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Abstract

We investigate the distribution of the coalescence time (most recent common ancestor) for
two individuals picked at random (uniformly) in the current generation of a continuous-
time Bienaymé–Galton–Watson process founded t units of time ago. We also obtain
limiting distributions as t → ∞ in the subcritical case. We extend our results for
two individuals to the joint distribution of coalescence times for any finite number of
individuals sampled in the current generation.
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1. Introduction

Random trees are mathematical objects that play an important role in many areas of
mathematics and other sciences. One of the most celebrated random trees is the Bienaymé–
Galton–Watson (BGW) tree, where the offspring of each vertex of the tree are independent and
identically distributed (i.i.d.) random integers. The BGW tree plays a fundamental role in both
the theory and application of stochastic processes; see, e.g. [1] and [12].

One interesting and important approach to random trees is coalescence. Lambert [7]
investigated the distribution of the coalescence time for two individuals picked at random
(uniformly) in the current generation of a BGW process in the discrete setting. The purpose
of this note is to extend Lambert’s results to the case of the continuous-time BGW process.
The basic idea is the same as that used in Lambert’s paper, but we need some other techniques.
The continuous-time BGW process is started with x individuals at time 0. Its law is denoted
by Px , with P

(t)
x indicating that the current time is time t . If at the current time there are at

least two individuals, we uniformly choose two individuals, without replacement. We then
compute the distribution of their coalescence time T (if at the current time there are less than
two individuals, T is set to ∞). In the subcritical case, the law P

qs, denoting the limit of the
distributions P

(t)
x (· | T < ∞) as t → ∞, does not depend on x and is called the quasistationary

distribution. In Section 3 we specify the law of T under P
qs. In Section 4 we extend our results

to multivariate coalescence when n individuals are sampled at the current time.
We do not recall Lambert’s results in this paper, but refer the reader to [7] for a comparison of

the results in the discrete- and continuous-time cases. We also refer the reader to the interesting
and closely related papers [5], [9], [10], [13], and [14].
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2. Distribution of the coalescence time

Let N be the set of all natural numbers N = {0, 1, 2, . . .}. We consider a continuous-time,
N-valued branching process Z = {Zt , t ≥ 0}, where t denotes time. Such a process is a BGW
process in which to each individual is attached a random vector describing its lifetime and its
number of offspring. We assume that these random vectors are i.i.d. The rate of reproduction
is governed by a finite measure μ on N, satisfying μ(1) = 0. More precisely, each individual
lives for an exponential time with parameter μ(N) and is replaced by a random number of
children according to the probability μ(N)−1μ. Hence, the dynamics of the continuous-time
Markov process Z are entirely characterized by the measure μ. For x ∈ N, denote by Px the
law of Z when Z0 = x.

Proposition 2.1. ([1, Chapter III, p. 106].) The generating function of the process Z is given
by

Ex(s
Zt ) = ψt(s)

x, s ∈ [0, 1], x ∈ N,

where
∂ψt (s)

∂t
= �(ψt(s)), ψ0(s) = s,

and the function � is defined by

�(s) =
∞∑
n=0

(sn − s)μ(n), s ∈ [0, 1].

The continuous-time BGW process Z is called immortal if μ(0) = 0. In this paper we
always assume that μ(0) > 0. Let η := inf{u > 0 : �(u) = 0}. Since �(0) = μ(0) > 0, we
have η > 0. Set

F(t) :=
∫ t

0

du

�(u)
, t < η.

Then the mapping F : (0, η) → (0,∞) is bijective. Let ϕ be its inverse mapping. Moreover,
t �→ ψt(s) is the unique nonnegative solution of the integral equation

v(t)−
∫ t

0
�(v(u)) du = s, s ∈ [0, 1], t ≥ 0,

so that ∫ ψt (s)

s

dv

�(v)
= t, s ∈ [0, 1], s < η, t ≥ 0.

Hence,
ψt(s) = ϕ(t + F(s)), s ∈ [0, 1], s < η, t ≥ 0.

Note that the branching property implies that ψt1+t2 = ψt1 ◦ ψt2 .
Now, assume that the current generation is generation t, t > 0. We consider two individuals,

σ1 and σ2, at the present time, and ask when they coalesce, that is, how much time has elapsed
since their common ancestor was present. In a more rigorous way, for 0 < u ≤ t , denote by
τu(σi) the (unique) parent of σi at time t − u, i = 1, 2. The coalescence time T (σ1, σ2) of
σ1, σ2 is uniquely determined by

T (σ1, σ2) := inf{u : 0 < u ≤ t, τu(σ1) = τu(σ2)},
with the convention inf ∅ = ∞. We denote by T the coalescence time of two individuals
picked at random (uniformly) among the individuals present in the current generation. If the
current generation contains less than two individuals, T is set to ∞.
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With the notation P
(t) indicating that t is the current time, the distribution of T is given in

the following statement.

Theorem 2.1. For any 0 < t1 ≤ t2 ≤ t , y ≥ 1, and y ∈ N,

E
(t)(Zt (Zt − 1)sZt−2, T ≤ t1 | Zt−t2 = y) = yψ ′

t2
(s)ψt2(s)

y−1ψ
′′
t1
(s)

ψ ′
t1
(s)
, s ∈ [0, 1).

The previous probability generating function can be inverted as follows. For any p ≥ 2,

P
(t)(Zt = p, T ∈ dt1 | Zt−t2 = y)

dt1

= y
∑
n≥2

nμ(n)E

(
Z
(1)
t2
(1)Z(2)t1 (n− 1)

p(p − 1)
, Z

(0)
t2
(y − 1)+ Z

(1)
t2
(1)+ Z

(2)
t1
(n− 1) = p

)
,

where Z(0), Z(1), and Z(2) are i.i.d. branching processes distributed as Z, and the notation
Z
(0)
t2
(y − 1) denotes the value taken by Z(0) at time t2 when started at y − 1.

Remark 2.1. When t2 = t1, the above equation can be interpreted as follows. The population
at time t (of size p) is divided into three groups. An individual is marked in generation t − t1
(y possible choices) as a candidate for the common ancestor of two random individuals in
generation t on {T ∈ dt1}. The first group consists of the descendants at the current time of
the y − 1 remaining individuals. On {T ∈ dt1} the marked individual must be immediately
replaced by n, n ≥ 2, offspring. Then an individual is marked among the n possible offspring
of the previously marked ancestor. The descendants of this individual form the second group,
and the descendants of the n−1 remaining individuals form the third group. On {T ∈ dt1}, one
of the two individuals sampled must be in the second group, and the other in the third group.

Proof of Theorem 2.1. To obtain the first equation, we use the same argument as that used
in the proof of Theorem 1 of [7]. The second equation is equivalent to

E
(t)(Zt (Zt − 1)sZt−2, T ∈ dt1 | Zt−t2 = y)

dt1

= y
∑
n≥2

nμ(n)E(Z
(1)
t2
(1)Z(2)t1 (n− 1)sZ

(0)
t2
(y−1)+Z(1)t2 (1)+Z

(2)
t1
(n−1)−2

) (2.1)

for all s ∈ (0, 1). Using the first result of the theorem, the left-hand side of (2.1) equals

yψ ′
t2
(s)ψt2(s)

y−1 ∂

∂t1

(
ψ ′′
t1
(s)

ψ ′
t1
(s)

)
.

From the Proposition 1 we have

∂ψt1(s)

∂t1
= �(ψt1(s)),

∂ψ ′
t1
(s)

∂t1
= �′(ψt1(s))ψ ′

t1
(s),

∂ψ ′′
t1
(s)

∂t1
= �′′(ψt1(s))ψ ′

t1
(s)2 +�′(ψt1(s))ψ ′′

t1
(s),
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so that

∂

∂t1

(
ψ ′′
t1
(s)

ψ ′
t1
(s)

)
= ψ ′

t1
(s)∂ψ ′′

t1
(s)/∂t1 − ψ ′′

t1
(s)∂ψ ′

t1
(s)/∂t1

ψ ′
t1
(s)2

= �′′(ψt1(s))ψ ′
t1
(s).

Then
E
(t)(Zt (Zt − 1)sZt−2, T ∈ dt1 | Zt−t2 = y)

dt1
= yψ ′

t2
(s)ψt2(s)

y−1�′′(ψt1(s))ψ ′
t1
(s)

= yψ ′
t2
(s)ψt2(s)

y−1ψ ′
t1
(s)

∑
n≥2

n(n− 1)μ(n)ψt1(s)
n−2.

Finally, the right-hand side of (2.1) equals

y
∑
n≥2

nμ(n)E(s
Z
(0)
t2
(y−1)

)E(Z
(1)
t2
(1)sZ

(1)
t2
(1)−1

)E(Z
(2)
t1
(n− 1)sZ

(2)
t1
(n−1)−1

)

= y
∑
n≥2

nμ(n)Ey−1(s
Zt2 )E1(Zt2s

Zt2 −1)En−1(Zt1s
Zt1−1)

= y
∑
n≥2

nμ(n)ψt2(s)
y−1ψ ′

t2
(s)(n− 1)ψt1(s)

n−2ψ ′
t1
(s),

completing the proof.

Corollary 2.1. For any 0 < t1 ≤ t ,

P
(t)
x (T ≤ t1) = x

∫ 1

0
ds(1 − s)

ψ ′′
t1
(s)

ψ ′
t1
(s)
ψ ′
t (s)ψt (s)

x−1.

In particular,

P
(t)
x (at least two extant individuals, a random pair has no common ancestor)

= x(x − 1)
∫ 1

0
ds(1 − s)ψ ′

t (s)
2ψt(s)

x−2.

Proof. See the proof of Corollary 1 of [7].

3. Quasistationary distribution

In this section we consider the limiting distribution of the coalescence time when the process
is conditioned on {Zt ≥ 2} and t → ∞. Informally, this limit represents the situation where the
genealogy was founded a long time ago and is still not extinct, with at least two descendants at the
present time. We will need some results on quasistationary distributions for the continuous-time
BGW process, which can be found in [1], [4], and [16]. The reader is referred to [15] and [3] for
more general results on quasistationary distributions respectively obtained for continuous-time
Markov chains and semi-Markov processes. We also refer the reader to [2], [8], and [11] for
results on quasistationary distributions for population processes.

We consider the caseψ ′
1(1) = E1(Z1) < 1 (the subcritical case) when E1(Z1 log(Z1)) < ∞.

According to Theorem 6 of [16], there is a nonnegative sequence (αk, k ≥ 1) summing to 1
such that

lim
t→∞ Px(Zt = j | Zt > 0) = αj for all x ∈ N, j ≥ 1. (3.1)
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The sequence (αk, k ≥ 1) is called the Yaglom limit of the process Z. Define

g(s) =
∑
k≥1

αks
k, s ∈ [0, 1].

Then (3.1) yields

g(s) = lim
t→∞ Ex(s

Zt | Zt > 0) = lim
t→∞

ψt(s)− ψt(0)

1 − ψt(0)
, s ∈ [0, 1].

We have the following result.

Proposition 3.1. In the subcritical case when E1(Z1 log(Z1)) < ∞, we have, for any s ∈
[0, 1],

lim
t→∞ Ex(Zt s

Zt−1 | Zt > 0) = g′(s) ≤ g′(1) < ∞. (3.2)

For a proof of Proposition 3.1, see [1, Chapter IV, p. 170]. Under the more restrictive
hypothesis E1(Z

2
1) < ∞, we use the following two lemmas to give a very elementary and

interesting proof of (3.2).

Lemma 3.1. For t ≥ 0, let εt (s) be the function defined by

1 − ψt(s)

1 − s
= ψ ′

t (1)− εt (s), s ∈ [0, 1). (3.3)

Then εt (s) is monotone decreasing and tends to 0 as s tends to 1.

Proof. The proof follows from the fact that, for each t , ψt(s) is increasing, convex, and
ψt(1) = 1.

Equality (3.3) is equivalent to

1 − ψt(s)

(1 − s)ψ ′
t (1)

= 1 − εt (s)

ψ ′
t (1)

. (3.4)

Replacing s by ψh(s) in (3.4) yields

1 − ψt(ψh(s))

(1 − ψh(s))ψ
′
t (1)

= 1 − εt (ψh(s))

ψ ′
t (1)

≤ 1, t, h > 0.

Note that ψt+h(s) = ψt(ψh(s)) and ψ ′
t+h(1) = ψ ′

t (1)ψ
′
h(1). Therefore,

1 − ψt+h(s)
(1 − s)ψ ′

t+h(1)
= 1 − ψt(ψh(s))

(1 − ψh(s))ψ
′
t (1)

1 − ψh(s)

(1 − s)ψ ′
h(1)

≤ 1 − ψh(s)

(1 − s)ψ ′
h(1)

, t, h > 0.

This implies that the sequence (1 − ψt(s))/((1 − s)ψ ′
t (1)) is monotone decreasing in t and,

thus, converges to a function χ(s). Letting s = 0 we have

χ(0) = lim
t→∞

P1(Zt > 0)

ψ ′
t (1)

≥ 0.

Lemma 3.2. We have χ(0) is positive and for all x ∈ N,

lim
t→∞ Ex(Zt | Zt > 0) = g′(1) = 1

χ(0)
.
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Proof. We will follow the same arguments as used in the proof of Lemma 2 of [6]. Note
that

χ(0) = lim
t→∞

1 − ψt(0)

ψ ′
t (1)

= lim
n→∞,n∈N

1 − ψn(0)

ψ ′
n(1)

= lim
n→∞

n−1∏
k=0

[
1 − ε1(ψk(0))

ψ ′
1(1)

]
.

Hence, it follows that χ(0) > 0 if and only if the series
∑∞
k=0 ε1(ψk(0)) converges. Since

εt (s) ≥ 0, we obtain

1 − ψt(s)

1 − s
≤ ψ ′

t (1), t ≥ 0, s ∈ [0, 1).

Letting s = 0 we obtain

ψt(0) ≥ 1 − ψ ′
t (1), t ≥ 0,

ε1(ψk(0)) ≤ ε1(1 − ψ ′
k(1)), k ≥ 0.

(3.5)

On the other hand, since E1(Z
2
1) < ∞ implies that ψ ′′

1 (1) < ∞, there exists a constant C > 0
such that

ε1(s) < C(1 − s), s ∈ [0, 1). (3.6)

From (3.5) and (3.6), we deduce that the series
∑∞
k=0 ε1(ψk(0)) converges, so χ(0) > 0. This

implies that ψt(0) → 1 as t → ∞. Therefore,

g(ψt (0)) = lim
h→∞

ψt+h(0)− ψh(0)

1 − ψh(0)

= lim
h→∞

−(1 − ψt+h(0))+ (1 − ψh(0))

1 − ψh(0)

= −ψ ′
t+h(1)+ ψ ′

h(1)

ψ ′
h(1)

= −ψ ′
t (1)+ 1.

Thus,

g′(1) = lim
t→∞

g(ψt (0))− 1

ψt(0)− 1
= lim
t→∞

−ψ ′
t (1)

ψt (0)− 1
= 1

χ(0)
.

We have the following theorem, where Z̃ denotes the limiting value of Zt conditioned on
{Zt ≥ 2} as t → ∞.

Theorem 3.1. In the subcritical case when E1(Z1 log(Z1)) < ∞, the quasistationary distri-
bution P

qs of T and Z̃ is defined by

P
qs(Z̃ = p, T ∈ dh) = lim

t→∞ P
(t)
x (Zt = p, T ∈ dh | Zt ≥ 2), p ≥ 2, h > 0.

Then P
qs defines a probability distribution which does not depend on x and satisfies

E
qs(Z̃(Z̃ − 1)sZ̃−2, T ≤ h) = g′(s)

1 − g′(0)
ψ ′′
h (s)

ψ ′
h(s)

.

In particular,

P
qs(T ≤ h) = 1

1 − g′(0)

∫ 1

0
ds(1 − s)

ψ ′′
h (s)

ψ ′
h(s)

g′(s).

Proof. See the proof of Theorem 2 of [7].
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4. Multivariate coalescence

Assume that the current generation contains at least n + 1, n ≥ 1, individuals. We now
present the distribution of the coalescence times when n+1 individuals are sampled uniformly
and independently at the current time t . For k = 1, 2, . . . , n, we denote by Tk the coalescence
time of the first individual and the (k + 1)th individual, and by T ∗

k the kth coalescence time.

Theorem 4.1. For any 0 < t1 < t2 < · · · < tn ≤ t , the joint distribution of coalescence times
Tk is given by

E
(t)
x (Zt (Zt − 1) · · · (Zt − n)sZt−n−1, T1 ∈ dt1, . . . , Tn ∈ dtn)

dt1 · · · dtn

= xψ ′
t (s)ψt (s)

x−1
n∏
i=1

ψ ′
ti
(s)

[ ∑
k≥2

k(k − 1)μ(k)ψti (s)
k−2

]
, s ∈ [0, 1).

Proof. We proceed by induction since the formula holds when n = 1 by Theorem 2.1.
We first condition on {Zt−tn = y}. Applying the second formula of Theorem 2.1 to the last
coalescence time Tn yields

P
(t)(Zt = p, T1 ∈ dt1, . . . , Tn ∈ dtn | Zt−tn = y)

dtn

= y
∑
k≥2

kμ(k)E

(
Z
(1)
tn
(1)Z(2)tn (k − 1) · · · (Z(2)tn (k − 1)− n+ 1)

p(p − 1) · · · (p − n)
,

Z
(0)
tn
(y − 1)+ Z

(1)
tn
(1)+ Z

(2)
tn
(k − 1) = p, Ti ∈ dti , i ≤ n− 1

)
,

where the interpretation is as for n = 1 (see Remark 2.1): y corresponds to the choice of
the common ancestor of all individuals in generation t − tn, k is the number of offspring this
ancestor has instantaneously at time t − Tn and corresponds to the choice of the ancestor of
the last individual within this offspring. The n remaining individuals have to be found in the
descendants of the k − 1 remaining offspring. Then

E
(t)(Zt (Zt − 1) · · · (Zt − n)sZt−n−1, T1 ∈ dt1, . . . , Tn ∈ dtn | Zt−tn = y)

dtn

= y
∑
k≥2

kμ(k)E(Z
(1)
tn
(1)Z(2)tn (k − 1) · · · (Z(2)tn (k − 1)− n+ 1)

× sZ
(0)
tn
(y−1)+Z(1)tn (1)+Z(2)tn (k−1)−n−1, Ti ∈ dti , i ≤ n− 1)

= y
∑
k≥2

kμ(k)E(sZ
(0)
tn
(y−1))E(Z

(1)
tn
(1)sZ

(1)
tn
(1)−1)

× E(Z
(2)
tn
(k − 1) · · · (Z(2)tn (k − 1)− n+ 1)sZ

(2)
tn
(k−1)−n, Ti ∈ dti , i ≤ n− 1)

= yψtn(s)
y−1ψ ′

tn
(s)

∑
k≥2

kμ(k)E(Z
(2)
tn
(k − 1) · · · (Z(2)tn (k − 1)− n+ 1)

× sZ
(2)
tn
(k−1)−n, Ti ∈ dti , i ≤ n− 1).
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By the induction hypothesis, the last expression equals

yψtn(s)
y−1ψ ′

tn
(s)

∑
k≥2

kμ(k)(k − 1)ψ ′
tn
(s)ψtn(s)

k−2

×
n−1∏
i=1

ψ ′
ti
(s)

[∑
j≥2

j (j − 1)μ(j)ψti (s)
j−2

]
dt1 · · · dtn−1

= yψtn(s)
y−1ψ ′

tn
(s)

n∏
i=1

ψ ′
ti
(s)

[∑
k≥2

k(k − 1)μ(k)ψti (s)
k−2

]
dt1 · · · dtn−1.

Hence, the result follows by integrating with respect to the distribution of Zt−tn conditional on
{Z0 = x}.
Theorem 4.2. For any 0 < t1 < t2 < · · · < tn ≤ t , the joint distribution of coalescence times
T ∗
k is given by

E
(t)
x (Zt (Zt − 1) · · · (Zt − n)sZt−n−1, T ∗

1 ∈ dt1, . . . , T ∗
n ∈ dtn)

dt1 · · · dtn

= n! (n+ 1)!
2n

xψ ′
t (s)ψt (s)

x−1
n∏
i=1

ψ ′
ti
(s)

[ ∑
k≥2

k(k − 1)μ(k)ψti (s)
k−2

]
, s ∈ [0, 1).

Proof. The proof is similar to that of Theorem 4.1. We reason by induction since the formula
holds when n = 1 by Theorem 2.1. We first condition on {Zt−tn = y} and apply the second
formula of Theorem 2.1 to the last coalescence time T ∗

n , giving

P
(t)(Zt = p, T ∗

1 ∈ dt1, . . . , T ∗
n ∈ dtn | Zt−tn = y)

dtn

= 1

2
y

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)

×
∑

1≤j1<···<ji−1≤n−1

E

(
Z
(1)
tn
(1)···(Z(1)tn (1)−i+1)Z(2)tn (k−1)···(Z(2)tn (k−1)−n+i)

p(p−1)···(p−n) ,

Z
(0)
tn
(y − 1)+ Z

(1)
tn
(1)+ Z

(2)
tn
(k − 1) = p,

T ∗
h (i) ∈ dth for h ∈ {j1, . . . , ji−1} and

T ∗
h (n+ 1 − i) ∈ dth for h �∈ {j1, . . . , ji−1}, h ≤ n− 1

)
,

where the interpretation is as follows: y corresponds to the choice of the common ancestor of
all individuals in generation t−tn, k is the number of offspring this ancestor has instantaneously
at time t − T ∗

n and corresponds to the choice of the ancestor of the last i individuals within
this offspring (there are

(
n+1
i

)
possible choices for the last i individuals). The n + 1 − i

remaining individuals have to be found from the descendants of the k− 1 remaining offspring.
For m = 1, . . . , i − 1, Tjm(i) is the mth coalescence time of the last i individuals, and, for
h �∈ {j1, . . . , ji−1}, h ≤ n− 1, T ∗

h (n+ 1 − i) is a coalescence time of the n+ 1 − i remaining

https://doi.org/10.1239/jap/1395771424 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1395771424


Coalescence times for the Bienaymé–Galton–Watson process 217

individuals. Note that we have to divide the expression by 2 because each sample has been
counted twice. We then have

E
(t)(Zt (Zt − 1) · · · (Zt − n)sZt−n−1, T ∗

1 ∈ dt1, . . . , T ∗
n ∈ dtn | Zt−tn = y)

dtn

= 1

2
y

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)

×
∑

1≤j1<···<ji−1≤n−1

E(Z
(1)
tn
(1) · · · (Z(1)tn (1)− i + 1)Z(2)tn (k − 1) · · · (Z(2)tn (k − 1)− n+ i)

× sZ
(0)
tn
(y−1)+Z(1)tn (1)+Z(2)tn (k−1)−n−1,

T ∗
h (i) ∈ dth for h ∈ {j1, . . . , ji−1} and

T ∗
h (n+ 1 − i) ∈ dth for h �∈ {j1, . . . , ji−1}, h ≤ n− 1)

= 1

2
y

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)

×
∑

1≤j1<···<ji−1≤n−1

E(sZ
(0)
tn
(y−1))E(Z

(1)
tn
(1) · · · (Z(1)tn (1)− i + 1)sZ

(1)
tn
(1)−i ,

T ∗
h (i) ∈ dth for h ∈ {j1, . . . , ji−1})

× E(Z
(2)
tn
(k − 1) · · · (Z(2)tn (k − 1)− n+ i)sZ

(2)
tn
(k−1)−n+i−1,

T ∗
h (n+ 1 − i) ∈ dth for h �∈ {j1, . . . , ji−1}, h ≤ n− 1).

By the induction hypothesis, the last expression equals

y

2

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)

×
∑

1≤j1<···<ji−1≤n−1

ψtn(s)
y−1 (i − 1)!i!

2i−1 ψ ′
tn
(s)

×
∏

h∈{j1,...,ji−1}
ψ ′
th
(s)

[∑
j≥2

j (j − 1)μ(j)ψth (s)
j−2

]

× (n− i)! (n− i + 1)!
2n−i

(k − 1)ψ ′
tn
(s)ψtn (s)

k−2

×
∏

1≤h≤n−1, h�∈{j1,...,ji−1}
ψ ′
th
(s)

[∑
j≥2

j (j − 1)μ(j)ψth (s)
j−2

]
dt1 dt2 · · · dtn−1

= y

2

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)

×
∑

1≤j1<···<ji−1≤n−1

(i − 1)! i! (n− i)! (n− i + 1)!
2n−1 ψ ′

tn
(s)ψtn (s)

y−1

× (k − 1)ψ ′
tn
(s)ψtn (s)

k−2

×
n−1∏
h=1

ψ ′
th
(s)

[∑
j≥2

j (j − 1)μ(j)ψth (s)
j−2

]
dt1 dt2 · · · dtn−1
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= y

2

∑
k≥2

kμ(k)

n∑
i=1

(
n+ 1

i

)(
n− 1

i − 1

)
(i − 1)! i! (n− i)! (n− i + 1)!

2n−1 ψ ′
tn
(s)ψtn (s)

y−1

× (k − 1)ψ ′
tn
(s)ψtn (s)

k−2

×
n−1∏
h=1

ψ ′
th
(s)

[∑
j≥2

j (j − 1)μ(j)ψth (s)
j−2

]
dt1 dt2 · · · dtn−1

= n!(n+ 1)!
2n

yψ ′
tn
(s)ψtn (s)

y−1
n∏
h=1

ψ ′
th
(s)

[∑
j≥2

j (j − 1)μ(j)ψth (s)
j−2

]
dt1 dt2 · · · dtn−1.

Hence the result follows by integrating with respect to the distribution of Zt−tn conditional on
{Z0 = x}.
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