP-1 transcription factor (25),
estrogen-dependent expression of the pC3-Luc target
gene is mediated strictly via the ER and three imper-
fect estrogen response elements (EREs) located within
the C3 promoter (24). When increasing amounts
(031000 ng) of an expression vector for human SRC-1
were cotransfected into these cells, basal, estrogen-
and 4HT-stimulated gene expression was increased in
a dose-dependent manner (Fig. 1A). In contrast, the
type II antiestrogen ICI 164,384 did not activate tran-
scription of the C3 target gene in these cells, and
exogenous SRC-1 expression had little or no effect on
ER transcriptional activity in the presence of this pure
antagonist.

The 59-flanking region of the C3 gene contains bind-
ing sites for a number of transcription factors, includ-
ing the CCAAT/enhancer binding protein (26, 27), and
to determine whether SRC-1 enhanced transcription
via the imperfect EREs located within this promoter
(24) and not other transcription factor-binding sites,
the expression of a modified target gene, TK-
C3ER1&2-Luc, consisting of the three imperfect EREs
of the C3 gene linked to the heterologous thymidine
kinase promoter, was examined. Both E2 and 4HT
increased transcription of TK-C3ER1&2-Luc, and ex-
ogenous SRC-1 further enhanced gene expression
3-fold (Fig. 1B). In parallel experiments, cotransfection
of an identical amount of SRC-1 expression vector
increased E2- and 4HT-stimulated expression of the
intact C3 promoter (pC3-Luc) by ;5-fold (see Fig. 1A),
indicating that the ability of SRC-1 to coactivate ER-
dependent transcription may be influenced by pro-
moter context.

Previous studies have demonstrated that SRC-1
(also known as p160) binds to the carboxy-terminal
portion of the hER (amino acids 282–595), but not to
a shorter ER mutant (D534) lacking the last 61 amino
acids (21). This deleted region encompasses se-
quences required for AF2 function (28), and it has
been suggested that SRC-1 may be a mediator of
this estrogen-dependent activation domain (21). In-
troduction of three amino acid substitutions (D538A/
E542A/D545A) to the ER’s ligand-binding domain
disrupts AF2 activity but not receptor dimerization
or hormone-binding affinity (28). To determine
whether an intact AF2 domain is required for SRC-1
coactivation of ER-dependent transcription, HepG2
cells were transfected with expression vectors for
wild type (pRST7-hER) or AF2 mutant (pRST7-hER-
3x) ER and the pC3-Luc target gene, and transcrip-
tional activity was assessed in the absence and
presence of exogenous SRC-1. In accordance with
a previous report (8), these three-point mutations
significantly decreased 4HT agonist activity but had
little effect on E2-stimulated transcription of pC3-
Luc in HepG2 cells. When SRC-1 expression levels
were increased, transcription of the target gene by
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estrogen-activated wild type or AF2 (D538A/E542A/
D545A) mutant ER was enhanced to a similar extent
(Fig. 2 and data not shown) and indicates that an
intact AF2 domain is not required for SRC-1 activity
in this cell and promoter context.

In HeLa (human cervical carcinoma) cells, 4HT ex-
hibits little agonist activity and effectively inhibits E2-
stimulated gene expression (29). To assess the ability
of SRC-1 to contribute to ER transcriptional activity
under conditions where 4HT is an antagonist, HeLa
cells were transfected with a simple synthetic target
gene, ERE-E1b-CAT, consisting of an ERE upstream
of the E1b TATA box and the chloramphenicol acetyl-
transferase (CAT) gene, and a wild type hER expres-
sion vector (pSVMT-wER) with or without 1 mg of an
expression vector for SRC-1. Under these assay con-

ditions, estrogen increased CAT activity by ;6-fold,
and ectopic SRC-1 expression further stimulated gene
expression by 13-fold (Fig. 3). In contrast to the data
obtained from Hep G2 cells, 4HT was a poor agonist in
HeLa cells, and exogenous SRC-1 stimulated reporter
gene expression by only ;4-fold in cells treated with
vehicle or 4HT. As expected, ER transcriptional activity
was very low in the presence of the pure antiestrogen
ICI 164,384, whether or not exogenous SRC-1 was
present.

Fig. 1. SRC-1 Increases ER Transcriptional Activity Stimu-
lated by 4HT and E2 in Hep G2 Cells

A, Hep G2 cells were transfected with 1 mg pSVMT-wER
and 2.5 mg pC3-Luc in the presence of increasing concen-
trations of (0, 250, 500, 750, or 1000 ng) of an expression
vector (pBK-SRC-1) for SRC. The total amount of DNA trans-
fected into each well was adjusted to 4.5 mg with pBK-CMV.
B, Hep G2 cells were transfected with 1 mg pSVMT-wER and
2.5 mg TK-C3ER1&2-Luc reporter gene with 1 mg pBK-CMV
(solid bars) or 1 mg pBK-SRC-1 (open bars). In both panels,
estrogen-stimulated activity measured in the absence of ex-
ogenous SRC-1 was defined as 100. Data are presented as
the average 6 SEM of three experiments. Cells were treated
with either vehicle (basal), 10 nM E2, 100 nM 4HT, or 100 nM

ICI 164,384.

Fig. 3. SRC-1 Preferentially Increases Estrogen-Stimulated
ER Transcriptional Activity in HeLa Cells

HeLa cells were transfected with 1 mg pSVMT-wER and
2.5 mg ERE-E1b-CAT in the presence of 1 mg pBK-CMV
(solid bars) or 1 mg pBK-SRC-1 (open bars). CAT activity
measured in cells treated with E2 in the absence of exog-
enous SRC-1 was defined as 100. Data represent the
average 6 SEM of five experiments. Cells were treated with
either vehicle (basal), 1 nM E2, 100 nM 4HT, or 100 nM ICI
164,384 (ICI).

Fig. 2. SRC-1 Enhances the Transcriptional Activity of an
AF2 Mutant ER

Hep G2 cells were transfected with 1 mg pRST7-hER-3x
and 2.5 mg pC3-Luc in the presence of 1 mg pBK-CMV (solid

bars) or 1 mg pBK-SRC-1 (open bars). Estrogen-stimulated
luciferase activity measured in the absence of exogenous
SRC-1 was defined as 100. Data are presented as the aver-
age 6 SEM of three experiments. Cells were treated with either
vehicle (basal), 10 nM E2, or 100 nM 4HT.
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SRC-1 Enhances Ligand-Independent Activation

of ER

In the absence of exogenous ligand, the hER can be
activated by dopamine receptor agonists of the D1

subtype (29, 30) and cholera toxin/3-isobutyl-1-meth-
ylxanthine (IBMX) [agents that increase intracellular
cAMP concentrations (31)]. To determine whether
SRC-1 has the potential to contribute to ER transcrip-
tional activity initiated by ligand-independent signaling
pathways, HeLa cells were transfected with an ER
expression vector and the ERE-E1b-CAT target gene
and stimulated with forskolin (an activator of adenylate
cyclase) and IBMX (a phosphodiesterase inhibitor). El-
evation of intracellular cAMP levels by this treatment
stimulated ER transcriptional activity by 5-fold, and
ectopic SRC-1 expression further increased gene ex-
pression an additional 6-fold (Fig. 4) indicating that
SRC-1 can significantly increase ER transcriptional
activity in the absence of ligand when cells are appro-
priately stimulated. In parallel experiments, SRC-1 in-
creased estrogen-stimulated activity by ;4-fold (Fig.
4). To ensure that forskolin/IBMX-induced transcrip-
tion was ER-dependent, CAT gene expression was
assessed in the presence of the pure antiestrogen ICI
164,384 with or without exogenous SRC-1, and no
significant activity was observed.

As previously demonstrated (29, 32), 4HT does not
antagonize ER transcriptional activity stimulated by
dopamine or cAMP-signaling pathways, and the re-
sulting gene expression is greater than that achieved
by 4HT and either agent alone (Fig. 4). Since 4HT is
normally an antagonist in these cells (29), these ligand-

independent activation pathways also encourage a
shift in the balance of this mixed antiestrogen’s activity
from antagonist to agonist. The ability of exogenous
SRC-1 to further enhance forskolin/IBMX- stimulated
ER activity in the presence of 4HT (;4-fold) suggests
that this coactivator also contributes to this mecha-
nism of gene expression.

The Corepressor, SMRT, Inhibits 4HT Agonist

Activity

It is clear that in comparison to estrogens, the relative
ability of 4HT to activate ER-dependent transcription
varies between cell and tissue types (14, 24, 33), and
it has been postulated that cellular coregulatory pro-
teins contribute to the differential biocharacter of 4HT
(12). Although SRC-1 stimulated 4HT agonist activity
in Hep G2 cells, it was unable to convert 4HT from an
antagonist to agonist in HeLa cells. Therefore, the
possibility that a corepressor protein may help to de-
fine the agonist/antagonist balance of 4HT activity was
examined. In HepG2 cells, where 4HT is a relatively
good ER agonist, exogenous SMRT did not decrease
E2-dependent transcription (Fig. 5A). However, SMRT
attenuated 4HT’s agonist activity (.70%) with the re-
sult that the ability of 4HT to activate transcription was
significantly attenuated in comparison to estrogen.
SMRT also decreased basal ER activity by 60%. In
contrast, SMRT had little effect on the already low
activity of ER in the presence of the pure antiestrogen
ICI 164,384. Overall changes in gene expression are
unlikely to account for SMRT inhibition of 4HT-stimu-
lated ER activity because exogenous SMRT did not
influence b-galactosidase activity expressed from a
SV40- or cytomegalovirus (CMV)-regulated constitu-
tive expression vector (data not shown). When SMRT
was expressed ectopically in HeLa cells, it did not
inhibit estrogen-stimulated expression of the ERE-
E1b-CAT reporter gene (Fig. 5B). However, it further
decreased the low 4HT agonist activity observed in
these cells. Taken together, these data indicate that
ectopic expression of this corepressor decreases 4HT
agonist activity whether it is weak (HeLa cells) or rel-
atively strong (Hep G2 cells).

Interaction of ER and SMRT

Since SMRT altered 4HT-stimulated ER activity in
transient transfection assays, the ability of ER and
SMRT to physically interact was assessed in vitro by
glutathione-S-transferase (GST) pull-down assay. A
fusion protein consisting of GST fused to the amino
terminus of full-length hER was incubated with 35S-
labeled, in vitro translated SMRT protein (amino acids
29–1495) in the absence or presence of E2 and tamox-
ifen. Virtually no SMRT protein was retained by GST
alone (Fig. 6). In comparison to the input lane, signif-
icant levels of SMRT were retained by GST-ER regard-
less of the presence of estrogen or antiestrogen. Thus,

Fig. 4. SRC-1 Stimulates the Ligand-Independent Activation
of ER Transcriptional Activity

HeLa cells were transfected with 1 mg pSVMT-wER and
2.5 mg ERE-E1b-CAT in the presence of 0.5 mg pBK-CMV
(solid bars) or 0.5 mg pBK-SRC-1 (open bars). ER transcrip-
tional activity determined in the presence of E2 and absence
of exogenous SRC-1 was defined as 100. Data are presented
as the average 6 SEM of three experiments. Cells were treated
with vehicle (basal), 1 nM E2, 5 mM forskolin and 50 mM IBMX
(F/I), 100 nM ICI 164,384 (ICI), 100 nM 4HT, or combinations
thereof.
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SMRT and ER interact in vitro, but in a hormone-
independent manner.

SRC-1 Overexpression Does Not Reverse SMRT

Inhibition of 4HT Agonist Activity

The above studies indicated that both SRC-1 and
SMRT have the potential to modulate ER-dependent
gene expression stimulated by 4HT. To determine
whether perturbation of coactivator and corepressor
levels within a given cell could alter 4HT-induced ER
transcriptional activity, various combinations of ex-

pression vectors for SRC-1 and SMRT were intro-
duced into HepG2 cells and target gene expression
was assessed. Ectopic expression of SMRT substan-
tially decreased 4HT-induced transcription of the pC3-
Luc reporter gene in comparison to E2 (Fig. 7; compare
lanes 5 and 6 to 2 and 3). Increasing SRC-1 expression
in these cells did not restore 4HT agonist activity rel-
ative to E2, even when 50% less SMRT expression
vector was cotransfected (compare lanes 11 and 12 to
5 and 6). As anticipated, in the absence of exogenous
SMRT, ectopic SRC-1 increased the ER transcrip-
tional activity induced by E2 and 4HT equally well.
Thus, within a given cell, elevated expression of SMRT
shifts the balance of 4HT activity from an agonist to
antagonist, and overexpression of SRC-1 was unable
to reverse this process.

DISCUSSION

SRC-1 Stimulates 4HT Agonist Activity

Mixed antiestrogens, such as 4HT, regulate ER tran-
scriptional activity in a tissue-, cell-, and promoter-
dependent manner. Accumulating evidence suggests
that the differential ability of partial antagonists to
modify gene expression cannot be accounted for by
alterations in the ligand-receptor complex alone, but
also must take into consideration coregulator (coacti-
vator and corepressor) proteins that regulate ER inter-
actions with the general transcriptional machinery and
chromatin (12). Therefore, a putative coactivator and
corepressor of the steroid receptor superfamily were
tested to determine whether these coregulators have

Fig. 5. SMRT Preferentially Inhibits 4HT-Stimulated ER
Transcriptional Activity

A, Hep G2 cells were transfected with 1 mg pSVMT-wER
and 2.5 mg pC3-Luc in the presence of increasing concen-
trations (0, 250, 500, 750, or 1000 ng) of an expression vector
(pABDgal-SMRT) for SMRT. Total DNA transfected into each
well was adjusted to 4.5 mg with pABDgal. Cells were treated
with vehicle (basal), 10 nM E2, 100 nM 4HT, or 100 nM ICI
164,384. B, HeLa cells were transfected with 1 mg pSVMT-
wER and 2.5 mg ERE-E1b-CAT reporter gene with increasing
concentrations of pABDgal-SMRT (0, 500, 1000, or 2500 ng).
The total DNA transfected into each well was adjusted to 6 mg
with pABDgal. Cells were treated with vehicle (basal), 1 nM E2,
or 100 nM 4HT. In both panels, ER transcriptional activity in
the presence of E2 and absence of exogenous SMRT were
defined as 100. Data represent the average 6 SEM of at least
three experiments.

Fig. 6. In Vitro Interaction of GST-ER with SMRT
35S-labeled SMRT (amino acids 29–1495) was tested for

interaction with GST alone (lane 2) or GST-ER in the presence
of vehicle (lane 3), 1 mM E2 (lane 4), or 1 mM tamoxifen (lane 5).
The arrow (right) indicates the position of SMRT. Lane 1
shows 25% of the input [35S]SMRT used in these assays.
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the potential to modify the biocharacter of a mixed
antiestrogen in cell-based, ER-dependent transcrip-
tion assays. Ectopic SRC-1 expression strongly en-
hanced estrogen-stimulated expression of two differ-
ent target genes (ERE-E1b-CAT and pC3-Luc,
respectively) in HeLa and Hep G2 cells and indicates
that the ability of SRC-1 to enhance ER transcriptional
activity is not cell or promoter restricted. In contrast,
SRC-1 only weakly augmented 4HT’s low agonist ac-
tivity in HeLa cells, but enhanced 4HT-stimulated tran-
scriptional activity to an extent equivalent to that of
estrogen in HepG2 cells, indicating that ER liganded
with either a full or partial agonist is an equivalent
substrate for SRC-1 coactivation in the latter promoter
and cellular context. Therefore, SRC-1 has the poten-
tial to contribute to ER transcriptional activity stimu-
lated by estrogen or 4HT, but this coactivator is not a
dominant determinant of the agonist versus antagonist
activity of this antihormone.

AF2 Is Not Required for SRC-1 Coactivation

Steroid receptor coactivator-1 (p160) was postulated
to act as a coactivator/mediator for the AF2 domain of
steroid receptor superfamily members (22), and it was
predicted that SRC-1 would not interact functionally
with the ER when liganded with antiestrogens (21).
However, the demonstration that SRC-1 enhanced
4HT-stimulated, AF1-dependent ER transcriptional
activity in Hep G2 cells and efficiently coactivates the
E2-stimulated transcriptional activity of an AF2-defec-

tive ER mutant (D538A/E542A/D545A) suggests that
this coactivator may act through regions in addition to
AF2. In support of this, a recently published study
utilizing a modified mammalian two-hybrid approach
in Chinese hamster ovary cells indicated that SRC-1
facilitated the physical interaction between the amino-
terminal (containing AF1) and carboxy-terminal (con-
taining AF2) regions of ER (34). Furthermore, SRC-1
binds to an ERD534 mutant when examined in the
context of the full-length receptor (35) instead of the
ligand-binding domain alone (21). The remaining stud-
ies reporting a lack of 4HT-dependent interaction be-
tween SRC-1 (p160) and ER were conducted with the
ligand-binding domain alone or in MCF-7 cells in
which 4HT is typically a weak agonist or antagonist
(21) and AF1 contributions to SRC-1 interaction(s) with
the ER were not likely to have been assessed.

SRC-1 and Ligand-Independent Activation

of the ER

The coactivation of forskolin/IBMX-stimulated ER
transcriptional activity by SRC-1 in the absence of
exogenous ligand suggests that a hormone-indepen-
dent mechanism exists to facilitate a functional inter-
action of ER and this coactivator. Furthermore, the
ability of ligand-independent signaling pathways to
shift 4HT activity from antagonist to agonist and
thereby enable SRC-1 to strongly enhance 4HT activ-
ity in a cell/promoter context where this antiestrogen is
typically a relatively poor agonist, supports this hy-
pothesis. Because all agents (i.e. dopamine, cAMP,
growth factors) capable of ligand-independently acti-
vating the ER initiate or alter the activity of an intra-
cellular signal transduction cascade and presumably
kinases and/or phosphatases (reviewed in Ref. 36), it
is possible that phosphorylation of the ER and/or
SRC-1 may contribute to their ability to functionally
interact with one another or with other accessory tran-
scription factors (e.g. CREB binding protein; CBP)
necessary for steroid receptor-dependent transcrip-
tion (37). Interestingly, CBP serves as a coactivator for
numerous, diverse transcription factors (e.g. CREB,
Elk-1, c-Jun, c-Myb, c-Fos), and at least some of these
interactions are dependent and/or enhanced by the
phosphorylation of the site-specific activator (38–42).

SMRT Regulation of 4HT Biocharacter

Since SRC-1 was unable to alter the agonist/antago-
nist balance of 4HT activity, SMRT was tested for its
ability to alter 4HT’s agonist/antagonist activity to de-
termine whether a corepressor has the potential to
regulate mixed antiestrogen activity. In both cell/pro-
moter contexts tested, ectopic expression of SMRT
decreased the ability of 4HT to activate transcription
while having little or no effect on estrogen-stimulated
gene expression; this suggests that full agonists en-
able the ER to overcome corepressor function, while
partial agonist/antagonists do not. Although the ex-

Fig. 7. Ectopic SRC-1 Expression Does Not Overcome
SMRT Inhibition of 4HT Agonist Activity

Hep G2 cells were transfected with 1 mg pSVMT-wER and
2.5 mg pC3-Luc and either 0.5 mg pBK-CMV and 1 mg
pABDgal (lanes 1–3), 0.5 mg pBK-CMV and 1 mg pABDgal-
SMRT (lanes 4–6), 0.5 mg pBK-SRC-1 and 1 mg pABDgal-
SMRT (lanes 7–9), 0.5 mg pBK-SRC-1 and 0.5 mg pABDgal-
SMRT (lanes 10–12), or 0.5 mg pBK-SRC-1 and 1 mg
pABDgal (lanes 13–15). The activity of the ER in the presence
of E2 and absence of exogenous SRC-1 and SMRT was
defined as 100. Data represent the average 6 SEM of three
experiments. Cells were treated with either vehicle (basal;
solid bars), 10 nM E2 (open bars), or 100 nM 4HT (stippled

bars).
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periments presented in this paper used a SMRT ex-
pression vector lacking the coding region for the first
28 amino acids, they have been repeated with another
expression vector (pCMX-SMRT) that directs the ex-
pression of a SMRT isoform containing the authentic
amino terminus with essentially identical results (data
not shown). This indicates that the first 28 amino acids
of this corepressor are not required to modulate 4HT’s
ability to activate ER-dependent gene expression.

The corepressor SMRT was reported to bind to TR
and RAR in the absence, but not the presence, of their
cognate ligands via a portion of the hinge region re-
ferred to as the CoR box (23, 43, 44). Although there is
no homology between the CoR box and any region of
the ER, three other structural motifs have been impli-
cated in the association between corepressors and
two orphans of the steroid receptor superfamily, Rev-
ErbA and COUP-TF1; none displays significant homol-
ogy to the CoR box or the ER (45–47). Thus, dissimilar
receptor sequences facilitate interaction between dif-
ferent nuclear receptor superfamily members and
SMRT. Although SMRT preferentially bound to a
GST-ER fusion protein in comparison to GST alone, no
hormone-dependent interaction was observed, and
this could reflect differences between in vitro and in

vivo binding conditions. For example, if hormone-de-
pendent, ER-coactivator interactions contribute to the
displacement/inactivation of corepressor in vivo, dif-
ferences in ER-SMRT in vitro interactions are not likely
to be observed. Alternatively, SMRT may interact with
the hormone-independent AF1 domain of ER. Impor-
tantly, our data should not be used to implicate SMRT
itself as the authentic, native corepressor for the ER. It
is equally likely that another unidentified protein(s) reg-
ulates ER transcriptional activity with improved spec-
ificity and/or affinity.

Roles of Potential ER Corepressors

Although heat shock protein interactions contribute to
maintaining the ER in a transcriptionally inactive state
within the cell (48), under certain conditions ER is
present within the nucleus and able to bind DNA in the
absence of ligand (49), suggesting that another mech-
anism may inhibit this receptor’s basal transcriptional
activity. For instance, corepressors could recruit his-
tone deacetylase activity to a target gene promoter
and thereby maintain chromatin in an inactive state,
directly interact with and inhibit the general transcrip-
tion complex formed at the promoter (TATA), inhibit
functional ER-coactivator interactions, or block the
transcriptional synergism between AF1 and AF2 re-
quired for full ER activity in most cell/promoter con-
texts (6, 8, 9). Thus, it is postulated that the unliganded
ER is bound to a corepressor(s) that either dissociates
or is inactivated upon estrogen binding; the resulting
conformational change would enable the ER to pref-
erentially associate with coactivator(s) and directly
and/or indirectly encourage the general transcriptional
machinery to activate target gene expression. In con-

texts where they act as antagonists, mixed antiestro-
gens may induce a ligand-binding domain conforma-
tion that enables the receptor to retain its ability to
interact with corepressor(s) and/or decreases its affin-
ity for SRC-1 such that corepressors are not efficiently
inactivated. Alternatively, if the mixed antiestrogen-
occupied ER simultaneously binds coactivators and
corepressors under these conditions, the repressor
domain(s) of corepressors may inhibit ER transcrip-
tional activity by blocking the activation function of
coactivators.

The agonist activity of 4HT may manifest itself in
tissues and cells where corepressor expression is low,
ER transcriptional activity is stimulated by corepres-
sor-insensitive coactivators and/or cell-specific core-
pressors are unable to bind to ER liganded with mixed
antiestrogens. In support of the concept that an au-
thentic ER corepressor may exist is the demonstration
of a repressor domain within the ER’s ligand-binding
domain (amino acids 370–470) that functions indepen-
dently of heat shock protein interaction (50). Further-
more, there is a precedent for the existence of a core-
pressor(s) for “steroid” as opposed to a orphan (Rev-
ErbA) or type II (TR and RAR) receptor. A repressor
domain has been mapped within the extreme carboxy
terminus of the progesterone receptor, and it appears
to require an additional cellular factor(s) to inhibit tran-
scription (51).

Implications of Coregulators for 4HT

Biocharacter

Collectively, these data accumulated in model trans-
fection assays indicate that cellular coactivators and
corepressors have the potential to contribute to the
overall ability of a mixed antiestrogen to regulate ER
target gene expression. At the tissue/organ mRNA
level, the coactivators and corepressors examined to
date appear to be ubiquitously expressed (22, 52–56),
and presumably most, if not all, cells contain both
forms of coregulators. However, the relative expres-
sion levels of known coactivators and corepressors
have not been assessed, and it is likely that novel
coregulators of the nuclear receptor superfamily re-
main to be identified. It is possible that authentic ER
corepressor proteins may be expressed at relatively
high levels in cells where 4HT is an antagonist and/or
coactivators are present in comparatively large
amounts in contexts where 4HT is an agonist. It is also
likely that promoters contribute to the relative balance
of 4HT agonist/antagonist activity by imposing spatial
constraints on the ability of ER and coactivators/core-
pressors to make protein-protein interactions.

Tamoxifen, in its role as an antiestrogen, is an im-
portant endocrine therapy for the treatment of breast
cancer and more recently is being tested as a chemo-
preventative agent in women with a high risk of devel-
oping this disease (57). However, it also exerts estro-
gen-like effects in bone, liver and urogenital tissues; of
which some (e.g. an increased occurrence rate of en-
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dometrial cancer) are clearly not beneficial (58). Our
data highlights the necessity to understand the role
that native intracellular factors play in the interpreta-
tion of tamoxifen/4HT biocharacter in cells/tissues that
endogenously express ER and provides a theoretical
rationale for the contribution of coregulatory proteins
to the tissue-specific and gene-specific activity of ER
agonists and antagonists.

MATERIALS AND METHODS

Chemicals

17b-Estradiol (E2) and tamoxifen were obtained from Sigma
Chemical Company (St. Louis, MO). The antiestrogens, ICI
164,384 and ICI 182,780, and 4HT were gifts from Alan
Wakeling (Zeneca Pharmaceuticals, Macclesfield, UK) and D.
Salin-Drouin (Laboratoires Besins Iscovesco, Paris, France),
respectively. Forskolin and IBMX were purchased from Re-
search Biochemicals International (Natick, MA).

Plasmid DNAs

The mammalian expression vectors for full-length hER (pS-
VMT-wER) and the AF2 (D538A/E542A/D545A) mutant ER
(pRST7-hER-3x) and its corresponding wild type ER counter-
part (pRST7-hER) have been described previously (8, 29). The
synthetic target genes, ERE-E1b-CAT (29), pC3-Luc (8), and
TK-C3ER1&2-Luc (24) have been used in previous studies.
Mammalian expression vectors for SMRT (pABDgalSMRT or
pCMX-SMRT) and SRC-1 (pBK-SRC-1) and the correspond-
ing parent vectors (pABDgal and pBK-CMV) were described
previously (22, 23, 47), as was the baculoviral expression
vector, pGST-hER (3).

The in vitro transcription vector for SMRT, pT7-SMRT(29–
1495), was constructed as follows. First, human skeletal
muscle poly(A)1 RNA (Clontech, Palo Alto, CA) was reverse
transcribed using the primer, 59-GCTGGCATGTTCCTG-
CACCG-39, and this material was used as a template cDNA
for PCR amplification using the primers, 59-AGCTGACGTC-
GACGCCTCGTG-39 and 59-CTGCACCGCCTGGCTTCTAT-
39. The resulting product was cloned into the TA cloning
vector, pCR3 (Invitrogen, Carlsbad, CA) to produce pCR3-
SMRT(565–1289). Subsequently, this vector was digested
with EcoRV and BglII and ligated with the EcoRI (filled) to BglII
fragment of pGAD10-SMRT(1192–1495) to yield the pCR3-
SMRT(565–1495) vector. The cDNA insert of pGAD10-
SMRT(1192–1495) was isolated from a brain cDNA library by
yeast two-hybrid assay using the ligand-binding domain of
the human TR as bait. The SalI-XhoI fragment of pCR3-
SMRT(565–1495) was isolated, repaired with Klenow DNA
polymerase, and cloned into the NcoI-EcoRI (filled) site of the
pT7bSal vector (59) to produce pT7-SMRT(565–1495). Next,
human skeletal muscle was reverse transcribed using the
primer, 59-GTGCGGGACTTGGCGATCT-39, and the resulting
cDNA was amplified by PCR with the primers, 59-AAGATTC-
CGAGCTCTGCTAC-39 and 59-CACGAGGCGTCGACGT-
CAGC-39. This PCR product was TA Cloned (Invitrogen) to
create pCR3-SMRT(29–564). Finally, to construct pT7-
SMRT(29–1495), the SalI fragment of pCR3-SMRT(29–564)
was inserted into the SalI site of pT7-SMRT(565–1495).

Cell Culture and Transfections

HeLa and HepG2 cells were routinely maintained in DMEM
supplemented with 10% FBS. Twenty-four hours before
transfection, 3 3 105 HeLa or 8 3 105 HepG2 cells were

seeded per well of a six-well multiwell dish in phenol red-free
DMEM containing 5% dextran-coated charcoal-stripped se-
rum. Cells were transfected with the indicated DNAs using
Lipofectin (Life Technologies, Grand Island, NY) according to
the manufacturer’s guidelines. Six hours later, the DNA/Lipo-
fectin mixture was removed and cells were fed with phenol
red-free media containing 5% stripped serum and the hor-
mone treatments indicated in the figure legends. Twenty-four
hours thereafter, cells were harvested and extracts were as-
sayed for CAT (29) or luciferase activity using the Luciferase
Assay System (Promega, Madison, WI). Duplicate samples
were measured in each experiment, and data are presented
as the average 6 SEM of at least three experiments.

Protein-Protein Interaction by GST Pull-down Assay

The full-length hER was expressed as a GST fusion protein in
a baculovirus expression system in the presence of ethanol
(vehicle), 1 mM estradiol, or 1 mM tamoxifen and purified using
glutathione-Sepharose affinity chromatography as described
previously (60). Radiolabeled SMRT (amino acids 29–1495)
was produced from the pT7-SMRT(29–1495) vector with the
TNT-Coupled Reticulocyte Lysate System for in vitro tran-
scription and translation as recommended by the manufac-
turer (Promega).

To assess protein-protein interactions, equivalent levels of
GST alone or GST-hER (as assessed by Coomassie staining)
were incubated with glutathione-Sepharose 4B beads (Phar-
macia, Piscataway, NJ) in NENT buffer (20 mM Tris, pH 8.0
containing 100 mM NaCl, 1 mM EDTA, and 0.5% NP-40)
containing either ethanol, 1 mM E2, or 1 mM tamoxifen for 60
min at room temperature. Subsequently, the supernatant was
removed and the beads were washed twice with NENT
buffer. Eight microliters of 35S-labeled SMRT were incubated
with the beads in NENT buffer containing vehicle, estrogen,
or tamoxifen for 2 h at room temperature. Beads were
washed five times with NENT buffer, dried, resuspended in 50
ml SDS-PAGE loading buffer, resolved by 7.5% SDS-PAGE,
and visualized by fluorography.
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