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Abstract

We study the genealogical structure of samples from a population for
which any given generation is made up of direct descendents from several
previous generations. These occur in nature when there are seed banks
or egg banks allowing an individual to leave offspring several generations
in the future. We show how this temporal structure in the reproduction
mechanism causes a decrease in the coalescence rate. We also investigate
the effects of age-dependent neutral mutations.

Our main result gives weak convergence of the scaled ancestral process,
with the usual diffusion scaling, to a coalescent process which is equivalent
to a time-changed version of Kingman’s coalescent.
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1 Introduction

Seed banks undoubtedly play an important evolutionary role, as illustrated for
instance by Linanthus parryae, a small desert flower which is abundant in the
Mojave desert during favorable years. In 1960 Epling et al. demonstrated that
large fluctuations in population size were due to the presence of a large seed
bank, seeds as old as 6 years still being able to germinate. With the notable
exception of Templeton and Levin (1979), seed banks (or any equivalent an-
imal storage form such as resting eggs in copepod or water fleas) have received

1



little attention from theoretical population geneticists, though empirical stud-
ies (e.g. Hairston and De Stasio 1988, Levin 1990, Tonsor et al. 1993,
Alvarez-Buylla et al. 1996, McCue and Holtsford 1998, Gomez and
Carvalho 2000) have confirmed their evolutionary importance. Apart from
obviously securing the survival of populations in unstable environments, seed
banks will also slow down the evolutionary rate of some traits by sequestering
a substantial fraction of the gene pool from the influence of microevolutionary
processes in each generation (Hairston and De Stasio 1988) or lead to an
increased accumulation of mutations (Levin 1990).

The joint effects of demographics (seed bank, migration, extinction and re-
colonization), mutation, recombination and selection on genetic variation can
best be studied through coalescent methods (Kingman 1982; Donnelly and
Tavaré 1995). The basic idea of the coalescent is to draw a sample of genes
from a population and trace back their ancestry, focusing on the times in the
past when two or more genes in the sample derive from a common ancestor.
Kingman (1982) showed that, with time properly scaled and large population
size, this backward process is well described for a classical Wright–Fisher model
by a single time-homogeneous Markov chain called the coalescent. Since then
the coalescent has been extended to a wide range of demographic and muta-
tion models (see Donnelly 1999; Donnelly and Tavaré 1995; Möhle 2000;
Nordborg 2001) and has been shown to be surprisingly robust to departures
from the basic Wright–Fisher model. The seed bank can be viewed as a depar-
ture from random mating, since it leads to the separation of individuals into
different classes. Intuitively, in the case of the seed bank, the rate of coalescence
should be slowed down by the structure inherent in the pool of ancestors, as is
the case in a geographically structured population: two lineages will “migrate”
among generations before they meet in the same one and coalescence can occur.

Seed banks might also affect genetic variation through their effect on muta-
tion. In the absence of selection, the genetic variation in the sample will depend
on the rate of coalescence events and on the mutation rate. Aging of seeds leads
to an increase in the mutation rate, most of them probably deleterious (Levin
1990). Hence, two copies of the same ancestral gene might have accumulated
different numbers and types of mutations depending on the time length they
spent in the seed bank.

In the present article we introduce a neutral seed bank model with haploid
Wright–Fisher type dynamics, including constant population size. To aid in
the analysis, we begin by giving an equivalent urn model for the corresponding
genealogical process. Next we investigate the effect of seed banks on the dis-
tribution of coalescence times; i.e., we determine the structure of the limiting
coalescent tree. We then consider the effect of neutral age-dependent muta-
tions. The main result gives weak convergence of the scaled ancestral process
to a time-changed version of Kingman’s coalescent. While it is likely that in
most seed banks older seeds produce mostly deleterious mutations, this paper
does not address non-neutral mutations.
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2 The m-step seed bank model and its coales-
cent

Imagine a population of plants in which each new generation is comprised of
N individuals with proportion bi, i = 1, . . . , m, coming from seeds which were
produced i generations ago. Thus seeds are allowed to “overwinter” for up to
m generations. We consider this as a population of N haploid genes, updated in
discrete time according to modified (neutral) Wright–Fisher dynamics. Each of
the N genes in the new generation is obtained, independently of the others, with
probability bi from a seed that was produced i generations ago, i = 1, . . . , m.
When a seed is thus chosen from a given generation, it is obtained by random
sampling from the appropriate population. So the new generation of N indi-
viduals is formed via multinomial sampling from the previous m generations.
We call this the m−step seedbank model. In the classical Wright–Fisher model,
b1 = 1, so all individuals in a given generation have parents in the previous
generation.

As with the classical Wright–Fisher model, there is an equivalent “back-
wards-looking” formulation of the model. Namely, each individual in a given
generation “chooses” its parent at random from one of the previous m gener-
ations according to the above probabilities, this selection being done indepen-
dently for each individual.

We wish to describe the ancestry of a sample of size n from the current
generation and from this to derive the corresponding coalescent process. To
keep track of the ancestral dynamics (and to make this a Markov chain), we
must view the state of the population through a time window consisting of m
consecutive generations. As we move back in time, we slide the whole window
back, one generation at a time. It is perhaps simplest to formulate this in terms
of a “space-time urn model” in which ancestors are represented by balls. We
begin with some definitions.

A cell is a box consisting of N slots and should be thought of as representing
the N individuals in a given generation. Cells are labeled 0, 1, 2, . . ., to corre-
spond to generation 0 (the current generation), and generations 1, 2, . . . back in
time. An m−window is an ordered collection of m consecutive cells. The kth
m−window consists of cells (k, k + 1, . . . , k + m− 1). See Figure 1.

Figure 1 about here

We are now ready to describe the dynamics of the urn model. Start with
n balls in the 0th m−window (0, 1, . . . , m− 1); these n balls correspond to our
sample. If we are taking the sample from living plants in the current generation,
this would correspond to having all n balls in cell 0. If the sample consists of
some living plants and some seeds from previous generations, then the original
n balls could be spread out over several of the cells. At any rate, we have
some initial configuration of balls in the 0th m−window; we represent this by
the vector (X1(0), X2(0), . . . , Xm(0)), where Xi(0) is the number of balls in cell
number i−1 (i.e., in the ith cell of the window for the initial configuration). Each
ball in a cell will have its own slot since these correspond to distinct individuals
in the corresponding generation. Note that there are initially no balls in cells
m,m + 1, . . ..
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To get the state at the next step (step 1), i.e., the configuration of balls in
the 1st m−window (1, 2, . . . ,m), we start by sliding the original time window
to the right by one cell while holding the balls fixed. Thus all of the balls which
were in cells 1, . . . ,m − 1 at step 0 will remain in those cells (in fact, in the
same slots within those cells), but their relative positions in the new window
have shifted to the left by one cell. This corresponds to the seeds in the sample
all being one season closer to origination. The balls which were in cell 0 (the
original leftmost cell) are no longer in the new window and must be relocated,
representing the selection of ages of the seeds in the next ancestral generation
of the sample. Each of these X1(0) balls is independently moved to one of the
cells 1, . . . , m according to the probabilities b1, . . . , bm, respectively. Whenever a
relocated ball is put into a new cell, the slot within that cell is chosen uniformly
over the N slots in the cell. If a relocated ball lands on an occupied slot in a
cell, the two balls coalesce to one and thus the total number of balls (ancestors)
decreases by one. Note that this coalescing only happens during relocation, and
can be the result of either a relocated ball landing on one of the fixed balls or
two relocated balls landing in the same slot of the same cell. Once all of the
balls in the previous leftmost cell have been relocated, we will be left with some
number of balls AN (1) ≤ n.

Now repeat this procedure to get the states at all successive steps. If the
process has been defined up to step k, and hence we have some configuration
(X1(k), . . . , Xm(k)) with Xi(k) denoting the number of balls in cell i + k − 1
(i.e., the ith cell of the kth m−window), we get the state at step k + 1 by
sliding the window one cell to the right and relocating the X1(k) leftmost balls
to cells in the new window as before. Note that, since the slot within a cell for
each relocated ball is chosen at random over the N slots in that cell, there is
no need to keep track of this information when computing the probabilities of
coalescence events.

Thus the urn model can be described by a discrete-time Markov chain
X(k), k = 0, 1, . . ., where X(k) = (X1(k), . . . , Xm(k)). Let R(k + 1) =
(R1(k + 1), . . . , Rm(k + 1)) give the numbers of relocated balls landing in the
first, second,..., mth cells of the m−window at step k + 1. Then, given X1(k),
this follows a multinomial distribution:

R(k + 1) ∼ Mult (X1(k); b1, . . . , bm).

In particular, the marginal number sent to the ith cell is binomial:

Ri(k + 1) ∼ Bin (X1(k), bi).

We remark that these quantities depend implicitly on the population size N .
Let

AN (k) ≡ X1(k) + · · ·+ Xm(k)

denote the number of balls (or ancestors) at step k for the seed bank model with
population size N . We stop the process when AN (k) reaches 1, corresponding to
the most recent common ancestor of the sample. Clearly, the above urn model
is equivalent to the ancestral process for the m−step seedbank model. We will
refer to the process X(k) as the configuration process. While there are r
ancestors, r = 1, . . . , n, the configuration process moves among the states in
level r:

Sr ≡ {(x1, . . . , xm) : x1 + · · ·+ xm = r}.
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The initial state X(0) is a point in Sn corresponding to the sample of size n.
The configuration process moves among the states in level n for awhile. When a
coalescence occurs on level n, we drop down to level n−1 if only one coalescence
occurs, or down to a lower level if two or more coalescences occur. When the
process reaches a new level, it starts moving around among the states of that
level until another coalescence occurs. This continues until we reach level 1; i.e.,
until a common ancestor of the sample is found. We will show that, as N →∞,
the probability of multiple coalescence events goes to zero rapidly enough that
they do not appear in the coalescent.

Our main result states that the limit of the time-rescaled ancestral process,
AN ([Nt]), as N →∞, is given by Kingman’s n-coalescent run on a slower time
scale.

Theorem 1 Let E = {1, . . . , n}, and let AN (k), k = 0, 1, . . . be the ancestral
process for the m−step seed bank model defined above. Set β1 = 1/E(B), where
E(B) =

∑m
i=1 ibi is the expected value of the seed bank age distribution P (B =

j) = bj. As N → ∞, the process (AN ([Nt]))t≥0 converges weakly in DE [0,∞)
to (A(t))t≥0, where (A(t))t≥0 is the continuous-time Markov chain with state
space E, initial state n, and infinitesimal generator matrix Q = (qij)i,j∈{1,...,n}
defined by

qii = −β2
1

(
i

2

)
, i = 2, . . . , n,

qi,i−1 = β2
1

(
i

2

)
, i = 2, . . . , n,

and qij = 0, otherwise.

(Here, DE [0,∞) is the usual space of right-continuous functions from [0,∞) to
E with left limits; weak convergence is with respect to the Skorohod topology;
cf. Ethier and Kurtz (1986). This is the natural setting for weak convergence
in coalescent theory.)

We will give a derivation of the theorem in this section. To help the reader
see what is really going on, the last part of the derivation will be heuristic.
The more formal details of this part of the proof will be provided in the next
section. We remark that a given cell can accumulate balls at each step during
which it is in the window and not the leftmost cell. The balls in the leftmost
cell of the m−window at step k represents all ancestral lines from the sample
which correspond to birth events k generations in the past. The other balls in
the window correspond to ancestral lines which are in the “seed” phase.

To compute the probabilities of various coalescence events, consider a cell
containing ` “old” balls and suppose r relocated balls land in this cell.

P(no coalescence) = (1− `

N
)(1− ` + 1

N
) · · · (1− ` + r − 1

N
)

= 1− 1
N

(` + (` + 1) + · · ·+ (` + r − 1)) +O(
1

N2
)

= 1− 1
N

(2` + r − 1)
r

2
+O(

1
N2

)

= 1− 1
N

(
`r +

(
r

2

))
+O(

1
N2

).
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Hence

P(≥ 1 coalescence) =
1
N

(
`r +

(
r

2

))
+O(

1
N2

).

Similarly,
P(≥ 2 coalescences) = O(1/N2).

This is true even if the coalescences happen in different cells. Thus, for large
N , we should be able to ignore multiple coalescence events in a cell and in the
whole window, and, for a given cell,

P(exactly one coalescence) =
1
N

(
`r +

(
r

2

))
+O(

1
N2

)

when we send r relocated balls to a cell with ` occupied slots.
Now combine this with the (conditional) multinomial relocation mechanism

to know the appropriate number of balls being relocated to cell i. Given X(k)
and R(k + 1), depending on whether there is zero or one coalescence occuring
in cell i,

Xi(k + 1) =
{

Xi+1(k) + Ri(k + 1), if no coalescence
Xi+1(k) + Ri(k + 1)− 1, if Ri(k + 1) ≥ 1, one coalescence.

The latter event happens with probability

1
N

(
Xi+1(k)Ri(k + 1) +

(
Ri(k + 1)

2

))
+O(

1
N2

).

Note that we have ignored events of probability O(1/N2).
Thus, putting together the action in all the cells, we have transitions from

X(k) to

X(k + 1) =





σX(k) + R(k + 1),
with probability 1− 1

N

∑m
i=1 ai(k) +O(1/N2)

σX(k) + R(k + 1)− ei, with probability 1
N ai(k) +O(1/N2)

“other”, with probability O(1/N2)

where

ai(k) ≡ Xi+1(k)Ri(k + 1) +
(

Ri(k + 1)
2

)
. (1)

Here σ is the shift operator defined by

σ(X1(k), . . . , Xm(k)) ≡ (X2(k), . . . , Xm(k), 0)

and ei is the ith unit vector.

Remark. The above model has some similarities to island models and their
structured coalescents (cf. Wilkinson-Herbots 1998 and Notohara 1990).
If we think of having m islands, the urn model is equivalent to the following.
Start with n individuals. Each generation, the individuals in islands 2, . . . ,m
move lock-step one island to the left (preserving their “slots” on the islands).
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No coalescing happens during this shifting. The individuals who were in island
1 are relocated to the m islands according to the above probabilities. If the
slot they land on is occupied, the two individuals coalesce. Thus we can think
of a migration model in which the simple shifting migrants cannot take part in
coalescing; only the “island 1” migrants are allowed to coalesce.

Put

∆AN (k) = AN (k + 1)−AN (k) = −#(coalescence events in step k).

It follows that

P(∆AN (k) = −1|X(k),R(k + 1)) =
1
N

m−1∑

i=1

Xi+1(k)Ri(k + 1)

+
1
N

m∑

i=1

(
Ri(k + 1)

2

)
+O(

1
N2

).

Hence, computing the expected values of R(k + 1) given X(k),

P(∆AN (k) = −1|X(k)) =
1
N

X1(k)
m−1∑

i=1

Xi+1(k) bi

+
1
N

(
X1(k)

2

) m∑

i=1

b2
i +O(

1
N2

). (2)

Here, when averaging over the values of R(k + 1), we have used the fact that,
given X(k), Ri(k + 1) ∼ Bin(X1(k), bi). Using (2), we see that the coalescence
probabality in state (x1, . . . , xm) ∈ Sr is

P(coalescent event at next step |X = (x1, . . . , xm))

=
1
N

{
x1

m−1∑

i=1

xi+1 bi +
(

x1

2

) m∑

i=1

b2
i

}
+O(

1
N2

). (3)

Next we want to bring in the stationary distribution for the configuration
process and justify its appearance in the N → ∞ limit. It turns out that
the time between coalescent events will be long enough so that, for large N ,
the configuration process will reach an equilibrium on each level before the
coalescence occurs. These equilibrium distributions on the different levels are
studied next.

For a given r ∈ {1, . . . , n}, if we consider the configuration process X(k)
conditioned to be in level r and to experience no coalescences, we get the level-r
configuration process, X(r)(k), k = 1, 2, . . .. This process develops according
to

X
(r)
j (k + 1) = X

(r)
j+1(k) + R

(r)
j (k + 1) (j = 1, . . . ,m), (4)

where X
(r)
m+1(k) = 0 and, conditionally on X

(r)
1 (k),

R(r)(k + 1) = (R(r)
1 (k + 1), . . . , R(r)

m (k + 1)) ∼ Mult(X(r)
1 (k); b1, . . . , bm).
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To get the stationary distribution for the level-r configuration process, we in-
troduce the probabilities

βj =
P(B ≥ j)

E(B)
=

∑m
i=j bi∑m
i=1 ibi

(j = 1, . . . , m).

It is clear that β1 + · · ·+ βm = 1, that βj = β1(bj + · · ·+ bm), and that the βj ’s
satisfy the system of equations

βj = βj+1 + β1bj (j = 1, . . . , m− 1) (5)
βm = β1bm. (6)

An interpretation, borrowed from renewal theory, is that the current age of a
seed picked from a randomly chosen generation would follow the probabilities
βj , thus forming the seed bank equilibrium age distribution.

Lemma 1 The unique stationary distribution for the level-r configuration pro-
cess is given, for each r ∈ {1, . . . , n}, by

X(r)(∞) = (X(r)
1 (∞), . . . , X(r)

m (∞)) ∼ Mult(r; β1, . . . , βm).

Proof. Suppose X(r)(k) ∼ Mult(r; β1, . . . , βm); equivalently it has probability
generating function

E
[
u

X
(r)
1 (k)

1 · · ·uX(r)
m (k)

m

]
= (u1β1 + · · ·+ umβm)r.

Using the recursion (4), we get

E
[
u

X
(r)
1 (k+1)

1 · · ·uX(r)
m (k+1)

m

]
= E

[
u

X
(r)
2 (k)

1 · · ·uX(r)
m (k)

m−1 u
R

(r)
1 (k+1)

1 · · ·uR(r)
m (k+1)

m

]
.

Next, we condition on X
(r)
1 (k), use the relation

E
[
u

R
(r)
1 (k+1)

1 · · ·uR(r)
m (k+1)

m |X(r)
1 (k)

]
= (b1u1 + · · ·+ bmum)X

(r)
1 (k),

and the fact that (X(r)
2 (k), . . . , X(r)

m (k)) and (R(r)
1 (k + 1), . . . , R(r)

m (k + 1)) are
conditionally independent, given X

(r)
1 (k). This yields

E
[
u

X
(r)
1 (k+1)

1 · · ·uX(r)
m (k+1)

m

]

= E
{
E

[
u

X
(r)
2 (k)

1 · · ·uX(r)
m (k)

m−1 |X(r)
1 (k)

]
E

[
u

R
(r)
1 (k+1)

1 · · ·uR(r)
m (k+1)

m |X(r)
1 (k)

]}

= E
[
(b1u1 + · · ·+ bmum)X

(r)
1 (k)u

X
(r)
2 (k)

1 · · ·uX(r)
m (k)

m−1

]

= [β1(b1u1 + · · ·+ bmum) + β2u1 + · · ·+ βmum−1]
r

= (β1u1 + · · ·+ βmum)r,

the last line following from the equations (5) and (6) for the βj ’s. Thus the multi-
nomial distribution Mult(r;β1, . . . , βm) is a stationary distribution for X(r)(·).
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Finally, the fact that this Markov chain is irreducible implies that the stationary
distribution is unique.

Up to now, everything has been rigorous. We finish our derivation of the
theorem with the following heuristic ideas which, while intuitively clear, need
to be justified (cf. next section). First note that transitions occur within level
r (due to “migration”) during each step, whereas coalescence events occur with
probability O(1/N) in a given step (i.e., it takes O(N) steps to get a coa-
lescence). Taking N large, this gives the configuration process time to reach
equilibrium between coalescence events. This should allow us to use the sta-
tionary distribution of the configuration process on each level. In the seedbank
model, the proportion of time in any state of a given level is given by the sta-
tionary distribution at that state, independent of the starting state, because the
process reaches stationarity long before a coalescence occurs. Lemma 1 tells us
that the (long-run) proportion of time spent in state (x1, . . . , xm) ∈ Sr by the
configuration process (while it is on level r) is

r!
x1! · · ·xm!

βx1
1 · · ·βxm

m .

Using standard results on multinomial random variables, if

X = (X1, . . . , Xm) ∼ Mult(r;β1, . . . , βm),

then

E(X1Xi+1) = 2
(

r

2

)
β1βi+1 (i = 1, . . . ,m− 1)

and

E
(

X1

2

)
=

(
r

2

)
β2

1 .

Now the coalescence probability in (3) suggests that, on the coalescent time scale
(speed up time by a factor of N), the coalescence rate while the configuration
process is in state (x1, . . . , xm) should be

ρ(x1, . . . , xm) ≡ x1

m−1∑

i=1

xi+1 bi +
(

x1

2

) m∑

i=1

b2
i . (7)

Weighting these rates by the proportion of time in each state of level r, we see
that the coalescence rate when there are r ancestors should be

E(ρ(X)) = E

[
X1

m−1∑

i=1

biXi+1 +
(

X1

2

) m∑

i=1

b2
i

]

=
m−1∑

i=1

2β1βi+1

(
r

2

)
bi + β2

1

(
r

2

) m∑

i=1

b2
i

= β2
1

(
r

2

) (
2

m−1∑

i=1

βi+1

β1
bi +

m∑

i=1

b2
i

)

= β2
1

(
r

2

)
, (8)
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as

2
m−1∑

i=1

βi+1

β1
bi +

m∑

i=1

b2
i = 2

m−1∑

i=1

(bi+1 + · · ·+ bm)bi +
m∑

i=1

b2
i

= 2
∑

1≤i<j≤m

bibj +
m∑

i=1

b2
i

= (b1 + · · ·+ bm)2 = 1.

Thus, the seedbank coalescent should be the usual coalescent run on a slower
time scale. Note that if m = 1 (i.e., no seed bank), we would have β1 = 1 and
hence this reduces to the usual coalescence rate.

3 Proof of the Theorem.

We now justify the heuristic part of the derivation in the previous section and,
in addition, include the ingredients necessary for a rigorous proof of weak con-
vergence. Since we want convergence to a relatively simple type of process
(continuous-time pure death process), weak convergence will follow from Theo-
rem 2.12 on p. 173 of Ethier and Kurtz (1986) if we can show convergence of
1-dimensional distributions. In their theorem we let

1. E = {1, ..., n} be the “ancestor space,”

2. EN = S for all finite N, where S = S1 ∪ · · · ∪ Sn is configuration space,

3. ηN : S → E defined by ηN (x) = |x| = x1 + · · ·+ xm for any configuration
x = (x1, ..., xm). (I.e., ηN is just the projection which maps a configuration
onto the number of ancestors in that configuration.)

4. XN (k), k = 0, 1, ... is the discrete-time configuration process (when popu-
lation size is N),

5. AN ([Nt]) = ηN (XN ([Nt])) = |XN ([Nt])| is the number of ancestors in
the speeded up configuration process.

Order the states in S so that level 1 states occur first,..., level n states occur
last, the ordering of states within a level being arbitrary but fixed. With this
ordering, let ΠN = (ΠN (x, y))x,y∈S be the 1-step transition probability matrix
for the configuration process XN (k) when the population size is N . Finally, set
T (t)f(i) = Eif(A(t)), where A(t) is the coalescent process described in Theorem
1, and the superscript i on the expectation refers to the initial state.

According to the theorem of Ethier and Kurtz, to show weak convergence
of AN ([N ·]) to A(·), it is enough to show that, for each function f : E → R and
each configuration x,

∣∣∣∣∣∣
∑

y∈S

Π[Nt]
N (x, y)f(|y|)− T (t)f(|x|)

∣∣∣∣∣∣
→ 0, as N →∞.
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Here, Πk
N (x, y) is the (x, y) term in the kth power Πk

N of the transition matrix
for the configuration process.

In the above limit, for any i ∈ {1, . . . , n},

T (t)f(i) =
n∑

j=1

f(j)
∞∑

k=0

tk

k!
q
(k)
ij ,

where Q = (qij) is the n × n generator matrix for the desired coalescent (cf.
Theorem 1) and q

(k)
ij is the (i, j) element of Qk. Also

∑

y∈S

Π[Nt]
N (x, y)f(|y|) =

n∑

j=1

f(j)
∑

y∈Sj

Π[Nt]
N (x, y).

The function f in both equations maps {1, ..., n} → R. Since the first sum
involves only a finite number of terms, it is enough to prove for each i ∈ {1, ..., n}
and x ∈ Si, and each j ∈ {1, ..., n} that

∣∣∣∣∣∣
∑

y∈Sj

Π[Nt]
N (x, y)−

∞∑

k=0

tk

k!
q
(k)
ij

∣∣∣∣∣∣
→ 0, as N →∞. (9)

The second sum is just the (i, j) element of the matrix etQ.

Remark. To assist the reader in the matrix calculations, we will use the fol-
lowing notational convention. When a matrix C corresponds to transitions in
configuration space S, we write C(x, y) for the (x, y) element (with the afore-
mentioned ordering of states). When a matrix D corresponds to transitions in
the “collapsed space” E = {1, ..., n}, we write di,j for the (i, j) element. Finally,
the notation Ci,j(x, y) will represent the (x, y) element of the sub-matrix Ci,j in
a larger block matrix. As a general rule, we will use boldface letters to denote
the large matrices corresponding to the full set of states in S; the submatrices
making up these larger matrices will be in regular type.

The proof of (9) will be based on a result of Möhle (1998) which will help us
handle the asymptotics of Π[Nt]

N as N →∞. We begin by using the calculations
of the previous section to write

ΠN = A +
1
N

B +O(
1

N2
) (10)

where

A =




A11 0 0 · · · 0 0
0 A22 0 · · · 0 0
. . . · · · . .

. . .
. . . . .

0 0 0 · · · An−1,n−1 0
0 0 0 · · · 0 An,n




,
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and

B =




−B11 0 0 · · · 0 0 0
B21 −B22 0 · · · 0 0 0
0 . . · · · . . .

. . .
. . . . . .

0 0 0 · · · Bn−1,n−2 −Bn−1,n−1 0
0 0 0 · · · 0 Bn,n−1 −Bn,n




.

Here, Ai,i is the 1-step transition matrix for the level-i configuration process
(i.e., ignoring coalescence events) and the Bi,j ’s are matrices that come about
due to single coalescence events.

Since the size of level k is

dk ≡ |Sk| =
(

k + m− 1
m− 1

)
,

Ak,k must be a dk×dk matrix, Bk,k must be a dk×dk matrix, and Bk,k−1 must
be a dk × dk−1 matrix. The overall matrix ΠN is d× d, where

d ≡ |S| =
n∑

k=1

(
k + m− 1

m− 1

)
=

(
m + n

m

)
− 1

is the size of the configuration space. In the above matrices, each 0 denotes a
zero matrix (of the appropriate size).

Now Lemma 1 of Möhle (1998) implies

lim
N→∞

Π[Nt]
N = lim

N→∞

(
A +

1
N

B +O(
1

N2
)
)[Nt]

= P− I + etG, (11)

where P is the projection matrix P ≡ limk→∞Ak, I is the d×d identity matrix,
and G ≡ PBP.

We know from Lemma 1 that the rows of the resulting block matrices
Pi,i = limk→∞Ak

i,i are all the same and, moreover, that these rows are given
by the probabilities for a Mult(i; β1, . . . , βm) distribution. More specifically, if
y(1), y(2), . . . , y(di) are the ordered elements of Si, then each row of Pi,i is given
by the vector

Mi ≡
(
Mi(y(1)), Mi(y(2)), . . . , Mi(y(di))

)
(12)

where, for y = (y1, y2, . . . , ym) ∈ Si, we define the multinomial probability

Mi(y) ≡ i!
y1! · · · ym!

βy1
1 · · ·βym

m .

Note that, in this notation, (8) becomes

∑

y∈Si

Mi(y)ρ(y) = β2
1

(
i

2

)
. (13)

If x ∈ Si, then the corresponding row in the matrix B has non-zero elements
only within the sub-matrix Bi,i−1, whose columns correspond to configurations

12



y ∈ Si−1, or within Bi,i, whose columns correspond to configurations y ∈ Si.
By listing all possible coalescence events starting from a configuration x ∈ Si, it
follows that each rowsum in Bi,i−1 adds up to the quantity ρ(x) defined in (7):

∑

y∈Si−1

Bi,i−1(x, y) = ρ(x). (14)

The nonzero columns of Bi,i and Bi,i−1 consist of the same vectors, even though
they are not typically in the same locations within these matrices. Hence

∑

y∈Si

Bi,i(x, y) = ρ(x). (15)

If these steps are not clear, the reader is urged to work through a simple example
(say with m = 2 and n = 2) to see how the matrices break down.

Note that

G =




−G11 0 0 · · · 0 0
G21 −G22 0 · · · 0 0
0 . . · · · . .

. .
. . . . . .

0 0 · · · Gn−1,n−2 −Gn−1,n−1 0
0 0 · · · 0 Gn,n−1 −Gn,n




,

where

Gi,i = Pi,iBi,iPi,i

Gi,i−1 = Pi,iBi,i−1Pi−1,i−1.

These matrices simplify because of the particular structure of the factors.
Since all rows in Pi,i are equal and given by Mi in (12), we obtain for

x, y ∈ Si,

Gi,i(x, y) =
∑

u∈Si

∑

v∈Si

Pi,i(x, u)Bi,i(u, v)Pi,i(v, y)

= Mi(y)
∑

u∈Si

Pi,i(x, u)ρ(u)

= β2
1

(
i

2

)
Mi(y),

where we have used (15) and (13). Since Pi,i(x, y) = Mi(y) for all x ∈ Si, we
conclude that

Gi,i = ci Pi,i, where ci ≡ β2
1

(
i

2

)
. (16)

Similarly,
Gi,i−1 = ci P̃i,i−1, (17)

where P̃i,i−1 is the di×di−1 matrix with identical rows given by the probability
vector Mi−1 appearing in Pi−1,i−1.

Notation. Write (Gk)i,j for the (i, j) block in the matrix Gk and Gk
i,j for the

matrix Gi,j raised to the power k.
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The matrix powers Gk are lower triangular block matrices given recursively
by

(Gk)i,i = (−1)kGk
i,i = (−1)kck

i P k
i,i = (−1)kck

i Pi,i , (18)

(Gk)i,j = Gi,i−1(Gk−1)i−1,j −Gi,i(Gk−1)i,j , j = 1, . . . i− 1, (19)

and, of course, (Gk)i,j = 0 when j > i. Note that we have used the fact that
Pi,i is a projection and hence P k

i,i = Pi,i.
We need to calculate

lim
N→∞

∑

y∈Sj

Π[Nt]
N (x, y) =

∑

y∈Sj

(P− I + etG)(x, y) =
∑

y∈Sj

(etG)(x, y)

and show that it is equal to (etQ)ij for all x ∈ Si. By definition,

∑

y∈Sj

(etG)(x, y) =
∞∑

k=0

tk

k!

∑

y∈Sj

Gk(x, y).

Furthermore, for any x ∈ Si,
∑

y∈Sj

Gk(x, y) =
∑

y∈Sj

(Gk)i,j(x, y),

where the quantity on the right hand side does not depend on the particular x
but only on |x| = i.

For j = i, by (16) and (18),
∑

y∈Si

(Gk)i,i(x, y) = (−1)kck
i

∑

y∈Si

Pi,i(x, y) = (−1)kck
i . (20)

For j = 1, . . . , i− 1, by (17) and (19),
∑

y∈Sj

(Gk)i,j(x, y) =
∑

y∈Sj

(Gi,i−1(Gk−1)i−1,j −Gi,i(Gk−1)i,j)(x, y)

= ci

∑

y∈Sj

(
P̃i,i−1(Gk−1)i−1,j − Pi,i(Gk−1)i,j

)
(x, y)

= ci

∑

y∈Sj

(Gk−1)i−1,j(x, y)− ci

∑

y∈Sj

(Gk−1)i,j(x, y). (21)

The last line follows from the fact that any given block (Gk−1)i,j of Gk−1 will
have identical rows. For example, it is easy to check that

(G2)i,i = c2
i Pi,i,

(G2)i,i−1 = −c2
i Pi,iP̃i,i−1 − cici−1P̃i,i−1Pi−1,i−1,

and
(G2)i,i−2 = cici−1P̃i,i−1P̃i−1,i−2,

and clearly each of these matrices consists of identical rows. Note also that, to
avoid notationally cumbersome resizing of the matrices in the first sum of the
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right hand side of (21), we take
∑

y∈Sj
(Gk−1)i−1,j(x, y) to mean the common

rowsum in the di−1 × dj matrix (Gk−1)i−1,j , which is the same for any choice
of x in Si.

Equations (20) and (21) show that, for each k, the quantities

fk(i, j) ≡
∑

y∈Sj

Gk(x, y), x ∈ Si

are well defined and satisfy the recursive system of equations

fk(i, i) = (−1)kck
i , k ≥ 1

fk(i, j) = cifk−1(i− 1, j)− cifk−1(i, j), i ≥ 2, 1 ≤ j ≤ i− 1, k ≥ 2.

This is the same linear system of equations as that satisfied by the elements
q
(k)
i,j of the matrix Qk. By uniqueness of the solution of this system, we may

therefore make the identification

fk(i, j) = q
(k)
i,j ,

and hence
∑

y∈Sj

(etG)(x, y) = (etQ)|x|,j .

4 Adding Mutations.

We now study the effects of neutral mutations in the seed bank model. We will
keep the derivation on a more intuitive level, leaving the task of enlarging the
state space even more (to accomodate the methods of the previous section) to
the industrious and indefatigable reader. In general, the mutation probability
uN (j) for an allele produced by a seed which is j generations old will depend
on the age of the seed. Typically, older seeds are more likely to have mutations,
so we have

uN (1) ≤ uN (2) ≤ · · · ≤ uN (m),

where, as before, N is the population size and m is the number of generations
seeds can remain viable. Since our model is neutral, we will not keep track
of the type of mutation that occurs. It is enough to record when a mutation
occurs. The type of mutation can be read off from a transition probability
matrix, depending on the application.

We take the usual diffusion scaling

uN (j) =
θ(j)
2N

(j = 1, . . . ,m).

With this scaling, the probability of multiple mutations in a given generation
vanishes as N → ∞. Thus, on the coalescent time scale, θ(j)/2 gives the
mutation rate for individuals produced by age j seeds.

A given individual will have arisen from an age j seed (i.e., corresponds to
a relocation to cell j) with probability bj . We mark such an individual with a
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mutation at the time of the relocation with probability uN (j). Thus the overall
mutation probability for an ancestor being “relocated” is

b1uN (1) + b2uN (2) + · · ·+ bmuN (m).

It should be clear that mutations only occur during relocations since these cor-
respond to birth events forward in time. Thus the mutation probability (for the
whole set of ancestors) depends on the current configuration; in particular, on
the number X1(k) of individuals in cell 1 at any time k. We know that β1 is
the stationary probability that a given ancestral line is currently in cell 1. Thus
the overall mutation probability for a given ancestral line is

β1 (b1uN (1) + b2uN (2) + · · ·+ bmuN (m))

per generation. Multiplying by N (i.e., measuring time in units of N genera-
tions), we get the mutation rate

γ ≡ β1

2
(b1θ(1) + b2θ(2) + · · ·+ bmθ(m)) =

β1

2
θ

along a given ancestral line in the coalescent, where θ ≡ b1θ(1) + b2θ(2) +
· · · + bmθ(m). Such mutations are independent along different branches in the
coalescent tree.

This suggests that we will see a different pattern of variability in seed bank
models. In particular, the time for two ancestors to coalesce in our model is
T2 ∼ Exp(β2

1), so the probability that they will be identical by descent is

P(IBD) = E[P(IBD|T2)]

=
∫ ∞

0

β2
1e−β2

1te−2γtdt (22)

=
1

1 + 2γβ−2
1

=
1

1 + θβ−1
1

,

where γ is the above mutation rate. This should be compared to the classical
formula

P(IBD) =
1

1 + θ

when there is no seed bank and θ = θ(1) is the only relevant mutation rate.
Note that if all θ(i) ≡ θ (i.e., no age-dependence for seed mutation rate),

then θ = θ, so for a nontrivial seed bank model (β1 < 1),

P(IBD) =
1

1 + θβ−1
1

<
1

1 + θ
.

So, in this case, the presence of the seed bank increases variability. There will be
even more variability, of course, when the mutation probability increases with
seed age.
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Figure 1: The urn model. (a) The m−window at step 0. The m−window at
step 0 includes cell 0 to cell m − 1. (b) Sliding the window and relocating the
balls from the previous leftmost cell, solid balls meaning that two balls have
coalesced. (c) The resulting m−window at step 1.

18


