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ABSTRACT

The growth of solid particles towards meter sizes in protoplanetary disks has to circumvent at least two hurdles, namely the rapid
loss of material due to radial drift and particle fragmentation due to destructive collisions. In this paper, we present the results
of numerical simulations with more and more realistic physics involved. Step by step, we include various effects, such as particle
growth, radial/vertical particle motion and dust particle fragmentation in our simulations. We demonstrate that the initial dust-to-gas
ratio is essential for the particles to overcome the radial drift barrier. If this value is increased by a factor of 2 compared with the
canonical value for the interstellar medium, km-sized bodies can form in the inner disk (<2 AU) within 104 yrs. However, we find
that solid particles get destroyed through collisional fragmentation. Only with the unrealistically high-threshold velocities needed for
fragmentation to occur (>30 m/s), particles are able to grow to larger sizes in disks with low α values. We also find that less than 5% of
the small dust grains remain in the disk after 1 Myr due to radial drift, no matter whether fragmentation is included in the simulations
or not. In this paper, we also present considerable improvements to existing algorithms for dust-particle coagulation, which speed up
the coagulation scheme by a factor of ∼104.

Key words. accretion, accretion disks – circumstellar matter – stars: formation – stars: pre-main-sequence – infrared: stars –
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1. Introduction

The coagulation of sub-µm dust particles is believed to be the
initial step of planetesimal formation in disks around pre-main-
sequence stars (Klahr & Brandner 2006; Natta et al. 2007).
Evidence for dust grain evolution beyond sizes that are found
in the interstellar medium is provided by mid-infrared spec-
troscopy of disks around Herbig Ae/Be stars (Bouwman et al.
2001; van Boekel et al. 2003), T Tauri stars (Przygodda et al.
2003; Kessler-Silacci et al. 2007) and also around brown dwarfs
(Apai et al. 2004, 2005, 2007; Sicilia-Aguilar et al. 2007).
Millimeter interferometry indicates large populations of parti-
cles which have grown to even larger sizes, ranging up to several
centimeters (Testi et al. 2003; Wilner et al. 2005; Rodmann et al.
2006).

All these observations give reason to model the evolution
of particles in protostellar disks in order to explain the obser-
vational data (Dullemond & Dominik 2004, 2005; Tanaka et al.
2005; Nomura & Nakagawa 2006; D’Alessio et al. 2006; Ormel
& Cuzzi 2007). However, these theoretical investigations do not
only attempt to model the evolution of the appearance of proto-
stellar disks. They also unveil certain obstacles in the formation
of planetesimals by particle coagulation (Youdin 2004; Dominik
et al. 2007; Brauer et al. 2007).

One of these obstacles is the radial inward drift of solid
bodies towards the central star as first dicussed by Whipple
(1972) and Weidenschilling (1977a). The gas in a protostellar
disk moves slightly sub-Keplerian due to a radial pressure gra-
dient. For this reason, the dust which moves with near Keplerian
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velocity feels a continuous head wind of gas. Hence, the par-
ticle loses angular momentum due to drag forces between gas
and dust and spirals inward. If this radial drift of the particles is
not prevented by some mechanism, then the solid particles drift
into the inner evaporation zone and are lost for the process of
planetesimal formation. To give an example, the radial drift time
scale for meter-sized bodies at 1 AU is ∼102 yrs. Within this
time scale these boulders at 1 AU drift into the inner regions of
the disk and evaporate. A possible way out of this problem is par-
ticle growth since the radial drift velocity is fairly dependent on
the particle radius. For example, the drift velocity of meter-sized
particles at 1 AU in the disk is ∼50 m/s, but the radial drift ve-
locity of 10 m sized bodies is already 10 times lower. Therefore,
swift particle growth could prevent the particles from drifting
into the evaporation zone. However, the general disk evolution
comprises a considerable particle loss due to evaporation which
is hard to prevent. This problem is a major topic of this paper.
Other sublimation zones of the disk, e.g. the snow line at ∼2 AU
(Lecar et al. 2006), could also play a role for particle drift and
coagulation processes. However, we will for now neglect this is-
sue which will be the topic of a forthcoming paper.

Another obstacle is the fragmentation of solid particles.
While low-velocity collisions lead to particle growth, high ve-
locity impacts lead to destruction (Blum et al. 1998; Poppe et al.
1999; Blum & Wurm 2000). For example, the relative particle
velocity of meter-sized bodies in a protostellar disk can be more
than ∼30 m/s (Weidenschilling 1977a; Markiewicz et al. 1991).
Benz (2000) found that meter-sized rocks appear unlikely to sur-
vive an impact with a relative low collision velocity of some
cm/s. For porous objects, collision velocities higher than 4% of
the sound speed lead to particle destruction (Sirono 2004). For
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this reason, the particle size of roughly a meter seems to pose an
upper limit for particle coagulation.

These two obstacles, the radial drift barrier and the fragmen-
tation barrier, are the issue of this paper. We present a disk model
including the growth, the radial drift and the fragmentation of the
particles. We show how these three effects change the evolution
of the disk by including them step by step.

1. In the first step we only consider particle coagulation due
to Brownian motion, vertical settling and turbulent mixing.
This step shows to which sizes particles can grow if radial
drift and fragmentation are neglected.

2. The second step includes the radial drift and the radial mix-
ing of dust. The particles are now allowed to move inwards
and to disappear into the evaporation zone. However, we
investigate which disk parameters influence the drift time
scales and for which parameters the dust particles overcome
the drift barrier.

3. The last step also includes particle fragmentation. We show
under which conditions, i.e. in which regions of the disk and
for which disk parameters, it is possible for the dust to over-
come this barrier.

The radial drift barrier is not only of interest for the radial drift
itself. Particles close to this barrier are most susceptible to the
motions of the gas and the gravitational effects of the dust. For
example, particles can be trapped in very elongated gas vortices
in magnetorotational turbulence (Balbus & Hawley 1991; Barge
& Sommeria 1995). These effects can slow down the radial drift
by a factor of two (Johansen et al. 2006). Under certain condi-
tions the solid particle layer itself may become gravitationally
unstable (Johansen & Youdin 2007). In high dust density re-
gions, the particles contract due to their own gravity and may
form a planetesimal within a few orbits (Johansen et al. 2007).
Moreover, the flow of the gas and the dust can be unstable to the
streaming instablity (Youdin & Goodman 2005) which leads to
particle clumping, and possibly also to a gravitational collapse
of the dust. Apparently, the radial drift barrier is not only con-
nected to the radial motion of the dust particles, but involves
various other important effects as well. For this reason, it is vi-
tal to answer the question if particles can actually reach the size
regime at which non-linear effects become of importance.

In this paper we will implement a 2+ 1 dimensional model.
The first dimension is the radial coordinate of the disk r, the
second one is the height above the midplane z and the third co-
ordinate is the mass of the dust particles m. The dust may move
radially due to radial drift and radial mixing. We will numer-
ically solve the continuity equation for this problem for each
particle species. The time evolution for the particle size distri-
bution is determined by the coagulation equation. We will nu-
merically solve this equation as well. In the vertical direction,
we will always assume that each particle species is in vertical
sedimentation/mixing equilibrium (Dubrulle et al. 1995; Cuzzi
& Weidenschilling 2006). Hence, we will not solve the time
dependent continuity equation in the vertical direction as done
for example by Dullemond & Dominik (2005). Nor do we need
to solve the coagulation equation at all z explicitly. Instead,
we solve the vertically integrated coagulation equation, which
significantly saves computational time (cf. Appendix B). We
also formulated the coagulation equation in an implicit way (cf.
Appendix C) which saves another factor of ∼100 of computer
simulation time.

Fig. 1. The surface density distribution of the gas as a function of disk
radius for the disk model discussed in the paper at hand and the MMSN
model as discussed in Sect. 2. Note, that the surface densities at 1 AU
differ by more than one order of magnitude.

2. Model equations

2.1. Disk model

We consider a disk of mass Mdisk and an inner and an outer disk
radius of rin = 0.03 AU and rout = 150 AU. We adopt a central
stellar mass of 0.5 M⊙ and a disk mass of 0.01 M⋆ if not oth-
erwise noted. The mass distribution of gas and dust inside the
disk is given by the surface density Σ. This quantity generally
depends on the distance to the central star r and the azimuthal
angle ϕ. However, since we assume a disk which is axisymmet-
ric the surface density Σ only depends on the radius r. We assume
that this dependency can be described by a power law

Σ = Σ0

(

r

1 AU

)−δ
· (1)

The power law index of the surface density δ is set to be 0.8
in the course of this paper following Kitamura et al. (2002) and
Andrews & Williams (2007). The surface density at 1 AU, which
is denoted by Σ0, is chosen in a way that the condition

2π
∫ rout

rin

Σ(r)rdr = Mdisk (2)

holds. With the values mentioned above, the surface density of
the gas at 1 AU in the disk can be calculated to be ∼20 g/cm2.

This surface density distribution of gas and dust, on which
the dust particle coagulation calculations in this paper are based,
differs significantly from the disk model which is usually re-
ferred to as the minimum mass solar nebula (MMSN) model
(Weidenschilling 1977b; Hayashi 1981). The fundamental dif-
ference can be found in the distribution of the mass of gas and
dust in the disk. In the MMSN disk model, the power law index
of the surface density is δ = 1.5, while the disk model in this
paper adopts δ = 0.8. Figure 1 shows the surface densities as a
function of disk location for both disk models assuming a disk
mass of 0.01 M⋆. The MMSN model implies surface densities
of ∼600 g/cm2 at 1 AU in the disk. With the disk model in this
paper, we yields surface density values of ∼20 g/cm2 which is
more than one order of magnitude lower.

The actual distribution of mass in a protoplanetary nebula is
still a matter of debate. There is evidence from meteoritics that
the densities in the protosolar nebula in the planet forming region
have been very high, implying disk masses much larger than the
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MMSN (Desch et al. 2002). On the other hand, resolved millime-
ter dust emission maps of protoplanetary nebula seem to indi-
cate much lower surface densities (Andrews & Williams 2007).
However, millimeter dust observations of disks may not trace
the radial profile of the gas mass density correctly since parti-
cle growth to larger sizes is expected to proceed more quickly in
the inner parts of the disk than in the outer parts. For this reason,
the dust continuum emission becomes flat even though the radial
profile of the surface density might have a steep radial behaviour.
Hence, analysing dust emission maps assuming a constant dust
particle size throughout the disk likely leads to power law in-
dices δ which are systematically shifted towards lower values.

The actual surface density distribution probably lies in be-
tween these two extreme cases, i.e. the MMSN model with
δ = 1.5 and the observational median of δ = 0.5 (Andrews &
Williams 2007). The surface density profile adopted in this paper
is chosen to be between these two extremes. Our goal is to gain
insight in dust disk evolution in a environment which might well
be a likely scenario considering the δ range under discussion.

We assume that the gas in the disk is in a steady state, even
for times as long as 1 Myr. Hence, the gas densities in our model
do not change in time. We only focus on the dust component
in the disk which evolves on a steady gas background. To un-
veil the robustness of this assumption, we compare the follow-
ing time scales. Particle growth time scales are of the order of
∼102 orbital times before fragmentation prevents further parti-
cle growth (cf. Sect. 3.3). Radial gas accretion velocities are of
the order of ∼1 . . .10 cm/s at 1 AU in the disk (Takeuchi & Lin
2002). With regard to 1 AU, this leads to accretion time scales
of the order of 105 yrs, which is much larger than typical par-
ticle growth time scales. For example, Takeuchi & Lin (2002)
find that in the first 104...5 yrs, the gas surface density between 1
and 100 AU is hardly affected by viscous evolution. However,
after 105 yrs, the surface density of the gas may change signifi-
cantly over time scales of several Myr (Reyes-Ruiz 2007). This
introduces a systematic uncertainty in our dust evolution model
regarding late evolutionary stages of T Tauri disks.

The temperature T is assumed to be the midplane tempera-
ture of a disk irradiated under an angle of αirr = 0.05 around a
T Tauri star with a surface temperature of T⋆ = 4000 K and a
radius of R⋆ = 2.5 R⊙. If we assume the disk to be isothermal in
the vertical direction then the temperature is given by

T = α
1/4
irr

(

r

R⋆

)−1/2

T⋆. (3)

With this dependency the temperature at 1 AU is 204 K. The
evaporation temperature at 0.03 AU is ∼1400 K.

2.2. Vertical structure of gas

We consider a thin disk, which means that z≪ r. The quantity z
denotes the height above the midplane. Under this condition the
vertical mass density distribution of the gas can be described by

ρg(z, r) =
Σ(r)
√

2πH
exp
(

−z2/2H2
)

. (4)

In this expression the quantity H denotes the pressure scale
height of the gas given by H = cs/Ωk, where cs =

√

kT/µ is the

isothermal sound speed and Ωk =
√

GM⋆/r3 denotes the Kepler
frequency. The quantities k and G are the Boltzman constant
and the gravitational constant, respectively. The mean molecular
weight µ is assumed to be 2.3 mp (mixture of molecular hydro-
gen and helium) where mp is the mass of a proton.

With Eq. (4), the gas mass density in the midplane of the
disk at 1 AU in our model with δ = 0.8 is given by 10−11 g/cm3.
Adopting the MMSN model with δ = 1.5 leads to a gas mass
density of 4×10−10 g/cm3 which is more than one order of mag-
nitude higher.

2.3. Dust variables

Before we introduce the vertical structure of the dust we define
some variables that describe the dust distribution. We define ρtot

d
to be the total mass of the dust per cm3 at a certain point in space.
To describe the particle mass distribution we define a dust den-
sity ρd(m), normalised such that

ρtot
d =

∫ ∞

0
ρd(m) dm. (5)

Now, we introduce the number density n by

n(m) =
ρd(m)

m
· (6)

This quantity gives the number of solid particles of a certain
mass m in a unity mass interval. Now, we can define the inte-
grated number density w and the surface density of the dust by

ω(m) =
∫ +∞

−∞
n(m) dz (7)

and

Σd(m) = mω(m). (8)

To implement these expressions in a computer program we have
to introduce a mass grid {mk} and a measure {∆mk}. With the
definitions of the number density Nk and the dust density ρk on
the mass grid

Nk = n(m̄k)∆mk and ρk = ρd(m̄k)∆mk (9)

Eq. (6) implies

ρk = mkNk. (10)

The quantity n(m̄k) in Eq. (9) is an arbitrary value of the func-
tion n within the interval ∆mk around mk. To define a surface
density on a lattice we also have to introduce a vertical space grid
{zl} and its measure {∆zl}. The surface density is then given by

Σk = mk

∑

l

Nk(zl)∆zl. (11)

2.4. Vertical structure of the dust

In a protostellar disk the scale height of the dust is determined
by an equilibrium between two processes, namely the settling of
the dust towards the midplane of the disk due to vertical gravity,
and the vertical mixing of the dust due to turbulent diffusion. The
more turbulence there is, the harder it is for the dust to form a
thin layer since it is mixed up and transported back to the higher
regions of the disk.

To describe turbulence, we will use the α-prescription of
Shakura & Sunyaev (1973). In this prescription the turbulent dif-
fusion coefficient of the gas at a certain radius r in the disk is pa-
rameterized by the scale height of the gas H and the isothermal
sound speed cs by

Dg = αcsH. (12)
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The dimensionless parameter α determines the amount of tur-
bulence in the disk. Observations suggest a turbulent α value of
10−3 (Hartmann et al. 1998). Numerical simulations of the mag-
neto rotational instability (Balbus & Hawley 1991) yield turbu-
lence parameters of the same order of magnitude (Brandenburg
et al. 1995; Hawley et al. 1995; Sano et al. 2004). Moreover,
Weidenschilling (1980) showed that there is a minimal amount
of turbulence in every protostellar disk corresponding to an
α value of about 10−6.

In addition to the α-value we have to introduce a second di-
mensionless number in order to describe the vertical structure of
the dust. This so-called Stokes number is defined by

Stk = Ωk
akρs

csρg
α2q−1. (13)

The variable ak and ρs denote the radius of the dust particle
of mass k and its material density, respectively. If the Stokes
number is much smaller than unity, then the dust particles are
strongly coupled to the gas. In this case, the motions of the dust
are basically the motions of the gas and both components have
the same behaviour with regard to diffusion. If St exceeds unity,
then the particles decouple from the gas and are hardly influ-
enced by the turbulent motions of the gas. The turbulence pa-
rameter q in Eq. (13) determines whether turbulent diffusion in
the disk is realized by big turbulent eddies moving slow (q = 1)
or by small turbulent eddies moving fast (q = 0). Throughout
this paper we will assume that q = 1/2 following Cuzzi et al.
(2001) and Schräpler & Henning (2004) unless otherwise stated.

The dimensionless turbulence parameter q is also connected
with the velocity vt of the large turbulent eddies,

vt = α
qcs, (14)

which significantly influences the relative turbulent velocities of
the dust (cf. Sect. 2.6.1) and, hence, its coagulation and frag-
mentation time scales. Various authors have used quite different
values for q during the past decades which led to very differ-
ent turbulent eddy velocities and, hence, different relative par-
ticle velocities produced by turbulence. While Morfill (1988),
Weidenschilling (1988) or Weidenschilling & Cuzzi (1993) use
turbulent gas velocities of αcs, which implies q = 1, more re-
cent publications explicitly derived q = 1/2 which leads to
vt =

√
αcs (Dubrulle et al. 1995; Cuzzi et al. 2001; Cuzzi &

Weidenschilling 2006). If q exceeds 1/2 then the time scale of
the largest eddy becomes larger than an orbital time scale since
τeddy ∼ α1−2q/Ωk. Turn over frequencies smaller than the Kepler
frequency appear unphysical to us. Therefore, we follow Cuzzi
et al. (2001) and adopt q = 1/2.

With the two dimensionless numbers, α and St, the scale
height of the dust hk of a certain grain mass mk is given by
(Dubrulle et al. 1995; Cuzzi & Weidenschilling 2006; Brauer
et al. 2007)
(

hk

H

)2

=
α

min(Stk, 1/2)(1 + Stk)
· (15)

Since the dust scale height hk can not exceed the gas scale
height H we restrict hk to be at most H. With this last expres-
sion the vertical structure of the dust particles with mass mk is
given by

ρk(r, z) =
Σk√
2πhk

exp
(

−z2/2h2
k

)

. (16)

In this equation Σk denotes the surface density of the dust with
mass mk.

2.5. Radial motion of the dust

In this section we will present the equations of radial motion for
solid particles. We first recapitulate the radial drift of individual
particles and particle motion due to gas accretion. After this we
introduce the equations for radial mixing due to turbulent diffu-
sion. Finally, we will discuss the continuity equation.

The following equations, which describe the radial drift of
individual dust particles, are valid as long as the dust-to-gas ra-
tio ǫ does not exceed unity. If, however, the dust density becomes
larger than the gas density then the dust starts to have a back-
reaction on the motion of the gas in a non negligible way. One
possible scenario, where the dust-to-gas ratio can exceed unity,
is when the particles settles into a thin midplane layer due to
low turbulence in the disk. In this dense midplane layer these so-
called collective effects can become of importance and the radial
drift equations have to be modified in an appropriate way. This
was discussed in detail by Nakagawa et al. (1986).

2.5.1. Radial drift of individual particles

We consider two different sources for the radial drift of solid
particles. The first one is the radial drift of individual particles
itself. The second source is due to the accretion process of the
gas.

The dust particles behave entirely independently and the gas
is assumed not to be affected by the dust at all. The crucial par-
ticle characteristics, that determine the drift of solid particles,
is the Stokes number introduced in the last section. In other
words, the coupling strength between the gas and the dust de-
termines the radial drift. With this quantity the radial drift of
individual dust particles of mass mk is given by (Whipple 1972;
Weidenschilling 1977a)

vdust,k = −
2vn

Stk + 1
Stk

· (17)

The radial drift of the dust is maximal for Stk = 1. For this rea-
son, the radial drift barrier can be regarded as a region around
Stk = 1. The maximum drift velocity vn in the last equation can
be calculated according to

vn =
c2

s

2Vk

(

δ +
7
4

)

· (18)

With the numbers mentioned in the last section the last expres-
sion yields a maximum drift velocity of 45 m/s at 1 AU. Since
the power law index of the temperature is −1/2 the maximum
drift velocity vN is independent of the location in the disk.

The second source for radial velocity of the dust is due to
the accretion process of the gas. In a gaseous disk angular mo-
mentum is transported to the outer regions of the disk under the
action of viscous stress. This transport of angular momentum
is connected with a radial accretion velocity of the gas. This
gas velocity also affects the motions of the dust. Small parti-
cles are strongly coupled to the motions of the gas and if the gas
moves inwards then also the small dust particles move inwards.
For larger particles, i.e. particles with Stokes number larger than
unity, the motions of the gas become less and less important
since larger dust particles decouple from the gas.

Takeuchi & Lin (2002) have calculated the radial accretion
velocity of the gas due to viscous stress,

vgas = −3α
c2

s

Vk

(

3
2
− δ
)

· (19)
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Fig. 2. The total inward radial velocity of a single dust particle as a
function of Stokes number St (solid line) as discussed in Sect. 2.5.1.
The dotted line denotes the accretion velocity of the gas. The turbulence
parameter α is 10−3 in this calculation.

In the last expression we already adopted the temperature depen-
dency T ∝ r−1/2 according to Eq. (3). The quantity Vk denotes
the Kepler velocity Vk = Ωkr. With a turbulence parameter of
α = 10−3 and the values that were already mentioned in the last
section the last equation yields a radial gas accretion velocity of
5 cm/s.

Now, the total radial drift velocity of solid particles of mass
mk is given by (Kornet et al. 2001)

vtot
dust,k = vdust,k +

vgas

1 + Stk2
· (20)

A plot of this total drift velocity is shown is Fig. 2.

2.5.2. Radial mixing of the dust and the continuity equation

Turbulence can be interpreted as a kind of diffusion. The turbu-
lent diffusion coefficient for the gas Dg was already introduced
in the last sections. The equivalent quantity for the dust of a cer-
tain grain mass is given by (Völk et al. 1980; Cuzzi et al. 1993;
Schräpler & Henning 2004)

Dd,k =
Dg

1 + Stk
· (21)

This relation was already implicitly used in the expression for
the dust layer thickness Eq. (15). For small particles, i.e. parti-
cles with Stk < 1, the diffusion coefficient for the dust matches
the diffusion coefficient for the gas. For Stokes numbers larger
than unity Dd,k decreases continuously since the particles more
and more decouple from the turbulent gas. Recently, Youdin &
Lithwick (2007) have shown analytically that the diffusion co-
efficient of the dust rather decreases with (1 + St2)−1 than with
(1 + St)−1. However, since we restricted the settling time scale
to be 1/Ωk at most, our dust scale height formula equals the ex-
pression found by Youdin & Lithwick (2007).

The continuity equation of the dust of a certain grain size
including radial drift and turbulent mixing reads

Σ̇k +
1
r
∂r (rFk) = 0. (22)

The dust mass flux Fk is given by

Fk = Σkv
tot
dust,k − Dd,kΣg∂r

(

Σk

Σg

)

· (23)

The first term on the right side is the mass flux for the radial drift
of individual particles discussed in the last section. The second
term is the mass flux due to turbulent diffusion (radial mixing).

2.6. Dust coagulation

Two particles of mass mi and m j in a protostellar disk tend to
have different particle velocities vi and v j (Beckwith et al. 2000).
For example, micrometer-sized particles are carried away with
the gas while larger boulders, like meter-sized bodies, which are
decoupled from the gas, are hardly affected by any gas motion.
Small particles have high relative velocities due to Brownian
motion even for equal-sized pairs. Larger particles have not.
These relative velocities ∆vi j lead to occasional collisions. The
number of collisions per second between two particle species
with number densities Ni and N j can be calculated to be

collisions
s

= ∆vi jσi jNiN j. (24)

We make the simplification that we take for ∆vi j the average rel-
ative velocity between the two dust particles. In principal, the
relative velocities have stochastic variations, but we ignore them
here. We assume that collisions lead to coagulation with a cer-
tain sticking probability pc. In general this probability depends
on various particle parameters like the size of the particle, solid
particle density, the “fluffiness” of the particles (Blum & Wurm
2000). It also depends on the relative particle velocity∆vi j. Small
particles tend to stick to each other up to high relative veloc-
ities (Dominik & Tielens 1997) while larger bodies show the
tendency to fragment even for small relative velocities (Benz
2000). This sticking probability will be discussed in more de-
tail in Sect. 2.8.

With the collision rate Eq. (24) we can calculate the number
of dust particles per second with mass mi which coagulate with
any dust particle of any mass,

ṄLoss
i =

∑

j

∆vi jσi j pcNiN j, (25)

which corresponds to the loss term for the number density of
particles with mass mi. The factor ∆vi jσi j pc is often called the
coagulation kernel. The gain term for particles with mass mi due
to the coagulation of smaller particles with mass mk and m j reads

ṄGain
i =

∑

mi=mk+m j

∆vk jσk j pcNkN j. (26)

Now we can introduce the full coagulation equation which is
given by (Smoluchowski 1916)

Ṅi = ṄGain
i − ṄLoss

i . (27)

The continuous formulation of the coagulation equation, as dis-
cussed by Safronov (1969), corresponds to a non-linear integro-
differential equation. However, this equation is rather difficult
to solve both in its discrete or continuous version. This is only
within the realms of possibility for very simple (and unfortu-
nately unphysical) kernels. Therefore, we will solve the coagu-
lation equation numerically. The algorithm we will make use of
is described in detail in Appendix A.

2.6.1. Relative dust particle velocities

We will consider four different sources for relative particle ve-
locities which lead to coagulation: Brownian motion, differential
settling, turbulence and radial drift.
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First, let us focus on Brownian motion. Two particles of
mass m1 and m2 in a region of the disk with temperature T have
an average statistical relative velocity due to Brownian motion
given by

∆vB =

√

8kT (m1 + m2)
πm1m2

· (28)

This expression shows that relative thermal velocities are higher
for smaller dust particles than for larger dust particles. Hence,
the growth process due to Brownian motion is more effective for
small particles than for large particles. For example, if we as-
sume a temperature of 200 K, a solid particle density of 1 g/cm3

and micrometer-sized particles then the relative particle veloc-
ity due to Brownian motion is 0.2 cm/s. Particles of centimeter
in size lead to a relative velocity of 10−7 cm/s. This particular
example shows that there is practically no coagulation due to
Brownian motion for particles much larger than micrometer size.
In general, growth by Brownian motion leads to fractal structures
and “fluffy” aggregates (cluster-cluster aggregates) (Ossenkopf
1993; Kempf et al. 1999). However, we will ignore these intrin-
sic properties of the dust particles in the course of this paper and
assume a constant solid material density. See, however, Schmitt
et al. (1997) or Ormel et al. (2007) for dust particle coagulation
models including porosity at a fixed radius in the disk.

Differential settling is the second process that leads to rela-
tive velocities. If we assume that the solid particles are smaller
than the mean free path of the gas then the equilibrium settling
velocity is given by zStΩk (Dullemond & Dominik 2004). In
this expression St is the Stokes number introduced in Sect. 2.4.
However, for Stokes numbers larger than unity, the equilib-
rium settling velocity model loses validity. Very large bodies
(St → ∞) above or below the midplane follow an orbit that is
tilted with respect to the midplane. The settling velocity towards
the midplane can not exceed the vertically projected Kepler ve-
locity zVk/r corresponding to this inclined orbit. For this reason
we restrict the settling velocity to be the projected Kepler ve-
locity at most. Considering this, we adopt the following settling
velocity in our model,

vS =
zStΩk

1 + St
· (29)

The relative settling velocity between two particles of mass mi

and m j at a height z above the midplane then reads

∆vS = zΩk

∣

∣

∣

∣

∣

∣

Sti
1 + Sti

−
St j

1 + St j

∣

∣

∣

∣

∣

∣

· (30)

The third source for relative velocities of particles in the disk is
the radial drift which was discussed in detail in Sect. 2.5. The
relative velocity in this case is simply the difference in the drift
velocities

∆vD = |vtot
dust,i − v

tot
dust,j|. (31)

The fourth relative velocity between the particles is due to tur-
bulence in the disk. Relative particle velocities produced by tur-
bulence were calculated numerically by Völk et al. (1980) and
Mizuno et al. (1988). Weidenschilling (1984) fitted these re-
sults with analytical formulas. Current work by Ormel & Cuzzi
(2007) shows that these expressions underestimate the turbulent
relative velocities for particles with large Stokes numbers. In this
paper, we will use the expressions calculated by Ormel & Cuzzi
(2007).

Fig. 3. Relative velocities of dust particles at 1 AU in the disk as dis-
cussed in Sect. 2.6.1. This calculation includes Brownian motion, dif-
ferential settling and relative turbulent velocities. In this calculation we
adopted a turbulent α value of 10−3.

Fig. 4. As Fig. 3, but now at 10 AU in the disk.

To give an impression of relative dust particle velocities in
a protostellar disk, Fig. 3 shows a contour plot of this quantity
at 1 AU including Brownian motion, differential settling, rela-
tive turbulent velocities and relative particle drift velocities. The
same calculation at 10 AU is shown in Fig. 4.

2.7. Particle fragmentation

Collisions between particle aggregates do not necessarily lead to
particle growth. For sufficiently high relative collision velocities,
the aggregates may fragment into smaller bodies. The critical
threshold velocity for this destructive process generally depends
on the mass of the colliding particles. More precisely, fragmen-
tation tends to play a non-negligible role if the kinetic collisional
energy of the particles is of the order of the internal binding en-
ergy of the particles (Borkowski & Dwek 1995). Fragmentation
velocities of aggregates are usually of the order of a few cm/s up
to several 10 m/s. While smaller particles tend to stick to each
other up to high relative particle velocities (Dominik & Tielens
1997) larger bodies show the tendency to fragment even for
small relative velocities (Benz 2000). For simplicity, we will as-
sume a fixed threshold velocity for particle destruction vf which
does not depend on the mass of the particles. However, we will
investigate how the results of the simulations change if vf is var-
ied over a wide parameter range. The dependency of vf on the
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particle mass will be investigated in the near future including
laboratory results of dust particle collisions.

The result of destructive collisions between solid particles,
i.e. the exact particle distribution after fragmentation, is still a
matter of debate. Usually this particle distribution is described
by a power-law,

n(m) dm ∝ m−ξdm. (32)

In this expression n(m)dm is the number of particles per unit
volume within the mass range [m,m + dm]. The last decades
involved various attempts to determine the fragmentation pa-
rameter ξ. Mathis et al. (1977) and also Draine & Lee (1984)
showed that the extinction and scattering of starlight by interstel-
lar dust can be reproduced by a power-law dependency follow-
ing ξ = 1.83. Experimental studies found values for ξ ranging
between 1.3 (low-velocity impacts) and 2 (catastrophic impacts)
(Davis & Ryan 1990; Blum & Muench 1993). Steady state solu-
tions between coagulation and fragmentation lead to ξ = 1.83 as
shown by Dohnanyi (1969). More recently, Tanaka et al. (1996)
argued that the very general result ξ = 1.83 is a direct implica-
tion of the self-similarity of the particle size distribution. In this
paper we will assume the ξ-value 1.83 if not otherwise noted.

The process of fragmentation between particles which have
the same mass is different from the fragmentation of particles
whose mass differ by orders of magnitude. Two bodies of equal
mass may destroy each other. Small dust grains, however, are
not able to destruct a meter-sized body. But they can excavate
a small crater in the larger target. This process is usually called
“cratering”. We will assume that cratering sets in if the mass of
the colliding bodies differs by more than one order of magnitude.
In this case, the smaller dust particle ms excavates a crater which
contains a factor χ times its own mass, i.e. mcrater = χms. The pa-
rameter χ is set to unity if not otherwise noted. The mass of the
smaller body and the crater ejecta are then redistributed accord-
ing to Eq. (32). On the other hand, if the mass of the colliding
particles differs by less than an order of magnitude, i.e. in the
non-cratering case, then the total mass is redistributed following
Eq. (32).

To illustrate the results of fragmentation Fig. 5 shows the
outcome of a destructive collision as modeled in the paper at
hand. The solid line shows the outcome of fragmentation in the
case of cratering. The dotted line corresponds to the fragmenta-
tion results of two particles with the same mass.

2.8. Coagulation and fragmentation probabilities

If the collision velocity of two boulders is sufficiently large then
the particles tend to fragment into smaller bodies instead of co-
agulating to larger aggregates. We will assume that the prob-
ability for fragmentation pf only depends on the relative par-
ticle velocity ∆v and adopt the following expression for this
probability,

pf(∆v) =

(

∆v

vf

)ψ

Θ (vf − v) + Θ (v − vf) . (33)

The two Heaviside step functions Θ ensure that the particles
fragment with 100% probability if the relative particle veloc-
ity ∆v is larger than the critical fragmentation velocity vf . For
∆v < vf we assume that there is always a possibility for frag-
mentation given by (v/vf)ψ. We will investigate the influence of
the critical fragmentation velocity vf and the index ψ. The value
of ψ is set to unity if not otherwise noted. The probability for

Fig. 5. The assumed fragmentation results of collisional destruction as
discussed in Sect. 2.7. The solid line shows an example for cratering.
The larger body has a mass of ∼105 g. The smaller dust grain, which
is destroyed in this process, had a mass of ∼10−5 g. The dotted line
corresponds to the collision of two particles with the same mass. In this
calculation the fragmentation parameter ξ is assumed to be 1.83 which
means that most of the fragmentation results are at the large end of the
particle size distribution.

coagulation pc is given by pc = 1 − pf . The last expression im-
plies that the particles either coagulate or they fragment. We do
not allow the particles to collide and not to undergo either the
process of coagulation or fragmentation. However, just for the
moment let us assume that pf + pc < 1. If this last expression
holds then the time scales for coagulation and fragmentation in-
crease. However, this issue might be considered in a forthcoming
paper.

3. Simulation results

In the following we will present the results of our numerical
simulations. These simulations include various effects, for ex-
ample, different particle growth mechanisms (Brownian motion,
differential settling, etc.), the radial drift of the dust and particle
fragmentation. To illustrate the influence of these effects on the
particle growth, we will proceed in certain steps. In every step
more and more effects will be included. In the first step we will
consider the growth of the dust particles at various radii in the
disk. In this part we do not allow the particles to move radially.
In the second step, however, we will also include the radial mo-
tion of the dust which was discussed in detail in Sect. 2.5. In the
last step we will additionally consider fragmentation.

3.1. Step 1 – Coagulation only

What are the growth time scales of the solid particles at differ-
ent radii in the disk? To answer this question, we will not allow
any radial motion of the particles. We glue the dust to a cer-
tain radial position even though the radial drift of the dust is
potentially very high. We also do not allow particle fragmenta-
tion. The coagulation of solid particles at a fixed radius in the
disk was for example also treated by Schmitt et al. (1997) and
Dullemond & Dominik (2005), Nakagawa et al. (1981), Tanaka
et al. (2005) and recently Ciesla (2007). We assume that the mass
of the disk is 1% of the central mass, an initial dust-to-gas ratio
of ǫ0 = 10−2 and a solid material density1 of ρs = 1.6 g/cm3. The

1 10% silicate, 30% carbonaceous material and 60% ice.
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Fig. 6. These plots show the particle size distribution at different radii in
the disk after 1 Myr of disk evolution as discussed in Sect. 3.1. The left
and the right plot always belong together. From top to bottom more and
more growth mechanisms are included in the simulations. The upper
panel shows coagulation only due to Brownian motion (BM). The sec-
ond panel shows BM and differential settling (DS). Finally, BM+DS
and turbulent coagulation (TC) are shown in the lowest panel. The left
plots show the surface density of the dust at 1, 10 and 100 AU as a func-
tion of particle radius. On the right side the corresponding contour plots
of the dust surface density are shown as a function of the radial location
in the disk and the particle radius. In these simulations the radial drift
as well as the fragmentation of the dust particles were neglected.

turbulent α parameter is 10−3 and the turbulent q parameter is set
to be 1/2. At the beginning of each simulation the dust is equally
distributed between a dust particle size of 0.5 µm and 0.8 µm.

Let us first focus on the particle growth due to Brownian
motion at different radii in the disk. The result of this simula-
tion, i.e. the particle size distribution after 1 Myr, is shown in
the upper panel of Fig. 6. According to these results dust parti-
cles grow from sub-micrometer to ∼30 µm in radius in 1 Myr
at 1 AU in the disk. At 10 AU the particle distribution has
a maximum for a ∼ 4 µm. At 100 AU most of the dust is
roughly a micrometer in size. We conclude that particle growth
due to Brownian motion is not very effective, which is a well
known result (Ossenkopf 1993; Schmitt et al. 1997; Dullemond
& Dominik 2005). However, Brownian motion is an important
effect for the following reason. We calculate the relative veloc-
ities due to Browian motion, differential settling and turbulence
for a = 0.6 µm equal-sized particles at 1 AU in the disk. While
the relative particle velocity due to Brownian motion is 0.4 cm/s
the relative turbulent velocity is in the order of 10−8 cm/s. The
relative velocity due to differential settling is practically zero.
Dust particle growth due to differential settling or turbulence
gets of importance only for larger particles. Therefore, Brownian
motion is a trigger mechanism for the entire coagulation process
which was noted before by Weidenschilling (1984).

Now, we will additionally include coagulation due to differ-
ential settling into our model. The result of this simulation is
shown in the second panel of Fig. 6. This plot shows that par-
ticles have grown to more than 104 cm in radius at 1 AU in

the disk after 1 Myr. This particle size is more than 6 orders
of magnitude larger than the grain size after 1 Myr caused by
Brownian motion. Most particles at 10 AU and 100 AU have
grown to sizes of about 1 m and 100 µm, respectively. We con-
clude that differential settling is an effective growth mechanism
which can create large boulders in the inner parts of the disk.
Note that in our model the vertical mixing continuously allows
the grains to go back up again and grow again by differential set-
tling. Therefore, the maximal size formula of Safronov (1969)
does not apply here.

Apart from the fact that particles grow to much larger sizes
if differential settling is included, Fig. 6 also shows that there is
always a certain amount of small particles that remains in the
disk and that does not coagulate for at least 1 Myr. After this
time, roughly 6% of the dust between 1 and 75 AU is still present
in grains <1 mm. The reason for this is the following. Not all of
the dust particles coagulate at the same time. While a certain
fraction of the dust has already grown to larger sizes and formed
a thinner dust layer according to Eq. (15), a certain fraction of
small dust remains in the higher regions above the midplane.
These small dust particles high above the midplane are subject
to a rather slow coagulation process. The dust densities above
the midplane are low after most of the dust already settled closer
to the midplane. This leads to long growth time scales according
to Eq. (24). Larger particles close to the midplane can not sweep
up the smaller particles above the midplane since turbulence is
not able to stir them up so far. For this reason small particles
remain in the disk for a long time.

We will now also include relative velocities of the particles
caused by random turbulent motions. The result of this simula-
tion is shown in Fig. 6 in the lower panel. This plot indicates that
the dominant grain size at 1 AU, i.e. the grain size correspond-
ing to the surface density maximum, changes by a factor of ∼10
if turbulent coagulation is included in the simulation. The dom-
inant particle radius at 1 AU is ∼105 cm. At 100 AU, random
turbulent motions also speed up the coagulation process which
leads to particles of a few centimeters in radius after 1 Myr of
disk evolution. Without relative turbulent velocities included in
the simulation, the particle radius was two orders of magnitude
smaller.

3.2. Step 2 – Coagulation and radial motion

We will now include radial motion, both as transport and as extra
source of relative velocities for coagulation. This significantly
changes the results of the last section. We find that the radial drift
of solid particles is so high that the dust drift into the evaporation
zone long before larger particles in the disk can possibly form.
This happens even though an additional source for coagulation
is introduced which decreases the coagulation time scales. We
will investigate if particles can in some way “break through” the
radial drift barrier.

3.2.1. Time evolution of the disk

Figure 7 shows the time evolution of the model. This plot in-
dicates that cm-dm-sized particles form in the inner regions of
the disk (<2 AU) within the first 103 yrs. Compared to the outer
parts of the disk the formation of these particles appears rather
quickly due to comparatively high gas and dust densities and
high temperatures. With increasing distance from the central star
the formation of larger particles gets more and more difficult. At
10 AU in the disk, it is still possible to form mm-sized particles
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Fig. 7. The particle size distribution at different radii in the disk at differ-
ent times of disk evolution as discussed in Sect. 3.2.1. In this simulation
all particle gowth mechanisms are included as well as the radial motion
of the dust. The fragmentation of particles is neglected. The left and the
right plots always belong together. The left column shows the surface
density as a function of particle radius at 1, 10 and 100 AU. The right
column shows the corresponding contour plots of the surface density
as a function of disk radius and particle radius. The white lines in the
contour plots denotes the particle radius for which the Stokes number is
unity (i.e. largest radial drift and largest radial velocities).

in 104 yrs according to Fig. 7. However, in the outer parts of
the disk (>100 AU) the dominant particle size of the dust never
exceeds 0.1 mm at any time. The disregard of radial drift in the
previous section led to particle sizes of more than a centimeter
at 100 AU after 1 Myr, which is orders of magnitude larger.

The neglect of radial drift, as discussed in Sect. 3.1, in-
volved a permanent amount of small particles which was present
throughout the disk for at least 1 Myr. These small particles were
located high above the midplane and were subject to a rather
slow coagulation process due to relatively low dust densities.
Figure 7 indicates that there is a smaller remaining amount of
small dust if radial motion is taken into account. This is due to
the following reason. Even the small particles in the higher re-
gions of the disk can have relative radial velocities of the order
of some mm/s or even cm/s. These higher relative velocites lead
to higher collision rates and, hence, to a depletion of the small
dust grains.

After 105 yrs of disk evolution, the average particle size at
a certain radius in the disk starts to decrease in time. To give an
example, after 105 yrs the dominant dust grain radius at 1 AU
is ∼1 cm. After 1 Myr this value is about an order of magnitude
lower. While particles drift inward from a certain radial position
they are replaced by other particles from the outer parts of the

Fig. 8. The effect of disk mass on the particle growth as discussed in
Sect. 3.2.2. Shown is the dominant dust particles radius after 104 yrs of
disk evolution for different disk masses between 0.2 and 10 AU. The
turbulent α parameter is 10−3 and the initial dust-to-gas ratio is 10−2.

disk. The coagulation time scales are larger in the outer parts
of the disk which means that particles grow to smaller sizes in
the same time. Therefore, the particles that reach a certain posi-
tion are smaller than the particles that drift away and, hence, the
average dust particle size decreases.

In the simulation shown in Fig. 7 the Stokes number of the
dominant particles never exceeds unity, i.e. never breaks the ra-
dial drift barrier, at any disk radius considered at any time. This
is indicated by the St = 1 line which is also shown in this plot. At
∼1 AU in the disk, the simulation shows that particles may grow
to sizes that correspond to a Stokes number slighly smaller than
unity. In the following we will investigate if the particles may
break through the St = 1 barrier for certain disk parameters.

3.2.2. Effect of disk mass

We investigate the effect of disk mass on the particle growth. The
result of this investigation can be seen in Fig. 8. This plot shows
the dominant dust particle size for different disk masses after
104 yrs of disk evolution as a function of disk radius. We find that
the particle size increases by an order of magnitude if the disk
mass is increased from 1% to 20% of the central mass. Larger
disk masses lead to higher gas and dust densities and, hence,
to higher collision rates according to Eq. (24). Therefore, dust
particles can grow to larger sizes over the same time interval.

The Stokes number of the dominant particles is always
smaller than unity. Of course, particles may grow to larger sizes
which increases the Stokes number since St ∝ a. However, larger
disk masses also lead to higher gas densities which again de-
creases the Stokes number because St ∝ 1/ρg. Finally, both ef-
fects cancel out and the disk mass seems to plays a minor role in
breaking the radial drift barrier.

3.2.3. Effect of turbulence

As in the last section, we calculate the dominant particle size af-
ter 104 years but now for different turbulentα-parameters instead
of different disk masses. The initial dust-to-gas ratio in this sim-
ulation is 10−2, the disk mass is 10−2 M⋆ and the result is shown
in Fig. 9.

One would intuitively think that in a certain time particles
can grow to larger sizes in highly turbulent disks than in low-
turbulent disks. Figure 9 shows, however, that the dominant
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Fig. 9. Same plot as Fig. 8 but now showing the effect of turbulence on
the particle growth as discussed in Sect. 3.2.3. Shown is the dominant
particles size after 104 yrs of disk evolution for different turbulent α
parameters between 0.2 and 10 AU. The disk mass is 10−2 M⋆ and the
initial dust-to-gas ratio is 10−2.

particle size after 104 yrs is only weakly dependent on the tur-
bulence parameter α. If α changes by two orders of magnitude
then the dominant particle size only changes by a factor of two.
This can be understood by the following consideration.

A high amount of turbulence in the disk leads to high relative
turbulent particle velocities (Völk et al. 1980; Weidenschilling
1984; Cuzzi et al. 2001). These high relative velocities cause
high collision rates, cf. Eq. (24), which favour the process of co-
agulation. For this reason particles should have grown to larger
sizes in highly turbulent disks. On the other hand, a large amount
of turbulence leads to thick particle layers. The dust is stirred up
in the higher regions of the disk which causes the average dust
densities to decrease. The collision rates in Eq. (24) are propor-
tional to the particle number densities. Lower dust particle den-
sities lead to longer coagulation time scales.

The two determining factors for the growth time scales, the
relative turbulent particle velocity and the dust density, seem
to cancel out if the amount of turbulence in the disk is varied.
Hence, different α-parameters lead to the same particle size over
the same time interval.

3.2.4. Effect of the initial dust-to-gas ratio

We now investigate the effect of the initial dust-to-gas ratio on
the growth time scales and the particle size distribution. We con-
sider a disk mass of 10−2 M⋆ and a turbulence parameter α
of 10−3. The result of this investigation is shown in Fig. 10.

This contour plot shows the surface density of the particle
distribution as a function of disk location and particle radius for
four different initial dust-to-gas ratios after 104 yrs of disk evolu-
tion. These results indicate that 104−105 cm sized boulders can
form in the inner parts of the disk (<3 AU) subject to the condi-
tion that the initial dust-to-gas ratio of the disk is higher than 1%.
This means that the dust particles may overcome the radial drift
barrier if the dust-to-gas ratio is slighly higher than usually as-
sumed. A contour plot of the surface density distribution with
ǫ0 = 0.03, i.e. in the case where the particles are able to break
through the radial drift barrier for disk radii <3 AU, as a function
of time is shown in Fig. 11.

Fig. 10. These plots shows the effect of the initial dust-to-gas ratio on
the particle growth as discussed in Sect. 3.2.4. The right side shows con-
tour plots of the surface density as a function of disk location and par-
ticle radius for 4 different initial dust-to-gas ratios after 104 yrs of disk
evolution. The corresponding left plots show the surface density as a
function of particle radius for 3 different locations in the disk (0.3 AU –
solid, 1 AU – dotted, 3 AU – dashed) after the same time. The disk mass
is 10−2 M⋆ and the turbulent α parameter is 10−3. For initial dust-to-gas
ratios which are slighly higher than 1% the particles break through the
radial drift barrier.

To understand this importance of the initial dust-to-gas ratio
we consider the growth rate of the dust particles as given by
Kornet et al. (2001),

ȧ =
ρd

ρs
∆v. (34)

If we assume that the particles have Stokes numbers smaller
than unity then the relative turbulent particle velocity is given
by (Cuzzi et al. 2001; Weidenschilling & Cuzzi 1993)

∆vturb ∝
√
αSt cs. (35)

The dust mass density can be approximated by ρd ∝ Σd/h so that
we obtain

ȧ =
1
ρs

Σd

h

√
αSt cs. (36)

With the height of the dust layer Eq. (15), the last expression can
be written as (for St < 1)

ȧ =
1
ρs
ǫ0ΣgStΩk. (37)
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Fig. 11. This plot shows the results of a simulation in which the parti-
cles can break through the radial drift barrier as discussed in Sect. 3.2.4.
Particle fragmentation is neglected in this simulation. Shown is the sur-
face density distribution for the first 104 yrs of disk evolution for an
initial dust-to-gas ratio of 0.03 as a function of disk radius and parti-
cle radius. The disk mass is 10−2 M⋆ and the turbulent α parameter is
10−3. The right side is a contour plot of the surface density. The left side
shows the absolute values of the surface density for 3 different disk radii
(solid – 0.3 AU, dotted – 1 AU, dashed – 3 AU).

If we also take into account the definition of the Stokes number
in Eq. (13), then most quantities cancel each other out, particu-
larly the gas surface density Σg, leading to

ȧ = aǫ0Ωk (38)

with the solution

a = a0eǫ0Ωkt. (39)

This expression shows that only the initial dust-to-gas ratio ǫ0
and the Kepler frequency Ωk determine the turbulent growth
time scales as long as St < 1. According to Eq. (39), the time
scales are not linear dependent on the initial dust-to-gas ratio.
An increase of ǫ0 leads to an exponential decrease of the growth
time scales. This strong dependency unveils the crucial impor-
tance of this initial parameter. Equation (39) also shows that tur-
bulent coagulation occurs faster in the inner parts of the disk than
in the outer parts since Ωk ∝ r−1.5. For this reason, the particles
first break through the radial drift barrier in the inner parts of the
disk (cf. Fig. 10).

In Sects. 3.2.2 and 3.2.3 we have seen that the dominant
particle size only shows a weak dependency on the disk mass
and the amount of turbulence in the disk. This can also be ex-
plained by Eq. (37). The turbulent growth rate of the dust is

neither dependent on the disk mass nor on the turbulent α pa-
rameter. Moreover, this expression also indicates that the disk
temperature and intrinsic particle properties like solid density
are rather unimportant as long as the Stokes number of the par-
ticles is smaller than unity and turbulence is the leading process
that triggers coagulation.

However, Ormel et al. (2007) have shown that the porosity
of dust particles actually matters in the early phases of disk evo-
lution. This discrepancy is due to the fact that the Eq. (39) only
holds if St > α while Ormel et al. (2007) considered particles
with St < α. Moreover, Brownian motion is the main source for
relative particle velocities for small dust grains in the early disk
evolution while the derivation of Eq. (39) assumes that turbu-
lence is the major source for relative particle velocities.

3.2.5. The radial drift barrier

Now we will estimate in which regions of the disk and under
which conditions the solid particles can theoretically overcome
the radial drift barrier.

In Sect. 3.2.4 we have seen that particle coagulation due to
turbulence in the disk can be described by ȧ = aΩkǫ0. We define
a particle growth time scale τg by

τg = γ
a

ȧ
=
γ

Ωkǫ0
· (40)

The parameter γ measures how much the solid particle has to
grow to cross the particle size region of fast radial drift, i.e.
to overcome the radial drift barrier. We assume this parameter
to have a certain value determined by the disk model and to be
a constant throughout the disk. The largest radial drift velocity
in the disk is approximately given by c2

s/Vk. We define a radial
drift time scale τd by

τd =
r

c2
s/Vk

· (41)

The ratio between these two time scales is given by

τg

τd
=
γ

ǫ0

(

H

r

)2

· (42)

In the last step we made use of Eq. (15). Now, the particles may
overcome the radial drift barrier if the ratio τg/τd is smaller than
unity, i.e. if the growth time scales are smaller than the radial
drift time scales. The parameter γ is still indefinite.

To specify this parameter we consider Fig. 10 in Sect. 3.2.4.
These simulation results show for which initial dust-to-gas ratio
ǫ0 the particles break through the meter size barrier at a certain
radius in the disk. We chose the parameter γ in a way that the
condition τd > τg is in agreement with the results shown in this
figure. This leads to γ ≈ 12. With this value, the particles should
overcome the radial drift barrier if the inequality

ǫ0 >∼ 12
(

H

r

)2

(43)

holds.
The particles, which break through the radial drift barrier in

Fig. 10, have already drifted inwards. For this reason, the critical
value given by Eq. (43) indicates the initial dust-to-gas ratio for
which the particles most likely break through the radial drift bar-
rier. The sufficient ǫ0-value to overcome the radial drift barrier is
presumably even lower than this value.
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Fig. 12. The mass of the dust disk for small (St < 1) and large (St > 1)
particles between 0.5 AU and 150 AU as a function of time for different
initial dust-to-gas ratios as discussed in Sect. 3.2.6. In this simulation
only the particle coagulation and the radial motion of the dust were
considered. Particle fragmentation was neglected.

3.2.6. Dust mass loss in the disk

When particles drift into the evaporation zone, they are lost for
the process of planetesimal formation. Hence, the question of
how much solid material is actually lost due to its drift into the
inner regions is of essential importance. We calculate the mass
which is present in small (St < 1) and large (St > 1) particles
between 0.5 AU and 150 AU as a function of time for different
initial dust-to-gas ratios. The result of this calculation can be
seen in Fig. 12.

This plot shows, that the mass of the dust disk does not
change significantly within the first 104 yrs for every initial dust-
to-gas ratio considered. Since the power law index of the surface
density is −0.8, most of the solid particles are in the outer re-
gions of the disk. Fast radial drift in the inner disk regions which
takes place in ∼103 yrs does not change the total dust mass in
the disk.

After a few 104 yrs, the mass present in small grains starts
to decrease. After 1 Myr of disk evolution, this mass is less
than 1% of the initial dust mass. The amount in small grains,
i.e. St < 1 particles, is dependent on the initial dust-to-gas ratio.
For ǫ0 = 0.01 roughly 0.4% of the initial particle mass is present
in small grains. For ǫ0 = 0.03 this mass is a factor of 4 lower.
Hence, higher initial dust-to-gas ratios lead to lower dust masses
in small grains after 1 Myr. In the last section we showed that
particles grow faster with increasing dust-to-gas ratio. Therefore,
particles can grow to larger sizes while moving radially inwards.
However, larger sizes also lead to higher radial drift velocities
(Eq. (17)). For this reason, the mass which is present in small
particles in the disk decreases faster for increasing dust-to-gas
ratios. We will find the same behaviour for the small particles in
step 3 where fragmentation is also taken into account.

For an initial dust-to-gas ratio of 1%, the mass of the en-
tire dust disk, i.e. the mass in small and large particles, after
1 Myr between 0.5 AU and 150 AU is 0.4% of the initial dust
mass. Most of the dust has drifted into the evaporation zone. For
higher initial dust-to-gas ratios, i.e. higher than 0.015, the par-
ticles in the inner regions of the disk can break through the ra-
dial drift barrier. These larger boulders around 1 AU then sweep
up smaller particles which drift inwards from larger radii (cf.
Fig. 12 between 103 yrs and ∼5 × 104 yrs). After ∼5 × 104 yrs
most of the dust mass is present in large boulders. While for
ǫ0 = 0.015 roughly 20% of the initial dust mass is present in

St > 1 particles after 1 Myr, the remaining mass in large boul-
ders is a factor of ∼4 higher for ǫ0 = 0.03. Note that the mass of
the remnant dust disk after 1 Myr changes by a factor of ∼200
by changing the initial dust-to-gas ratio from 1% to 3%. We
conclude that the initial dust-to-gas ratio is a crucial parameter
which has an important influence on how much solid material
remains in the disk after 1 Myr. However, the mass present in
small grains is always less than 0.4% of the initial dust mass
after 1 Myr no matter the value of ǫ.

3.3. Step 3 – Coagulation, radial motion
and fragmentation

We now also include particle fragmentation in our simulation.
We investigate how this destructive effect influences the parti-
cle growth in the disk and how various disk parameters, like the
initial dust-to-gas ratio, the turbulence parameter α or the frag-
mentation velocity vf , influence the coagulation/fragmentation
process.

3.3.1. Time evolution

The evolution of the disk in the first 1 Myr is shown in Fig. 13.
In this calculation, the fragmentation velocity is vf = 103 cm/s
and the fragmentation parameter ξ is 1.83. We adopt a disk mass
of 10−2 M⋆, a turbulent α-value of 10−4 and an initial dust-to-gas
ratio of 10−2. The cratering-parameter χ is 0.5 and ψ = 2.

After 103 yrs of disk evolution, most of the particles in the
disk <3 AU have grown to sizes of some millimeters. However,
if fragmentation is neglected (cf. Sect. 3.2) the dominant particle
size at 1 AU in the disk after 103 yrs is an order of magnitude
larger. This significant difference is due to the fragmentation of
particles. When the particles reach millimeter size then destruc-
tive effects prevent the particles from growing to larger sizes (cf.
Fig. 3 with 10 m/s). Even after 104 yrs, the dominant particle size
in the disk <10 AU is still of the order of a millimeter. Hence,
this particle size corresponds to the fragmentation barrier for this
specific set of disk parameters. Even for long periods of time the
particles are not able to overcome this barrier. Once the particles
have reached the fragmentation barrier the particle distribution
is characterised by an equilibrium between particle coagulation
and particle fragmentation due to destructive collisions. In other
words, the amount of particles of a certain mass, which are cre-
ated by dust particle coagulation, equals the amount of particles,
which are destroyed by high velocity collisions. This steady state
will be discussed in more detail later in this section.

Figure 13 indicates that the maximum dominant particle
size amax and the Stokes number St have the same radial be-
haviour. This is due to the fact that relative particle velocities in
our model (except Brownian motion) scale with this dimension-
less number. For this reason, the dominant particle size follows
amax ∝ r−0.8 which we obtain directly from the definition given
by Eq. (13).

Due to destructive collisions a large amount of dust is present
in small grains as can be clearly seen in Fig. 13. We calculate the
amount of dust which is present in grains larger (smaller) than
10−2 cm after 105 yrs of disk evolution. While 18% of the dust
mass is present in grains larger than 10−2 cm, yet 82% of the
mass is present in smaller grains. This large population of sub-
mm grains should have a strong effect on the spectrum of the
protostellar disk. However, we will not investigate the influ-
ence of the fragmentation parameters, i.e. vf and ξ, on the disk
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Fig. 13. As Fig. 7, but now also the fragmentation of particles is in-
cluded in the simulations as discusssed in Sect. 3.3.1. The left column
shows the surface density as a function of particle radius at 1, 10 and
100 AU. The right column shows the corresponding contour plots of the
surface density as a function of disk radius and particle size.

spectrum which goes beyond the scope of this paper. This will
be investigated in the near future.

3.3.2. Effect of turbulence

Different turbulent α-values should lead to different maximum
particle sizes due to destructive collisions. To investigate the in-
fluence of turbulence on the fragmentation barrier, we calculate
the dominant particle size for different α-values after 104 yrs of
disk evolution. In this simulation the disk mass is 10−2 M⋆, the
fragmentation velocity is 103 cm/s, the initial dust-to-gas ratio is
10−2 and the results of the calculation are shown in Fig. 14.

According to this plot, the dominant particle size is fairly de-
pendent on α in moderately turbulent disks. If α is changed from
10−3 to 10−4 then the dominant particle size adom changes by a
factor of ∼5. We find that less turbulence shifts the fragmenta-
tion barrier towards larger particle sizes. Hence, in less turbulent
disks particles can grow to larger sizes than in highly turbulent
disks.

However, this statement does not hold for extremely low tur-
bulent disks. In these disks, turbulence is not the main source for
relative velocities and, hence, the fragmentation barrier should
not be dependent on α. If α is smaller than ∼(cs/2Vk)2 (cf.
Eqs. (18) and (35)) which is ∼10−4 at 1 AU then relative par-
ticle velocities due to radial motion exceed relative dust particle
motions induced by turbulence. To illustrate this independency
we calculate the dominant particle size after 104 yrs for a disk
with a very low α-value of 10−10. The result of this calculation

Fig. 14. The influence of the turbulence parameter α on the dominant
particle size after 104 yrs of disk evolution for different disk radii
between 1 and 20 AU as discussed in Sect. 3.3.2. The disk mass is
10−2 M⋆, the fragmentation velocity is 103 cm/s and the initial dust-to-
gas ratio is 10−2. This graph also shows the particle size for which the
Stokes number ist unity. The χ parameter is set to 0.5 and ψ = 1.

Fig. 15. The relative particle velocities at 1 AU as a function of parti-
cle radius as discussed in Sect. 3.3.2. The turbulence parameter α in
this calculation is 10−10. This means that relative radial motion is the
main source for relative particle velocities. A critical fragmentation ve-
locity of 10 m/s results in a very narrow band in which particle co-
agulation is still possible. If the particle size dispersion is larger than
the extent of this bottleneck then particle fragmentation starts to play a
non-negligible role.

is also shown in Fig. 14. In this nearly laminar disk, destruc-
tive collsions due to relative drift velocities up to 50 m/s prevent
particle growth to sizes of more than ∼2 mm at 1 AU.

Relative radial drift velocities are always due to particle size
differences. Monodisperse distributions do not show relative ra-
dial motion. The simulation result for extremely low turbulent
disks (α = 10−10) raises the question how the particle size dis-
persion of the dust distribution can produce such high relative
velocities to inhibit particle growth to larger sizes2.

We try to answer this question by considering the relative ve-
locities of dust particles at 1 AU in the disk as a function of par-
ticle radius, cf. Fig. 15. In this calculation, we adopt an α-value
of 10−10 which means that relative radial motion is the main
source for relative velocities. According to this figure, particle

2 We define the particle size dispersion as the half-width of the size
distribution.
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Fig. 16. The dust particle distribution (solid) and its time derivative
(dashed) as a function of particle size after 700 yrs of evolution at 1 AU
in the disk as discussed in Sect. 3.3.2. The distribution is located around
a0 = 3 cm and it has a size dispersion of ∼1.5 cm. In these 700 yrs, parti-
cle fragmentation was neglected. In the calculation of the source terms,
which are shown in this figure, fragmentation is included. These source
terms show that destructive collsions would rapidly shift the dominant
particle size to smaller values.

coagulation is only possible in a very narrow particle size in-
terval, i.e. in the dark shaded regions of this plot. If the parti-
cle size dispersion is larger than the extent of this “bottleneck”
then particle fragmentation starts to play a non-negligible role.
With Eq. (20) for the radial velocities, we can estimate the im-
portance of fragmentation for a specific particle size dispersion.
We assume a particle size distribution which has a surface den-
sity maximum at a0 = 3 cm. If the size dispersion is larger than
1 cm, then particles start to fragment with 100% probability. For
a particle size dispersion of 0.5 cm and 0.1 cm, the fragmenta-
tion probability decreases to 50% and 10%, respectively. Hence,
only for particle size dispersions of some millimeters, particles
might have the chance to overcome the fragmentation barrier.
For larger size dispersions, the fragmentation probability is far
too high to allow the distribution to pass the bottleneck shown in
Fig. 15.

To investigate if the particle size dispersion is narrow enough
to overcome the fragmentation barrier, we consider the follow-
ing. We simulate 700 yrs of dust particle evolution neglecting
fragmentation. The result of this simulation, i.e. the particle dis-
tribution at 1 AU in the disk as a function of particle size, is
shown in Fig. 16 (solid line). The size dispersion of this parti-
cle distribution is ∼1.5 cm. Now, particle fragmentation tends to
smear out the dust distribution and it increases the particle size
dispersion. Hence, the distribution shown is Fig. 16 represents
a best case scenario; the distribution can not become narrower.
What happens if we now switch on fragmentation? Figure 16
also shows the time derivative of the particle distribution (dashed
line) if fragmentation is considered. This curve indicates, that
destructive collsions would rapidly shift the dominant particle
size towards smaller values. The size dispersion is apparently
too large for the particles to pass through the fragmentation bot-
tleneck without undergoing substantial destructive collsions. If
fragmentation is included in the simulations from the very be-
ginning, then the size dispersion is even larger and, therefore,
the chance of passing the narrow region of coagulation becomes
even smaller.

For a fragmentation velocity of 10 m/s, which we adopt in
these simulations, the particles never overcome the fragmenta-
tion barrier, regardless of the amount of turbulence in the disk

Fig. 17. The dominant particle size as a function of disk location
for 3 different fragmentation velocities after 104 yrs of disk evolution
as discussed in Sect. 3.3.3. In this simulation, ψ = 2, χ = 0, ǫ0 = 0.03
and the turbulent α-value is 10−5.

since the radial drift always accounts for destruction. We find
that this statement also holds for larger ψ-values. We conclude
that the amount of turbulence in the disk alone does not de-
termine whether particles can break through the fragmentation
barrier or not. Note, that the maximum radial drift velocity of
particles is independent of radius, so that these statements hold
everywhere in the disk.

There are possible scenarios in which the radial particle ve-
locity, which is the main reason for particle fragmentation in
low turbulent disks, is lower than in the model discussed here.
In these cases, particles might overcome the fragmentation bar-
rier. One possibility are local gas pressure fluctuations. Since the
radial drift velocity is proportional to the radial gas pressure gra-
dient, local gas maxima can slow down and even prevent radial
particle motion. Therefore, we expect dust coagulation instead
of dust fragmentation in these maxima. Also local dust particle
enhancements can slow down radial drift. Johansen et al. (2006)
have shown that the radial drift velocity can be reduced by a fac-
tor of around 2. Further investigations of particle growth under
these conditions, which make particle fragmentation less likely,
are needed.

3.3.3. Effect of the fragmentation velocity

For which critical fragmentation velocities can particles break
through the fragmentation barrier? To answer this question let
us consider a best case scenario. We adopt a low turbulent disk,
i.e. a disk in which the relative radial velocities exceed the rela-
tive turbulent particle velocities, and we neglect the effect of cra-
tering for the moment. We calculate the dominant dust particle
size as a function of disk location for 3 different fragmentation
velocities after 104 yrs of disk evolution. The results of this cal-
culation can be seen in Fig. 17. In this simulation, the α-value is
10−5, χ = 0 (no cratering) and ψ = 2.

For a fragmentation velocity of 5 m/s, particles can grow to
millimeter size at ∼1 AU in the disk before destructive colli-
sions prevent further particle growth. In the outer regions, i.e.
at 10 AU, the dominant particle radius is a factor of 10 smaller.
Even for a relatively high critical velocity of 20 m/s the particles
are not able to grow beyond a centimeter at 1 AU.

For even higher fragmentation velocities, i.e. vf ∼ 30 m/s,
solid particles start to break through the fragmentation barrier.
Figure 18 shows the dust particle distribution for this critical
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Fig. 18. These plots show how the particles break through the radial drift
barrier and the fragmentation barrier as discussed in Sect. 3.3.3. Shown
are contour plots of the surface density as a function of disk radius and
particle radius at 4 different times of disk evolution. The fragmentation
velocity is chosen to have the relatively high value of 30 m/s. In this
simulation ψ = 2 and χ = 0. The initial dust-to-gas ratio is 0.03.

velocity as a function of disk radius and particle radius for 4
different times of disk evolution. This plot indicates that parti-
cles have grown to meter size in the inner parts of the disk after
104 yrs. However, a fragmentation velocity of several 10 m/s for
centimeter- or even meter-sized boulders is at least questionable.
For lower (and probably also more realistic) critical velocities,
i.e. velocities of 1 . . .10 m/s, we never find solid particles in our
simulations which are able to overcome the fragmentation bar-
rier for any disk parameters considered. For α-parameters, which
are higher than the adopted value of 10−5 in the simulations of
this paragraph, it is even more unlikely that solid particles may
grow to larger sizes. This chance does not increase if destructive
effects due to cratering are also taken into account.

3.3.4. Disk dust mass

As in Sect. 3.2.6, we calculate the solid material mass in the disk
as a function of time, but now with the effect of particle fragmen-
tation included in the simulations. The result of this calculation
is shown in Fig. 19.

The dust mass does not change significantly within the first
105 yrs for any ǫ0 considered. This is the same behaviour as in
the case of no fragmentation. After 105 yrs the mass starts to
decrease rapidly. For an initial dust-to-gas ratio of 0.01 only 2%
of the initial solid material mass between 1 and 150 AU remains
after 1 Myr. Higher initial dust-to-gas ratios lead to less solid
material after 1 Myr. For example, for ǫ = 0.03 the mass is only
0.7% of the initial dust mass, which is a factor of ∼3 lower.

Fig. 19. The mass of the dust disk between 1 AU and 150 AU as a
function of time for 3 different initial dust-to-gas ratios as discussed
in Sect. 3.3.4. In this simulation, particle growth particle fragmentation
and radial motion are included. The initial disk mass of gas and solid
material is 10−2 M⋆, α = 10−4, χ = 0.5, ψ = 2 and vf = 10 m/s.

Let us compare the solid material mass after 1 Myr for
ǫ0 = 0.01 in the case of fragmentation/no fragmentation. We
find that the remaining dust mass is a factor of 5 higher if we al-
low the particles to destroy each other. This difference is due to
destructive collisions which lead to large amounts of small parti-
cles in the disk (cf. Sect. 3.3.1). These small dust grains have low
radial drift velocities and, hence, long radial drift time scales. In
other words, small particles stay much longer in the disk before
they evaporate in the inner regions of the disk. For this reason,
the solid material mass after 1 Myr is higher in the case of frag-
mentation than in the case of no fragmentation.

In the previous sections we found that if fragmentation is
included in the simulations then the dust particles are not able
to break through the meter size barrier. No larger particles in
the inner parts of the disk can form which can sweep up smaller
dust particles drifting inward from the outer regions. For this
reason, most of the solid material after 1 Myr has drifted into
the evaporation zone and is lost for the process of planetesimal
formation.

3.3.5. Effect of disk model

In the introduction we mentioned that the disk model adopted
in this paper differs significantly from the MMSN model. This
leads to the question of how the results of this paper change if
different disk models are considered. In this section, we repeat
simulations of Sect. 3.3 with other disk model parameters, at-
tempting to unveil the basic changes in the dust particle distri-
bution. Table 1 shows the disk parameters for the simulations in
this section. Model A and B are the MMSN model and the disk
model in this paper, respectively. Model C is our model, but now
with 10% disk mass instead of 1% compared to M⋆. This leads
to gas densities which are comparable to those of the MMSN
model. The mass distribution, however, has a much flatter ra-
dial dependency. The models D to F are the same as A to C,
but with a steeper radial temperature dependency. Andrews &
Williams (2007) observationally find radial temperature profiles
with a median power law index of 0.62. This is slighly higher
than the passively irradiated disk profile of 0.5 adopted in our
model.

Before we come to the results of the simulations, we will
qualitatively discuss the difference between the MMSN model
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Table 1. Disk parameters for the simulations performed in Sect. 3.3.5.
The quantity β denotes the temperature power law index T ∝ r−β.
The Models A and B correspond to the MMSN model and the model
adopted in this paper, respectively. Model C is as the model in this paper
but now with 10% disk mass. The Model D to F are as A to C but with
a slighly steeper radial temperature dependency.

Model Surface density Disk Temperature
power law index δ mass power law index β

A 1.5 0.01 0.50
B 0.8 0.01 0.50
C 0.8 0.10 0.50
D 1.5 0.01 0.62
E 0.8 0.01 0.62
F 0.8 0.10 0.62

and the model in the paper at hand. The gas mass densities of
our model are generally smaller than those of the MMSN model.
This has the following main implications. First, solid particles
are less coupled to the motions of the gas. The coupling between
the gas and the dust can be described by the Stokes number St,
which is given by St = ρsa/Σ. If the surface density of the gas Σ
decreases, then St is shifted towards higher values. Therefore,
the particle growth barrier due to radial drift and particle frag-
mentation, which is usually referred to as the “meter size barrier”
and which corresponds to the particle radius implied by St = 1,
is shifted towards lower particle radii. In the MMSN model, par-
ticles with a Stokes number of unity have radii of ∼2 m at 1 AU
in the disk. A surface density slope of δ = 0.8 implies a ∼ 5 cm
for St = 1 particles at 1 AU. While it seems challenging to grow
particles larger than meter in size in the MMSN disk model, it is
difficult to grow particles larger than centimeter size in the disk
model adopted in the paper at hand.

Second, if the Stokes number is shifted towards higher val-
ues then all quantities depending on this number are influenced
by this change as well. For example, for Stokes numbers smaller
than unity the radial drift velocity of solid particles in the disk
is proportional to the Stokes number, vr ∝ St (Weidenschilling
1977a). Now, if the Stokes number is modified due to a change
of δ then also the radial drift of the dust is significantly affected.
The Stokes number also determines relative dust particle ve-
locities in turbulent disks and, hence, dust particle growth time
scales and the maximum dust particle size due to fragmentation.

Figure 20 shows the particle distribution after 1 Myr of disk
evolution for the Models A to F. In these simulations, particle
growth, radial particle motion and destructive collisions are in-
cluded. The initial dust-to-gas ratio is 10−2 and the α-value is
10−3. The ψ-parameter is chosen to be 2 and the cratering pa-
rameter χ = 0.5. This figure shows that particles can grow to
much larger sizes in model A than in model B in the inner parts
of the disk. This is due to higher gas densities in the MMSN
model which alter the Stokes number and shift the whole par-
ticle growth problem towards larger particle radii. At 1 AU, the
gas density in model A is a factor of ∼15 higher than in model B.
The dominant particle size before fragmentation inhibits further
particle growth is 3 mm in model A and 0.2 mm in model B.
This dominant particle size difference from one model to the
other nicely mirrors the gas density difference between the two
models. Hence, we find that the dominant particle size is directly
proportional to the gas density.

Model C is the same as the model in our paper (B), but now
with 10% disk mass instead of 1% compared to M⋆. Figure 20

Fig. 20. The particle distribution in the disk after 1 Myr for the disk
models A to F as discussed in Sect. 3.3.5. The Models A and B cor-
respond to the MMSN model and the model adopted in this paper, re-
spectively. Model C is as the model in this paper but now with 10% disk
mass. The Model D to F on the right side have a slighly steeper radial
temperature dependency.

shows that the dominant particle radius due to destructive col-
lisions is shifted by a factor of 10 towards larger particle sizes.
According to these results, particles can grow to a few millimeter
in size in high mass disks before particle fragmentation prevents
further growth. However, even in these very high mass disks,
particles can not overcome the fragmentation barrier. Since the
whole coagulation/fragmentation process scales with gas den-
sity, higher disk masses do not provide a solution for planetesi-
mal formation. The entire particle growth problem is only shifted
towards larger particle radii.

The right column shows the results of the three simula-
tions A-C if the radial temperature dependency follows T ∝
r−0.62 corresponding to the observational median. We do not find
a significant difference in the maximum particle size between
these two model sets.

We also calculate the mass of the dust disk which is shown
in Fig. 21. This plot shows that the remaining dust mass after
1 Myr of disk evolution is smaller in the MMSN model than in
the model adopted in this paper. This is due to the fact that the
maximum radial drift velocity is proportional to the power law
index δ of the surface density profile (cf. Eq. (18)). Since the pa-
rameter δ is larger in the MMSN model than in our model, the
maximum radial drift speed is also larger. A higher drift speed
leads to shorter drift time scales and, hence, reduces the remain-
ing amount of dust after a certain time.

In the disk models D-F, the temperature is generally smaller
than in the models A-C. Therefore, the radial drift velocity is
also smaller since vn ∝ T . Hence, the disk dust mass in the
model A-C after a certain time is generally smaller than in the
models D-F. Finally, we find that less than 6% of the initial dust
mass is left after 1 Myr of disk evolution in any disk model
considered.
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Fig. 21. The mass of the dust disk as a function of time for the 6 different
disk models A to F as discussed in Sect. 3.3.5. The models with 1% disk
mass are normalised to unity. The disk models with 10% disk mass are
normalised a factor of 10 larger.

Fig. 22. The effect of cratering on the equilibrium particle distribution as
discussed in Sect. 3.3.6. Shown is the surface density of solid particles
at 1 AU in the disk after 104 yrs of disk evolution for different cratering-
parameters χ. In this simulation, the fragmentation velocity is 20 m/s,
ǫ = 0.03, α = 10−5 and ψ = 2.

3.3.6. Effect of cratering

If a smaller particle of mass ms collides with a larger body at a
sufficiently high velocity then the smaller particle does not only
fragment due to this destructive collision but it can also exca-
vate a certain amount of matter mc from the larger body, i.e.
mc = χms. This effect is called cratering. In the following we in-
vestigate if this process has an effect on the equilibrium particle
distribution between particle coagulation and particle fragmen-
tation.

Figure 22 shows the equilibrium particle distribution at 1 AU
in the disk after 104 yrs of disk evolution for different cratering-
parameters χ. The fragmentation velocity is 20 m/s, ǫ = 0.03,
α = 10−5 and ψ = 2.

This plot shows that the equilibrium distribution is hardly
affected whether the effect of cratering is included in the simula-
tions or not. Changing the χ-value from 0 (no cratering) to 1
(the projectile particle excavates a crater corresponding to its
own mass) changes the surface density for 50 µm-sized dust
grains by a factor of 1.3 at most. The maximum peak of the
surface density is shifted from 9 mm to 6 mm by including cra-
tering. We also investigated the effect of cratering for different

fragmentation velocities. In any case we found that cratering
does not significantly affect the particle distribution. This shows
that the main destruction by fragmentation is due to collisions
between particles of not large mass ratio.

For laboratory experiments which investigate the collision
of particles for astronomical purposes it is interesting to know
which particles collide with which particles in the equilib-
rium solution discussed in Sect. 3.3.1. For this reason, we
calculate collision rates between dust particles in the disk in
Appendix E and we show which collisions are most important
for growth/fragmentation.

4. Discussion and conclusions

In this paper we study the evolution of the dust in a protoplan-
etary disk. We expanded on the work done by Dullemond &
Dominik (2005) by adding an improved treatment of dust ag-
gregate fragmentation and by including the self-consistent radial
drift and mixing of dust aggregates. In addition to this, our inte-
gration method is faster by orders of magnitude than the original
work by Dullemond & Dominik, by virtue of two new methods.
The first of these is the integration of the equations in vertical di-
rection without deleting the vertical structure information, which
can be done because the vertical sedimentation-mixing equilib-
rium is assumed to be known at all times. Secondly, we integrate
the coagulation-fragmentation in time using implicit integration,
allowing us to overcome the extreme time scale stiffness that pre-
vented Dullemond & Dominik from performing full scale mod-
els including fragmentation over time scales of millions of years.

Using these models we are able to study the problem of the
radial drift and fragmentation barriers in full detail. Our models
show that, consistent with current beliefs, the combination of ra-
dial drift and fragmentation is a strong limitation to growth of
aggregates in disks. Typically, aggregates cannot grow to sizes
larger than millimeters throughout the disk if threshold frag-
mentation velocities up to several m/s are considered, though
the precise maximum size is disk model dependent. This state-
ment holds regardless of the amount of turbulence in the disk.
For highly turbulent disks, it is the turbulence-induced relative
velocities that cause the damage to aggregates, while for nearly
non-turbulent disks it is the differential radial drift that limits
the growth. Only if we set the fragmentation threshold veloc-
ity to the unlikely value of 30 m/s or larger do we find that the
fragmentation barrier can be broken and particles grow to larger
sizes. Whether this high fragmentation threshold is realistic re-
mains to be verified by high-speed laboratory collision experi-
ments. It has been tentatively shown that high-speed impacts of
a small projectile on a large target may result in growth (Wurm
et al. 2005), but further study in this direction is imperative.

We have also investigated what happens when, for some rea-
son, no fragmentation occurs. We then find that even in this re-
duced model, the particle radius never exceeded several centime-
ters at any time at any radius in the disk because of radial particle
motion. However, we demonstrated that this radial drift barrier
problem is very sensitive to slight changes in the initial dust-
to-gas ratio. If slighly higher initial dust-to-gas ratios than the
canonical value of 1% are adopted in the simulations, then par-
ticles can grow to very large sizes in the inner parts of the disk.

We do not include non-linear feedback of the dust back onto
the gas in our model. It has been recently shown by Johansen
et al. (2007) that such feedback can lead to the rapid forma-
tion of gravitationally bound clumps of dust which subsequently
form Ceres-size bodies. The “dust” particles, however, must be
large (Stokes number near unity) before this scenario can take



876 F. Brauer et al.: Coagulation and fragmentation of grains

place. We find that for low-turbulent disks Stokes numbers larger
than 0.1 can be reached, but we need further investigation if the
amount of dust present in these large grains is sufficient to trig-
ger such a gravitational collapse in locally overdense regions in
the midplane of the disk.

In the full model, most of the solid material has drifted into
the evaporation zone after 1 Myr and the remnant disk contains
less than 5% of the initial dust mass. However, there are reasons
to believe that the strong radial drift of particles in such disks
may be reduced by non-linear hydrodynamic effects. Tentative
results from Johansen et al. (2006) find a reduction by a factor
of 3 in MRI turbulence. Moreover, Brauer et al. (2007) show that
observations of millimeter grains in the outer regions of proto-
planetary disks indicate that the standard radial drift formulae
are inconsistent with the observations. Hence, it may be impor-
tant to investigate what happens to our model if radial drift ve-
locities are reduced by some factor. This will be the topic of a
future paper.

The dynamic calculations of Barge & Sommeria (1995) and
Klahr & Henning (1997) also suggest that particle trapping in
pressure maxima could be a solution also to the relative velocity
fragmentation barrier. We intend, in future work, to study how
the dust evolves if such pressure maxima are present.

By being able to model the dust evolution in a self-consistent
way, our code may act as a basis upon wich further modeling of
disks is done. For example, models of chemistry in disks are
very dependent on the total surface area of dust grains per unit
volume, in particular when grain surface chemistry is taken into
account (Aikawa & Herbst 1999; Semenov et al. 2006). Models
of MRI turbulence in disks depend strongly on the abundance
of free electrons. This abundance is also very dependent on the
total surface area of dust (Ilgner & Nelson 2006) and our model
could – possibly with an ad-hoc reduction factor for the drift
speed – provide new insight in this kind of modeling.

Our disk model involves a constant threshold fragmentation
velocity which can be put into question. Laboratory experiments
show that this threshold velocity is dependent on particle size
(Blum & Muench 1993; Paraskov et al. 2007) and we indeed
work on that topic to investigate if more realistic aggregate col-
lision models predict a different disk evolution (Brauer et al.
in prep.).

Finally, current state-of-the-art models of disk structure and
their spectra and images relies on ad-hoc prescriptions of the
dust spatial and size distribution. Models of the kind described
here will be linked to radiative transfer calculations to investigate
the effect of grain evolution on disk structure in the near future.
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Appendix A: Coagulation algorithms

A.1. Podolak algorithm

In this section we present an algorithm that was first used be Kovetz & Olund (1969) in meteorological science. This algorithm
conserves mass and particle number density. It captivates by its simplicity and it is comparatively easy to implement into a computer
code.

Let us assume a mass grid mi and a given spatial number density Ni of the particles with mass mi. Two particles of mass mi

and m j coagulate with a coagulation rate Qi j, i.e. the number of coagulation events per time, which is given by

Qi j = NiN jKi j. (A.1)

The quantity Ki j denotes the coagulation kernel of the particles in the mass bins i and j. It is given by the product of the collisional
cross section σi j between the particles and their relative velocity vi j. High values of this kernel correspond to high collision rates
which means that the particles are subject to a fast growth process. Low values of this quantity imply slow growth rates.

Now, an important issue appears if non-linear mass grids are considered. The resulting mass of the coagulation, i.e. the mass
m = mi + m j, does not neccessarily match with any of the mass grid points. This means that in general no mass grid point ms can
be found which satisfies ms = mi + m j. Therefore, we have to divide the coagulating mass between the nearest mass grid points in
some sensible way.

We assume that the nearest neighbours are given by mm < m < mn. With a linear ansatz we split the coagulation rate Qi j into a
coagulation rate for the mass mm and a coagulation rate for the mass mn,

Qm = ǫ Qi j and Qn = (1 − ǫ) Qi j. (A.2)

The number density is a conserved quantity in this algorithm since Qm + Qn = Qi j. Much more important than the conservation of
number density is the conservation of mass. We can enforce this fundamental conservation principle by setting

Qmmm + Qnmn = Qi j(mi + m j). (A.3)

The last expression defines the value of ǫ which was a free parameter till now. Inserting Eqs. (A.2) into Eq. (A.3) we find that ǫ can
be written as

ǫ =
mn − (mi + m j)

mn − mm

· (A.4)

One may translate these ǫ parameters for every coagulation process between particles of species i and j into certain coefficients Cijk

so that the coagulation equation can be expressed in the form

Ṅk =
1
2

∑

i j

Qi jCi jk −
∑

i

Qik · (A.5)

The quantity C is then given by

Cmi jk =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ǫ if mk is the largest mass grid point <mi + m j

1 − ǫ if mk is the smallest mass grid point >mi + m j

0 otherwise
.

In general, more than 90% of the elements of the matrix C are zero. Therefore, a lot of computer calculation time can be saved if
only the non-zero elements in the last expression are summed up.

A.2. Modified Podolak algorithm

In simulations for protoplanetary disks, we are interested in particle growth from sub-micrometer in size, i.e. particles that are
part of the interstellar medium, up to several hundred meters. This means that particle masses ranging from 10−12 g to 1012 g are
considered, which corresponds to 24 orders of magnitude in mass.

Now, a major problem appears. Intrinsic computer variables, so-called double precision variables, have an accuracy only up
to 14 digits. Since we are interested in particle growth by more than 20 orders of magnitude, the accuracy needed for coagula-
tion simulations exceeds the accuracy provided by the computer. One solution could be the introduction of quadrupole precision
computer variables but this would slow down the simulation speed significantly. This accuracy issue leads to certain problems for
example the violation of mass conservation or simulation crashes. In order to perform the coagulation simulations anyway we have
to analytically reformulate the Podolak algorithm at certain points of the numerical scheme.

For this purpose we first have to introduce a number ce in the following way. We consider the neighboring mass grid points mk−1
and mk. The number ce is then defined in a way that the inequality

mk−1 + mi < mk (A.6)

holds for any i which satisfies the condition i ≤ k − ce. In general, the value of ce is dependent on the index k.
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Now, we reformulate the algorithm. We formally separate the diagonal elements of Eq. (A.5) from the non-diagonal elements.

Ṅk =
1
2

k
∑

i=1

N2
i CiikKii +

k
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j −
N
∑

j=1

N jNkK jk. (A.7)

In the next step, we consider the second and third summand of the last expression. In the second term we separate the case i = k
which leads to

k−1
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j +

k+1−ce
∑

j=1

NkN jCk jkKk j −
N
∑

j

N jNkK jk. (A.8)

This can be rewritten as

k−1
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j +

k+1−ce
∑

j=1

(

NkN jCk jkKk j − N jNkK jk

)

−
N
∑

j=k+2−ce

N jNkK jk

=

k−1
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j −
k+1−ce
∑

j=1

NkN jKk j

m j

mk+1 − mk

−
N
∑

j=k+2−ce

N jNkK jk

=

k−1
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j +

N
∑

j=1

NkN jKk jD jk, (A.9)

where the matrix D is given by

D jk =

{

− m j

mk+1−mk
if j ≤ k + 1 − ce and

−1 if j > k + 1 − ce.

The new coagulation equation now reads

Ṅk =
1
2

k
∑

i=1

N2
i CiikKii +

k−1
∑

i=1

i−1
∑

j=1

NiN jCi jkKi j +

N
∑

j=1

NkN jKk jD jk. (A.10)

This was one part of rewriting the algorithm. For the other part we regard the second term of the last expression, especially the term
i = k − 1. We can rewrite this term as follows,

k−2
∑

j=1

Nk−1N jCk−1, j,kKk−1, j =

k−ce
∑

j=1

Nk−1N jCk−1, j,kKk−1, j +

k−2
∑

k−ce+1

Nk−1N jCk−1, j,kKk−1, j

=

k−ce
∑

j=1

Nk−1N j

m j

mk − mk−1
Kk−1, j +

k−2
∑

k−ce+1

Nk−1N jCk−1, j,kKk−1, j

=

k−2
∑

j=1

Nk−1N jKk−1, jE jk

=

N
∑

i=1

N
∑

j=1

NiN jKi jE j,i+1θ

(

k − j − 3
2

)

δi,k−1. (A.11)

In this equation the matrix E is given by

E jk =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

m j

mk−mk−1
if j ≤ k − ce and

[

1 − m j+mk−1−mk

mk+1−mk

]

θ
(

mk+1 − m j − mk−1

)

if j > k − ce.

With these two reformulations the coagulation equation can be written in the form

Ṅk =
∑

i j

NiN jKi jMi j, (A.12)

where the final coagulation matrix M is given by

Mi j =
1
2
δi jCi jk +Ci jkΘ

(

k − i − 3
2

)

Θ

(

i − j − 1
2

)

+ δikD ji + δi,k−1E j,i+1Θ

(

k − j − 3
2

)

· (A.13)

In this expression Θ(x) denotes the Heaviside distribution, which is zero for x < 0 and unity for x > 1.
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Appendix B: Vertical integration

Coagulation and fragmentation are local processes. This means that the equations described in the last section have to be solved
at every point in space. The more space grid points are considered the more time-consuming the computer simulations become.
However, under certain conditions the situation simplifies. In the following we will describe a scheme that can save a remarkable
amount of computational time.

We consider the coagulation (fragmentation) equation at a certain space point zp

Ṅk(zp) =
∑

i j

Gi jk(zp)Ni(zp)N j(zp). (B.1)

Since we are interested in particle growth in protostellar disks we can adapt the number densities to this special problem. We assume
that at any given time the vertical particle distribution of any given particle size is given by a settling-mixing equilibrium distribution
(cf. Eq. (15)). This leads to a density Ni of a particle of size ai which depends on the height above the midplane z as

Ni(z) =
ωi√
2πhi

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
1
2

(

z

hi

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

· (B.2)

In this expression the variable hi denotes the dust scale height of the particles with mass mi. The quantity ωi is the surface number
density of the particles with that certain mass. Inserting Eqs. (B.2) into (B.1) and integrating over height above the midplane z yields

ω̇k =
∑

i j

ωiω j

∑

p

Gi jk(zp)

2πhih j

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1
2

(

zp

hi

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−1
2

(

zp

h j

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

∆zp. (B.3)

If we define

G̃i jk =
∑

p

Gi jk(zp)

2πhih j

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
1
2

(

zp

hi

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

exp

⎡

⎢

⎢

⎢

⎢

⎢

⎣

−
1
2

(

zp

h j

)2⎤
⎥

⎥

⎥

⎥

⎥

⎦

∆zp, (B.4)

the integrated coagulation equation can be written as

ω̇k =
∑

i j

ωiω jG̃i jk. (B.5)

In this way we have integrated the z-dimension out without a single approximation only with the assumption that the vertical redis-
tribution goes faster than the coagulation/fragmentation. This reformulation of the coagulation equation has an obvious advantage,
namely instead of solving the coagulation equation at every point in z the last expression enables us to solve the equation for every
height above the midplane at the same time. If we assume a vertical grid with 60 grid points the vertical integration speeds up the
computer simulation routine by a factor of 60.

Appendix C: Implicit differencing

If fragmentation is included in the simulations then the limiting time step for the coagulation/fragmentation process tends to be small.
Fragmentation leads to a permanent amount of small particles. Small particles, however, are associated with short time scales. Taking
these short time scales into account, the time step of the numerical simulation can not be chosen to be very large. This argumentation
only holds for explicit numerical solvers. For this reason we have implemented an implicit solver for the coagulation/fragmentation
equation which we will describe in the following.

The coagulation/fragmentation equation can be written in the form

f̄ = F̄( f̄ ), (C.1)

where f̄ denotes the particle distribution vector on the mass grid and the function F̄ describes the time evolution. In one time step
∆t at a certain time t, we now want to calculate the new particle distribution f̄n = f̄ (t + ∆t) from the old distribution f̄o = f̄ (t).
Therefore we rewrite Eq. (C.1) as

ǭ = ∆tF̄( f̄i), (C.2)

where ǭ = f̄n − f̄o and f̄i = ξ f̄o + (1− ξ) f̄n. The time evolution of the function f̄ with ξ = 1 is called explicit, while the time evolution
with ξ = 0 is usually called implicit. Choosing ξ = 0 in our case, we can perform a Taylor expansion of the right-hand side of
Eq. (C.2) which leads to

ǭ = ∆tF̄( f̄o) + ∆tJ̃ ǭ. (C.3)

The Matrix J̃ denotes the Jacobi matrix which is definded as J̃i j = ∂Fi/∂ f j. Solving Eq. (C.3) for ǭ leads to

ǭ =
[

1 − ∆tJ̃
]−1
∆tF̄( f̄o). (C.4)

Hence, the evolution of the implicit time step reduces to a matrix inversion which can be done easily.
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Fig. D.1. Test for the radial drift routine. Coagulation is neglected in
this simulation. The lines denote the particle position in the disk after
103 yrs of radial drift from the initial radial position r0 = 5.53 AU for
different dust particle sizes.

Appendix D: Tests

This part of the appendix considers a comparison between the
model described in Sect. 2 and a model which involves the fol-
lowing approximation. The particle distributions which can be
seen for example in Fig. 6 are fairly narrow peaks. Hence, it is
suggestive to approximate the particle distribution by a monodis-
perse distribution, i.e. a distribution with only one single particle
size. In this case the coagulation equation simplifies enormously.
We will compare these two different models by considering co-
agulation due to Brownian motion and turbulent coagulation.
Also the routine for radial motion will be checked against this
simplified model.

D.1. Simplified model and numerical setup

We assume that a certain amount of equally-sized dust particles
with radius a is located at a single radius r in the disk. The
surface density of these particle is given by Σd. The dust par-
ticles are vertically distributed according to Eq. (15). For the test
cases we ignore the radial motion of the gas and the radial tur-
bulent diffusion of the dust so that the radial motion of the dust
is given by Eq. (17). The assumption of a monodisperse distri-
bution leads to a coagulation equation given by Eq. (34) (Kornet
et al. 2001). In the test cases we will use a surface density of
the dust Σd = 5.26 × 10−2 g/cm2 and an initial location in the
disk given by r0 = 5.53 AU. Every other parameter was already
mentioned in Sect. 2.

D.2. Radial drift

First, we check the radial drift routine. Any coagulation is ne-
glected. With the values mentioned above we let the dust parti-
cles drift for 103 yrs and plot their radial position in the disk for
different particle sizes. The results of this simulation are shown
in Fig. D.1. In this figure the solid line correponds to the domi-
nant particle size of the dust distribution in the full model. The
dashed line denotes the result of the monodisperse model. Any
discontinuous effects are due to the radial grid.

Fig. D.2. Test for the coagulation routine. This plot shows the particle
distribution in the full model and the monodisperse model for coagula-
tion due to Brownian motion at 4 different times. The stars “⋆” denote
the particle size in the monodisperse model. The largest discrepancy in
particle size between the two models is a factor of 1.6 in particle size a.

Fig. D.3. Test for the coagulation routine. This plot shows the particle
distribution in the full model and the monodisperse model for coagu-
lation due to Brownian motion and turbulence in the disk at 3 differ-
ent times. The stars “⋆” denote the particle size in the monodisperse
model. The largest discrepancy in particle size between the results that
are shown in this figure is a factor of ∼2.7.

D.3. Coagulation

Now, we consider the coagulation of the dust while the radial
motion of the dust is neglected. We investigate the dust particle
coagulation at r0 = 5.53 AU in the disk and we first focus on
coagulation due to Brownian motion. The resul “⋆” denote the
particle size in the monodisperse model. The largest discrepancy
in particle size between the two models is a factor of ∼1.6 after
107 yrs.

The results of the same simulation but now with parti-
cle growth due to turbulent coagulation included are shown in
Fig. D.3. The largest discrepancy in this case in particle size be-
tween the two models is a factor of ∼2.7 in radius for t = 104 yrs.

However, if the Stokes number of the dust particles is smaller
than unity, then the particle size of both models after a certain
time can differ in more than one order of magnitude. This is
due to the following reason. If the Stokes number is smaller
than unity then the relative turbulent velocity of the dust follows
∆v ∝

√
St. With the coagulation Eq. (34) this leads to ȧ ∝ a

and its solution a ∝ exp(t). In the particular case of turbulent
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coagulation and St < 1, the particle size as a function of time
is not given by a polynomial expression, i.e. an expression of
the form a ∝ tγ, but an exponential function. If a time evolution
follows a polynomial law then two different but similar initial
conditions will lead to different but similar particle sizes after
any time. Let us consider the time evolution

a(t) =
[

ct + a
1/γ
0

]γ
. (D.1)

First, the initial particle size a0 gets unimportant for large t.
Second, two different c-parameters, i.e. c1 and c2, will lead to
particle sizes which will differ by a factor of (c1/c2)γ. This fac-
tor is constant and does not increase.

On the other hand, if the particles grow exponentially,

a(t) = a0 exp(ct), (D.2)

then the initial particle size a0 will always play a role. Moreover,
two different c-values, i.e. c1 and c2, will lead to particle sizes
which will differ by a factor of exp(c1t − c2t). This factor in-
creases in time. For example, in the case of turbulent coagula-
tion (cf. Eq. (39)) the parameter c is given by ǫ0Ωk. An initial
dust-to-gas ratio of 1% leads to a = a0e ≈ 2.72a0 after 100 or-
bits. An initial dust-to-gas ratio of 2% after 200 orbits already
implies a = a0e4 ≈ 54.6a0 which is a factor of 20 larger. In the
case of turbulent coagulation and St smaller than unity, small
changes in the intial conditions lead to large differences in the
growth behaviour. Hence, a change from a monodisperse model
to a model with a whole particle dispersion presumably leads to
similar effects.

Appendix E: Collision rates

In this part of the Appendix, we investigate the equilibrium par-
ticle distribution between coagulation and fragmentation after
103 yrs of disk evolution at 1 AU in the disk. In this calculation
the fragmentation velocity is vf = 103 cm/s and the fragmenta-
tion parameter ξ is 1.83. We adopt a disk mass of 10−2 M⋆, a
turbulent α-value of 10−3 and an initial dust-to-gas ratio of 10−2.
The cratering parameter χ = 0.5 and we adopt ψ = 2. We fo-
cus on the collision rates between particles of different sizes and
how important these collisions are for particle growth.

We define the collision rates R(r1, r2) as the number of col-
lisions per second between particles of radius r1 and r2 in a
vertical column with a cross section of 1 cm2. These collision
rates are shown in Fig. E.1. The collision rates for particles of
equal size decrease dramatically with increasing particle radius.
The collision rates of micrometer-sized particles and the col-
lision rates of mm-sized particles differ by more than 10 or-
ders of magnitude. While the collision rate for 1 µm particles
is ∼104...5 cm−2 yrs−1, the collision rate for 10 µm particles is
already more than two orders of magnitude lower. The smallest
particles have the highest collision rates. Since the coagulation
probability for µm particles is rather high, this leads to relatively
short coagulation time scales for small particles. The collision
rate is 1 cm−2 yrs−1 for 102 µm particles. For particles, which
are one order of magnitude in radius larger, this rate has already
dropped to 10−6 cm−2 yrs−1. However, the behaviour of the colli-
sion rates between non-equal sizes particles is different. For ex-
ample, the collision rate between ∼µm-sized dust particles and
larger particles does hardly change over a wide range.

The collision rates, which are shown in Fig. E.1, do not pro-
vide information about the importance of collisions for particle
growth. Not only the number of collisions per time is important
for particle coagulation, but also the mass of the particles itself.

Fig. E.1. This plot shows the vertically integrated number of collisions
per time at 1 AU in the disk as discussed in Sect. E. This calculation is
based on the particle distribution after 103 yrs of disk evolution shown
in Fig. 13. In this simulation we adopted a disk mass of 10−2 M⋆ and a
turbulent α parameter of 10−3.

Fig. E.2. This plot shows the relative mass gain per year at 1 AU in the
disk. This calculation is based on the particle distribution after 103 yrs of
disk evolution. The disk mass is 10−2 M⋆ and the turbulent α parameter
is 10−3.

For this reason, we calculate the relative mass gain of a single
particle with radius r1. If the number of all particles of radius r1
in a vertical column is given by N1, then in average every single
particle of size r1 collides with R(r1, r2)/N1 particles of size r2
per second. We assume that the sticking probability is unity. This
means that the mass, which the particle of radius r1 sweeps up
in time, is given by R(r1, r2)m2/N1. Its relative mass gain rate is
then given by

Ξr1 (r2) =
R(r1, r2)

N1

m2

m1
· (E.1)

This quantity is shown in Fig. E.2. Since larger particles sweep
up smaller particles the mass gain rates Ξ are not shown for par-
ticle sizes r2 > r1.

We find that the collisions which are most important for par-
ticle growth are collisions between equal-sized particles. This
statement holds for particles smaller than ∼0.5 mm in size. If
the particle with radius r1 is larger than this value then colli-
sions with r2 ∼ 0.5 mm sized particles are most important for
the growth of the dust.
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Table E.1. Important variables used in the course of this paper.

Variable Explanation
a radius of the particle
m mass of the particle
ρs solid material density of the particle
r distance to the central star from a point in the midplane
z height above the midplane
T temperature
cs isothermal soundspeed
Ωk, Vk Kepler frequency, Kepler velocity
H = cs/Ωk gas scale height
h dust scale height
Σg, Σd surface density of the gas and the dust
ρg, ρd gas and dust density
ǫ0, ǫ initial and current dust-to-gas ratio
rin inner radius of the disk
rout outer radius of the disk
M⋆ mass of the central star
Mdisk mass of the disk
vn maximum radial drift velocity
α, q turbulence parameters
St Stokes number of the particle
Dg, Dd diffusion coefficients of gas and dust
vdust radial dust drift velocity due to gas drag
vgas radial gas accretion velocity
vtot

dust total radial dust velocity
ξ slope of the particle distribution after fragmentation
χ relative amout of mass removed from the target particle by cratering
vf threshold fragmentation velocity
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