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COALESCENCE IN CRITICAL AND SUBCRITICAL
GALTON–WATSON BRANCHING PROCESSES

K. B. ATHREYA,∗ Iowa State University

Abstract

In a Galton–Watson branching process that is not extinct by the nth generation and has at
least two individuals, pick two individuals at random by simple random sampling without
replacement. Trace their lines of descent back in time till they meet. Call that generation
Xn a pairwise coalescence time. Similarly, let Yn denote the coalescence time for the
whole population of the nth generation conditioned on the event that it is not extinct.
In this paper the distributions of Xn and Yn, and their limit behaviors as n → ∞ are
discussed for both the critical and subcritical cases.
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1. Introduction

Let {pj }j≥0 be a probability distribution on the nonnegative integers N
+ ≡ {0, 1, 2, . . .}.

Let {ξn,i : i ≥ 1, n ≥ 0} be a doubly infinite family of independent random variables with
distribution {pj }j≥0. Let {Zn}n≥0 be a sequence of random variables defined by the stochastic
recurrence relation 1 ≤ Z0 < ∞ nonrandom with values in N

+ and, for n = 0, 1, 2, . . .,

Zn+1 =

⎧⎪⎪⎨
⎪⎪⎩

Zn∑
i=1

ξn,i if Zn > 0,

0 if Zn = 0.

Then the sequence {Zn}n≥0 is called the population size sequence of a Galton–Watson branching
process with offspring distribution {pj }j≥0 and initiated size Z0. (See [2].)

Here Zn is the size of the nth generation and, for any n and i, ξn,i denotes the number of
offspring of the ith individual in the nth generation. If T denotes the full family tree generated,
every individual in T can be identified by a finite string (i0, i1, . . . , in), meaning that this
individual is in the nth generation and is the inth offspring of individual (i0, i1, . . . , in−1) in the
(n − 1)th generation. For any 0 ≤ k < n, individual (i0, i1, . . . , ik) is a common ancestor of
all individuals (i0, i1, . . . , ik, ik+1, . . . , in), where ik+1, ik+2, . . . , in are any positive integers.

The coalescence time of two individuals of any generation is the generation number of their
last common ancestor. Clearly, every ancestor of this common ancestor is also a common
ancestor.

Now, for each n ≥ 1, consider the event An ≡ {Zn ≥ 2}. For a family tree that is in An,
choose two individuals at random from those in the nth generation by simple random sampling
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without replacement. Now trace their lines of descent back in time till they meet at their last
common ancestor. Call the generation of the last common ancestor of those randomly chosen
two individuals a pairwise coalescence time Xn.

Next, for each n ≥ 1, consider the eventBn ≡ {Zn ≥ 1}. For a family tree T inBn, trace the
lines of descent of all the individuals in the nth generation till they meet. Call that generation
number Yn the total coalescence time.

In this paper we determine the limit behavior of the distribution of Xn conditioned on An
and that of Yn conditioned on Bn as n → ∞ in the nonsupercritical cases, i.e. when {pj }j≥0
satisfies the condition 0 < m ≡ ∑∞

j=1 jpj ≤ 1.
The supercritical case, i.e. m > 1, including the explosion case, m = ∞, is treated in [1].

See Remark 2.2 in the next section.

2. Main results

Let {Zn,An, Bn,Xn, Yn, {pj }j≥0,m,T} be as in the introduction.

Theorem 2.1. (Critical case.) Let m ≡ ∑∞
j=1 jpj = 1, p1 < 1, and σ 2 ≡ ∑∞

j=1j
2pj −

1 < ∞. Then the following statements hold.

(i) For 0 < u < 1,

lim
n→∞ P(Xn < nu | Zn ≥ 2) ≡ H(u)

exists and equals 1 − E φ(Nu), where Nu is a positive integer-valued random variable
with a geometric distribution P(Nu = k) = (1 − u)uk−1, k ≥ 1, and, for j ≥ 1,

φ(j) = E

( ∑j
i=1 η

2
i

(
∑j
i=1 ηi)

2

)
,

where {ηi}i≥1 are independent and identically distributed (i.i.d.) exponential random
variables with mean 1.

Furthermore, H(·) is an absolutely continuous cumulative distribution function on
[0, 1] with H(0+) = 0 and H(1−) = 1.

(ii) For 0 < u < 1,

lim
n→∞ P(Yn > nu | Zn ≥ 1) = 1 − u.

Remark 2.1. Theorem 2.1(ii) is a known result proved by Zubkov [6].

Theorem 2.2. (Subcritical case.) Let 0 < m ≡ ∑∞
j=1 jpj < 1. Then the following statements

hold.

(i) For k ≥ 1,

lim
n→∞ P(n−Xn > k | Zn ≥ 2) = E φk(Y )

Eψk(Y )
≡ πk, say,

where

φk(j) = E

( ∑j
i1 �=i2=1 Zk,i1Zk,i2

(
∑j
i=1 Zk,i)(

∑j
i=1 Zk,i − 1)

1
( j∑
i=1

Zk,i ≥ 1

))
,
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ψk(j) = P

( j∑
i=1

Zk,i ≥ 2

)
,

{Zr,i : r ≥ 0}, i = 1, 2, . . . , are i.i.d. copies of a Galton–Watson branching process
{Zr : r ≥ 0} with Z0 = 1 and the given offspring distribution {pj }j≥0, and Y is a
random variable with distribution {bj }j≥1, where bj ≡ limn→∞ P(Zn = j | Zn > 0,
Z0 = 1), which exists (as asserted in Theorem 3.3 below).

Furthermore, if
∑∞
j=1 j log jpj < ∞ then limk↑∞ πk = 0 and, hence, n−Xn condi-

tioned on Zn ≥ 2 converges to a proper distribution on {1, 2, . . .}.
(ii) For k ≥ 1, limn→∞ P(n− Yn > k | Zn ≥ 1) ≡ π̃k exists and equals

E

(
1 − qYk

mk

)
− E

(
YqY−1

k (1 − qk)

mk

)
,

where Y is a random variable with distribution

P(Y = j) = bj = lim
n→∞ P(Zn = j | Zn > 0, Z0 = 1)

and qk = P(Zk = 0 | Z0 = 1).
Furthermore, if

∑∞
j=1 j log jpj < ∞ then

lim
k→∞ π̃k = 0.

That is, n−Yn conditioned on {Zn > 0} converges in distribution as n → ∞ to a proper
distribution on {1, 2, . . .}.

Remark 2.2. Theorem 2.2 provides a sharp contrast to Theorem 2.1. In the subcritical case,
the coalescence timesXn and Yn are close to the present time n, whereas in the critical case they
are both of the order of magnitude n and, hence, could be a long time before the present but also
a long time from the initial ancestor. In the supercritical case with 1 < m ≡ ∑∞

j=1 jpj < ∞,
it was shown in [1] that Xn converges in distribution, i.e. coalescence takes place close to the
ancestor, with the same being true for Yn. Thus, we have a trichotomy based on the value of
the offspring meanm. For 1 < m < ∞, the coalescence is close to the ancestor, i.e. beginning
of the tree. Form = 1, it is of the order n, neither close to the ancestor nor close to the present.
For 0 < m < 1, it is close to the present. Another unexpected result is the following. It turns
out that, when m = ∞ and {pj }j≥0 is in the domain of attraction of a stable law of order
α, 0 < α < 1, the coalescence timeXn is close to the present and, in fact, n−Xn converges in
distribution to a proper distribution (as in the subcritical case). See [1] for details on this case.

Remark 2.3. The referee pointed out that Theorem 2.1 could also be proved using the excursion
representation of the limiting continuum random trees (see [5]). According to the referee,

in the limiting continuum tree conditioned to reach height 1 (which is known to have an
exponentially distributed width at height 1) there is a geometric number Nu of subtrees
whose MRCAs lived before time u < 1 and whose widths at time 1 are constant multiples
of the ηis in Theorem 2.1. Further, the event that two individuals sampled randomly at
time 1 have a ‘coalescence time’ earlier than u is just the event that these individuals do not
belong to the same subtree.
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Remark 2.4. The referee also pointed out that the L logL condition in Theorem 2.2 can be
dropped for the case Z0 = 1 using the results of Geiger [3], and raised the question of whether
Theorem 2.1 can be proved for a random Z0 with just EZ0 < ∞ but without the L logL
condition. The present author hopes to investigate these issues in the near future.

3. Some preliminary results

In this section we collect some well-known results, and present some new results on Galton–
Watson branching processes in the critical and subcritical cases.

Theorem 3.1. (Critical case.) Let m = 1, p1 < 1, and 0 < σ 2 ≡ ∑∞
j=1 j

2pj − 1 < ∞. Let
Z0 = k < ∞. Then, as n → ∞,

(i) nP(Zn > 0) → 2/σ 2;

(ii) P(Zn/n > u | Zn > 0) → e−2u/σ 2
, 0 < u < ∞.

For a proof, see [2, p. 20].
Let {Z(k)j,i : j ≥ 0} be the Galton–Watson branching process initiated by the ith individual in

the kth generation, 1 ≤ i ≤ Zk .

Theorem 3.2. Under the hypothesis and notation of Theorem 3.1, consider the point process

Vn ≡
{
Z
(k)
n−k,i
n− k

: 1 ≤ i ≤ Zk, Z
(k)
n−k,i > 0

}

on the event Bn ≡ {Zn > 0}. Then, as n → ∞, k → ∞, and k/n → u, 0 < u < 1,
conditioned on the eventBn, the point process sequenceVn converges toV ≡ {ηi : 1 ≤ i ≤ Nu},
where {ηi}i≥1 are i.i.d. exponential random variables with mean σ 2/2 and Nu is independent
of {ηi}i≥1 with distribution P(Nu = k) = (1 − u)uk−1, k ≥ 1.

Proof. Let f : R
+ ≡ [0,∞) → R

+ be a bounded continuous function. Let, for n ≥ 1 and
1 ≤ k ≤ n,

Yn,k = exp

(
−s

Zk∑
i=1

f

(
Z
(k)
n−k,i
n− k

)
1(Z(k)n−k,i > 0)

)
.

Then
E(Yn,k 1(Zn > 0) | Zj : j ≤ k)

= E(Yn,k 1(Zk > 0) 1(Zn > 0) | Zk) (by the Markov property)

= E(Yn,k 1(Zk > 0) | Zk)− E(Yn,k 1(Zk > 0) 1(Zn = 0) | Zk)
= (gn−k(s))Zk 1(Zk > 0)− q

Zk
n−k 1(Zk > 0),

where

gj (s) = E

(
exp

(
−sf

(
Zj

j

)
1(Zj > 0)

) ∣∣∣∣ Z0 = 1

)

and

qj = P(Zj = 0 | Z0 = 1), j ≥ 1.

https://doi.org/10.1239/jap/1346955322 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955322


Coalescence in critical and subcritical Galton–Watson branching processes 631

Now,

gj (s) = qj + (1 − qj )E

(
exp

(
−sf

(
Zj

j

)) ∣∣∣∣ Zj > 0, Z0 = 1

)
.

From Theorem 3.1(i), under the hypothesis of Theorem 2.1, as j → ∞,

j (1 − qj ) → 2

σ 2

and
Zj

j

∣∣∣∣ Zj > 0
d−→ an exponential distribution with mean

2

σ 2 .

Clearly,
gj (s) = (1 + (1 − qj )(g̃j (s)− 1)),

where

g̃j (s) = E

(
exp

(
−sf

(
Zj

j

)) ∣∣∣∣ Zj > 0, Z0 = 1

)
.

Since f is bounded and continuous, it follows from Theorem 3.1 that, as j → ∞,

g̃j (s) → 2

σ 2

∫ ∞

0
e−sf (x)e−2x/σ 2

dx ≡ g̃(s), say,

implying that (gj (s))j → e2(g̃(s)−1)/σ 2
.

Now, let n → ∞, k → ∞, and k/n → u, 0 < u < 1. Then

lim
n→∞ E((gn−k(s))Zk 1(Zk > 0) | Zk > 0)

= lim
n→∞ E(((gn−k(s))n−k)(Zk/k)k/(n−k) | Zk > 0)

= 2

σ 2

∫ ∞

0
exp

(
2

σ 2 (g̃(s)− 1)

(
u

1 − u

)
x

)
e−2x/σ 2

dx

= 2/σ 2

(2/σ 2)(1 − (g̃(s)− 1)u/(1 − u))

= 1 − u

1 − ug̃(s)
.

Similarly,
E(qZkn−k | Zk > 0) → 1 − u.

Thus,
E(Yn,k | Zn > 0) = E(E(Yn,k 1(Zn > 0) | Zj : j ≤ k) | Zn > 0)

→ 1 − u

u

(
1

1 − ug̃(s)
− 1

)

= (1 − u)ug̃(s)

u(1 − ug̃(s))

= (1 − u)

∞∑
j=0

uj (g̃(s))j+1

=
∞∑
j=1

(1 − u)uj−1(g̃(s))j .
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This equals E(exp(−s∑Nu
i=1 f (ηi))), where {ηi}i≥1 and Nu are as in the statement of Theo-

rem 3.1. Now, by the continuity theorem for point processes (see [4]), Theorem 3.2 follows.

Theorem 3.3. (Subcritical case.) Let 0 < m ≡ ∑∞
j=1 jpj < 1 and Z0 = 1. Then, for j ≥ 1,

the following statements hold.

(i) limn→∞ P(Zn = j | Zn > 0) ≡ bj exists and
∑∞
j=1 bj = 1. Furthermore, B(s) ≡∑∞

j=1 bj s
j , 0 ≤ s ≤ 1, is the unique solution of the functional equation

B(f (s)) = mB(s)+ (1 − s), 0 ≤ s ≤ 1,

in the class of probability generating functions vanishing at 0.

(ii)
∑∞
j=1 jbj < ∞ if and only if

∑∞
j=1 j log jpj < ∞.

(iii) If
∑∞
j=1 j log jpj < ∞ then

lim
n→∞

P(Zn > 0)

mn
= 1∑∞

j=1 jbj
> 0.

For a proof, see [2, pp. 16, 18, 40].
The next result extends the above to random initial Z0.

Theorem 3.4. Let 0 < m < 1 and Z0 be a random variable such that P(Z0 ≥ 1) = 1 and
EZ0 < ∞. Then,

(i) for j ≥ 1,

lim
n→∞ P(Zn = j | Zn > 0) = bj ,

where {bj }j≥1 is as in Theorem 3.3(i);

(ii) if
∑∞
j=1 j log jpj < ∞, limn→∞ P(Zn > 0)/mn exists in (0,∞) and equals

EZ0/
∑∞
j=1 jbj .

Proof. For 0 ≤ s ≤ 1,

E(sZn | Z0) = (fn(s))
Z0 ,

where fn(s) = E(sZn | Z0 = 1). So,

E(sZn | Zn > 0) = E(sZn 1(Zn > 0))

P(Zn > 0)

= E(sZn)− E(sZn 1(Zn = 0))

P(Zn > 0)

= E(fn(s))Z0 − E(fn(0))Z0

1 − E(fn(0))Z0

= 1 − E(1 − (fn(s))
Z0)

E(1 − (fn(0))Z0)
.

By the monotone convergence theorem,

lim
n→∞ E

(
1 − (fn(s))

Z0

1 − fn(s)

)
= EZ0 for 0 ≤ s < 1.
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Also, by Theorem 3.3(i),

lim
n→∞

fn(s)− fn(0)

1 − fn(0)
= B(s) for 0 ≤ s < 1,

and, hence,

lim
n→∞

1 − fn(s)

1 − fn(0)
= 1 − B(s) for 0 ≤ s < 1.

Since, by hypothesis, 0 < EZ0 < ∞,

lim
n→∞ E(sZn | Zn > 0) = lim

n→∞

(
1 − (1 − B(s))

EZ0

EZ0

)
= B(s),

proving (i).
Next,

P(Zn > 0)

mn
= E(1 − (fn(0))Z0)

mn
= 1 − fn(0)

mn
E

(Z0−1∑
j=0

(fn(0))
j

)
.

By Theorem 3.3(iii), under the hypothesis that
∑∞
j=1 j log jpj < ∞, the first term on the right-

hand side above converges to 1/
∑∞
j=1 jbj , which is positive and finite. By the monotone

convergence theorem, the second term on the right-hand side above converges to EZ0. This
proves (ii).

Corollary 3.1. Let 0 < m < 1 and Z0 be a finite nonrandom integer greater than or equal
to 1. Then, for j ≥ 1,

lim
n→∞ P(Zn = j | Zn > 0) = bj ,

where {bj }j≥1 is as in Theorem 3.3(i).

4. Proofs of the main results

4.1. Proof of Theorem 2.1

(i) The event {Xn < k} for 1 ≤ k ≤ n occurs if and only if the two randomly chosen
individuals from the nth generation come from the (n − k)th generation of the trees initiated
by two distinct individuals of the kth generation. Also, the total number of choices of the two
individuals from the nth generation is Zn(Zn − 1). Thus, for n ≥ 1 and k ≥ 1,

P(Xn < k | Zn ≥ 2) = E

(∑Zk
i1 �=i2=1 Z

(k)
n−k,i1Z

(k)
n−k,i2

Zn(Zn − 1)

∣∣∣∣ Zn ≥ 2

)
.

Since

Zk∑
i1 �=i2=1

Z
(k)
n−k,i1Z

(k)
n−k,i2 =

( Zk∑
i=1

Z
(k)
n−k,i

)2

−
Zk∑
i=1

(Z
(k)
n−k,i)

2,

https://doi.org/10.1239/jap/1346955322 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1346955322


634 K. B. ATHREYA

it suffices to show that, as k → ∞, n → ∞, and k/n → u, 0 < u < 1, the quantity

E

( ∑Zk
i=1(Z

(k)
n−k,i)2

(
∑Zk
i=1 Z

(k)
n−k,i)2

∣∣∣∣ Zn ≥ 2

)

converges to 1 −H(u) defined in (i).
Next, by Theorem 3.1(ii), Zn/n conditioned on Zn > 0 converges in distribution to an

exponential distribution with mean 2/σ 2; thus, it follows that

P(Zn ≥ 2 | Zn > 0) → 1 as n → ∞.

Also, the quantity

∑Zk
i=1(Z

(k)
n−k,i)2

(
∑Zk
i=1 Z

(k)
n−k,i)2

=
∑
i∈Jk (Z

(k)
n−k,i/(n− k))2

(
∑
i∈Jk Z

(k)
n−k,i/(n− k))2

,

where Jk ≡ {i : Z(k)n−k,i > 0}, 0 ≤ k ≤ n, is a continuous functional in the appropriate topology
of point processes on R

+ of the point process Vn conditioned on the event {Zn > 0}. Thus, by
the weak convergence result in Theorem 3.2, as n → ∞, k → ∞, and k/n → u, 0 < u < 1,

E

( ∑
i∈Jk (Z

(k)
n−k,i)2

(
∑
i∈Jk Z

(k)
n−k,i)2

∣∣∣∣ Zn ≥ 2

)
→ E

( ∑Nu
i=1 η

2
i

(
∑Nu
i=1 ηi)

2

)
,

where {ηi}i≥1 andNu are as in Theorem 3.2. This proves the convergence part of Theorem 2.1(i).
Next, since E η2

1 < ∞ and E η1 > 0, by the strong law,

∑j
i=1 η

2
i

(
∑j
i=1 ηi)

2
→ 0 with probability 1 as j → ∞.

Now, by the bounded convergence theorem, φ(j) → 0 as j → ∞. Also, as u ↑ 1, Nu → ∞
in distribution and, thus, H(u) ↑ 1 as u ↑ 1. Since H(u) = 1 − ∑∞

j=1 φ(j)(1 − u)uj−1,
H(·) is an absolutely continuous cumulative distribution function on [0, 1] with H(0+) = 0
and H(1−) = 1. Thus, the proof of Theorem 2.1(i) is complete.

(ii) The event {Yn ≥ k} for 1 ≤ k ≤ n conditioned on {Zn > 0} occurs if and only if all
the Zn individuals of the nth generation come from the (n − k)th generation of a branching
process initiated by exactly one individual of the kth generation, i.e.Z(k)n−k,i = 0 for all but one i,
1 ≤ i ≤ Zk , and Zk > 0. This yields

P(Yn ≥ k | Zn ≥ 1)

= E(Z(k)n−k,i = 0 for all but one i, 1 ≤ i ≤ Zk, and Zk > 0)

P(Zn > 0)

= E(Zkq
Zk−1
n−k (1 − qn−k) | Zk > 0)

P(Zk > 0)

P(Zn > 0)
(where qn = P(Zn > 0 | Z0 = 1))

= E

(
Zk

k
q
Zk−1
n−k

k

n− k
(n− k)(1 − qn−k) | Zk > 0

)
P(Zk > 0)

P(Zn > 0)
.
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Now, as n → ∞, k → ∞ and k/n → u, 0 < u < 1, by Theorem 3.1,

(n− k)(1 − qn−k) → 2

σ 2 , qn−kn−k =
(

1 − (n− k)(1 − qn−k)
n− k

)n−k
→ e−2/σ 2

,

and
Zk − 1

n− k
= Zk − 1

k

k

n− k
,

conditioned on Zk > 0, converges to u/(1 − u) times an exponential random variable with
mean σ 2/2. Also,

P(Zk > 0)

P(Zn > 0)
= k P(Zk > 0)

nP(Zn > 0)

n

k
→ 1

u
.

Thus, as n → ∞,

P(Yn ≥ k | Zn ≥ 1) → 1

u
E

(
σ 2

2
η exp

(
− 2

σ 2

u

1 − u

σ 2

2
η

)
2

σ 2

u

1 − u

)
,

where η is an exponential random variable with mean 1.
The above limit equals

1

1 − u
E

(
η exp

(
−

(
u

1 − u

)
η

))
= 1

1 − u
(1 − u)2 = 1 − u,

since, for any θ > 0,

E(ηe−θη) =
∫ ∞

0
xe−θxe−x dx = 1

(1 + θ)2
.

This proves Theorem 2.1(ii).

4.2. Proof of Theorem 2.2

(i) For 0 ≤ k < n < ∞,

P(n−Xn > k | Zn ≥ 2) = P(Xn < n− k, Zn ≥ 2)

P(Zn ≥ 2)
= an

cn
, say.

Now,

an = E

( ∑Zn−k
i1 �=i2=1 Z

(n−k)
k,i1

Z
(n−k)
k,i2

(
∑Zn−k
i=1 Z

(n−k)
k,i )(

∑Zn−k
i=1 Z

(n−k)
k,i − 1)

1
(Zn−k∑
i=1

Z
(n−k)
k,i ≥ 2

))

= E

( ∑Zn−k
i1 �=i2=1 Z

(n−k)
k,i1

Z
(n−k)
k,i2

(
∑Zn−k
i=1 Z

(n−k)
k,i )(

∑Zn−k
i=1 Z

(n−k)
k,i − 1)

1
(Zn−k∑
i=1

Z
(n−k)
k,i ≥ 2

) ∣∣∣∣ Zn−k > 0

)
P(Zn−k>0)

= E(φk(Zn−k) | Zn−k > 0)P(Zn−k > 0),

where, for j ≥ 1,

φk(j) = E

( ∑j
i1 �=i2=1 Zk,i1Zk,i2

(
∑j
i=1 Zk,i)(

∑j
i=1 Zk,i − 1)

1
( j∑
i=1

Zk,i ≥ 2

))
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and {Zr,i : r ≥ 0}, i = 1, 2, . . . , j , are i.i.d. copies of a Galton–Watson branching process with
Z0 = 1 and offspring distribution {pi}i≥0 satisfying the hypothesis of Theorem 2.2.

Similarly,

cn = E(ψk(Zn−k) | Zn−k > 0)P(Zn−k > 0),

where, for j ≥ 1, ψk(j) = E(1(
∑j
i=1 Zk,i ≥ 2)).

By Theorem 3.4, for any Z0 with EZ0 < ∞, and k < ∞,

Zn−k | Zn−k > 0
d−→ {bj }j≥1 as n → ∞,

where {bj }j≥1 is as in Theorem 3.3(i). Thus, for each fixed k ≥ 1,

P(n−Xn > k | Zn ≥ 2) → E φk(Y )

Eψk(Y )
≡ πk,

where Y is a random variable with distribution P(Y = j) = bj , j ≥ 1.
It remains to show that if

∑∞
j=1 j log jpj < ∞ then limk↑∞ πk = 0.

For 1 ≤ j < ∞,

φk(j) ≤ P(there exist i1, i2, i1 �= i2, 1 ≤ i1, i2 ≤ j, Zk,i1 > 0, Zk,i2 > 0)

≤ 1 − (fk(0))
j − j (fk(0))

j−1(1 − fk(0))

and

ψk(j) = P

( j∑
i=1

Zk,i ≥ 2

)
= P

( j∑
i=1

Zk,i ≥ 2

∣∣∣∣
j∑
i=1

Zk,i ≥ 1

)
P

( j∑
i=1

Zk,i ≥ 1

)
.

So,
E φk(Y ) = E(1 − (fk(0))

Y − Y (fk(0))
Y−1(1 − fk(0)))

and

Eψk(Y ) = E(1 − (fk(0))
Y )P

( Y∑
i=1

Zk,i ≥ 2

∣∣∣∣
Y∑
i=1

Zk,i ≥ 1

)
.

Since
∑∞
j=1 j log jpj < ∞ implies that E Y < ∞, by Theorem 3.4(i),

lim
k

P

( Y∑
i=1

Zk,i ≥ 2

∣∣∣∣
Y∑
i=1

Zk,i ≥ 1

)

exists and equals 1 − b1, 0 < b1 < 1.
Next,

E φk(Y )

Eψk(Y )
≤ E(1 − (fk(0))Y )

E(1 − (fk(0))Y )

(
1 − (1 − fk(0))E(Y (fk(0))Y−1)

E(1 − (fk(0))Y )

)

× 1

P(
∑Y
i=1 Zk,i ≥ 2 | ∑Y

i=1 Zk,i ≥ 1)
.
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By the monotone convergence theorem, as k → ∞,

E(Y (fk(0))
Y−1) → E Y

and

E

(
1 − (fk(0))Y

1 − fk(0)

)
→ E Y.

By Theorem 3.3(ii),
∑∞
j=1 j log jpj < ∞ implies that 0 < E Y < ∞ and this in turn

implies, by Theorem 3.4(i),

lim
k→∞ P

( Y∑
i=1

Zk,i ≥ 2

∣∣∣∣
Y∑
i=1

Zk,i ≥ 1

)
= 1 − b1, 0 < b1 < 1.

Thus,

lim
k→∞

E φk(Y )

Eψk(Y )
≤ 1

1 − b1

(
1 − E Y

E Y

)
= 0,

i.e. limk→∞ πk = 0, completing the proof of Theorem 2.2(ii).
(ii) Clearly,

P(n− Yn > k | Zn ≥ 1) = P(Yn < n− k | Zn ≥ 1) = P((Yn < n− k) ∩ (Zn ≥ 1))

P(Zn ≥ 1)
.

The numerator is

P(there exist i1, i2, i1 �= i2, 1 ≤ i1, i2 ≤ Zn−k � Z(n−k)k,i1
> 0, Z(n−k)k,i2

> 0)

= E(1 − (fk(0))
Zn−k − Zn−k(fk(0))Zn−k−1(1 − fk(0));Zn−k > 0)

= E(1 − (fk(0))
Zn−k − Zn−k(fk(0))Zn−k−1(1 − fk(0)) | Zn−k > 0)P(Zn−k > 0).

For fixed k ≥ 1, the first term above goes to, by Theorem 3.3(i),

E(1 − (fk(0))
Y − Y (fk(0))

Y−1(1 − fk(0))).

Also, by Theorem 3.3(iii), for fixed k ≥ 1,

P(Zn > 0)

P(Zn−k > 0)
→ mk as n → ∞.

Thus, for fixed k ≥ 1,

lim
n→∞ P(n− Yn > k | Zn > 0) = E(1 − (fk(0))Y − Y (fk(0))Y−1(1 − fk(0)))

mk
≡ π̃k.

Now,

π̃k = E(1 − (fk(0))Y )

mk

(
1 − (E Y (fk(0))Y−1)(1 − fk(0))

E(1 − (fk(0))Y )

)
.
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As argued in the proof of (i) above, under the hypothesis that
∑∞
j=1 j log jpj < ∞,

E

(
1 − (fk(0))Y

1 − fk(0)

)
→ 1 < E Y < ∞, E Y (fk(0))

Y−1 → 1 < E Y < ∞.

Also,

E

(
1 − (fk(0))Y

mk

)
= 1 − fk(0)

mk
E

(Y−1∑
j=0

(fk(0))
j

)
,

and, by Theorem 3.3(iii),

lim
k→∞

1 − fk(0)

mk
= 1

E Y
.

Thus, limk→∞ π̃k = 0. This completes the proof of Theorem 2.2(ii).
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