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Abstract: Similar to the metal centers in biocatalysis and homogeneous catalysis, the metal species
in single atom catalysts (SACs) are charged, atomically dispersed and stabilized by support and
substrate. The reaction condition dependent catalytic performance of SACs has long been realized,
but seldom investigated before. We investigated CO oxidation pathways over SACs in reaction
conditions using atomically dispersed Au on h-BN (AuBN) as a model with extensive first-principles-
based calculations. We demonstrated that the adsorption of reactants, namely CO, O2 and CO2, and
their coadsorption with reaction species on AuBN would be condition dependent, leading to various
reaction species with different reactivity and impact the CO conversion. Specifically, the revised
Langmuir–Hinshelwood pathway with the CO-mediated activation of O2 and dissociation of cyclic
peroxide intermediate followed by the Eley–Rideal type reduction is dominant at high temperatures,
while the coadsorbed CO-mediated dissociation of peroxide intermediate becomes plausible at low
temperatures and high CO partial pressures. Carbonate species would also form in existence of
CO2, react with coadsorbed CO and benefit the conversion. The findings highlight the origin of the
condition-dependent CO oxidation performance of SACs in detailed conditions and may help to
rationalize the current understanding of the superior catalytic performance of SACs.
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1. Introduction

Single atom catalysis is emerging and growing as a new frontier in catalysis [1,2].
Similar to the metal centers in enzymes and transition metal complexes in biocatalysis and
homogeneous catalysis, the transition metal species in SACs are charged and atomically
dispersed on the support [3,4]. In reaction conditions, the thermodynamics-driven adsorp-
tion and reaction of substrates would change the oxidation state [5] and coordination of
metal species drastically [6], and may stabilize metal species in an atomically dispersed
form or promote their aggregation or redispersion [7]. This feature of transition metal
species in reaction conditions were reported for Au [8–12], Pd [13], and Rh [14] -based
SACs, etc. Apart from the potential aggregration/redispersion of metal species, the adsorp-
tion/coadsorption of the substrate may also impact the thermodynamics and kinetics for
the evolution of reaction species and may lead to a switch of the pathways for substrate
conversion with reactions conditions, such as temperature, substrate concentrations (partial
pressures), [15–19] etc. For these complexities, the impact of the reaction condition to active
sites and active species was seldom investigated [19].

Low temperature catalytic oxidations of CO oxidation to CO2 are the key components
in many industrial chemical processes, such as the water–gas–shift reaction [20], CO
preferential oxidation in H2 rich stream (CO-PROX) [21], exhaust gas control [22], etc.
Apart from the practical applications, CO oxidation is widely used as a prototypical
reaction for fundamental investigations [23] and it is also the first catalytic reaction realized
on Pt1/FeOx [24]. Continuous efforts have been made to develop novel CO oxidation
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catalysts that are efficient at low temperatures [22]. Among transition metals used for CO
oxidation, Au is special, as it is chemically inert in the bulk phase, and is highly active when
is downsized to a sub-nano scale [25,26]. Since the supported Au nanoparticles were found
active for CO oxidation in the 1980s, tremendous efforts have been put to understand the
active species and mechanism pathways for the Au-catalyzed CO oxidation in operating
conditions [26]. For many of these cases, the charged Au atoms, formed dynamically in
reaction conditions, were proposed to be the active sites [5,10–12,19,27,28]. Furthermore,
it has been demonstrated that Au SACs are highly active for many reactions [29], such
as the water–gas–shift [27], methanol steam reforming [30], epoxidation of ethylene, [31]
acetylene hydrochlorination [32], selective hydrogenation [33], ethanol dehydrogenation
reactions [34], CO oxidation [11,19,35–39], etc.

Hexagonal boron nitride (h-BN) is a 2D material with graphene-like planar struc-
ture [40]. Defects, such as vacancies, etc., that are capable of modulating electronic proper-
ties of h-BN, can be created by electron beam irradiation, solvent and gas exfoliation, ball
milling [41,42], etc. The metal/defective h-BN interaction stabilizes the metal species and
tailors their reactivity [43–49]. Several h-BN-supported SACs have been proposed effec-
tive for reactions of practical interest, such as the electroreduction of N2 and CO2 [47–50],
hydrogenation of Cinnamaldehyde [51], dehydrogenation of light alkanes [52] and CO
oxidation [53,54] etc. However, the active site and active species in reaction conditions for
these processes have not been addressed.

Recently, we theoretically explored the reaction network for CO oxidation over Pd1
and Fe1 SACs on graphene and highlighted the vital role of the thermostability of reaction
species in determining CO conversion and reaction pathways [55,56]. In this work, we
focus on CO oxidation over AuBN to highlight the impact of coadsorbed substrates to the
formation and evolution of surface species on SACs in reaction conditions with extensive
first-principles-based calculations. We expect the finding would be helpful for the discovery
of new reaction pathways and a rationalized understanding to the observed superior
performance of SACs.

2. Theoretical Methods

All the first-principles-based calculations were performed using the GGA-PBE func-
tional [57] with the DSPP pseudopotential [58] and DNP basis set [59], as implemented
in DMol3 [60,61]. CO oxidation over AuBN was investigated in a 6 × 6 supercell of h-BN.
The Brillouin Zone was sampled with a Γ-centered 4 × 4 × 1 k-point grid [62]. The global
orbital cutoff was set as 4.50 Å and the convergence criterion for energy and forces were
3 × 10−4 eV and 5 × 10−2 eV/Å, respectively. The transition states (TSs) were determined
with synchronous transition methods, and further optimized and confirmed with frequency
analysis, so that the only negative frequency is on the bond formation/dissociation direc-
tion [63]. The Hirshfeld scheme was adapted for population analysis [64]. With the above
setup, the bulk lattice parameter of face-center-cubic Au and h-BN were calculated as 4.20
and 2.52 Å, respectively [65,66].

The formation free energy of a reaction species with stoichiometry of Au(CO)x(O2)y
over AuBN, under CO oxidation conditions, was calculated as: ∆G = GAu(CO)x(O2)y

−
EAu − GBN − x × GCO − y × GO2 + z × GCO2 . Here, x, y and z are the stoichiometry for
CO, O2 and CO2 involved in the formation of Au(CO)x(O2)y, respectively, GAu(CO)x(O2)y

and GBN are the free energy of Au(CO)x(O2)y and B-vacancy h-BN, respectively, EAu is
the energy of an Au atom, GCO and GO2 are free energy of gas molecules calculated as

Ggas(T, p) = Ee
gas + ∆µgas

(
T, p0)+ kBTln

(
p
p0

)
, where Ee

gas is the calculated total energy of

the gas molecule and ∆µgas
(
T, p0) is derived from calculated partition functions of the gas

molecule. The reaction conditions described by T, p were previously used to characterize
the performance of SACs in CO oxidation [67].
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3. Results and Discussions
3.1. Thermodynamics Analysis of Potential Reaction Species

We firstly evaluated the formation of Gibbs free energies (∆G) of all the potential
reactants at various temperatures (T) at PCO:PO2 = 1:20 and PCO = 0.01 atm (Figure 1),
which are commonly used to characterize the CO oxidation performance of a catalyst [67].
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Figure 1. The calculated atomic structures (a–i) and temperature dependence of ∆G (j) for the
potential reaction species formed over AuBN in CO oxidation. Please see the context for the notation
of structures. ∆G was calculated with respect to B-vacancy on h-BN, Au atom at PCO = 0.01 atm and
PCO/PO2 = 1:20. The inset in (j) is the sideview of (i). In (a–i), the B, N, C, O and Au atoms are in
green, light blue, brown, red and gold, respectively.

The calculated binding energy (Eb) of the Au atom on the B-vacancy of h-BN (AuBN,
Figure 1a) in a triplet ground state is −3.54 eV and is comparable to calculated (−2.90 eV),
previous theoretical (−3.03 eV) [68] and experimental results of bulk Au (−3.81 eV) [69],
suggesting AuBN would be plausible over other potential Au deposition structures [52,53].
Considering the poor Eb of the Au atom (−0.11 and −0.10 eV, respectively, on top of N
and B atoms on pristine h-BN), the outward diffusion of Au from AuBN would be highly
endothermic (>3 eV), so it is hard to expect that the Au atom would diffuse away. In AuBN,
the Au-N distances are ~2.08 Å and Au is 0.45|e| positively charged. These are in excellent
agreement with the reported X-ray photoelectron spectroscopy of Au SACs [24,34,35,70],
transition metal SACs on h-BN and Au/h-BN nanocomposites, where the Au and TM
atoms are confirmed to be positively charged as reaction centers [41,51,71]. The thermo-
dynamics data (Figure 1j) demonstrated that CO adsorbed on AuBN (AuCO, Figure 1b,
Ead = −1.38 eV) is the most plausible at temperatures from 200 to 500 K. In AuCO, Au
is 0.36 |e| positively charged, and C-O bond is in the direction nearly reverse to one of
the Au-N bonds at Au-C distance of 1.93 Å and is slightly stretched (1.16 Å). As for the
adsorption of O2 (AuO2, Figure 1c, Ead =−0.90 eV), the O-O bond is elongated to 1.33 Å,
parallel to the h-BN surface, and is nearly vertical to one of the N-Au bonds, forming an
undercoordinated octahedral. Au is 0.53 |e| positively charged and the spin density is
localized on Au and O atoms. ∆G of other potential species (Figure 1d–i) were also col-
lected (Figure 1j). ∆G of AuO2 and the coadsorption of CO and O2 (AuO2 + CO, Figure 1d,
Ead = −1.49 eV) stand right above that of AuCO, are negative from 250 to 500 K and in-
tersect each other at ~280 K, demonstrating that AuO2 + CO may form from AuCO via
coadsorption with O2 or by an exchange of adsorbates. ∆G of other coadsorption species,
such as coadsorption of 2 CO (Au(CO)2, Figure 1e), 2 O2 (Au(O2)2, Figure 1f) and the van
de Waals complexes formed between adsorbed O2/CO and gaseous molecules, such as
Au(O2)2 + CO(g), Au(CO)2 + O2(g) and AuO2 + CO(g) (Figure 1g–i), etc., are much higher
in ∆G than those for AuO2, AuCO and AuO2 + CO (Figure 1j). Though these species may
potentially exist, their coverage would be much lower than those for the AuCO, AuO2 and
AuO2 + CO, and they would evolve into these more stable species by adsorbate desorption
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or exchange. Our results (Figure 1) clearly indicate that AuCO (Figure 1b) is the most plau-
sible reaction species in the 200–500 K temperature range, under CO oxidation conditions.
We also investigated the impact of CO and O2 chemical potential on the relative stability
in terms of the ∆G of these reaction species by varying the CO and O2 partial pressure
in the range of 0.01–0.2 atm in the same temperature interval. Though the calculated
values of ∆G of these identified major reactants, namely AuCO, AuO2, AuO2 + CO and
Au(CO)2 (Figure 1b–e) may shift due to the variation of reaction conditions, AuCO is still
the most plausible, considering that the ∆G of AuO2 and AuO2 + CO remain right above
that of AuCO. This is in reasonable agreement with the experimental finding that the active
reaction species in SAC-catalyzed CO oxidation all originate from positively charged or
even oxidized metal atoms [72–75]. We also investigated the potential impact of van der
Waals interactions on the relative stability of these species within the same temperature
and partial pressure range, and yielded exactly the same finding. The calculated stretching
frequency of AuCO (Figure 1b) is slightly redshifted from that of gaseous CO, i.e., from
2143 cm−1 to 2040 cm−1, and further shifted to 2115 cm−1 in AuO2 + CO (Figure 1d). The
calculated CO stretching frequencies correlate well with the calculated charge on Au in
AuBN, AuCO and AuO2 + CO, confirming the positively charged nature of the Au atom
in AuBN. Similar redshifts of the C = O stretching frequency have been reported for CO
oxidation over Au and Pd-based SACs and nanoparticles catalysts [20,74–77]. Based on
the consistent evidence for the positively charged nature of AuBN (Figure 1a, AuBN), we
moved further to investigate its performance in CO oxidation.

3.2. Revised LH Pathway for CO Oxidation over AuBN

Based on experimental and theoretical results, several pathways have been proposed
for the CO oxidation over SACs [22], which can be classified into two kinds according to the
involvement of support during the reaction. Pristine h-BN is chemically inert to CO and O2.
As shown in Figure 1a, the proposed AuBN has the B-vacancy on h-BN fully passivated,
there is no other defect at the chemical bond distance from Au to stabilize CO, O2 or other
reaction species. Therefore, the pathways that require support or defects on the support
for stabilization and activation of CO or O2, and formation and stabilization of reaction
species, such as the Mars-van-Krevelen type pathway and its variants that requires support
oxygen to init [24,70], support-promoted CO oxidation that needs support to stabilize
reactants [78], etc., are not applicable on AuBN. Another kind of CO oxidation pathway
inherits the merit of Langmuir–Hinshelwood (LH) and Eley–Rideal(ER) type pathways
derived from bulk metals [79,80], involving the adsorption and activation of one reactant
(ER), either CO or O2, or both (LH) only on the metal species. We recently investigated CO
oxidation over the defect-stabilized Fe and Pd SACs on graphene and demonstrated that
the coadsorption of CO and O2 would be more plausible on these SACs over van de Waals
complexes and the coadsorption of 2 CO to initiate CO oxidation on ER type pathways.
Thus, it would be a major reaction species with a population superior to those van de
Waals complexes and is the active species to initiate CO oxidation [55,56,81]. The calculated
thermodynamics stability of reaction species on AuBN (Figure 1j) also demonstrated such
a trend that AuO2 + CO is more plausible than AuO2 + CO(g) and Au(CO)2, though AuCO
is the most plausible species in reaction conditions. This AuO2 + CO (Figure 1d) satisfies
the requirements to initiate reaction on LH type pathways that both O2 and CO adsorb on
AuBN and get activated for reactions. The first reported pathway of the LH type involves
coadsorbed CO-assisted O2 activation through the formation and dissociation of peroxide
(OCOO) species on the metal center (revised Langmuir–Hinshelwood pathway, rLH), and
was originally proposed by Iglesia et al., and was then adapted as the pathway for the CO
and ethylene oxidation over Au SAC [31,39,82]. We then started with the rLH pathway
from AuO2 + CO (LH–IS1, Figure 2a).
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Figure 2. Optimized structures of the reaction species involved, including reaction intermediates,
transition states and products (a–i), and (free) energy profiles (j) for CO oxidation over AuBN
through the rLH pathway. In (a–i), the B, N, C and Au atoms are in green, light blue, brown and gold,
respectively. In (j), the bracketed letters correspond to the structures shown in (a–i).

The elementary steps on the rLH pathway for CO oxidation were investigated (Figure 2).
The Ead for AuO2 + CO (LH-IS1, Figure 2a, the same as Figure 1d) is −1.48 eV. In LH-IS1,
Au-C(CO) and Au-O(O2) are both in directions reverse to Au-N bonds. Though the Ead
of CO and O2 are significant, they are repulsive to each other, making ∆G for the LH-IS1
formation (at 298.15 K, PCO = 0.01 atm, PCO/PO2 = 1:20) 0.46 eV higher than that of AuCO
(Figure 1b). Considering the large exothermicity for the formation of LH-IS1 (~−3.00 eV),
LH-IS1 may exist but with a smaller population. The variation of ∆G from AuCO to LH-IS1
also suggests that CO in AuO2 + CO (LH-IS1) would be active for subsequent reactions [76].
Driven by the electrostatic interaction between O(O2) (−0.06|e|) and C(CO) (+0.15 |e|),
the O(O2) atom moves to interact with C(CO). By crossing a transition state (LH-TS1,
Figure 2b) with energy and free energy barriers of 0.26 and 0.27 eV, respectively, a peroxide
intermediate (LH-MS1, Figure 2c) is formed. The newly formed C-O bond stabilizes the
reaction product and makes the formation of LH-MS1 slightly exothermic (∆G = −0.31 eV)
with respect to LH-IS1. In LH-MS1, the O-O distance is elongated to 1.51 Å and is typical for
O-O bonds in peroxides [83]. The C=O stretching frequency in LH-MS1 was calculated as
1748 cm−1, which falls in the higher range of experimentally reported values [73–75]. Due
to the instability of the peroxide O-O bond, charge reorganization may take place within
LH-MS1 for passing a TS(LH-TS2, Figure 2e) to form a CO2 molecule (LH-FS1, Figure 2f).
This tendency for breaking the O-O bond and reorganizing the structure to form CO2 is
well evidenced by the change of C = O distance from 1.72 to 1.18 Å, and the elongation of
O-O and Au-C distances from 1.51 and 2.11 Å, respectively, to 3.35 and 4.27 Å, respectively.
Charge transfer to C and 2 O(O2) atoms also takes place simultaneously. The calculated
Hirshfeld charges on the C and 2 O(O2) increase from 0.09, −0.18, −0.05 |e|, respectively,
in LH-MS1 to 0.10, −0.10 and −0.30 |e|, respectively, in LH-TS2. This charge transfer
is further enhanced in LH-FS1, where the charges on C, O(CO2), O(Au) and Au are 0.28,
−0.15, −0.30 and 0.56 |e|, respectively, implying the oxidation of Au in this process and
the weak binding of CO2 to the Au = O center. This is in agreement with the calculated Ead
of CO2 in LH-FS1 of only −0.07 eV. The further desorption of CO2 leads to the formation
of AuO (Figure 2f), which is more thermodynamically stable than LH-FS1. AuO will then
form a van de Waals complex with gaseous CO (LH-IS2, Figure 2g). The calculated ∆E and
∆G between LH-FS1 and LH-IS2 are only 0.02 and 0.19 eV, respectively. The electrostatic
interaction between C(CO) (+0.06 |e|) and O(Au)(−0.30|e|) stabilizes LH-IS2 and initiates
the subsequent reaction with charge transfer from the 5σof CO to the π* on O(Au) for the
reduction of Au. CO moves towards O(Au) in this process to reach the transition state
(LH-TS3, Figure 2h), where the C-O(Au) distance decreases to 1.90 Å and the calculated
Hirshfeld charge on C and O(Au) changes to 0.06 and −0.26 |e|, respectively, indicating a
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charge transfer from CO to O for the formation of the C=O bond. By crossing the energy
barrier of 0.17 eV (LH-TS3), another CO2 is formed (LH-FS2, Figure 2i). CO2 desorption
from AuCO2 would be easy even at a low temperature, as the calculated Ead of CO2 is only
−0.07 eV and thus closes the catalytic cycle for CO oxidation along the rLH pathway.

3.3. Interference of the Coadsorption of CO or O2 to CO Oxidation

LH-MS1 is an important intermediate on the rLH pathway with a dissociation free
energy barrier of 0.51 eV at 298.15 K when PCO = 0.01 atm and PCO/PO2 = 1:20. Considering
the high barrier for dissociation and a small barrier for formation, LH-MS1 would be one
of the major reaction species [55]. A careful inspection of the structure shows that Au in
LH-MS1 is not fully coordinated in a penta coordinated environment, implying potential
coadsorption and further reactions with CO or O2 (Figure 3). The calculated Ead for CO
coadsorption with LH-MS1(LHa-IS1, Figure 3a) is −0.44 eV and ∆G is 0.22 eV (at 298.15 K,
PCO =0.01 atm, PCO/PO2 = 1:20). The variation of ∆G from LH-MS1 also suggests that the
adsorbed CO would be reactive for subsequent reactions [55,76]. In LHa-IS1, Au is +0.61
|e| charged to interact with 3 N at a B-vacancy of h-BN, O and C of peroxide intermediate
(OOCO) and the newly adsorbed CO. The calculated C = O stretching frequency in OOCO is
blue shifted from 1748 cm−1 to 1811 cm−1, while that in CO is also blue shifted to 2125 cm−1.
These correlate well with the charge on Au. OCOO dissociation and subsequent reactions
was then investigated. As aforementioned, OCOO will dissociate to form CO2 and AuO
with an energy barrier of 0.51 eV. The calculated energy barrier for OCOO dissociation in
LHa-IS1 is 0.44 eV and is lowered by 0.07 eV. One may raise concern with the CO desorption
during or prior to OCOO dissociation. The O(CO)-Au distance is decreased slightly from
2.09 (in LHa-IS1) to 2.05 Å in the corresponding TS (LHa-TS1, Figure 3b) and is further
decreased to 2.02 Å in the product (LHa-MS1, Figure 3c) that is a coadsorption structure
of atomic O and CO with a CO2 interacting electrostatically with O(Au). The continuous
decrease in the Au-C distance during this process indicates that OCOO dissociation may
not drive desorption of CO but stabilize it instead. After desorption of CO2 in LHa-MS1,
further reactions may take place between coadsorbed CO and O in LHa-MS2 (Figure 3d).
As mediated by Au, the coadsorbed O and CO combine together by crossing a TS (LHa-
MS2, Figure 3e) with a reaction barrier of 0.01 eV and free energy barrier of 0.05 eV, to
form another CO2 (LHa-FS1, Figure 3f). The calculated (free) energy barriers on the newly
proposed pathway for the evolution of LHa-IS1 are much lower than those on the rLH
pathway (Figures 2j and 3j). The decreased reaction barrier provides direct evidence for the
promotion effect of CO in OCOO dissociation.
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Figure 3. Optimized structures of the reaction species involved, including reaction intermediates,
transition states and products (a–i), and (free) energy profiles (j) for CO oxidation over AuBN with
the LHa and LHb pathways initiated with the coadsorption of CO or O2 with LH-MS1. In (a–i), the B,
N, C and Au atoms are in green, light blue, brown and gold, respectively. In (j), the bracketed letters
correspond to the structures shown in (a–i).
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Coadsorption of O2 with OCOO leads to the formation of LHb-IS1 (Figure 3g). The
calculated Ead of O2 is −0.15 eV and the corresponding ∆G is 0.41 eV. The weak adsorption
of O2 can be attributed to the positive charged nature of the Au center in LH-MS1. The
calculated O2 dissociation energy barrier and free energy barrier on AuBN is 1.79 and
1.78 eV, respectively, so AuBN is not capable of O2 dissociation. The reaction goes through
a TS (LHb-TS1, Figure 3h) with a barrier of 1.00 eV and the free energy barrier of 0.92 eV,
forming physisorbed O2 and CO2 around AuO (LHb-FS1, Figure 3i). As the OCOO
dissociation barrier is increased to be much higher than Ead (∆G) for O2 adsorption, O2
desorption may take place with high priority and may not impact OCOO dissociation.

Apart from promoting the dissociation of OCOO, the coadsorbed CO may also react
with OCOO. In LHc-IS1 (Figure 4a), Au is highly positively charged (+0.61|e|), O bound to
Au is negatively charged (−0.20 |e|) and C(CO) is also positively charged (+0.19 |e|). CO
may interact electrostatically with O(Au) to reach a TS (LHc-TS1, Figure 4b) with energy
and free energy barriers of 0.18 and 0.64 eV, respectively, for the formation of OCOOCO
intermediate (LHb-MS1, Figure 4c) that was previously proposed on a three-molecule
ER(ER3) type pathway for CO oxidation [53]. In LHb-TS1, OCOO is distorted to facilitate
the O(Au)-C(CO) interaction, with the increase in the O(Au)-Au and decrease in O(Au)-
C(CO) distance, showing the tendency for the formation of the Au-C bond at the expense
of the Au-O bond. The corresponding energy and free energy barriers are 0.18 and 0.64 eV,
respectively. As a result of these interactions, CO is inserted into the O-Au bond forming a
planar OCOOCO intermediate nearly vertical to one of the interfacial Au-N bonds (LHc-
MS1). Due to the instability of the peroxo O-O bond, LHc-MS1 may undergo dissociation
by breaking the O-O and Au-C bonds in the corresponding TS (LHc-TS2, Figure 4d) with
energy and free energy barriers of 0.38 and 0.27 eV, respectively, to form 2 CO2 physisorbed
at AuBN (LHc-FS1, Figure 4e).
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Figure 4. Optimized structures of the reaction species involved, including reaction intermediates,
transition states and products (a–e), and (free) energy profiles (f) for CO oxidation over AuBN, with
the LHc pathway initiated with the coadsorption of CO with LH-MS1. In (a–e), the B, N, C and Au
atoms are in green, light blue, brown and gold, respectively. In (f), the bracketed letters correspond to
the structures shown in (a–e).

As Au in LHb-MS1 is also pentacoordinated, coadsorption of CO or O2 may also
take place. The impact of coadsorbed CO and O2 for the further evolution of LHc-MS1
was also investigated. Both CO and O2 cannot react with OCOOCO intermediate, they
will retain and adsorb on AuBN after the dissociation of LHc-MS1. As Au is already
positively charged in LHc-MS1, the calculated Ead for CO and O2 coadsorption are −0.21
and −0.09 eV, respectively, while ∆G are 0.52 and 0.46 eV, respectively. This is similar
to the aforementioned coadsorption of CO or O2 with OOCO. With the coadsorption of
reactants, the energy and free energy barriers for OCOOCO dissociation change to 0.49 and
0.28 eV, respectively, for CO and 0.19 and 0.15 eV, respectively, for O2. The variation of the
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reaction barrier with coadsorption of CO or O2 once again provides direct evidence for the
interference of coadsorbed CO or O2 to the evolution of reaction species and CO conversion.

AuO is another important intermediate on the rLH pathway for CO oxidation. AuO
is formed by the dissociation of LH-MS1 and may be consumed by direct reaction with
gaseous CO [39]. In AuO, O is negatively charged (−0.30 |e|). Previously, such negatively
charged O-containing species in mesoporous carbon materials were proposed as reactive
CO2 binding sites [84]. The calculated CO2 Ead for CO2 physisorption on AuO (LHd-
IS1, Figure 5a) is −0.07 eV and the corresponding ∆G is 0.51 eV. These are in reasonable
agreement with Pd, Fe and Au SACs on graphene [31,55,56]. In LHd-IS1, both the C-
O bonds are nearly vertical to C(CO2)-O(Au) direction. Following the O(Au)-C(CO2)
electrostatic interaction, CO2 moves to O(Au) by crossing a TS (LHd-TS1, Figure 5b) with a
barrier of 0.18 eV and free energy barrier of 0.34 eV for the formation of carbonate (CO3,
LHd-MS1, Figure 5c). The O(CO)-C-O angle also changes from 85 to ~94◦, demonstrating
that CO2 is activated to interact with both O(Au) and Au in this process. The interaction
is further enhanced in LHd-MS1, as the O(C)-C-O(Au) is distorted to be ~120◦. Au in
AuBN is also oxidized during this process, as the charge on Au changes from 0.56 |e|
to 0.64 |e| in LHd-MS1. The energy and free energy change for the formation of CO3
are −0.98 and −1.19 eV, respectively, while the calculated energy and free energy barriers
for CO3 dissociation are 1.38 and 1.28 eV, respectively. Therefore, the direct dissociation
of CO3 is rather demanding over AuBN. In this sense, CO3 formation is plausible by
the reaction of gaseous CO2 with AuO. This pathway also connects the evolution of
OCOO to thermodynamically more plausible CO3 species and solves the concern for
formation and evolution of CO3 species in CO oxidation on SACs [73–75,85]. We then
moved on to investigate the potential coadsorption with CO and whether CO may promote
the conversion of CO3 [56]. The CO coadsorption leads to the formation of LHd-MS2
(Figure 5d). The calculated CO Ead and ∆G are −0.42 and 0.16 eV, respectively. The small
positive change of ∆G suggests coadsorbed CO would be highly reactive [55,76]. According
to the charge distribution, the positively charged C(CO) may move to react with negatively
charged O(Au) at the interface by crossing the TS (LHd-TS2, Figure 5e) with the energy
barrier and free energy barriers of 0.36 and 0.34 eV, respectively, to reach the intermediate
(LHd-MS3, Figure 5f), where CO is inserted into an Au-O bond forming a planar C2O4
species with an ultra-long C-O bond of 1.45 Å, which introduces instability into this
structure. LHd-MS3 may further evolve by breaking the ultra-long C-O bond and charge
reorganization to reach a TS (LHd-TS3, Figure 5g) with energy and free energy barriers of
0.26 and 0.19 eV, respectively. In this way, LHc-MS3 dissociates into 2 physisorbed CO2
adsorbed on AuBN (LHd-MS4, Figure 5h). During this process, 2 C(O) were oxidized and
charges were transferred to Au. As aforementioned, the coadsorbed CO may also act as a
spectator in CO3 dissociation. For comparison, the dissociation of CO3 in LHc-MS2 in this
way was also investigated. In this process, the reaction proceeds through a TS (LHc-TS4,
Figure 5i) with calculated energy and free energy barriers of 1.85 and 1.59 eV, respectively,
to reach the product with a coadsorption of atomic oxygen, CO and a physisorbed CO2
around the Au center (LHa-MS1, Figure 3c). The barriers at LHd-TS4 are much higher
compared with the direct dissociation of CO3 and the reaction of coadsorbed CO with CO3,
demonstrating the influence of coadsorbed reactants to the evolution of reaction species
and the CO conversion.

To this end, the coadsorbed CO, O2 or CO2 may lead to the formation of new reaction
species with different reactivity and their evolution through pathways complementary to
the rLH pathway for CO oxidation. Specifically, the coadsorbed CO or O2 may promote
the evolution of reaction intermediates, considering the CO promoted the dissociation of
OCOO (LHa, Figure 3) and O2 promoted the dissociation of OCOOCO. Or, they would
react to form new reaction species, such as the formation of OCOOCO by the reaction of
CO with OCOO (LHb, Figure 4) and the formation of C2O4 by the reaction of CO with CO3
(LHd, Figure 5), initiating new pathways for CO oxidation. Considering the limited Ead and
∆G of these coadsorbed species, their formation would be strongly interfered by reaction
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conditions. At low partial pressure and high temperature, coadsorption of reactants would
be vanished and the reaction may mainly proceed with the rLH pathway (Figure 2) with
the formation and dissociation of peroxide intermediate and a direct reaction with gaseous
CO. High partial pressure and low temperature may benefit the formation of coadsorbed
structures of different reactivity to enable the switching of the reaction pathway. This
effect would be significant for the LHb (Figure 3) pathway and promotes the CO-assisted
dissociation of OCOO, as well as the CO3 formation and evolution initiated with the
reaction of AuO with CO2 (LHd, Figure 5). CO3 is also an important reaction species,
considering the strong exothermicity for formation and its reaction with coadsorbed CO,
which makes the circumvention of the potentially sluggish reaction of gaseous CO with
AuO possible [86].
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transition states and products (a–i), and (free) energy profiles (j) for CO oxidation over AuBN with
the LHd pathway initiated with the coadsorption of CO with LH–MS1. In (a–i), the B, N, C and Au
atoms are in green, light blue, brown and gold, respectively. In (j), the bracketed letters correspond to
the structures shown in (a–h).

3.4. Comparison with Other Alternative Pathways

We have discussed CO oxidation over AuBN through the rLH pathway and its variants
and would now move further to compare these with the remaining. An ER type pathway
is initiated with the adsorption and activation of one of the reactants for subsequent
reaction with the other gaseous reactants. Theoretically, several ER type pathways were
proposed for CO oxidation over SACs, including one molecular ER pathway(ER1), where
O2 or CO should be activated at the metal center to react with gaseous reactant for the
formation of CO2 and surface O species [87], two molecular ER(ER2) pathways where
gaseous CO react with activated O2 forming CO3 as a stable intermediate [88] and an ER3
pathway that can be identified with the OCOOCO intermediate formed by the reaction
of gaseous O2 with two pre-adsorbed CO [53], etc. These pathways all initiate with
the van de Waals complexes formed between surface species and the gaseous reactants.
According to the thermodynamics data (Figure 1j), AuCO is the most plausible surface
species with AuO2 + CO ranking the second. The van de Waals complexes formed between
preadsorbed CO or O2 with gaseous reactants, such as AuO2 + CO(g), Au(CO)2 + O2(g), etc.,
are less plausible as compared with the corresponding surface species, such as AuO2 + CO,
etc., while Au(CO)2 + O2 is unstable and O2 may desorb during structure optimization.
The superior stability of reaction species on LH type pathways over those van de Waals
complexes were previously reported for in CO oxidation over other SACs, where the
relative stability among these reaction species were proposed to account for the dominant
role of the rLH pathway in the CO oxidation [55,56]. Further to these, the charge transfer
from activated O2 to CO is required for the formation of CO3 intermediate on the ER2
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pathway, and a reaction of this kind is always accompanied with high reaction barriers.
The ground state of Au(CO)2 + O2(g) is of triplet symmetry, and the spin is localized on O2,
making the formation of OCOOCO species of singlet symmetry spin-forbidden. Therefore,
the reactions along ER2 and ER3 pathways on AuBN would be rather demanding as
compared to those on LH type pathways. As only O2 was activated on the ER1 pathway,
the reaction is between activated O2 and gaseous CO and the calculated energy and free
energy barriers for the formation of first CO2 are 0.71 and 0.84 eV, respectively, and are
much higher as compared with those on the LH type pathways with the involvement of Au.

We fell back to consider the potential formation of the reaction species on ER type
pathways and compared them with those on the rLH pathway and newly proposed
variants. It is interesting to note that all reaction species, such as CO3, OCOOCO, etc.,
were already included on newly proposed variants of the rLH pathway. Furthermore,
the thermostability of some reaction species on ER pathways are lower as compared
with corresponding species on LH type pathways, demonstrating that their evolution
to those stable species on LH type pathways by adsorbate adsorption/desorption or
exchange would be thermodynamics driven. Therefore, their evolution to and on the
LH-type pathways would be more reasonable, and would be strongly interfered with by
the reaction conditions.

4. Conclusions

The reaction condition-dependent catalytic performance of a SAC has long been
realized, but seldom investigated before. We investigated CO oxidation pathways over
SACs in reaction conditions, using AuBN as a model with extensive first-principles-based
calculations. We showed that the adsorption of reactants, namely CO, O2 and CO2, and
their coadsorption with reaction species on AuBN, would be condition dependent, leading
to various reaction species with different reactivity and impact to the CO conversion.
New pathways originating from these reaction species, complementary to rLH pathway,
were proposed and may account for the CO conversion at the corresponding conditions.
Specifically, the rLH pathway with CO-mediated activation of O2 and the dissociation of the
cyclic peroxide intermediate followed by the Eley–Rideal type reduction is dominant at high
temperatures, while the coadsorbed CO-mediated dissociation of peroxide intermediate
becomes plausible when coadsorption is allowed at low temperatures and high CO partial
pressures. Carbonate species would also form in existence of CO2 and would react with
coadsorbed CO, promoting the CO oxidation. The pathways were currently proposed
to investigate CO oxidation on AuBN, but can be delivered to other SACs by further
integration with other alternatives pathways that require features not available on AuBN,
such as the Mars–van–Krevelen type pathways and those require the involvement of the
support. The findings highlight the condition-dependent CO oxidation over SACs may
originate from the thermostability of reaction species in detailed conditions and may help
to rationalize the current understanding to the superior catalytic performance of SACs.
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