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M ilitary success requires executing high-tempo, coherent, decisive actions faster

than an opponent can react—that is, decision dominance through command

agility. Command agility means having the flexibility to grasp fleeting opportunities and

being innovative, creative, and unpredictable in a manner that (even if low-tempo) 

increases confusion in the opponent’s mind. This

process is command-led, with human decision mak-

ing primary and technology playing a secondary role.

Shared understanding and information superiority

are key enablers in this process and are fundamental

to network-centric warfare (www.dodccrp.org). In

addressing interoperability requirements, we must

also address data security, control over semitrusted

software from other coalition partners, and the result-

ing system’s robustness—for example, its ability to

withstand denial-of-service attacks.

However, good decisions depend on good data,

which can become a problem as mission complexity

increases. Military coalitions—large-scale, multifac-

eted, multinational, virtual organizations—often must

be rapidly created and changed as circumstances shift.

In addition to integrating single-service and joint capa-

bilities into a coherent force, coalition operations must

rapidly configure foreign or legacy systems into a cohe-

sive whole. Yet current coalition operations often suf-

fer from data overload, information starvation, labor-

intensive information collection and coordination, and

stand-alone stovepipe command systems that use

incompatible data formats. This leads to a horrendous

technical integration task and offers commanders only

scattered snapshots of the battlespace.

In the inevitable absence of preexisting coordinated

systems, we must take a rapid, flexible, on-the-fly

approach that permits assembling capabilities at run-

time. We believe agent-based computing (described

in the sidebar, “Software Agent Technology”) offers

a promising new approach to effective coalition oper-

ations because it embraces the coalition environment’s

open, heterogeneous, diverse, dispersed nature. This

article describes how software agents acting on behalf

of human users enable military commanders to act

decisively in cyberspace and thus contribute to “cyber-

space superiority,” a critical component of warfare in

the information age.1 We focus here on the rapid inte-

gration of agents and legacy systems to improve inter-

operability and support human situational awareness

and decision making, rather than, for example, sophis-

ticated teamwork and planning between agents.2

CoAX project goals
The Coalition Agents Experiment (CoAX; www.

aiai.ed.ac.uk/project/coax) is an international collab-

oration carried out under the auspices of DARPA’s

Control of Agent-Based Systems program (http://

coabs.globalinfotek.com). Building on the CoABS

Grid framework, the CoAX agent infrastructure

groups agents into domains reflecting real-world orga-
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nizational, functional, and national boundaries

such that security and access to agents and

information can be governed by policies at mul-

tiple levels. CoAX, begun in February 2000,

seeks to demonstrate that the agent-based com-

puting paradigm offers a promising new

approach to the technical issues of establishing

coherent command and control (C2) in a coali-

tion organization. Research hypotheses

include the following:

• Agents offer a useful metaphor for deal-

ing with the complexity of real-world sys-

tems such as military operations.

• An agent-based C2 framework can sup-

port agile, robust coalition operations.

• Software agents can enable interoperability

between legacy or incompatible systems.

• The CoABS Grid can quickly integrate

many different agents and systems, permit-

ting rapid creation of virtual organizations.

• Domain policies can structure agent rela-

tionships and enforce coalition policies.

• Intelligent task and process management

can improve agent collaboration.

• Semantic Web technology can improve

agent interoperability between disparate

coalition command systems.

The CoAX team has built a software agent

testbed based on the CoABS Grid. This arti-

cle describes the work done, the demonstra-

tions carried out so far, the scenario and sto-

ryboard used, and some insights gained.

A representative scenario and
coalition command structure

The CoAX team is conducting a series of

demonstrations of increasing complexity in a

stylized yet realistic peace-enforcement sce-

nario situated in Binni, a fictitious African

state. These demonstrations use agent tech-

nologies to build a coalition command system

for intelligence gathering; visualization; and

campaign, battle, and mission planning and

execution.

The scenario
To create a suitably realistic scenario for the

experiments, we expanded the fictional Binni

scenario developed for The Technical Coop-

eration Program (www.dtic.mil/ttcp).3 In this

scenario, set in 2012 on what is currently the

Sudanese Plain, global warming has altered

the world’s political balance. As previously

uninhabited land has become arable, the area

has received much foreign investment and is

now called “the Golden Bowl of Africa.”

A conflict has developed between two

countries in the area. Gao, to the north, has

expansionist aspirations but is only moder-

ately developed, possessing old equipment

and a mostly agrarian society. Agadez, to the

south, is a relatively well developed, funda-

mentalist country. Gao has managed to annex

an area of land, name it Binni, and establish

its own puppet government, which has come

under fierce attack from Agadez. Gao, play-

ing the “threat of weapons of mass destruc-

tion from Agadez” card, has enlisted UN sup-

port  to stabilize the region (see Figure 1).

We adapted this basic scenario for several

CoAX demonstrations, beginning with the

initial planning phase and moving to shorter

timescales and more dynamic, uncertain

events for the execution phase.
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Agents can be viewed as semiautonomous software designed to help people

cope with the complexities of working collaboratively in a distributed information

environment. A community of agents works as a set of distributed, asynchronous

processes communicating and sharing information by message passing in some

infrastructure. Essentially, agents communicate with users and among themselves

to find, format, filter, and share information, and they work with users to make the

information available wherever and whenever they need it. Agents can also suggest

courses of action proactively, monitor mission progress, and recommend plan

adjustments as circumstances unfold. They provide the modularity and abstraction

required to tackle large and complex problems.1

Because the agent paradigm offers a good way of building complex software

systems in general, it offers potential benefits in the coalition setting.2 To this end,

DARPA’s CoABS program has created the CoABS Grid, a middleware layer based on

Java and Jini technology that provides the computing infrastructure to integrate het-

erogeneous agent communities and systems rapidly (http://coabs.globalinfotek.com).
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Figure 1. Map of Binni showing firestorm deception. Misinformation from Gao is

intended to displace the firestorm to the west, allowing Gao and Agadez forces to

clash in the region of the Laki Safari Park.



Coalition command structure
In this scenario, runtime composability

offers a close metaphor for the coalition oper-

ations’ dynamic uncertainty and therefore

should suitably test the software agents. This

coalition operation needs to rapidly configure

various incompatible systems into a cohesive

whole within an open, heterogeneous, dis-

persed environment. We can best illustrate the

situation’s complexity through the Binni coali-

tion command structure, shown in Figure 2. 

This representative and realistic coalition

command structure involves the UN, gov-

ernments, other government departments

(such as the Foreign Office), nongovernment

organizations (such as Oxfam), representa-

tives of all the coalition countries (with their

own “ghosted” command structures, shown

as dotted lines), and the coalition headquar-

ters and subordinate fighting forces. The par-

ticipants would likely agree to such a coali-

tion structure: no specific country owns any

part of the formal command chain, and “lev-

els of command” overlap with no rigidly

defined boundaries. Dashed lines show an

advisory or negotiating role.

Software agent architecture
Integrating information across a coalition

involves more than just deploying technol-

ogy—it also involves creating a coherent

“interoperability of the mind” at the human

level, where many social and cultural factors

come into play. We thus find no straightfor-

ward mapping between the human and tech-

nical worlds. 

Human domains
From the human perspective, we identi-

fied four types of domains:

• Organizational domains, such the joint task

force headquarters (JTF HQ)

• Country domains, with each national com-

mand chain a separate, self-contained

domain

• Functional domains, where entities col-

laborate on common tasks such as meteo-

rology or intelligence

• Individual human domains of responsibil-

ity, where commanders have responsibil-

ity for their own HQ and all subordinate

ones (in practice, they delegate); hence

these domains might overlap

These domain types are not entirely exclu-

sive, and they overlap and interact at many

different levels depending on the viewpoint

taken. This complexity at the human level

creates difficulties for technical systems.

Software agent domains
At the most basic level, the agents and sys-

tems to be integrated require infrastructure

for discovery of other agents and messaging

between agents.

CoABS Grid infrastructure. The CoABS

Grid provides this infrastructure. Based on

Sun’s Jini services, which are based on Java’s

Remote Method Invocation, the Grid allows

registration and advertisement of agent capa-

bilities, and communication by message

passing. Operators and even the agents them-

selves can add or remove agents on the Grid

or update their advertisements without net-

work reconfiguration. Agents that fail are

automatically purged from the registry. The

system can use multiple look-up services,

located by multicast or unicast protocols. In

addition, the Grid provides logging, visual-

ization, and, more recently, message encryp-

tion and agent authentication.

The system advertises and matches agents

using one or more Jini lookup services (LUSs),

which are configured and run using a simple

GUI tool that also controls the required HTTP

class server and the Remote Method Invoca-

tion daemon. Agents can discover LUSs using

a multicast protocol over a local area network

or unicast outside the local network; they are
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Figure 2. This representative coalition structure shows the chain of command down from the United Nations. The solid black lines

show the legal lines of authority (the command chain) and accountability. Dashed lines show an advisory or negotiating role; 

dotted lines show the “ghosted” command chains of the participating nations. The approximate command level at which the 

various entities operate appears on the left.
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assigned unique IDs when they register with a

LUS. The LUS supports agent lookup using

template-based matching (exact or wildcard)

and predicate-based matching, and also allows

researchers to substitute their own lookup algo-

rithm. The Grid provides helper objects that

hide Jini’s complexity and provide access to

lower-level objects as required. Grid helper

classes queue messages between agents, which

use the FIPA agent communication language

(www.fipa.org). An agent can access messages

by polling the queue or can choose to receive

callbacks when messages arrive.

KAoS domain management. The increased

intelligence that software agents provide is

both a boon and a danger. Because they oper-

ate independently without constant human

supervision, agents can perform tasks that

would be impractical or impossible using tra-

ditional software applications. However, this

autonomy, if unchecked, could also severely

damage military operations if buggy or mali-

cious agents arose.

The Knowledgeable Agent-Oriented Sys-

tem (KAoS) provides services to assure that

agents from different developers and running

on diverse platforms will always operate

within the bounds of established policies and

will be continually responsive to human con-

trol to permit safe deployment in operational

settings.4,5 KAoS services and tools permit

policy specification, management, conflict

resolution, and enforcement within the spe-

cific contexts established by complex mili-

tary organizational structures.

KAoS domain management services can

group agents into logical domains correspond-

ing to organizational structures, administrative

groups, and task-oriented teams. Within CoAX,

these domains mirror the human domains

described earlier, allowing for complex hierar-

chical, heterarchical, and overlapping struc-

tures. An agent domain consists of a unique

domain manager instance along with any

agents registered to it. Alternatively, an inten-

tionally defined domain consists of a set of

agents sharing one or more common proper-

ties (for example, all agents physically resid-

ing on some host). The domain manager man-

ages agent registration and serves as a single

point of administration and enforcement for

domainwide, host-wide,Virtual Machine-wide,

VM-container-wide, or agent-specific policies.

Domain policies. A policy is a declarative

constraint governing the behavior of one or

more agents, even those that might not be

domain-aware or might be buggy or mali-

cious. For example, an operator can create a

policy that all messages exchanged among

agents in the joint force air component

(JFAC) HQ domain must be encrypted, or

that an agent cannot simultaneously belong

to the US and the UK domains. A policy does

not tell the agent how to perform its task, but

simply specifies the conditions under which

it can perform certain actions.

KAoS domain management includes poli-

cies governing authorization, encryption,

access control, and resource control. However,

our focus on agent systems requires imple-

menting more advanced measures. For exam-

ple, KAoS pioneered the concept of agent

conversation policies,4 where teams of agents

can be formed, maintained, and disbanded

through agent-to-agent communication using

an appropriate semantics. In addition to con-

versation policies, we are developing repre-

sentations and enforcement mechanisms for

mobility policies, domain registration poli-

cies, and various forms of obligation policies.

We represent these policies in ontologies using

the DARPA Agent Markup Language, and

we use an efficient description-logic-based

approach as the basis for much of the domain

manager’s reasoning to discover and resolve

policy conflicts and perform other kinds of

policy analysis.

Separating policy specification from policy

enforcement mechanisms allows policies to be

dynamically reconfigurable and relatively

more flexible, fine-grained, and extensible.

Agent developers can build applications whose

policies can change without necessarily requir-

ing source code changes. Using declarative

policies to describe and govern agent system

behavior results in easier recognition of non-

normative behavior, policy reuse, operational

efficiency, reactivity to changing conditions,

and possibility of offline verification.

CoAX software agent domains
The CoAX demonstrations contain soft-

ware agents grouped into agent domains using

the CoABS Grid, with KAoS domain man-

agement services enforcing the policies. Fig-

ure 3 shows a typical domain configuration.
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Rounded rectangles indicate domains;
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Demonstration storyboard and
technologies

As we progress through the Binni scenario

storyboard (noted in italics), we’ll describe

each agent system and the technologies used

in each scene. Figure 4 shows agent interac-

tions from the technical point of view.

Domain population
Following the outbreak of hostilities, the

UN has deployed forces to stabilize the region.

Active coalition participants at this time

include the UK, US, and Gao.

Agent domains set up using the CoABS

Grid infrastructure and KAoS domain man-

agement services represent the organizational

structures (the JTF HQ and JFAC HQ), the

nations (UK, US, Gao), and various functional

domains such as Weather and Observers.

Numerous agents populate these domains,

registering with their domain manager and

optionally advertising their services with their

domain matchmaker.

Data gathering and air planning
After exploring options to separate the

opposing forces and restore peace in the

region, the coalition has rejected the deploy-

ment of a large ground observation and peace

enforcement force and other courses of action,

and has chosen a “firestorm” mission. This

will clear land to enable simpler remote and

ground observations with less risk to the coali-

tion peacekeepers. The coalition undertakes

initial information gathering and planning.

Master battle planner. We perform air plan-

ning at the JFAC using QinetiQ’s MBP (Mas-

ter Battle Planner), a visual planning tool for air

operations. MBP provides planners with an

intuitive visualization on which they can

manipulate air intelligence information, assets,

targets, and missions using a map-based GUI

(see Figure 5). This lets an operator build a bat-

tle scenario containing targets, offensive and

defensive units, airspace measures, and other

objects using simple dialogs and point-and-

click techniques on the map. The operator can

then move objects around on the map, change

their properties, and display information such

as unit allegiance, status, and ranges.

The operator can interact with these enti-

ties and plan individual air missions (or more

complex mission packages) by dragging and

dropping offensive units onto targets on the

map. Supporting or defensive elements are

added in the same way. The system gives the

operator analytical tools to assess the planned

air operations for

• The best use of resources (for example, by

highlighting overtasked air units)

• Time-phasing (through charts and animated
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“fly-out” that simulates the planned mis-

sions, showing where aircraft are expected

to be at a given moment in the future)

• Concordance with military guidance given

We have agent-enabled MBP, a mono-

lithic C++ application, by wrapping it in Java

code using the Java Native Interface. This

allows MBP to receive all scenario data

(such as targets, assets, and airspaces) from

multiple information-providing agents and

update this information in near-real time.

This process is integrated into normal MBP

usage: when an operator views an object’s

status, agents are automatically tasked to

update the information. Agents can also push

status changes to MBP. MBP can accept and

merge information on other air missions with

those planned within MBP, as described

later, and can save and export missions to let

other agents reason with the data.

Consolidated air mobility planning system

(Camps). The second real military system

integrated into the demonstration is the Air

Force Research Laboratory’s Camps mission

planner, shown in Figure 6. Camps develops

schedules for aircraft to pick up and deliver

cargo within specified time windows. It

takes into account aircraft capability con-

straints, port handling capabilities, crew

availability and work schedule, and so on.

Users develop plans (schedules) for aircraft

to carry a particular cargo, specifying the

intermediate ports, air refueling tracks, and

the kinds of crews that will be available.

They can also specify constraints on the air-

ports potentially involved in plans under

development.6,7

In the demonstration scenario, Camps

schedules cargo airlifts into Binni. Because

these airlift flights could conflict with offen-

sive air missions, an intermediate agent

requests scheduled flights from the Camps

agent and sends them to MBP, forming part

of the normal MBP air visualization. This

intermediate agent tasks Camps and also

translates between the Camps messages in

KQML (Knowledge Query and Manipula-

tion Language) and the MBP messages in

XML.

In this example, only partial translation is

possible because Camps and MBP differ fun-

damentally in their concept of air missions.

A Camps mission consists of an arbitrary col-

lection of flights, where flight means a single

aircraft taking a single journey from A to B.

An MBP mission, however, consists of a

starting point and a route that must return to

the starting point (perhaps by a different

path) and might consist of multiple aircraft.

Camps can therefore produce routes that

have no fully valid representation in MBP,

although they could be partially represented

or indicated graphically.

Ariadne. In a similar manner, agents trans-

late and forward to MBP Web-based weather

information extracted by the University of

Southern California’s Ariadne system, again

forming part of the normal air situation visu-

alization. Ariadne facilitates access to Web-

based data sources via a wrapper–mediator
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Figure 6. The Camps airlift planner, labeled “CAMPS,” and the demonstration agent,

including “CAMPS Agent” and “Edit Simple Planset,” used to task the Camps agent

with a simple requirement: Move cargo from Cyprus into Binni.

Figure 5. Master Battle Planner map display of Binni, Gao, and Agadez. A selected 

mission is highlighted, proceeding from an airbase (BANM) to refueling tanker (ESSO)

to the target via waypoints and airspaces, and back to base by a different route.



approach,8 permitting rapid creation of wrap-

pers that make Web sources look like data-

bases. These interpret a request (expressed

in SQL or some other structured language)

against a Web source and return a structured

reply. The mediator software answers queries

efficiently using these sources as if they

formed a single database. Custom code once

handled translation of the Ariadne XML into

that expected by MBP, but XSLT (Extensi-

ble Stylesheet Language Transformations)

now handles this more easily, as we will

show later.

I-X process panels (I-P2). I-X process panels

support this coalition planning process. The 

I-X research program seeks to create a well-

founded approach to human–computer coop-

eration in the creation or modification of

products such as a plan, design, or physical

entity. In other words, it supports synthesis

tasks, as well as more general collaborative

activity. The I-X research draws on earlier

work on O-Plan,9 I-N-OVA,10 and the Enter-

prise Project,11 but seeks to make the frame-

work generic, clarify terminology, simplify

the approach taken, and increase core ideas’

reusability and applicability. CoAX is using

the I-X approach to provide task and process

support and event-response capabilities to

various coalition participants (see Figure 7).

An I-X process panel (I-P2) acts as a work-

flow and messaging “catch-all” for the user.

It can act in conjunction with other panels for

other users if desired. A panel can take any

requirement to handle an issue, perform an

activity, or add a constraint (in the future).

The panel deals with these via

• Manual (user) activity

• Internal capabilities

• External capabilities (invoke or query)

• Rerouting or delegating to other panels or

agents (pass)

• Planning and executing a composite of

these capabilities (expand)

It can also cope with partial knowledge. It

receives reports and interprets them to under-

stand the current status of issues, activities, and

constraints; to understand the current world

state, especially the status of process products;

and to help users control the situation.

Resource control via domain policies. Gao

has host nation status within the coalition, but

its intentions are unclear and it is distrusted.

Coalition staff take special care to monitor the

information passed to and from Gao within

the coalition. During the demonstration, mis-

information feeds by Gao (intended to dis-

place the firestorm to allow Gao to take an

advantage and move forward) are detected

and thwarted. Gao becomes belligerent and

launches a denial-of-service attack against

the coalition’s C3I infrastructure.

The Gao agent in the demonstration runs

under Nomads, a mobile agent system from

the Institute for Human and Machine Cog-

nition. The Nomads project aims to develop

a set of distributed agent-based systems using

the Java language and environment. The

agent code runs in a new Java Virtual

Machine, the AromaVM, which provides

two key enhancements over standard Java

VMs: capturing threads’ execution state and

controlling resources consumed by threads.

By capturing threads’ execution state, the

Nomads system provides strong (transpar-

ent) agent mobility.

In addition, the resource control mecha-

nisms let users control and allocate agents’

resources and protect against malicious

agents’ denial-of-service attacks. When the

Gao agent exceeds certain resource limits, a

domain guard triggers an automatic domain

policy change and instructs the AromaVM

to reduce the resources available to the mali-

cious agent (see Figure 8). An operator can

manually reduce the limits further using the

KAoS policy administration tool.

Data feeds from mobile devices and

observers. The coalition has planned the

firestorm mission and aircraft have already

taken off. However, the news media break a

story that wildlife in an important safari

park in Binni might be in danger because the

park overlaps the firestorm area. With only

an hour to go, the UN Secretary General’s

special representative to Binni asks the Joint

Task Force commander to consider the

wildlife risk aspects of the planned approach.

Dynamic information gathering and infor-

mation feeds using agent technology are

employed to create a real-time feed of the

position of some at-risk large mammals.

Using the event panels, operators can note

this urgent issue and break it down into sub-

tasks. They can monitor aircraft progress in

near-real time on the QinetiQ Situation

Viewer and determine from MBP the time

left before aircraft are committed to their tar-

gets. Data on animals’ locations in the safari

park is available online via agents running

on monitoring devices attached to the park’s

large mammals. Operators can query histor-

ical data from these devices, called eGents

(agents that communicate by email, devel-

oped by Object Services and Consulting),

using a natural language interface. To aid the

planners, Ariadne extracts data from the

pages and a translator agent uses XSLT to

create a live data feed from the safari park

Web site. The resulting message stream, sent

to MBP and to the Situation Viewer agent,

allows visualization of the animals’ current

position and track (see Figure 9).

Another instance of the translator agent

transforms ground force movement data

from Dartmouth College’s D’Agents field

observation system. Visualized in the same

way as the animal data, this data helps the

coalition identify a convergence of hostile

forces on the Laki safari park area.
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Figure 7. I-X process and event panels.
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Plan export and deconfliction. After con-

sideration, the commander decides to con-

tinue with the firestorm mission but to replan

as necessary to avoid risk to wildlife. Air

planners adjust firestorm targets or select

secondary targets as necessary for the first

wave of firestorm bombing. The system auto-

matically detects the effects of these changes

on the coalition’s medical and humanitar-

ian operations and avoids unintended con-

flicts between disjoint coalition operations.

After revising the air plans using MBP, a

translator agent then sends them to a decon-

fliction agent to check them against planned

activities in other coalition HQs. The Uni-

versity of Michigan’s Multilevel Coordina-

tion Agent processes the plans using multiple

levels of abstraction to generate solutions.12

I-X event panels keep planners informed of

progress, and planners can view the results on

the MCA display when ready (see Figure 10).

Operators adjust the plans iteratively until

they’ve resolved the conflicts.

Dynamic forced migration (scram) of

observer agents. Agadez seeks to use this

complication to seize the initiative and

launches fighter attacks against a valuable

airborne system monitoring the operation.

When coalition sensors detect this attack,

the airborne system starts to regress. This

means that the system’s observer agents will

not be able to continue providing informa-

tion to the coalition.

To solve this problem, the administrator

uses the Nomads mobile agent system’s

forced migration (scram) capabilities to

move the observer agents from the airborne

system to a secondary ground station plat-

form. Nomads uses the AromaVM state cap-

ture mechanisms to capture the observer

agents’ full execution state and then sends it

to a new platform, where the agents can be

restarted without any loss of their ongoing

computations. This lets the observation

agents continue operating from the ground

station and provide information to the coali-

tion even after the airborne system regresses.

Software agent assessment
CoAX aims to show that the agent-based

computing paradigm provides the computa-

tional support needed in coalition operations.

The evidence so far confirms this view: our

demonstrations show disparate agent systems

working together in a realistic coalition appli-

cation, with agents usefully sharing and man-

aging access to information across a stylized

coalition architecture. The CoABS Grid and

KAoS domain management capabilities

enabled us to interoperate, for the first time,

previously stand-alone US and UK military

systems as well as diverse agent-based infor-

mation resources. In particular, the CoABS

Grid was vital to rapid and robust system inte-

gration, and explicit domain policy control per-

mitted effective management of agent organi-

zation, behavior, security, and resources.
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Figure 9. An eGent client subscribes to eGents running on mobile devices (wildlife

tags). The client publishes data from these devices on a Web page. Ariadne extracts

data from these pages and produces XML. The XML is transformed into another

format by another agent using XSLT and finally is sent to agents such as MBP and 

Situation Viewer for visualization.

Figure 8. A denial-of-service attack by the Gao agent is starving other agents of

resources (note the decreasing processing rate in the console, bottom right). The guard

(top right) monitors the Gao agent’s resource usage. The excessive resource usage 

triggers a domain policy change, which lowers resource limits enforced by the AromaVM.

The policy can also be changed manually using the KAoS Policy Administration Tool

(bottom left).



The CoAX team’s experiences show that

agent-wrapping legacy systems and inte-

grating different agent systems at short notice

are relatively straightforward, and that these

tasks are simpler where systems expose more

of their internal information and methods.

Also, heterogeneous agents can interoperate

as long as implementers adhere to some min-

imum set of message and other standards. In

fact, we believe heterogeneity should be

accepted and embraced, because it is

inevitable and can actually be beneficial,

especially in terms of security.

Our long-term goal is to use this technol-

ogy to create, support, and dynamically recon-

figure virtual organizations—with coalitions

being an archetypal and timely example. An

agent-enabled environment creates shared

understanding and improves visualization.

Specific benefits accrued when agents were

integrated into existing tools so as not to dis-

rupt familiar methods of operation. The soft-

ware agents operated in several roles. They

worked in the background—through match-

making, domain management, process man-

agement, and other agent services—to find,

establish, and maintain the infrastructure,

information, and procedural links necessary

to achieve and support interoperability in a

dynamically changing environment. Agents

also collaborated with human operators to

mediate information requests and format and

display the results almost transparently.

Thus, an agent-enabled environment im-

proves military commanders’ situational

awareness and could contribute significantly

to network-centric warfare, an approach based

on effectively linking or networking the

warfighting enterprise. Indeed, cyberspace is

more than an information pipe between

humans; it is a battlespace in its own right. So,

we should aim for “cyberspace superiority” by

ensuring that coalition forces can act decisively

through software agents acting on behalf of

human users or mediating their actions.

We’ve only partially addressed the

construction and maintenance of a

fully dynamic virtual coalition organization.

We hope to add further support for

• Adding domains and agents to the coali-

tion structure on the fly

• Coalition partners joining or leaving

unpredictably

• Handling of dynamic coalition tasks,

processes, and events

Capabilities under investigation for future

demonstrations include

• Obligation management to ensure agents

meet their commitments

• Improved agent collaboration and runtime

interoperability using Semantic Web lan-

guages and technology13

• Richer domain organization and security

policies5

• Richer task, process, and event manage-

ment with more dynamically determined

agent relationships14

• Various agents providing new data types

and data-processing capabilities such as

threat classification and track prediction

The Fleet Battle Experiment Juliet 2002, which

is part of the Millennium Challenge joint inte-

grating experiment, will include aspects of

our work.

Software agents could contribute signifi-

cantly to our ability to deal effectively with

unpredictable changes such as opponents’

destructive activities, system failures, or

withdrawn services. So far, we have shown

that a software agent infrastructure can be

robust and, to some extent, “self-healing.”

We hope to investigate this paradigm further

to show that software agents can provide

agility, robustness, flexibility, and function-

ality far beyond that provided by the indi-

vidual coalition partners.
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