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Coactive Design is a new approach to address the increasingly sophisticated roles that people and 

robots play as the use of robots expands into new, complex domains. The approach is motivated 

by the desire for robots to perform less like teleoperated tools or independent automatons and 

more like interdependent teammates. In this article, we describe what it means to be 

interdependent, why this is important, and the design implications that follow from this 

perspective. We argue for a human-robot system model that supports interdependence through 

careful attention to requirements for observability, predictability, and directability. We present a 

Coactive Design method and show how it can be a useful approach for developers trying to 

understand how to translate high-level teamwork concepts into reusable control algorithms, 

interface elements, and behaviors that enable robots to fulfill their envisioned role as teammates. 

As an example of the coactive design approach, we present our results from the DARPA Virtual 

Robotics Challenge, a competition designed to spur development of advanced robots that can 

assist humans in recovering from natural and man-made disasters. Twenty-six teams from eight 

countries competed in three different tasks providing an excellent evaluation of the relative 

effectiveness of different approaches to human-machine system design. 
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Motivation 

The view of robots as teammates has grown as the field of robotics has matured. This is evidenced 

by the 2011 National Robotics Initiative1, which had a goal of accelerating the development and 

use of robots that work beside, or cooperatively with, people. Considering robots as teammates is 

also prevalent in most future-looking roadmaps. This includes civilian ones such as NextGen UAS 

Research Air Transportation Roadmap from 2012 and military ones such as the Unmanned 

Systems Integrated Roadmap FY2011-2036 that both refer to Manned-Unmanned (MUM) 

Teaming, as well as academia-generated ones such as A Roadmap for US Robotics from 2009, 

                                                             
1 http://www.nsf.gov/pubs/2011/nsf11553/nsf11553.htm accessed 2013-07-12 1900CST 
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which refers to human-robot teams. The need to work closely with humans is also echoed by the 

development of general purpose service robots, e.g., the PR2 from Willow Garage, that promise to 

someday fulfill our long-time desires for these automated assistants. Some projected uses of this 

type of robot include household help, assisting the elderly or disabled, and assistance as a co-

worker in various service fields (Wyrobek, Berger, Van der Loos, & Salisbury, 2008). Given this 

landscape for robotics uses, it should be clear that today’s goals for robotics envision collaborative 

or cooperative systems that do not merely do things for people, “autonomously,” but that can also 

work together with people, enhancing human experience and productivity in everyday life 

(Bradshaw, Dignum, Jonker, & Sierhuis, 2012). 

The goal of designing a teammate captures the expectations of future robotic systems in 

virtually every kind of application and the more sophisticated roles they are expected to play. But 

what does it mean for a system to be a teammate? Effective teamwork intuitively implies 

coordination of activity, cooperation among participants, and collaboration. However, all these 

terms are too abstract to give direct guidance to human-machine system designers and developers. 

As technology has become an increasingly prevalent part of human life, the social science 

communities and engineering communities have been forced together to address a system 

comprising both man and machine. Models of teamwork have been developed but tend to be lists 

of characteristics such as having clearly defined roles and effective communication (Larson & 

LaFasto, 1989), or of high-level behaviors such as providing periodic updates and monitoring for 

errors (Smith-Jentsch, Zeisig, Acton, & McPherson, 1998; Sycara, 2002). While these types of 

informative guidance are of value, they have difficulty being embraced by system engineers 

building human-machine systems because they provide little in the way of practical guidance to 

designers and developers for analysis and implementation. The language, concepts, and products 

of those who focus on teamwork theory are often far removed from those who design and 

implement working systems (Hoffman & Deal, 2008). The challenge is in translating high-level 

concepts such as teamwork and collaboration into implementations of such concepts within 

control algorithms, interface elements, and behaviors. 

Background and Related Work 

Much of the early work of researchers in robotics and software agents was motivated by situations 

in which autonomous systems were envisioned to “replace” human participation, thus minimizing 

the need to consider the “social” aspects of working together. Traditional approaches to human-

robot systems design usually employ task decomposition and allocation. The most well-known 

example of this approach is supervisory control (Sheridan, 1992), in which people allocate tasks to 

one or more machines and then monitor their performance. One of the challenges of such 

approaches is that the suitability of a particular human or machine to take on a particular task may 

vary by time and over different situations. 

To address requirements for variable task allocation in different situations, there has been 

interest in dynamic and adaptive function allocation—also known in slightly different forms as 

adjustable autonomy, dynamic task allocation, sliding autonomy, flexible autonomy, or adaptive 

automation. In each case, the system must decide at runtime which functions to automate and to 

what level of autonomy (Parasuraman, Sheridan, & Wickens, 2000). The insight these approaches 

provide is a need for flexibility and adaptability in a system. Our extensive work in this area 

(Bradshaw et al., 2003, 2004, 2005, 2008; Sierhuis et al., 2003) has given us a deep understanding 

of the challenges associated with these approaches (Johnson et al., 2012). The main challenge is 

identifying what to adjust and when to adjust it. This challenge is further complicated by the 

difficulty of predicting the impact a change may have on the system as a whole in a given context. 

March, Simon, and Guetzkow (1993) point out that “one peculiar characteristic of the assignment 

problem…is that, if taken literally, problems of coordination are eliminated” (p. 44). This is 

because approaches based on allocation unrealistically tend to ignore what March et al. (1993) 

describe as “the contingent character of activities.” Any significant form of collaboration cannot 

be fully addressed through mere task decomposition and allocation. It is the joint nature of key 
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tasks that defines the heart of collaborative activity—and it is the effective management of 

interdependence that makes such work possible. Therefore, effective management of systems with 

autonomy requires an understanding of the impact a change in autonomy may have on the 

interdependence in the human-machine system. 

Similar to many researchers in the Human-Robot Interaction (HRI) field, we have also been 

influenced by the social sciences. Past research on interdependence in the social sciences includes 

the organizational theory work of Thompson (1967) who identified the three types of 

interdependence: pooled, sequential, and reciprocal. These types were characterized by the 

interaction between organizational units, specifically, in how the output of one unit may affect 

another unit (Thompson, 1967). These types of interdependence are relevant for human-machine 

design but are insufficient to cover the nuances of close collaboration of human and machine 

working jointly on a task. Other research communities have developed Hierarchical Task Analysis 

(HTA) (Annett, 2003) as a method for identifying and decomposing complex tasks. Cognitive 

Task Analysis (CTA) (Crandall & Klein, 2006; Schraagen, Chipman, & Shalin, 2009) has 

extended this methodology to include a representation of the knowledge and reasoning required to 

perform tasks. Goal-Directed Task Analysis (GDTA) (Endsley, Bolté, & Jones, 2003) is a type of 

CTA that includes situation awareness requirements. These approaches provide useful insight into 

task dependencies and human requirements for those dependencies. However, interdependence in 

a team can be due to more than just the task at hand, as we will discuss further on. 

The most influential contributions we drew upon in developing Coactive Design came from a 

variety of sources. One is joint activity theory (Bradshaw, Feltovich, & Johnson, 2011; Klein, 

Feltovich, Bradshaw, & Woods, 2005; Klein, Woods, Bradshaw, Hoffman, & Feltovich, 2004), 

which is a generalization of Herbert Clark’s (1996) work in linguistics. Our sense of joint activity 

parallels that of Clark (1996), who has described what happens in situations when what one party 

does depends on what another party does (and vice-versa) over a sustained sequence of actions. In 

such joint activity, we say that team members are “interdependent” (Feltovich, Bradshaw, 

Clancey, & Johnson, 2007). Malone and Crowston’s (1994) work, which defined coordination as 

managing dependencies, provided guidance, as did the principles of human-centered computing 

(HCC) and the challenges identified by that community (Hoffman, Hayes, Ford, & Bradshaw, 

2012). Also, Collaborative Control (Fong, 2001) has been influential in our thinking. It introduced 

to robotics the idea that both parties may participate simultaneously in the same action, which 

correlates well with Clark’s (1996) notion of participatory action. 

Coactive Design 

Coactive Design is a new approach to address the increasingly sophisticated roles that people and 

robots play as the use of robots expands into new, complex domains. The term “coactive design” 

was coined as a way of characterizing an approach to the design of HRI that takes interdependence 

as the central organizing principle among people and robots working together in joint activity 

(Johnson et al., 2011). Besides implying that two or more parties are participating in an activity, 

the term “coactive” is meant to convey the reciprocal and mutually constraining nature of actions 

and effects that are conditioned by coordination. Coactive Design is focused on systems where the 

human and machine are engaged in joint activity. The term “joint activity” describes the nature of 

the activity, and the term “coactive design” is about designing in a way to accomplish effective 

joint activity. The goal of Coactive Design is to help designers identify interdependence 

relationships in a joint activity so they can design systems that support these relationships, thus 

enabling designers to achieve the objectives of coordination, collaboration, and teamwork. 

What It Means to Be Interdependent 

Many misunderstandings in science come from assigning different meanings to terms. With 

respect to the topic at hand, the terms “interdependence” and “dependence” are used in a range of 

ways with varied meaning—sometimes even as synonyms as in Malone and Crowston’s (1994) 
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work2. In order to avoid confusion, we will clarify our interpretation of these terms by providing 

definitions. This is done with the understanding that others may hold different views on the 

meaning of the terms but can interpret our results through the lens we have provided. 

Interdependence is often simply equated to mutual dependence
3
. However, this definition of 

the concept is too simplistic to capture the kinds of nuances we have observed in interdependence 

relationships among humans and machines engaged in joint activity. Thompson’s (1967) famous 

Organizational Theory work on interdependence states: 

It appears that if we wish to understand organization structure, we must consider what is 

meant by interdependence and by coordination, and we must consider the various types 

of these. (p. 54)  

Thompson’s work provided insight into coordination mechanisms and outlined three types of 

interdependence, but did not provide a definition of interdependence itself. From the perspective 

of social psychology, Thibaut and Kelly’s (1959) Theory of Interdependence describe 

interdependence in the following way: 

In any dyad both members are dependent upon the relationship to some degree, so we 

speak of their being interdependent. This means that each one has some power over the 

other which places limits on the extent to which each may with impunity exercise his 

power over his colleague. The pattern of interdependency which characterizes a 

relationship also affects the kinds of process agreements the pair must achieve if their 

relationship is to be maximally satisfactory. (p. 124) 

This description suggests that interdependence is about relationships, which we feel is an 

important insight. However, the description is limited to one type of interdependence, specifically 

how an individual’s behavior affects the outcomes of contingent relationships. Descriptions of 

other types of interdependence are provided by Malone and Crowston’s (1994) interdisciplinary 

study of coordination: 

Coordination means “managing dependencies between activities.” Therefore, since 

activities must, in some sense, be performed by “actors,” the definition implies that all 

instances of coordination include actors performing activities that are interdependent. (p. 

101) 

From this, we glean that the purpose of these relationships is to manage dependencies, in this case 

interdependence among activities. Dependencies among agents has been an important theme in 

Distributed Artificial Intelligence research. For example, Jennings (1996) states: 

The nature of the inter-agent dependencies is the critical determinant of the type of 

coordination which will take place. (p. 5) 

This statement emphasizes the importance of the concept of interdependence, but provides no 

definition of the term. More recently, these concepts have begun to make their way into the HRI 

domain, as evidenced by Murphy and Burke’s (2008) comment: 

An examination of team processes is useful because it identifies the dependencies 

between the agents in the system and how the agents are coordinated. This is key to 

designing systems that facilitate coordination. (p. 2) 

This comment highlights the importance identifying dependencies between agents for facilitating 

coordination. The reason interdependence is so important in all of these domains is because it is 

                                                             
2 Malone uses dependencies instead of interdependencies, but then states, “if there is no interdependence, there is nothing 

to coordinate.” This implies that he considers the two terms to be synonymous. 
3 http://dictionary.reference.com/browse/interdependent?s=t (accessed 17 November 2013). 
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the basis for understanding complex systems. Again, however, the concept often remains 

undefined. 

Our definition of interdependence builds on the idea that interdependence is about 

relationships. It includes the purpose of these relationships which is to manage dependencies in 

joint activity. We emphasize that some dependencies are “hard” (absolutely necessary for carrying 

out the joint activity) while others are “soft” (defining possible opportunities for improving joint 

activity). In light of these considerations, we define interdependence in the context of joint activity 

as follows: 

“Interdependence” describes the set of complementary relationships that two or more 

parties rely on to manage required (hard) or opportunistic (soft) dependencies in joint 

activity. 

In the next section, we decompose our definition of interdependence, expounding the key notions 

in this definition. We begin with the term “dependence.” 

Dependence Is About Capacity 

In order to define dependence, we introduce the notion of capacity. Consider a robot that exists in 

some world environment and can sense and act on the world. A robot may require various things 

such as knowledge, skills, abilities, or resources to perform an activity. We define capacity as an 

encompassing term: 

Capacity is the total set of inherent things (e.g., knowledge, skills, abilities, and 

resources) that an entity requires to competently perform an activity individually. 

All aspects of capacity are determined by the interaction between a robot and its environment. It 

concerns the inherent capabilities of an entity and can be associated with the descriptive dimension 

of autonomy (Bradshaw et al., 2004). Consider the example of a robot that can deliver a soda. The 

most prominent aspects of capacity are the skills and knowledge to perform a task. This task 

requires skills such as planning a path to the refrigerator, moving to the refrigerator and avoiding 

obstacles along the way, opening the refrigerator, and picking up the soda can. It also requires 

knowledge of the refrigerator containing soda, where it is located, where the robot is relative to the 

refrigerator, and how to identify the desired can of soda. Capacity also includes accounting for 

resources such as energy and time. A robot may have the ability to get a soda, but its remaining 

battery life may not be sufficient. Similarly, it may be able to get a soda, but its maximum speed 

might hinder accomplishing this in under 30 seconds. 

Based on this view of capacity, we define dependence and its complement independence: 

Dependence exists when an entity lacks a required capacity to competently perform an 

activity in a given context. 

Independence exists when an entity possesses the required capacity to competently 

perform an activity in a given context. 

Dependence with respect to capacity is important to robot designers, as the goal of making a 

robot more autonomous requires designers to develop the necessary capacity for independence. 

However, designing for teamwork requires designing for interdependence, not just independence. 

Interdependence Is About Relationships 

In our treatment, the concept of dependence with respect to capacity does not include other agents 

or their abilities, nor does it include interactions with other agents. These interactions or 

relationships are commonly described as one being “dependent on another.” This sense of 

dependence can be associated with the prescriptive dimension of autonomy (Bradshaw et al., 

2004). Examples include synchronized movements, delegations, and authority structures to, for 

example, permit or prohibit various actions. These all play the role of external regulatory systems, 

by which we mean any set of devices that serves to constrain or promote behavior in some 
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direction (Feltovich et al., 2007). While it is perfectly fine linguistically and otherwise to use 

dependence to describe both senses of dependence, we will refer to this second sense of 

dependence with respect to regulatory relationships as interdependence. 

Both senses of dependence provide reasons for establishing a relationship. However, a fully 

defined interdependence relationship includes both the reason for it (i.e., what is it trying to 

address) and the remedy (i.e., how is it going to be addressed). The reason for the relationship can 

include a capacity limitation or a regulatory relationship. The remedy is provided by creating 

mechanisms that support an interdependent relationship and these mechanisms are the creative 

medium of the designer. It is these mechanisms by which we can add not only capability, but also 

flexibility and resilience to a system. 

The main issue that complicates understanding the concepts of dependence and 

interdependence is the cascading nature of the two concepts. Dependence with respect to capacity 

is managed by establishing supporting interdependent relationships. Conversely, establishing an 

interdependent relationship can impose new dependencies. These can cascade as the designer 

makes choices, so that a dependency inspires an interdependent relationship, which creates other 

dependencies, requiring additional interdependent relationships and so on. 

As a simple example of cascading requirements, consider a blind person and a guide dog. 

There is an initial dependence with respect to capacity: The person lacks the ability to see. This is 

the reason for the dependence. The remedy is to establish a relationship with a guide dog to 

provide navigation support. This relationship, in turn, creates a new dependency based on the need 

to control where the dog guides the person. The first dependency, needing navigation support, is 

based on capacity (i.e., the person not being able to see) and was inherent in the problem. The 

second dependency, needing control guidance, is based on obligations incurred by establishing an 

interdependent relationship (i.e., the dog will guide the person). Notice that the second 

dependency did not exist until we established the interdependent relationship, and it would cease 

to exist if the dog were no longer needed for guidance. The second dependency is a product of the 

remedy. 

Interdependence Relationships Must Be Complementary 

In joint activity, the interdependence relationship must be complementary. As a simple example, 

imagine a train engine pulling a cargo car (as depicted in Figure 1). This situation would 

commonly be described as the cargo car being dependent on the engine to move. Based on our 

definitions, the car is indeed dependent (i.e., lacking capacity) and the two parties are 

interdependent (i.e., there is a relationship). This relationship is not as simple as the engine 

providing power for the car. The engine relies on the car to provide the cargo capacity. Note that 

this example relies on there being a joint activity of the train (consisting of cargo car and engine) 

to move some cargo from A to B. If there would not be such a joint activity, the engine could just 

move without the car. Therefore, joint activity is the assumption under which interdependence is 

defined, and as a result, interdependence must be complementary. 

 

 
Figure 1. A train analogy describing the interdependence of the car and engine. The relationship is 

complementary, because the coupling joining the two must fit correctly and both must support the 

load. 
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Interdependence Concerns Both Required (Hard) and Opportunistic (Soft) Relationships 

Much of the robotics work today is about required (i.e., hard) interdependence relationships that 

stem from lack of capacity, e.g., the train analogy depicted on the left side of Figure 2. However, 

it is our view that to achieve true teamwork, interdependence should also include opportunistic 

(i.e., soft) interdependence relationships. Soft interdependence does not stem from a lack of 

capacity. It arises from recognizing opportunities to be more effective, more efficient, or more 

robust by working jointly, as depicted on the right side of Figure 2. 

Soft interdependence is optional and opportunistic rather than strictly required. It includes a 

wide range of helpful things that a participant may do to facilitate team performance. Examples 

include progress appraisals (“I’m running late”), warnings (“Watch your step”), helpful adjuncts 

(“Do you want me to pick up your prescription when I go by the drug store?”), and observations 

about relevant unexpected events (“It has started to rain”). All of these examples and many others 

reinforce the need to consider all internal cognitive processes of the parties involved, not just the 

interactive ones supporting hard constraints such as a lack of capacity. 

Many aspects of teamwork are best described as soft interdependencies. Our observations to 

date suggest that good teams can often be distinguished from great ones by how well they manage 

soft interdependencies. 

 

 
Figure 2. Hard (required) versus soft (opportunistic) interdependence relationships. 

Interdependence Recasts Context and Defines Common Ground 

Context matters and interdependent relationships in support of joint activity recast context. Instead 

of single agents in the context of individual activities, in teamwork all parties involved will be in 

the context of the same joint activity. In addition to each agent having its own situation, there is 

now a need to be aware of the situation enveloping all parties. This recasting of context creates a 

new regulatory constraint that is referred to as common ground (Clark & Brennan, 1991; Klein et 

al., 2005). Clark states that “all collective actions are built on common ground (Clark & Brennan, 

1991).” It includes pertinent knowledge, beliefs and assumptions (Klein et al., 2004), but what 

determines pertinence? We propose that the interdependent relationships between parties 

determine what is relevant and thus define what common ground for a particular team should 

entail. 

In summary, interdependence is the set of relationships used to manage dependencies. These 

relationships must be complementary among the parties involved. The relationships can be 

required or opportunistic. By engaging in such relationships, the context of the activity now 

encompasses all parties involved as a single joint system and these relationships then define what 

is pertinent for common ground. Our definition identifies the reasons for interdependent 

relationships and points to support for interdependent relationships as the remedy. However, this 

alone is not enough to provide the sufficiently detailed requirements necessary for 

implementation. Our system model will provide this missing link. 
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How to Determine Interdependence Requirements 

System models can be useful tools if they guide the designer to the most relevant issues to be 

addressed in designing a system, help to define appropriate specifications, and aid in comparing 

and contrasting alternatives. We will explain how our model provides simple guidelines for 

determining interdependence requirements. In this section, we first discuss Fong’s (2001) 

collaborative control system model, which we view as one of the best existing models of human-

machine collaboration. We then propose a new coactive system model and explain how it extends 

Fong’s model to facilitate specification of interdependence requirements. 

Fong’s Collaborative Control System Model 

Fong’s (2001) collaborative control model is one of the more descriptive models in the literature. 

In his thesis work, Fong (2001) presents a collaborative control system model, as shown in Figure 

3. The role of the human in this thesis is to provide assistance to a robot that is trying to navigate 

(Fong, 2001). Basically, the human supplements the robot’s limited perceptual and cognitive 

capacity. Fong’s (2001) model depicts perceptual and cognitive information being provided to the 

human through a user interface (UI). It also depicts control input back to the perceptual and 

cognitive components (Fong, 2001). Fong’s (2001) innovation was to suggest the human be 

allowed to “close-the-loop” for both perception and cognition. By “close-the-loop,” he was 

referring to the making of either a perceptual or cognitive decision for a robot (Fong, 2001). An 

example of a perceptual decision from Fong’s (2001) thesis work was answering the question, 

“Are these rocks?” and a cognitive decision example was answering the question, “Can I drive 

through?” If the questions were not answered in a timely manner, the robot would make the 

decision, thus this model allowed for opportunistic support, indicated by the dashed arrows for 

“closing-the-loop” (Fong, 2001). What enabled the distinction in Fong’s system model was 

consideration for the internal processes of the robot, in other words, not modeling the robot as a 

black box. If the perceptual and cognitive components were not modeled, there would be no way 

to vary the interaction with them. 

 

 
Figure 3. Fong’s (2001) Collaborative Control System Model 
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Coactive System Model 

What distinguishes joint activity from individual activity? Clark (1996) observes that “a person’s 

processes may be very different in individual and joint actions, even when they appear identical.” 

For example, Clark (1996) contrasts playing a musical solo versus playing a duet. From a 

designer’s perspective, this means participants in a joint activity have additional requirements 

beyond the taskwork requirements. Where do these requirements stem from? They derive from 

interdependence and the need to understand and influence those engaged in the joint activity. In 

our framework, these requirements concern observability, predictability, and directability (OPD). 

The core of our system model is an abstracted interface, depicted in the middle of Figure 4. The 

interface captures the requirements for supporting interdependence and should shape the design of 

both the UI of a human operator and the robot’s autonomous capabilities. We will first explain 

OPD and then describe the rest of the model by explaining how it extends Fong’s (2001) 

collaborative control system model. 

 

 
Figure 4. Coactive System Model based on observability, predictability, and directability (OPD)4. 

Observability, Predictability, and Directability 

Observability means making pertinent aspects of one’s status, as well as one’s knowledge of the 

team, task, and environment observable to others. Since interdependence is about complementary 

relations, observability also involves the ability to observe and interpret pertinent signals. This 

correlates with Clark’s (1996) statement that communicative acts are joint actions and his concept 

of joint action ladders. Part of the joint action ladder is attention management, which is Challenge 

9 in the 10 challenges for making automation a team player (Klein et al., 2004)
5
 to ensure signals 

are received. Though not called “observability” in the 10 challenges (Klein et al., 2004), this 

concept aligns with Challenge 5, revealing status and intentions, and Challenge 6, interpreting 

signals. It is also consistent with work in the HRI domain (Sycara & Sukthankar, 2006), which 

lists team knowledge as an important facet of human-agent interaction. Observability plays a role 

in many teamwork patterns e.g., monitoring progress and providing backup behavior. 

                                                             
4
 Note that we are not advocating a particular internal model for either the robot or the human. We are simply highlighting 

the importance of internal processes as in Clark’s (1996) participatory actions and Fong’s (2001) system model. 
5 Below we discuss all but 2 of the 10 challenges. Challenge 8, relating to a collaborative approach to teamwork and 

autonomy, is pervasive in coactive design and did not need special mention. Challenge 10, controlling the costs of joint 

activity, is not directly addressed in this paper we note that interdependence analysis helps designers to focus their attention 

and resources on the problems and opportunities where performance payoffs are most likely to occur. 
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Predictability means one’s actions should be predictable enough that others can reasonably rely 

on them when considering their own actions. The complementary relationship is considering 

others’ actions when developing one’s own. Mutual predictability is Challenge 3 of the 10 

challenges (Klein et al., 2004) and is also listed as one of the three important facets of human-

agent interaction (Sycara & Sukthankar, 2006). Dragan, Lee, and Srinivasa (2013) makes an 

interesting distinction between predictability and legibility, but for simplicity we will use 

predictability to capture both matching expectation and inference from action. Predictability may 

involve the use of a priori agreements, e.g., Challenge 1 of the 10 challenges (Klein et al., 2004), 

or it may involve the use of models, e.g., Challenge 2 of the 10 challenges (Klein et al., 2004). 

Challenge 2 refers to adequate models, which allows for the use of complex formal models or 

much simpler mechanisms, such as interface elements, which may be learned through training. 

Predictability is also essential to many teamwork patterns such as synchronizing actions and 

achieving efficiency in team performance. 

Directability means one’s ability to direct the behavior of others and complementarily be 

directed by others. Directability includes explicit commands such as task allocation and role 

assignment as well as subtler influences, such as providing guidance or suggestions or even 

providing salient information that is anticipated to alter behavior, such as a warning. Directability 

is Challenge 4 of the 10 challenges, although it is only described as agents being directable and 

does not include the complement. Challenge 7, goal negotiation, could be viewed as a type of 

mutual directability. Directability is also one of the important facets in human-agent interaction 

(Sycara & Sukthankar, 2006), although only role assignment was considered. Teamwork patterns 

that involve directability include such things as requesting assistance and querying for input 

during decision making. 

Others in the HRI community have also identified OPD as critical issues. A notable example is 

Stubbs, Hinds, and Wettergreen’s (2007) field study of HRI; they do not use the same terminology 

we do, but the correlation is evident. They state that “had the science team been able to observe 

the robot executing commands in the desert, they would have had enough contextual information 

to disambiguate problems” (Stubbs et al., 2007, p. 45). This is akin to observability in our model. 

They also state, “we noticed that issues arose around why the robot made certain decisions” 

(Stubbs et al., 2007, p. 47). This is an issue of predicting the robot’s behavior. The system was 

assumed to have no directability since “only the robot could perform certain actions, and the 

science team couldn’t exert authority in those situations” (Stubbs et al., 2007, p. 49). However, it 

is not hard to imagine how better support for directability would have been beneficial in the 

system being studied. 

By using the OPD framework as a guide, a designer can identify the requirements for 

teamwork based on which interdependence relationships the designer chooses to support. The 

framework can help a designer answer questions such as “What information needs to be shared,” 

“Who needs to share with whom,” and “When is it relevant.” It is important to remember that it is 

not just about what information you share, but also about what you do not share. Sometimes too 

much information can be just as big a problem. The goal of a designer is not to maximize or 

minimize OPD. It is to attain sufficient OPD to support the necessary interdependent relationships. 

How the Coactive System Model Extends Collaborative Control 

Based on our definition of interdependence, we extend Fong’s insightful model in several ways. 

The first extension is to include the human as an actor in the system model. Fong’s (2001) system 

model is not alone in limiting the human to acting on the robot and in excluding the internal 

processes of the human. When we include the human in our model, it is not just as a black box or 

an endpoint. The human is a full actor, making coactive design considerations between partners 

symmetric, although the capabilities of each may not be. This means the machine could potentially 

“close-the-loop” for the human at any of the dimensions that compose the human’s internal 

processes, as shown by the bi-directional arrows in Figure 4. This is more in line with the original 

interpretation of mixed-initiative interaction (Allen, Guinn, & Horvitz, 1999) than with 
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collaborative control, which focused on a human supplementing a robot’s deficiencies. This 

extension also means the human’s potential to sense and act on the environment directly is 

modeled, in addition to acting through the robot, which may be appropriate for some systems. The 

composition of the human’s internal model and that of the robot are not important to the coactive 

system model; composition can vary based on the designer’s preference. In Figure 4, we are not 

advocating any particular internal models, merely providing examples to highlight the importance 

of internal processes as Clark (1996) points out with his duet example. Incorporating them 

explicitly in the model allows for inclusion in design considerations, as Fong (2001) did to enable 

the human to better support the robot. 

The second extension to Fong’s model is to include any and all relevant processes of the 

participant’s internal model. Perception and cognition are just two of the processes that may be 

involved, but all processes can potentially benefit from support. It may seem odd to “close-the-

loop” on sensing and acting, but people do this every day. A sensing example of support could be 

one person informing another about something they have noticed (e.g., “I saw the book you are 

looking for in my local bookstore”). An example of providing support for acting could be holding 

the door open for somebody, so they do not have to do it themselves. This extension also includes 

allowing for any permutation of “closing-the-loop.” For example, sensing input is not limited to 

“closing-the-loop” on sensing, but may affect planning, decision making, or even the action. The 

plan may affect the decision or the interpretation of the new data. Fong’s (2001) model could 

potentially mislead a designer that the cognitive processes are simple and sequential, when most 

activity of any complexity involves iterative framing and reframing of the problem. Our model 

makes no assumptions about the order of operations. 

There is one more extension to the system model that fundamentally distinguishes the Coactive 

system model. Our model shifts the focus from individual functional components, based on 

supplementing capacity, to team functional components based on supporting interdependence. In 

essence, we decouple the individual taskwork from the teamwork. We do this by using the 

interface as a layer of abstraction that represents the mechanisms required to support 

interdependence. Here we are using interface in its general sense of a boundary between systems, 

as opposed to the typically graphical component for input and output commonly called the user 

interface. This allows different internal models of robots and humans to co-exist in the same 

model of the human-machine team. For example, Figure 4 shows a derivation of a standard Sense-

Plan-Act model for a robot combined with a derivation of a Belief-Desire-Intention model for the 

human. Notice that the arrows from, for example, observability do not connect to particular parts 

of the robot’s or the human’s internal model. This is because observability may be needed to 

support any of the processes, such as interpretation, planning, or decision making. We show 

different example internal models for the robot and the human to emphasize that our model is not 

dependent on the underlying implementation. 

Coactive Design Method 

With an understanding of interdependence and our system model, we can now present the general 

method for Coactive Design, as shown in Figure 5. There are three main processes involved in the 

Coactive Design method: an identification process, a selection and implementation process, and an 

evaluation of change process. Similar to most design processes, these will typically be iterative 

processes that involve feedback and refinement. 
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Figure 5. The Coactive Design Method 
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The Identification Process 

To assist in the identification process, we propose an analysis tool that we call the Interdependence 

Analysis (IA) table, as shown in Figure 6. It is similar to traditional task analysis techniques 

(Annett, 2003; Crandall & Klein, 2006; Endsley et al., 2003; Schraagen et al., 2009), but we 

extend these types of analysis tools to support designing for interdependence by: 

 

• Allowing for more types of interdependence than just task dependency 

• Representing other participants in the activity by name or by role 

• Allowing for assessment of capacity to perform 

• Allowing for assessment of capacity to support 

• Allowing for soft constraints 

• Allowing for consideration of role permutations 

 
Figure 6. Explanation of the different areas of the Interdependence Analysis (IA) table 

Identifying Required Capacities for Tasks 

The identification process requires a traditional task analysis as an input, as well as knowledge of 

the team members, their capabilities, and the anticipated situation (e.g., environment). Left-most 

columns of the IA table is a traditional HTA (Annett, 2003), decomposing the task to an 

appropriate level of granularity. Following the HTA, we add a required capacities column to 

capture requirements in a manner similar to CTA (Schraagen et al., 2009) or GDTA (Endsley et 

al., 2003). However, we do not limit this to informational needs and include knowledge, skills, and 

abilities such as sensing needs, perception needs, decision needs, and action needs. This enables 

consideration for supplementing team members with any required capacity. Just as tasks may have 

multiple subtasks, subtasks may have multiple capacity requirements. 

Enumerating Viable Team Role Alternatives 

The remaining columns are the heart of the IA. These columns enumerate the team role 

alternatives. They can be thought of as the adjustment options in Adjustable Autonomy or the 

initiative options in Mixed-Initiative. However, what they really are is an enumeration of the 
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possible ways a team can achieve the task. A given alternative is represented by a set of columns. 

The first column in the set represents the primary individual performing the task. The remaining 

columns represent the other participants in the joint activity playing a supporting role. The 

columns can be specific individuals, categories, or even roles. Multiple alternatives should be 

analyzed by changing the performer in each alternative, as shown in Figure 6. 

Assessing Capacity to Perform and Capacity to Support 

After the team alternatives determined, the next step is the assessment. In order to aide future 

analysis, the assessment process uses a color coding scheme, as shown in Figure 7. The color 

scheme is dependent on the type of column being assessed. 

 

 
Figure 7. Interdependence Analysis Color Scheme. Note that the "Performer" column has a 

different meaning than the "Supporting Team Member" column. 

 

Under the “performer” columns, the colors are used to assess the individual’s capacity to do 

the task. The color green in the “performer” column indicates that the performer can do the task. 

For example, a robot may have the capacity to navigate around an office without any assistance. 

Yellow indicates less than perfect reliability. For example, a robot may not be able to reliably 

recognize a coffee mug all the time. Orange indicates some capacity, but not enough for the task. 

For example, a robot may have a 50 pound lifting capacity, but would need assistance lifting 

anything over 50 pounds. The color red indicates no capacity, for example, a robot may have no 

means to open a door. 

Under the “supporting team member” columns, the colors are an assessment of that team 

member’s potential to support the performer. The color red indicates no potential for 

interdependence, thus independent operation is the only viable option for the task. Orange 

indicates a hard constraint, such as providing supplemental lifting capacity when objects are too 

heavy. Yellow is used to represent improvements to reliability. For example, a human could 

provide recognition assistance to a robot and increase the reliability in identifying coffee mugs. 

Green is used to indicate assistance that may improve efficiency. For example, a robot may be able 

to determine the shortest route much faster than a human. 

Identifying Potential Interdependence Relationships 

Once the assessment process is finished, the color pattern can be analyzed. Figure 8 lists the 

feasible color combination based on our color scheme in Figure 7. Colors other than green in the 

“performer” column indicate some limitation of the performer, such as potential brittleness due to 

reliability (yellow) or hard constraints due to lack of capacity (orange). Colors other than red in 

the “supporting team member” columns indicate potential required (orange) or opportunistic 

(yellow and green) interdependence relationships between team members. This suggests three 

guidelines for identifying interdependence relationships. The first is looking for team members 

who lack capacity and those that can provide it. The second is looking for team members whose 

capacity is not 100 percent reliable and team members that can supplement it. The third is looking 

for opportunistic relationships based on capacity overlap between team members. 
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Figure 8. Feasible interdependence combinations based on the IA table color scheme. The areas in 

the “supporting team member” columns that are not red indicate potential required (orange) or 

opportunistic (yellow and green) interdependence relationships between team members. 

Determining OPD Requirements 

To determine the specific OPD requirements, the IA table is used to help provide a detailed 

specification based on who needs to observe what from whom, who needs to be able to predict 

what, and how members need to be able to direct each other. As an example, we have created a 

small IA table based on Fong’s (2001) Collaborative Control work, as shown in Figure 9. In this 

case, the robot is capable of performing obstacle avoidance; however, it is less than 100 percent 

reliable in interpreting if an obstacle is passable. In Fong’s (2001) example, the human was 

capable of providing assistance, thus increasing the reliability of the robot in this task. The 

requirements can be derived from analyzing the IA table in Figure 9. First we identify the 

alternatives we wish to support; in this case it is the human assisting with interpretation of 

obstacles. Next, we consider the relevant interdependence relationships. Note that task 

dependencies can play a role here. The human’s ability to interpret depends being able to sense the 

obstacle, so there is an observability requirement. Once the human has interpreted if the obstacle is 

passable, this information must have a way to alter the robot’s behavior, so there is a directability 

requirement. Implied in all of this is a predictability requirement that the robot will notify the 

human when assistance is needed before proceeding. These particular OPD requirements are based 

on the desire to support a particular interdependence relationship: the human assisting in 

interpretation of whether an obstacle is passable. This example demonstrates how OPD 

requirements derive from the role alternatives the designer chooses to support, their associated 

interdependence relationships, and the required capacities. 

 

 
Figure 9. Interdependence analysis example from Fong's (2001) Collaborative Control work, 

showing observability and directability requirements based on choosing to allow the human to 

provide interpretation assistance to the robot during navigation. 
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The Selection and Implementation Process 

The selection and implementation process takes the set of relationships from the identification 

process and determines mechanisms that are capable of meeting the requirements. There is almost 

always multiple ways to address a requirement. This is a creative process that will likely remain 

more of an art than a science, but the OPD framework does provide evaluation criterion. The main 

criterion for selection is sufficiency: Does it meet the requirements? Other possible criteria include 

leveraging mechanisms across multiple relationships. For example, periodic progress updates 

could fill the requirement for relationships requiring knowledge of current status as well as ones 

requiring completion notification. 

Using Fong’s (2001) navigation example again, the requirements were for the robot to 

predictably request assistance, for the human to be able to observe the obstacle, and for the human 

interpretation of whether the obstacle was passable to direct the robot’s behavior. His solution 

(Fong, 2001) was a PDA interface that would present the human with an image of the obstacle and 

a yes-or-no dialogue whenever there was uncertainty about an obstacle. The response in the 

dialogue would determine the subsequent behavior. This is clearly a sufficient solution, although 

one could imagine alternative solutions that still meet the requirements. 

The Evaluation of Change Process 

The evaluation of change process is critical because the choice of mechanism can change the 

required OPD on other relationships as well as add, remove, or alter existing interdependence 

relationships, thus affecting performance. This is a restatement of the “substitution myth” 

(Christoffersen & Woods, 2002), tailored to understanding the impact of design choices. The 

“substitution myth” concluded that reducing or expanding the role of automation in joint human-

automation systems may change the nature of interdependent and mutually-adapted activities in 

complex ways. Our previous work demonstrated experimentally how design choices can affect 

performance (Johnson et al., 2012). Understanding the ways in which design choices affect the 

interdependent relationships is an important skill for any designer of a human-machine system 

engaged in joint activity. As each mechanism is implemented, it must be evaluated in the context 

of the entire system. This can lead to iterating through both the identification process and/or the 

selection and implementation process. Once an acceptable solution is reached from an 

interdependence standpoint, the design is ready to undergo more traditional evaluations using 

human factors and performance analysis. 

The Coactive Design method is a starting point for designers interested in building highly 

interdependent systems. It was designed to be simple to follow, so it does not enumerate every 

caveat and nuance of the process. In future work we will provide a set of coactive design 

principles to aide in interpreting the method and to help avoiding pitfalls in trying to follow it. 

Applying Coactive Design in the DARPA Virtual Robotics Challenge 

Coactive Design was developed specifically to address the increasingly sophisticated roles that 

people and robots play as the use of robots expands into new, complex domains. DARPA recently 

hosted a competition that is an example of the type of new and complex domain to which we refer. 

We participated in the competition as part of the IHMC team and used the Coactive Design 

approach as the basis for our overall system design. We will use this domain as an example of how 

the Coactive Design method can be operationalized. This includes demonstrating how analyzing 

interdependence helps enumerate the potential design options. We will also show how it can help 

identify constraints and requirements. We provide specific examples of how our method led to a 

specification sufficiently detailed to guide implementation. Finally, we show how the analysis also 

aides in understanding the impact of design choices. 
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The DARPA Robotics Challenge 

The DARPA Robotics Challenge (DRC) was created to spur development of advanced robots that 

can assist humans in mitigating and recovering from future natural and man-made disasters
6
. The 

Virtual Robotics Challenge (VRC) was the first phase of the DRC
7
. It was a software competition 

carried out in a virtual environment that looked like an obstacle course set in a suburban area. The 

competition involved remotely operating a simulated Atlas humanoid robot. The robot has 28 

actuated degrees of freedom, a stereo camera, and a laser range finder. There were three tasks to 

complete, as shown in Figure 10. The first was navigating complex terrain that included mud, 

hills, and debris. The second task was picking up a hose, attaching it to a spigot, and turning a 

valve. The third task required entering a vehicle, driving on a road with turns and obstacles, and 

getting out of the vehicle. While some parts of these tasks have been demonstrated by various 

researchers, the scope and breath of these challenges raises the bar for humanoid capabilities. 

 

 
Figure 10. DARPA Virtual Robotics Challenge tasks. They included walking through mud, 

walking over hills, walking through debris, entering a vehicle, driving along a road, avoiding 

obstacles while driving, exiting a vehicle, picking up a hose, attaching the hose to a spigot, and 

turning on a valve. 

 

The competition took place over a grueling 56-hour period. Each team needed to complete 

five examples of each of the three tasks. The five examples were created by DARPA, and 

information about the examples was withheld from the teams prior to the competition. Each 

example had some variability, such as the position of objects, the color of objects, the location of 

obstacles, and even damping values on the valve and the mud. Teams were allotted 30 minutes for 

each attempt, which meant there was a possibility of up to 7.5 hours of operation time. The 

simulations ran “in the cloud,” and a minimum 500ms of network latency was imposed on all 

teams. Teams were ranked based on the number of tasks successfully completed (points), the time 

                                                             
6
 http://www.darpa.mil/NewsEvents/Releases/2013/06/27.aspx (accessed on 13 JUL 2013). 

7 During Phase 2, the winners of the first phase will be given a hardware robot to be used in additional competitive 

activities. 
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to complete the tasks, and the amount of bandwidth used. After initial entries from 126
8
 potential 

competitors, 26 teams from eight countries qualified to compete in the VRC. The top nine teams 

were listed in the final results of the competition, as shown in Table 1. 

 

Table 1. DARPA Virtual Robotics Challenge (VRC) Results. Score equates to number of tasks 

successfully completed. Falls is the number of times the robot fell. Banked up bits is a measure of 

bandwidth usage (higher is better). Banked time is a measure of task completion speed (higher is 

better). 

Rank Team Score Falls 

Banked 

Up Bits 

Banked 

Time 

1 Institute for Human and Machine Cognition (IHMC) 52 12 95 13,813 

2 Worcester Polytechnic Institute (WPI) 39 12 99 13,545 

3 Massachusetts Institute of Technology (MIT) 34 20 77 6,829 

4 TRACLabs 30 19 98 16,171 

5 NASA JPL/UCSB/Caltech 29 22 98 13,209 

6 TORC/TU Darmstadt/Virginia Tech 27 25 85 13,421 

7 Team K (Japan) 25 16 84 10,442 

8 TROOPER (Lockheed Martin/University of 

Pennsylvania/Rensselaer Polytechnic Institute 

24 27 76 13,927 

9 Case Western University 23 29 81 10,951 

 

Applying Coactive Design in the VRC 

The first way Coactive Design impacted our design decisions in the VRC was to shift our 

engineering focus from developing autonomy to developing a human-machine team. This was 

important, especially given that DARPA introduced bandwidth limitations with the stated purpose 

of encouraging autonomous solutions. We were willing to accept the bandwidth penalty (i.e., 

coordination cost) to gain the benefits of teamwork. For our purposes, we considered the team to 

consist of the Atlas humanoid robot and an operator. The Atlas robot operated within a Gazebo 

physics simulator (Koenig & Howard, 2004). The human operator was remote and could sense the 

world only through the data presented on the operator interface. We will focus on one subtask 

from the VRC to demonstrate how Coactive Design was operationalized in our VRC entry. 

Following the Coactive Design method from Figure 5, an IA table for the subtask of picking up 

the hose was constructed in accordance with the previous section on the identification process. 

The resulting IA table is shown in Figure 11. 

Identification Process 

The task decomposition and required capacities were determined by careful consideration of the 

taskwork. We had only two team role alternatives for the VRC, as seen in  . The capacity 

assessment is from a particular point in development. It is important to realize that the IA table 

needs to evolve with the design. As an example, the human is remote and has no way to sense the 

hose without some interface providing sensor data.   was generated after a basic operator 

interface was developed to provide video to the operator, so   shows that the human has the 

capacity. From this we can generate a set of interdependence relationships and their associated 

OPD requirements, as shown in Figure 12. 

The identification process does not dictate what needs to be done. Instead it helps identify 

the available options. Sometimes there is only one option. Footstep execution is such a case, since 

the operator can contribute little to dynamic balancing when there is 500 ms of network latency. 

This indicates a critical path in the design and resulted in our focusing a large amount of effort to 

ensure  reliability of  our walking  algorithm.  Other times there are multiple options, but one is the 

                                                             
8 http://www.darpa.mil/NewsEvents/Releases/2013/06/27.aspx (Accessed 2013-11-19 0900CST). 
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Figure 11. Interdependence analysis for VRC subtask of picking up the hose. 

 

clear choice. Recognizing the hose is an easy task for the operator. We could have expended 

resources developing an autonomous hose recognition algorithm, but it would never be as reliable 

as the human. Occasionally the choice is not clear. For example, either the robot or the operator 

could position the hand for grasping, but neither was 100% reliable. In these cases it is often 

beneficial to support both approaches, which adds flexibility to the system. If the robot fails to 

position the hand correctly, then the operator can also try. There are actually more than two 

options in positioning hands for grasping. Besides allowing either the robot or the human to 

attempt the action, there are the additional potential interdependence relationships. These are 

indicated by the yellow capacity to support for each team member. The yellow also means they are 

optional alternatives, not required ones. For example, the human could provide updated 

information about the position of the hose in order to improve the robot positioning of the hand or 

the interface could provide more intuitive mechanisms for positioning control of the six degrees of 

freedom in each arm.  

 The end result of the identification process is a set of interdependence relationships and 

associated OPD requirements, such as those shown in Figure 12. These are used as criteria to 

determine if a particular mechanism we developed to support these requirements is sufficient as 

well as in the process of evaluating the effects of a change. 

Selection and Implementation Process 

Verification of the grasp is a critical task that requires excellent awareness of the hand position 

and the object being grasped. Spatial awareness is a recurring issue in remote operation and was 

essential to all of the VRC tasks. As such, we developed an interface (shown in Figure 13) based 

on 3D world model that is updated by state estimation from the robot. The left side provides a live 

video stream embedded in a 3D world model fixed to the first-person perspective. The right side is 

a navigable third-person view of the same 3D world model, allowing the operator to take any 

perspective. The third-person view proved invaluable with the operator spending the majority of 

time focused on this perspective. Without it, there would be no way to verify the grasp, since the 

hand covers the hose when grasping from a table. During the five hose tasks of the VRC, the 

operator made an average of 34 perspective changes in the third-person view, indicating how often 

this view was relied upon for situation awareness. Additionally, of the commands issued through 

the 2 views, 87 percent were issued through the third-person view. 
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Figure 12. VRC hose task interdependence relationships and OPD requirements. 

 

 
Figure 13. IHMC's VRC operator interface. The foundation of the interface is a 3D world model 

that is updated by state estimation from the robot. The left side provides a live video stream 

embedded in a 3D world model fixed to the first-person perspective. The right side is a navigable 

third-person view of the same 3D world model, allowing the operator to take any perspective. 
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Our robot did not have the ability to recognize the hose, so in order for the robot to 

participate in “walking up to the hose” or “grasping the hose,” it needed to be made aware of the 

position and orientation of the hose. Since we developed graphical 3D world model, we decided 

manipulables would be a good way to meet this requirement. Manipulables are visual 

representation of things that we needed to communicate about, such as the hose, which can be 

placed into the 3D world model or on the live video and be repositioned as desired using simple 

click-and-drag techniques common in computer-aided design (CAD) programs. Figure 14 shows 

the hose manipulable. Since our model is driven by the state estimation of the robot, the onboard 

error is visually represented by drift of the manipulable (i.e., observability into the robot’s state 

estimation). The use of manipulables provides a means to correct the error by simply dragging the 

manipulable to align with the sensor data (i.e., directability into the robot’s state estimation). We 

also used this manipulable as a reference for where to stand and as input to planning algorithms 

when generating footsteps for the “walking up to the hose” task. Manipulables proved so valuable 

that they were consistently used in all five hose task runs of the VRC. More telling of their value 

is the thirty-four adjustments made after their initial placement to correct for deviations. Failure to 

account for these deviations could easily have caused an error or even prevented us from 

successfully completing the task. 

 

 
Figure 14. Hose manipulable (yellow) shown as a virtual object on both the live video (left side) 

and the 3D world model (right side). 

 

A key aspect of the human being able to participate in the task was assisting the human in 

understanding the workspace of the robot’s six degrees of freedom arm. Inverse kinematics is the 

mathematical way the robot solves this, so we made virtual arms that displayed the inverse 

kinematic solution to the operator prior to any execution. This made arm limitations observable to 

the operator. It also provided predictability by changing the color from green (valid) to red 

(invalid), as shown in Figure 15. This ensured the operator was aware that the arm could not 

achieve invalid solutions. The virtual arms were also manipulables that provided a much easier 

way to position the hands (i.e., directability) than trying to control all six degrees of freedom 

individually. In fact, the virtual arm manipulable was used in 99% of all arm commands during the 

five hose task runs of the VRC. Even though the virtual arms were extremely effective, we 

maintained support for other interdependence alternatives. This was important, because without 
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supporting the one percent by maintaining support for joint level control, we would have failed 

three out of the five runs that required it. 

 

 

 
Figure 15. Inverse kinematics visuals inform the operator of valid (left side - green) and invalid 

(right side - red) solutions. 

 

In support of the requirement for easier and more accurate hand positioning for grasping, we 

developed a graphical element representing the valid grasp region of the hand. Robot hands are not 

as compliant as human hands and only similar in a very limited number of ways. One limitation is 

reflected in the effective grasp region. We made this region visible, as shown in Figure 16. This 

allowed the operator to position control around this point, in addition the normal control around 

robot joints. By enabling this, the operator could to do things such as rotating the hand around the 

object being grasped in order to grasp from a different direction. The feature was used in both the 

hose task and during car entry and exit where the robot needed to grasp the roll cage of the car. 

 

 
Figure 16. Grasp region visual element used to assist with easier control of hand position. 

 

These are a few examples of mechanisms we developed to meet OPD requirements in support 

of interdependence relationships. While a creative designer could have developed these without 

Coactive Design, our approach provides both a repeatable methodology and a reasonable set of 

evaluation criteria. 
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Evaluation of Change 

Evaluation is an important part of the design process. It is important to not only validate that 

mechanisms selected and implemented meet requirements, but to assess their impact on the rest of 

the system. Some of our decisions had a positive impact across multiple tasks, such as the use of a 

third-person perspective. Other choices only impacted the specific requirement they were 

targeting, such as the grasp region. However, other choices had the potential to have a negative 

impact by impeding OPD requirements or altering interdependence relationships. An excellent 

example from our VRC work is the use of scripting. 

Given the fairly limited scope of the hose task in  , it is conceivable that the entire 

process could be automated. Our team attempted to automate just the grasping and lifting of the 

hose portion. Our approach was to generate a script, or sequence of actions, that recorded the 

successful execution of the task. The script could then be played back in order to automate the 

process. This choice of implementation for the automation process eliminated any potential 

support for interdependence. The IA table in   provides indication of what might (and did) 

go wrong. First, there was no capacity for the robot to verify its own grasp. By automating the 

process, we removed the opportunity for the operator to verify that things were going well. After 

many frustrating failures, the evaluation determined that this approach was too brittle, so we 

enabled step-by-step playback of the script with supporting visuals to make the upcoming action 

observable and predictable. This afforded the operator a chance to verify the grasp. Evaluation of 

this approach was also deemed insufficient, because failure meant aborting the process and 

rescripting. The main issue was the robot’s reliability in positioning the hand for grasping was less 

than 100 percent (yellow). The solution was to include directability, allowing the operator not just 

to see the upcoming action but also to modify it if necessary, or replay it, or even skip it if desired. 

The coactive solution to scripting proved a flexible and resilient one. During the five hose 

tasks of the VRC an average of 10 scripts were used per run. Only 50 percent of these were run 

without intervention. We averaged nine pauses in script behavior to verify performance and seven 

operator corrections to scripted actions per run. Even with operator intervention, 8 of the 50 scripts 

failed to accomplish their purpose. Due to the flexibility in our system to retry, make adjustments, 

and use different approaches, we were successful in recovering from all eight failures. 

In the end, the IA table provided insight into how design decisions, such as automating a 

task, might impact the overall system. Our resulting solution allows for autonomous behavior but 

with appropriate support for interdependence, i.e., the human can participate in the activity in a 

collaborative manner.  

Advantages of Using the Coactive Design Approach in the VRC 

Our approach to the hose task illustrates only a few of many ways we designed and built the 

system to support interdependence. Designing for interdependence provided our team several 

advantages. 

The first advantage is flexibility. We could perform the same task in many different ways. 

Our approach to scripting the hose task is an example of how including support for 

interdependence can provide flexibility. Flexibility was important in other tasks as well. For 

example, different walking challenges (e.g., mud, hills, debris, and flat open ground) made some 

approaches more attractive than others in a given instance. The operator was relatively unburdened 

in handling walks over flat, open ground because the system could be allowed to work more or 

less “autonomously.” However, when the robot was walking over more difficult terrain, operators 

could seamlessly increase their involvement in the task with no need for a major mode switch. 

Flexibility was also important because we were not privy to the specifics of each task a priori and 

had to deal with uncertainty. 

Resilience was a second advantage. If we encountered an unexpected problem—whether it 

was related to the unforeseen challenges of the task or difficulty in achieving the expected system 

response—our flexibility allowed us to try different approaches. Benjamin Franklin is often cited 

as saying, “If you fail to plan, you plan to fail.” In robotics, if you do not plan to fail, you are 
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failing to plan. Uncertainty and unexpected events are part of robotics and designing resilience 

into a system is how to address this reality. A good example of this occurred during one of our 

driving tasks. The car went off the edge of the road during a sharp turn and required us to back it 

up to avoid a building. We had an “autonomous” method of switching the car into reverse, but it 

failed because the robot had been jostled as the vehicle left the road and was no longer in the 

correct position. The observability we had built into the system allowed the operator to correctly 

assess the problem and the additional directability options we provided enabled engagement of 

reverse by alternative means. The score in Table 1 is a measure of completion. We successfully 

completed 52 out of a possible 60 points (86.7 percent). This is not because we performed 

flawlessly. We fell 12 times and encountered numerous unanticipated circumstances. Our score 

reflects our system’s resilience to recover from these challenges and adapt to overcome them. 

A final advantage we will highlight here is development efficiency. The VRC competition 

was a complex design challenge with an unbelievably short time period. Teams had nine months 

to prepare. This forced a lot of tradeoffs in our design considerations. The Coactive Design 

approach provided an excellent way to perform a cost-benefit analysis of design choices. An 

example from the hose task was the decision not to pursue autonomous hose recognition. 

Similarly, “autonomous” obstacle avoidance for walking relies heavily on perception and was 

likely to be frail in the end. Our team saved a lot of time by not investing in complex perception 

and planning while instead focusing our resources on enabling the human to be an effective 

teammate. By strategically ruling out the 100 percent solution (i.e., full autonomy or full 

teleoperation) we could deftly avoid the hardest problems. Our Coactive Design approach led to a 

system that could exploit synergy between the machine and the human—in essence, allowing us to 

work as a team. 

Conclusion 

We have introduced Coactive Design as a method to designing systems that support 

interdependence. We have provided definitions of what it means to be interdependent, explained 

why this concept is important to designers, and discussed implications of interdependence for 

design. Our new system model emphasizes OPD as key design guidelines for uncovering system 

requirements and developing detailed specifications. We presented a Coactive Design method as a 

starting point for designers interested in building highly interdependent systems and introduced 

Interdependence Analysis tables as a design and analysis tool. Finally, we demonstrated how 

Coactive Design was operationalized by the IHMC team during the DARRA VRC. We propose 

that it is through understanding and modeling interdependence in a human-machine system that 

Coactive Design can play a role in enabling robots to fulfill their envisioned role as teammates. 

Acknowledgements 

We gratefully acknowledge the generous sponsors of our work over the past years. They have 

given us the opportunity to work in an area we love. In particular, we would like to acknowledge 

DARPA for sponsoring the Robotics Challenge and for funding the IHMC team. We would also 

like to thank Morley Stone and AFRL for generously funding the preliminary work with 

unmanned aerial vehicles, which laid the foundation necessary to make our success in the VRC 

possible. We would also like to thank IHMC for encouraging new perspectives and all of the 

IHMC VRC team members for embracing this new approach.  



     

Johnson et al. Coactive Design 

 67 

References 
Allen, J. E., Guinn, C. I., & Horvitz, E. (1999). Mixed-initiative interaction. IEEE Intelligent 

Systems, 14(5), 14–23. http://dx.doi.org/10.1109/5254.796083 

Annett, J. (2003). Hierarchical task analysis. In Handbook of Cognitive Task Design (pp. 17–35). 

London: Lawrence Erlbaum Associates. 

Bradshaw, J. M., Feltovich, P. J., & Johnson, M. (2011). Human-agent interaction. In G. Boy 

(Ed.), Handbook of Human-Machine Interaction (pp. 293–302). Farnham, Surrey, UK: 

Ashgate. 

Bradshaw, J. M., Feltovich, P. J., Jung, H., Kulkarni, S., Taysom, W., & Uszok, A. (2004). 

Dimensions of adjustable autonomy and mixed-initiative interaction. In M. Klusch & G. 

Weiss (Eds.), Agents and Computational Autonomy (Vol. 2969, pp. 17–39). 

Berlin/Heidelberg: Springer. 

Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., … Uszok, A. (2005). 

KAA: Policy-based explorations of a richer model for adjustable autonomy. In Proceedings 

of the Fourth International Joint Conference on Autonomous Agents and Multiagent 

Systems. The Netherlands: ACM. 

Bradshaw, J. M., Jung, H., Kulkarni, S., Johnson, M., Feltovich, P., Allen, J., … Uszok, A. (2008). 

Toward trustworthy adjustable autonomy and mixed-initiative interaction in KAoS. 

Springer. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.108.1619 

Bradshaw, J. M., Sierhuis, M., Acquisti, A., Feltovich, P., Hoffman, R., Jeffers, R., … Van Hoof, 

R. (2003). Adjustable autonomy and human-agent teamwork in practice: An interim report 

on space applications. In H. Hexmoor, R. Falcone, & C. Castelfranchi (Eds.), Agent Aunomy 

(pp. 243–280). Boston, MA: Kluwer Academic Publishers. Retrieved from 

http://www.loc.gov/catdir/toc/fy036/2003040054.html 

Bradshaw, J. M., Dignum, V., Jonker, C. M., & Sierhuis, M. (2012). Introduction to special issue 

on human-agent-robot teamwork. IEEE Intelligent Systems, 27, 8–13. 

Christoffersen, K., & Woods, D. D. (2002). How to make automated systems team players. 

Advances in Human Performance and Cognitive Engineering Research, 2, 1-12. Elsevier 

Science Ltd. doi:10.1016/S1479-3601(02)02003-9.  

Clark, H H, & Brennan, S. (1991). Grounding in communication. In L. B. Resnick, J. M. Levine, 

& S. D. Teasley (Eds.), Perspectives on Socially Shared Cognition (127-149). Washington, 

D.C.: American Psychological Association. 

Clark, Herbert H. (1996). Using language. New York, NY: Cambridge University Press. 

Retrieved from http://www.loc.gov/catdir/toc/cam023/95038401.html 

Crandall, B., & Klein, G. (2006). Working minds: A practitioner’s guide to cognitive task analysis. 

Cambridge, MA: MIT Press. 

Endsley, M. R., Bolté, B., & Jones, D. G. (2003). Designing for situation awareness: An approach 

to user-centered design. Boca Raton, FL: Taylor & Francis. 

Feltovich, P. J., Bradshaw, J. M., Clancey, W. J., & Johnson, M. (2007). Toward an ontology of 

regulation: Socially-based support for coordination in human and machine joint activity. In 

G. O’Hare, M. O’Grady, A. Ricci, & O. Dikenelli (Eds.), Engineering Societies in the 

Agents World VII (Vol. Lecture No, pp. 175–192). Heidelberg, Germany: Springer. 

Fong, T. W. (2001). Collaborative control: A robot-centric model for vehicle teleoperation. 

Pittsburgh, PA: Robotics Institute, Carnegie Mellon University. 

Hoffman, R. R., & Deal, S. V. (2008). Influencing versus informing design, part 1: A gap analysis. 

IEEE Intelligent Systems, 23(5), 78–81. 

Hoffman, R. R., Hayes, P., Ford, K. M., & Bradshaw, J. M. (Eds.). (2012). Collected Essays on 

Human-Centered Computing, 2001-2011. New York, NY: IEEE Press. 

Jennings, N. R. (1996). Coordination techniques for distributed artificial intelligence. In G. M. P. 

O'Hare & N. R. Jennings (Eds.), Foundations of Distributed Artificial Intelligence (pp. 187-

210). New York, NY: Wiley. 



     Johnson et al. Coactive Design    
    

 

 68 

Johnson, M., Bradshaw, J., Feltovich, P., Jonker, C., van Riemsdijk, B., & Sierhuis, M. (2011). 

The fundamental principle of coactive design: Interdependence must shape autonomy. In M. 

De Vos, N. Fornara, J. Pitt, & G. Vouros (Eds.), Coordination, Organizations, Institutions, 

and Norms in Agent Systems VI (Vol. 6541, pp. 172–191). Springer Berlin/Heidelberg. 

doi:10.1007/978-3-642-21268-0_10 

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., van Riemsdijk, B., & Sierhuis, M. 

(2012). Analyzing autonomy and its relation to interdependence in human-machine systems. 

IEEE Intelligent Systems, 27(2), 43-51.  

Klein, G., Feltovich, P. J., Bradshaw, J. M., & Woods, D. D. (2005). Common ground and 

coordination in joint activity. In W. B. Rouse & K. R. Boff (Eds.), Organizational 

Simulation (pp. 139–184). Retrieved from http://dx.doi.org/10.1002/0471739448.ch6 

Klein, G., Woods, D. D., Bradshaw, J. M., Hoffman, R. R., & Feltovich, P. J. (2004). Ten 

challenges for making automation a “team player” in joint human-agent activity. IEEE 

Intelligent Systems, 19(6), 91–95. http://dx.doi.org/10.1109/MIS.2004.74 

Koenig, N., & Howard, A. (2004). Design and use paradigms for Gazebo, an open-source multi-

robot simulator. In Proceedings of the IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS). (Vol. 3, pp. 2149–2154). doi:10.1109/IROS.2004.1389727 

Larson, C. E., & LaFasto, F. M. J. (1989). Teamwork: What must go right, what can go wrong. 

Sage Series in Interpersonal Communication, 10, 150. Newbury Park, CA: SAGE 

Publications. 

Malone, T. W., & Crowston, K. (1994). The interdisciplinary study of coordination. ACM 

Computing Surveys, 26(1), 87–119. http://doi.acm.org/10.1145/174666.174668 

March, J. G., Simon, H. A., & Guetzkow, H. S. (1993). Organizations (2nd ed.). Cambridge, 

Mass., USA: Blackwell. 

Murphy, R. R., & Burke, J. L. (2008). From remote tool to shared roles. IEEE Robotics & 

Automation Magazine, 15(4), 39–49. doi:10.1109/MRA.2008.929928 

Parasuraman, R., Sheridan, T., & Wickens, C. (2000). A model for types and levels of human 

interaction with automation. IEEE Transactions on Systems, Man and Cybernetics, Part A, 

30(3), 286–297. http://dx.doi.org/10.1109/3468.844354 

Schraagen, J. M., Chipman, S. F., & Shalin, V. L. (2009). Cognitive task analysis. Mahwah, NJ: 

Lawrence Erlbaum Associates, Inc. 

Sheridan, T. B. (1992). Telerobotics, automation, and human supervisory control. Cambridge, 

MA: MIT Press. 

Sierhuis, M., Bradshaw, J. M., Acquisti, R., Hoof, R. Van, & Jeffers, R. (2003). Human-agent 

teamwork and adjustable autonomy in practice. In Proceedings of the Seventh International 

Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Nara, 

Japan. 

Smith-Jentsch, K. A., Zeisig, R. L., Acton, B., & McPherson, J. A. (1998). Team dimensional 

training: A strategy for guided team self-correction. In J. B. Cannon-Bowers & E. Salas 

(Eds.), Making decisions under stress: Implications for individual and team training(271-

297). Washington D.C., American Psychological Association.  

Sycara, K. (2002). Integrating agents into human teams. In Proceedings of the Human Factors and 

Ergonomics Society Annual Meeting (Vol. 46, pp. 413–417). 

doi:10.1177/154193120204600342 

Sycara, K., & Sukthankar, G. (2006, November). Literature Review of Teamwork Models. 

Pittsburgh, PA: Tech. Report CMU-RI-TR-06-50, Robotics Institute, Carnegie Mellon 

University. 

Thibaut, J. W., & Kelley, H. H. (1959). The social psychology of groups. New York, NY: Wiley. 

Thompson, J. D. (1967). Organizations in action; social science bases of administrative theory. 

New York, NY: McGraw-Hill. 

Wyrobek, K. A., Berger, E. H., Van der Loos, H. F. M., & Salisbury, J. K. (2008). Towards a 

personal robotics development platform: Rationale and design of an intrinsically safe 



     

Johnson et al. Coactive Design 

 69 

personal robot. In Proceedings of the IEEE International Conference on Robotics and 

Automation (ICRA). doi:10.1109/ROBOT.2008.4543527 

 

Matthew Johnson, Jeffrey M. Bradshaw, and Paul J. Feltovich: The Florida Institute for Human 

and Machine Cognition (IHMC), Pensacola, Florida, USA. Email: mjohnson@ihmc.us, 

jbradshaw@ihmc.us, and pfeltovich@ihmc.us. Catholijn M. Jonker and Birna van Riemsdijk: 

Delft University of Technology. Email: c.m.jonker@tudelft.nl and m.b.vanriemsdijk@tudelft.nl. 

Maarten Sierhuis, Ejenta, and Nissan Research Center, CA , USA. Email: sierhuis@ejenta.com. 


