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We have performed numerical simulations of coalescence of binary neutron stars using a 
Newtonian hydrodynamics code including radiation reaction by gravitational waves. In order to 
examine the effect of spin, we start the simulations from two distinct types of the initial conditions. 
In the first case, to see the dependence of results on the initial separation of binary, a Roche solution 
of separation 27 km, each mass ~ 1.5 Mo and each radius ~ 9 km, respectively, is given as the initial 
condition. We found that the evolution sequence and the wave form of gravitational waves are 
essentially the same as those in the previous simulations in which computations are started when two 
neutron stars just contact. In the second case, we include spin of each star with -Q, where Q is 
Keplerian angular velocity of orbital motion, which is required from the conservation of the circula
tion. We found that the wave pattern has high amplitude oscillation after coalescence contrary to 
the former case. This means that it will be possible to determine the spin of coalescing neutron stars 
from the observed wave form of gravitational waves. The maximum amplitude of gravitational 
waves is 3.4 x 10-21 for a hypothetical event at the distance of 10 Mpc. 

§ 1. Introduction 

There are at least three neutron star-neutron star binaries, PSR 1913+ 16, PSR 

2127 + lIC and PSR 1534 + 12 in our galaxy. This suggests that about one percent of 

neutron stars are in the binary system. These binaries will coalesce within 108~3X 

10
9 

yr due to the emission of gravitational waves. The statistical analysis shows that 

the binary coalescence may occur ~ 1 event par year within the distance of ~ 100 

MpC.1),2) Therefore coalescing binary neutron stars is one of the most promising 

sources of gravitational waves. Nakamura and Oohara performed the post

Newtonian three dimensional simulations including the radiation reaction of gravita

tional waves to know the amplitude and the wave form of gravitational waves at 

coalescing events.3H
) They found that the maximum amplitude of gravitational 

waves is ~ 10-
21 

for a hypothetical event at a distance of 50 Mpc. This suggests that 

the sensitivity of LIGO (Laser Interferometric Gravity Wave Observatory) project 

will enable us to know the final phase of the coalescence. 

Calculations by Nakamura and" Oohara were performed for the various initial 

conditions, but we must argue the following two points. One is that while the 

calculations were started when the neutron stars in Roche equilibrium just contact 

each other for saving CPU time, it is not clear whether they keep the equilibrium state 

until coalescence. This is because the equilibria are kept only when the radiation 

loss time scale of gravitational waves is much longer than the period of the orbital 

rotation. However when the neutron stars contact each other, these time scales are 
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1080 M. Shibata, T. Nakamura and K. Oohara 

nearly equal. In the calculations of Nakamura and Oohara, the initial neutron stars 

are rigidly rotating around the center of mass. However as recently suggested by 

Kochanek,7) if there is no or small viscosity in the system, the neutron stars must have 

spin from the conservation of the circulation while their separation decreases due to 

the emission of gravitational waves. Accordingly the initial conditions of Nakamura 

and Oohara is correct only when the viscosity works sufficiently in the system until the 

coalescence. If the sufficient viscosity does not exist in the system, we must consider 

the initial condition in which the neutron stars are spinning. 

There is another kind of interest in coalescence of binary neutron stars. Recent

ly it is proposed that y-ray bursts are produced during or soon after the coalescence 

of the binary neutron stars.8
)-lO) The various mechanism to produce the y-ray bursts 

associated with the evolution of the binary are suggested. Therefore it is required to 

know the feature of the evolution as well as the final coalescence event of the binary 

neutron stars from various initial conditions. As a first step we consider the follow

ing initial conditions in this paper. We use the initial model in which two neutron 

stars are separated each other far enough so that the radiation time scale becomes 

longer than the dynamical time scale. We also use the initial condition in which each 

neutron star has spin angular momentum assuming that the viscosity does not exist 

in the system. 

Contents of the paper are as follows. In § 2 we show the basic equations and the 

initial model we use. In § 3 we show the numerical results. In § 4 we discuss the 

astrophysical implications of our results. 

§ 2_ Basic equations and initial models 

2.1. Basic equations 

The basic equations are the three dimensional hydrodynamics equations with 

a back reaction potential proposed by Blanchet et al. ll) Although we should evaluate 

post-Newtonian terms up to 2.5 PN order/2)in this paper we only include the radiation 

reaction terms. 

The basic equations are as follows: 5
),6) 

p=(r-l)p€ , 

LJ¢=41CGp, 

(2-1) 

(2-2) 

(2-3) 

(2-4) 

(2-5) 

(2-6) 
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Coalescence of Spinning Binary Neutron Stars of Equal Mass 1081 

(2·7) 

(2·8) 

The symmetric trace-free part of the quadrupole moment Dij and its third time 

derivative can be obtained by 

and 

where the notation STF means 

The time derivative of the gravitational potential if; is determined by 

. _ apv k 

L1 rjJ - -4JrG axk . 

We take the units of 

M - M L - GMs -15k .- s, -------;;z--. m , 

We fix the polytropic index r=2. 

2.2. Initial conditions 

T= GAts =5 X 10-6 sec. 
c 

(2·9) 

(2·10) 

(2·11) 

In the previous work by Oohara and Nakamura,5),6) to save CPU time they started 

the simulations when two neutron stars just contact each other. In their initial 

conditions the binary system of two neutron stars is in a Roche equilibrium state with 

rigid rotation around the center of mass. However we should consider two points. 

1) It is not clear whether each neutron star keeps the nearly equilibrium configuration 

until the contact. This is because when the neutron stars touch each other the 

radiation reaction time scale a/a =5c5a4 /(64 G3M2f.L) , where a is the separation of two 

neutron stars, M is the total mass and f.L is the reduced mass of the system, becomes 

nearly equal to the orbital period 2Jr/Q=2JrJ a3 /GM , so that the Roche equilibrium 

state is impossible practically. 2) In the absence of the viscosity, the circulation of 

the system should be conserved. If the neutron stars are assumed to rotate rigidly 

around the center of mass at first, the circulation in the z=constant plane is 2QoS, 

where ~ and S are the initial angular velocity and the area of the cross section of the 

neutron stars, respectively. While the two neutron stars approach each other by 

radiation reaction, the area of the cross section of the neutron stars does not change 

so much, but the angular velocity Q becomes much larger than ~ because Qrxa-3
/
2

• 

Therefore to conserve the circulation, the neutron stars must have spin with the 
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1082 M. Shibata, T. Nakamura and K. Oohara 

angular velocity -Q, i.e., retrograde to the orbital motion.7
) 

To take into account above two points, in this paper we adopt the different initial 

conditions from those in previous papers: 1) We begin all the simulations in this paper 

when the separation of two neutron stars is 18 in our unit (27 km). If the mass of each 

neutron star is assumed to be ~ 1.4 Mr;" the radiation reaction time scale is fifth times 

as large as the dynamical time scale. 2) We calculate not only the models in which 

the neutron stars initially rotate around the center of mass i.e., a Roche solution, but 

also the one in which the neutron stars have spin angular velocity retrograde to the 

orbital motion. In particular we consider the extreme model that there is no viscos

ity in the system, so that the spin angular velocity is -£2, where Q is the Keplerian 

angular velocity of the orbital motion. 

To see the effect of the tidal force in the initial condition, we use both the 

spherical polytropic star model and the Roche equilibrium model as the initial 

condition in the non-spinning model. As for the spherical polytropic star, the equa

tion of state is given by 

(2·12) 

where K=2ro2 G/7r and ro is the radius of spherical stars. Then the density distribu

tion of each star is given by 

M . (7rr) P ='--------'-----4 2 In -- , 
ro r ro 

(2 ·13) 

where r is the distance from the center of each star. 

A Roche equilibrium model is determined by the method given by Oohara and 

Nakamura.5
) It is obtained by solving the following equations: 

(2·14) 

and 

(2 ·15) 

Equation (2·14) is the integrated representation of equation of motion and h=2Kp. 

To determine the solution, we must fix three parameters. We fix the innermost points 

of the stars, the centers of the neutron stars and the density there. Solving the above 

equations by the iteration, we obtain an equilibrium model. In this case, the mass of 

two neutron stars and the orbital angular velocity are determined only from the 

equilibrium model. 

In the case that two neutron stars have spin, we do not know how to determine 

an equilibrium model because this is a similar problem to determine the Dedekind 

configuration. I3
) However as for an axisymmetric rotating star, we can obtain the 

equilibrium configurations. We here consider axisymmetric equilibrium rotating 

stars as the initial condition for each spinning neutron star. This initial condition is 

consistent if the tidal force is much smaller than the self-gravity. An equilibrium 

axisymmetric rotating star is determined by 
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Coalescence of Spinning Binary Neutron Stars of Equal Mass 1083 

and 

_1_~(r2o<P)+_1_~[(1_.i2) o<PJ=47rG 
r2 or or r2 ox ox P , (2 '17) 

where x=cosB. To solve these equations, we must fix three quantities. In the 

absence of viscosity, the circulation should be conserved, so that each neutron star 

should have spin angular velocity the same as the Keplerian angular velocity with 

opposite sign. Hence the angular velocity is fixed contrary to the usual case. We 

also fix the density at the center and the major axis of the star. 

A numerical method to solve the above equations is as follows. 1) We expect the 

trial density configuration and using this we solve the axisymmetric Poisson equation 

(2·17). 2) The constant C and the polytropic constant K are determined by 

<Pc+2Kpc=C, 

<Pe- ~ R/Q2=C, (2·18) 

where <Pc, <Pe, pc and Re are the Newtonian potential at the center, the Newtonian 

potential at the surface of the star in equatorial plane, the density at the center and 

the major axis of the star, respectively. 3) Using Eq. (2'16), we determine the new 

trial density configuration. The procedure of 1), 2) and 3) is repeated until conver

gence. We use an axisymmetric rotating star determined by the above method as 

each neutron star of the binary. As a result, it is found that the virial equilibrium is 

almost satisfied. This means that the solution seems to be almost in a true equilib

rium. 

§ 3. Numerical results 

3.1. Evolution sequence for non-spinning models 

We first show models in the case that the neutron stars rigidly rotate around the 

center of mass. We perform two simulations; one is that the two neutron stars are 

spherical poly tropes, the other is that the two neutron stars are in Roche equilibrium. 

In the former case, we take 121 x 121 x 121 grids. The grid covers [ - 21, 21] in x, y 

and z directions. The mass, the radius of each neutron star and the initial separation 

are set as ml=m2=1.4M0, ro=6 and 10=18, respectively. We assume that the neutron 

stars rigidly rotate around the center of mass with QK=J G(ml + m2)/103. We call 

this Model I (see the Table). 

In the latter case, we take 141x141x131 grids. The grid covers [-31.5,31.5] in 

x and y directions and [0, 32.5] in z direction. The radius of each neutron star at z 

=0 is ro=5.85. The mass and the angular velocity of the orbital rotation are 

determined by solving Eqs. (2·14) and (2'15). They are ml=m2=1.5 M0 and Q=2.06 

x 10-2 in our unit, respectively. The initial separation is the same as in ModelL We 

call this Model II (see the Table). Note that if the system is assumed to be composed 
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1084 M. Shibata, T. Nakamura and K. Oohara 
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Table. Models in numerical simulations. Spin, mass, major axis and orbital angular velocity 

of each neutron star and the grid number of each model in numerical simulation are denoted. 

Model spin Mass Me Major axis 
Orbital Grid number 

Figs. 
frequency (x, y, z) 

I no 1.4x 1.4 9km Keplerian (121, 121, 121) 1, 4 

II no 1.5x 1.5 8.78 km 
Roche model 

(141, 141, 131) 2, 5 (2.06 x 10-2
) 

III yes 1.4X 1.4 9km Keplerian (121, 121, 121) 3, 6 

0.05 0.20 

"d\I\r..r-r-

0.75 0.90 

0.45 

1.05 

-14 -7 o 7 14 

x-axis 

Fig.1. Density contours on x·y plane for ModelL The time in unit of millisecond is indicated. Solid 

lines show the density contours. Outermost line is 1/100 of the maximum density and the inner 

lines are drown by step of a tenth of the maximum density. Arrows indicate the velocity vectors 

of the matter. 
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Coalescence of Spinning Binary Neutron Stars of Equal Mass 1085 

x-axis 
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Fig. 2. Density contours on x·y plane for Model II. The time in unit of millisecond is indicated. 

of the point masses with ml = m2 = 1.5 Mo" the Keplerian angular velocity is QK = 2.26 

X 10-2
• In model EQO of Ref. 5), Q and Q K are respectively 3.3 X 10-2 and 5.5 x 10-2

• 

Therefore the tidal effect in the initial condition of Model II seems to be negligible 

compared with EQO. 

We show the contours of the density and the velocity vectors on the x-y plane for 

Models I and II in Figs. 1 and 2. When two point masses approach by radiation 

reaction, the time required to coalesce becomes 

tc (3·1) 

where ai and af denote, respectively, the initial separation and the final separation of 

the neutron stars. In Models I and II, tc becomes 1.5 and 1.25 msec, respectively, if we 

put ai=18 and af=2ro. In Model II it takes almost the above time for the neutron 
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1086 M. Shibata, T. Nakamura and K. Oohara 

stars to coalesce. However in Model I the neutron stars coalesce at tc;:S 1 < 1.5 msec. 

This seems to be mainly due to the initial condition for Model I, in which we do not 

give the equilibrium state and the tidal force is neglected. Although there is slight 

difference between Models I and II such as the coalescing time, as a whole both models 

have essentially the same evolution sequence; initially the orbit of the neutron stars 

shrinks radiating almost periodic gravitational waves (t;:S 1 msec). After the coales

cence, in the outer region the spiral arms are formed and in the inner region the 

ellipsoidal core is formed (t > 1 msec). Then the spiral arms gradually wind round 

the core by differential rotation and become axially symmetric disk. Since the 

Models I and II have almost the same tendency, the spherical poly trope for each 

neutron star seems to be nearly in equilibrium and the tidal effect does not seem to be 

so' important in our initial conditions. Therefore in spinning model discussed in next 

section, each axially symmetric neutron star seems to be nearly in equilibrium. 

Now let us compare the results in the present paper with the previous calcula

tions. Models I and II should be compared with EQO in Ref. 5). It is found that both 

calculations show essentially the same results as for the evolution. This means that 

if the mass of two neutron stars is equal and the neutron stars do not have spin 

angular momentum, they seculary shrink radiating gravitational waves until the 

coalescence in the Newtonian hydrodynamics. 

3.2. Evolution sequence for spinning model 

Next we argue the model in which each neutron star is spinning. As mentioned 

in § 2, we do not know how to determine an equilibrium model. Hence we set the 

model in which each neutron star is axially symmetric. The mass and the major axis 

of each neutron star are set as ml=m2=1.4 Me and ro=6. We put the angular 

velocity of each star the same as that of the orbital one, QK=/C(ml+m2)/t03
, where 

the initial separation to is the same as in Models I and II. In the numerical calcula

tion, we take the same grid as Model I. We call this Model III (see the Table). 

Comparison of Models I and II strongly suggests Model III is almost in equilibrium 

because tidal force is not so important. 

In Fig. 3 we show the contours of the density and the velocity vectors on the x- y, 

y-z and z-x plane for Model III. Initially the orbital velocity VK is given as 

vII=xQ, 

and the spin velocity Vs is given as 

(x>O) 

(x<O) 

Since VX=VKx+VSx=O in the inertial frame, the velocity vectors point to only 
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x-axis 

(b) 

TIME=0.025 

IT= 1 

RHDMAX=O.0053420 

-14 -7 0 7 14 

z-axis 

TIME=39.994 

IT=1600 

RHDMAX=O.0052125 
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' . , 
.' 

-14 -7 0 7 14 

z-axis 

Fig. 3. (continued) 

y-direction. In Fig. 3(a) we show the initial state in the inertial frame in which the 

neutron stars move only toward the y-direction. Until the coalescence, the evolution 

sequence is almost the same as in Models I and II. However after the coalescence, 

the evolution of the system in Model III is quite different from those in Models I and 
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-14 -7 o 7 

x-axis 

-14 -7 0 7 

x-axis 

14 

(c) 

14 

(d) 

TI ME=79. 984 

IT=3200 

RHOMRX=O.0077137 

-14 -7 o 7 14 

z-axis 

TIME=119.974 

IT=4800 

RHOMRX=O. 0064601 

-14 -7 o 7 14 

z-axis 

Fig. 3. (continued) 

II. In the outer region, there is no spiral arm, so the configuration becomes a nearly 

axially symmetric disk soon. This result seems to be reasonable. Since the velocity 

of the outer region is smaller than in Models I and II due to the spin retrograde to the 

orbital motion for each neutron star, the centrifugal force is weaker than in Models 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/8

8
/6

/1
0
7
9
/1

8
5
5
0
4
9
 b

y
 g

u
e
s
t o

n
 2

1
 A

u
g
u
s
t 2

0
2
2



Coalescence of Spinning Binary Neutron Stars of Equal Mass 1089 

-14 -7 0 7 14 

x-axis 

(e) 

-14 -7 0 7 14 

x-axis 

(f) 

TIME=159.965 

IT=6400 

RHOMRX=O.0063654 

-14 -7 0 7 14 

z-axis 

TIME=199.955 

IT=8000 

RHOMRX=O.0054838 

-14 -7 0 7 14 

z-axis 

Fig. 3. (continued) 

I and II. In the inner region, the neutron stars are gradually coalescing because of the 

enhanced centrifugal force, so that the double core structure is kept for a long time. 

By the radiation reaction, the double cores merge at last. It does not become the 

rotating ellipsoid, but the ring. At t~3 msec, Til wi of the system is 0.143. This 
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-14 -7 0 7 14 

x-axis 

(g) 

-14 -7 0 7 14 

x-axis 

(h) 

TIME=249.943 

IT=10000 

RHOMRX=O.0052884 

-14 -7 0 7 14 

z-axis 

TIME=309.730 

IT=12400 

RHOMRX=O. 0060749 

-14 -7 0 7 14 

z-axis 

Fig. 3. (continued) 

value is slightly larger than that at the secular instability limie4
) (Til wi ~0.14). In 

the model EQ8 of Ref. 5) the ring slowly evolved to a disk, so that it is expected that 

the disk is formed in the subsequent evolution. 
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Fig. 3. Density contours on x·y, y·z and z·x planes for Model III. The non·dimensional time, time 

steps and the non·dimensional maximum density are indicated. Note that 200 in the non· 

dimensional time is equal to Imsec. 
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3.3. Gravitational waves 

In Figs. 4, 5(a) and 6(a) we show the wave forms h+ and hx of gravitational waves 

observed on the z-axis at 10 Mpc in Models I, II and III. They are defined by 

2 .. 
hx=-Dxy. 

r 
(3·2) 

In Figs. 5(b) and 6(b) we also show the luminosity of gravitational waves calculated 

by 

(3·3) 

Since the evolution sequences of Models I and II are essentially the same, the wave 

forms of them are also the same. The wave forms are made of the three part. One 

is the periodic wave part (t:Sl msec). 

The second is the burst part induced by 

the coalescence of the neutron stars (t 

:S1 msec). The third is the damping 

part (t <1 msec). Compared with EQO 

in Ref. 5), the wave forms are essentially 

2.0 

the same. This is reasonable because 0.01--1--\--1---1-11-+-1'01-\---------'1 

the density evolution sequences of three 

models Models I, II and EQO are essen

tially the same. Contrary to Models I 

and II, the wave form of Model III is 

composed of the four part. The first, 

the second and the last part have the 

same tendency as Models I and II. 

However after the coalescence (t 

:S 1 msec), it shows different tendency: 

The high amplitude oscillation continues 

for several times. This difference of the 

wave form also affects the time varia

tion of the luminosity. In Fig. 5(b) the 

peak of luminosity appears at the 

moment of the contact of the neutron 

stars and then the luminosity decrease 

exponentially. On the other hand, in 

Fig.6(b) after the first peak appears, the 

second large peak appears again. This 

is because in Model III the double core 

structure is formed after the coalescence 

and it oscillates before merging. In 

-2.0 

-4.00. 0 0.5 

2.0 

-2.0 

1.0 1.5 2.0 2.5 3.0 

T(msec) 

-4.00 . 0 0.5 1.0 1.5 2.0 2.5 3.0 

T(msec) 

Fig. 4. The wave forms of gravitational waves 

observed on the z-axis at 10 Mpc for ModelL 
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-4.0
0

.
0 0.5 1.0 1.5 2.0 2.5 3.0 -4.00 . 0 0.5 1.0 1.5 2.0 2.5 3.0 

T(msec) T(msec) 

2.0 

0.0 I--I--\--I--l-H---f+l---\-I-\A+\-I-\-A-II 

-2.0 

-4·~.0 0.5 1.0 1.5 2.0 2.5 3.0 -4·%.0 0.5 1.0 1.5 2.0 2.5 3.0 

T(msec) 

(a) 

Log(Flux) 

5 6 . 5 rr;"""'"T"T"'T"T'"TT"I"I'I""T"T"'T"T'"T"f""T"T""lrT""T"'T"T"""''''' 

55.5 

54.5 

·53.5 

52.5 ~L..l...l::-l-:-...L...L.~~~-:-,--,-,:-~u...L~..L..I.....LJ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

T(msec) 

(b) 

Fig. 5. The wave forms and the luminosity of 

gravitational waves for Model II. (a) +mode 

and X mode gravitationaf waves observed on 

the z-axis at 10 Mpc. (b) The luminosity of 

gravitational waves is indicated in cgs unit. 

T(msec) 

(a) 

Log(Flux) 

56.5rrrr~"""'~~~TTTTTTrrrrnrrnn 

55.5 

54.5 

53.5 

52.50•0 0.5 1.0 1.5 2.0 2.5 3.0 

T(msec) 

(b) 

Fig. 6. The wave form and the luminosity of 

gravitational waves for Model III. (a) + mode 

and X mode gravitational waves observed 

on the z-axis at 10 Mpc. (b) The luminosity 

of gravitational waves is indicated in cgs unit. 
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conclusion, the wave forms are considerably different in the case that the effect of the 

conservation of the circulation is included. Inversely if gravitational waves from 

coalescing binary neutron stars are detected, we may know whether each neutron star 

had spin before the coalescence or not. If the spin is not so large, this means that the 

viscosity was very effective before the coalescence. 

§ 4. Discussion 

The maximum amplitude of gravitational waves observed on the z-axis at 10 Mpc 

is 4.0 X 10-21 and 304 X 10-21 for Models II and III. This value is somewhat smaller than 

the results of EQO in Ref. 5) (4.2 X 10-21
). In EQO, the maximum amplitude is recorded 

at the first bounce and oscillation of the coalescence. However in the calculation of 

this paper the maximum amplitudes are recorded when the neutron stars just contact 

each other. This means that if the initial separation of the neutron stars is increased, 

the bounce and the oscillation which occur after the coalescence are suppressed. The 

total energy emitted until the end of the calculations are 0.077 and 0.063 for Models II 

and III and the efficiency of the gravitational wave emission amounts to 2.6 % and 

2.3 % for Models II and III. This is smaller than that of EQO. This also means that 

the bounce and the oscillation are suppressed compared with EQO. It seems that the 

evolution of the binary neutron stars becomes more secular when the initialsepara

tion of the neutron stars increases. 

In Models II and III the initial angular momentum are 6.3 and 5.0 and the final 

angular momentum are 3.6 and 3.1 in our unit. A fraction of the angular momentum 

loss is 43 % and 38 % in Models II and III, respectively. More angular momentum is 

lost, more gravitational waves are emitted, so that our results are reasonable. 

J/M2( =a/M) isOo4 in both Models II and III and total mass of the coalescing objects 

exceed the neutron star mass limit, so the final products are expected to be slowly 

rotating black holes. 

Let us shortly discuss the implication of our results to the r-ray bursts. Some 

authors are suggesting8
),10) that the r-ray bursts are produced in the merging disk 

formed during the binary coalescence. As far as the calculations of this paper are 

concerned, the disk is not formed sufficiently. That is, the radius of the disk is 

smaller than the radius of the last stable circular orbit(5M ~ 14). Therefore if the 

sufficient viscosity does not exist in the system, the disk needed to produce the r-ray 

bursts in their,scenarios does not seem to be formed. However we need to consider 

the following two possibilities. 1) If there is large enough viscosity in the system, the 

thermal pressure produced by the viscosity may blow off the crust of the neutron 

stars9
) and the disk maybe efficiently formed. 2) Lincoln and Will15

) and Kidder et al. 16
) 

showed that there exists the last stable circular orbit for binary neutron stars 

similar to that for a test particle in Schwarzschild space-time. Therefore if we take 

into account the post-Newtonian correction or full effect of general relativity, in the 

final phase of the coaleseence the approaching velocity of binaries is almost the same 

as the orbital velocity, that is, they have almost the plunging orbit. Furthermore in 

the post-Newtonian calculation both radial and angular velocity is much larger than 

those in the Newtonian case.15
) These mean that the coalescence event may be more 
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violent than in the Newtonian case. Thus we need the further probe for this problem. 
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