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Abstract though dealing with different numbers of agents, share

Negotiation among multiple agents remains an
important topic of research in Distributed Arti-
ficial Intelligence (DAI). Most previous work 
this subject, however, has focused on bilateral
negotiation, deals that are reached between two
agents. There has also been research on n-agent
agreement which has considered "consensus mech-
anisms" (such as voting), that allow the full group
to coordinate itself. These group decision-making
techniques, however, assume that the entire group
will (or has to) coordinate its actions. Sub-groups
cannot make sub-agreements that exclude other
members of the group.
In some domains, however, it may be possible for
beneficial agreements to be reached among sub-
groups of agents, who might be individually moti-
vated to work together to the exclusion of others
outside the group. This paper considers this more
general case of n-agent coalition formation. We
present a simple coalition formation mechanism
that uses cryptographic techniques for subadditive
Task Oriented Domains. The mechanism is effi-
cient, symmetric, and individual rational. When
the domain is also concave, the mechanism also
satisfies coalition rationality.

Introduction
In multi-agent domains, agents can often benefit by
coordinating their actions with one another; in some
domains, this coordination is actually required. In two-
agent encounters, the situation is relatively simple: ei-
ther the agents reach an agreement (i.e., coordinate
their actions), or they do not. With more than two
agents, however, the situation becomes more compli-
cated, since agreement may be reached by sub-groups.

The process of agent coordination, and of reaching
agreement, has been the focus of much research in Dis-
tributed Artificial Intelligence (DAI). The general term
used for this l?rocess is "negotiation" (usually in the
2-agent case) [0; 0; 0; 0; 0; 0], and "reaching consen-
sus" (in the n-agent case) [0; 0; 0]. Both approaches,

one underlying assumption: the agreement, if it is
reached, will include all relevant members of the en-
counter. Thus, even in the n-agent case where a vot-
ing procedure might enable consensus to be reached,
the entire group will be bound by the group decision.
Sub-groups cannot make sub-agreements that exclude
other members of the group. Interesting variations on
these approaches, which nonetheless remain bilateral in
essence, are the Contract Net [0], which allows bilat-
eral agreement in n-agent environments, and bilateral
negotiation among two sub-groups discussed in [0].

In some domains, however, it may be possible for
beneficial agreements to be reached among sub-groups
of agents, who might be individually motivated to work
together to the exclusion of others outside the group.
Voting procedures are not applicable here, because the
full coalition may not be able to satisfy all its members,
who are free to create more satisfying sub-coalitions.
This paper considers this more general case of n-agent
coalition formation (recent pieces of work on similar
topics are [0; 0]). Building on the work of Zlotkin and
Rosenschein [0], which dealt only with bilateral negoti-
ation mechanisms, we here analyze the kinds of n-agent
coordination mechanisms that can be used in specific
classes of domains.

Coalitions
An Example--The Tileworld
Consider the following simple example in a multi-agent
version of the Wileworld [0] (see Figure 1 on the left).
A single hole in the grid is represented by a framed
letter (such as [-£7). Each agent’s position is marked
by its name (such as A1). Tiles are represented 
black squares (m) inside the grid squares.

Agents can move from one grid square to another
horizontally or vertically (unless the square is occupied
by a hole--multiple agents can be in the same grid
square at the same time). When a tile is pushed into
any grid square that is part of a hole, the square is
filled and becomes navigable as if it were a regular
grid square. The domain is static except for changes
brought about by the agents.
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Coalitions ul u2 u3

{1},{2},{3} 0 0 0
{1,2},{3} 6 6 0
{1,3},{2} 6 l0 6
{2,3},{1} 0 0 0
{1,2,3} 4

Figure 1: Three-Agent Encounter in the Tileworld and
Possible Coalitions

Agent l’s goal is to fill hole E], while agents 2 and 3

need to fill holes N and [] respectively. To fill its hole,
each agent needs to do 7 steps. Agents 2 and 3 each
need to travel 6 steps to reach the (8,6) grid position
(the initial position of agent 1), and then A2 pushes 
block into the north hole while Aa pushes a block into
the south hole. Agent l’s best plan is to travel 6 steps
to grid position (4,4) (Aa’s initial position) or to 
position (4,8) (A2’s initial position), and then take 
seventh step to push a block into its hole.

Agents can cooperate and help each other to reduce
the cost of achieving their goals. Either agent 2 or 3
can achieve agent l’s goal with a single step. Agent 1
can achieve ether A2’s or Aa’s goal with a single step,
or both of their goals with 3 steps.

There are several kinds of joint plans that the agents
can execute that will reduce the cost of achieving their
goals. Some of those joint plans are listed in the table
in right side of Figure 1.

Coa ltlons Ul I/2 u3

{I},{2},{3} 0 0 0
i,2},{3} 6 6 0
1,3},{2} 6 0 6

{2,3},{i} 0 0 0
{I,2,3} 4

Table 1: Possible Coalitions in the Tileworld Example

The coalition structure {1,3},{2} means that there
are two coalilions, one consisting of the agents 1 and
3, and the other consisting only of agent 2. When two
agents form a coalition it means that they are coor-
dinating their actions. The utility of an agent from a
joint plan that achieves his goal is the difference be-
tween the cost of achieving his goal alone and the cost
of his part of the joint plan [0].

In the case where no agents reach any agreement
(First line in the Table at Figure 1), each agent needs
to achieve its goal alone (and can do so in our scenario).
Each agent carries out its original plan, and no utility
is gained.

When agents 1 and 2 agree to help each other, and

execute the joint plan where A1 achieves A2;s goal
(with a cost of 1) while A2 achieves Al’s goal (with
a cost of 1), they each achieve their own goals at a cost
of 1, with a resulting utility gain of 6 (Second line in
the Table at Figure 1). The third line of the table sim-
ilarly shows the utility gain when agents 1 and 3 agree
to help each other.

The fourth line in the Table at Figure 1 shows that
agents 2 and 3 cannot gain any utility by coordinating
their actions. The final line of the table shows that
if all agents coordinate their actions, they can execute
the joint plan where agent 1 achieves both 2 and 3’s
goals (with cost of 3), while either agent 2 or 3 achieves
l’s goal (each with expected cost of ½).

The coalition that gives the maximal total utility is
the full coalition that involves all 3 agents, where they
all coordinate their actions to mutual benefit (total
utility is 17) 1. Although this full coalition is globally
optimal, Agent l’s utility is only 4, and he would prefer
to reach agreement with either agent 2 or agent 3 (with
utility of 6), but not with both.

The agents in the above scenario are able to trans-
fer utility to each other, but in a non-continuous way.
Agent 1, for example, can "transfer" to agent 2 seven
points of utility by achieving his goal. He cannot, how-
ever, transfer an arbitrary amount. Without this ar-
bitrary, continuous utility transfer capability, agent 1
will prefer to form a coalition with either one of the
other two agents, rather than with both.

While the coalition structures given in Table at Fig-
ure 1 are exhaustive, with continuously transferable
utility there are additional distributions of utility that
can be put into effect. For example, we might have
the coalition structure {1,3},{2}, and distribution (8,
0, 4) (where position i in the tuple signifies utility 
agent /)--the maximal utility, of course, still sums to
12, which is the most that the coalition {1,3} can gain
by coordinating their actions. Another possibility is
the full coalition, with distribution (7, 7, 3). Note
that agent 3 would be dissatisfied with the latter coali-
tion and utility, and could attempt to cause the for-
mer coalition to arise (tempting away agent 1 with the
promise of 8 points of utility). However, in the for-
mer coalition agent 2 is dissatisfied--and can attempt
to cause the {1,2},{3} coalition structure to form with
payoff (9, 3, 0). In contrast, the full coalition with util-
ity distribution (9, 5, 3), while perhaps leaving agent
3 dissatisfied, does not allow him the opportunity of
tempting away any other member of the coalition (e.g.,
to give agent 1 more than 9, agent 3 would have to get
less than 3). We will see later that this utility distri-
bution is stable.

Note also that, intuitively, agent 1 has a lot of power
in the coalition formation--he seems to have more op-
tions, and his cooperation is valuable to the other

1The joint plan where agent 1 achieves both 2 and 3’s
goals (with cost of 3), while either agent 2 or 3 achieves l’s

1goal (each with expected cost of 
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agents. If utility can be continuously transferred, it
would be to agent l’s benefit, as can be seen from the
above discussion.

Coalition Games

The definitions below are standard ones from coalition
theory [0].

Definition 1 A coalition game with transferable util-
ity in normal characteristic form is IN, v) where: N 
{1,2,...,n} set of agents, and v:Tv ~ IR. For each
coalition which is a subset of agents S C_ N, v(S) 
the value of the coalition S, which is the total utility
that the members ors can achieve by coordinating and
acting together.

The Tileworld example from Figure 1 can be de-
scribed as a coalition game (N, v) such that: v({1}) 
v({2}) = v({3}) = v({2,3}) = O, v({l,2}) 
v({1,3}) = 12, and v({1,2,3})= 

Note that the value derived by a coalition is inde-
pendent of the coalition structure. A given coalition is
guaranteed to get a certain utility, regardless of what
coalitions are formed by the other agents. In the Tile-
world domain this assumption is not necessarily true--
though it is true in the example we gave above. For
example, if the number of tiles is less than the number
of holes to be filled, the utility derived by a coalition
might be affected by the actions of other agents out-
side of the coalition (e.g., whether they will use a tile
the coalition wants).

In general, a coalition’s utility in a State Oriented
Domain [0; 0] can be influenced by the actions of other
non-coalition members, and in particular by the kinds
of coalitions those other members will form. We will
see below that in Task Oriented Domains [0] this defi-
nition of the coalition value is directly applicable.

Task Oriented Domains
Definition 2 A Task Oriented Domain (TOD) is 
tuple < T,.A,c > where: 7" is the set of all possible
tasks; J4 = {A1, Au,...An} is an ordered list of agents;
c is a monotonic function c: [27-] --* ]R+. [27-] stands for
all the .finite subsets of 7". For each .finite set of tasks
X C_ 7", c(X) is the cost of executing all the tasks 
X by a single agent, c is monotonic, i.e., for any two
.finite subsets X C_ Y C_ 7", c( X) < c(Y); c(0) 

An encounter within a TOD < 7",A,c > is an
ordered list (T1,T~,...,Tn) such that for all k 
{ 1... n}, Tk is a finite set of tasks from 7/- that Ak needs
to achieve. Tk will also be called Ak ’s goal.

The Postmen Domain [0] is one classic example of
a TOD. In this domain, each agent is given a set of
letters to deliver to various nodes on a graph; start-
ing and ending at the Post Office, the agents are to
traverse the graph and make their deliveries. There
is no cost associated with carrying letters (they can
carry any number), but there is a cost associated with

graph traversal. The agents are interested in making
short trips. Agents can reach agreements to carry one
another’s letters, and save on their travel.

In multi-agent Task Oriented Domains, agents can
reach agreements about the re-distribution of tasks
among themselves. When there are more than two
agents, the agents can also form coalitions such that
tasks are re-distributed only among the members of
the same coalition. There will be no exchange of tasks
among agents that belong to different coalitions; oth-
erwise, we will consider the union of both coalitions as
a single coalition. Given an encounter in a multi-agent
TOD, agents need to decide which coalition to form,
and how to redistribute the tasks among the members
of the coalition. When mixed deals are being used by
agents (those are agreements where agents settle on
a probabilistic distribution of tasks), it can be useful
to conceive of the interaction as a coalition game with
transferable utility. The use of probability smooths
the discontinuous distribution of tasks, and therefore
of utility.

In other words, by choosing the probability appro-
priately, the agents can distribute utility among them-
selves continuously. However, utility is still not money
in a classic TOD; utility is the difference between the
cost of achieving your goal alone, and the cost of your
part of the deal. Therefore, there is an upper bound
on the amount of utility that each agent can get--no
agent can get more utility than his stand-alone cost.
As we shall see below, however, our model never at-
tempts to violate this upper bound on utility.

Subadditive Task Oriented Domains

In some domains, by combining sets of tasks we may
reduce (and can never increase) the total cost, as com-
pared with the sum of the costs of achieving the sets
separately. The Postmen Domain, for example, has
this property, which is called subadditivity. If X and
Y are two sets of addresses, and we need to visit all of
them (XUY), then in the worst case we will be able 
do the minimal cycle visiting the X addresses, then do
the minimal cycle visiting the Y addresses. This might
be our best plan if the addresses are disjoint and de-
coupled (the topology of the graph is against us). 
that case, the cost of visiting all the addresses is equal
to visiting one set plus the cost of visiting the other set.
However, in some cases we may be able to do.better,
and visit some addresses on the way to others.

Definition 3 TOD < 7", .A, c > will be called subad-
ditive if for all finite sets of tasks X, Y C_ 7", we have
c(X u Y) <_ c(x) + c(v).

A relatively minor change in a domain definition,
however, can eliminate subadditivity. If, in the Post-
men Domain, the agents were not required to return
to the Post Office at the end of their deliveries, then
the domain would not be subadditive.
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Coalitions in Subadditive Task Oriented
Domains
In a TOD, a group of agents (a coalition) can coordi-
nate by redistributing their tasks among themselves.
In a subadditive TOD, the way to minimize total cost
is to aggregate as many tasks as possible into one ex-
ecution batch (since the cost of the union of tasks is
always less than the sum of the costs). Therefore, the
maximum utility that a group can derive in a subaddi-
tive TOD is the difference between the sum of stand-
alone costs and the cost of the overall union of tasks.
This difference will be defined to be the value of the
coalition.

Definition 4 Given an encounter (T1,T2,...,Tn) in
a subadditive TOD < 7",.A,c >, we will define the
coalition game induced by this encounter to be (N, v),
such that Y = {1,2,...,n}, and VS C N, v(S) 

Ei s c(Ti) - c(U,es 
According to the above definition the value of any

single agent’s coalition is zero. This means that in
the case of total conflict, when no task is exchanged
and the coalition configuration is ({1},{2}, ...,{n}),
each agent gets 0 utility. We will call this coalition the
conflict coalition.

Superadditive Coalition Games
It seems intuitively reasonable that agents in a coali-
tion game should not suffer by coordinating their ac-
tions with a larger group. In other words, if you take
two disjoint coalitions, the utility they can derive to-
gether should not be less than the sum of their separate
utilities (at the worst, they could "coordinate" by ig-
noring each other). This property (which, however, 
not always present) is called superadditivity.

Definition 5 A coalition game with transferable util-
ity in normal characteristic form (N, v) is superaddi-
tive if for any disjoint coalitions S, V C N, S fq V = 0,
then v(S) + v(V) < v(S U V)

Theorem 1 shows us that a superadditive coalition
game always arises in a subadditive TOD.

Theorem 1 Any encounter (T1, T2,..., Tn) in a sub-
additive TOD induces a superadditive coalition game
(N,v).

For any encounter (T1, T2,..., Tn) in a subadditive
TOD we can conclude from Theorem 1 that all coali-
tions have positive value and that the full coalition has
the maximal value.

Mechanisms for Subadditive TODs

We would like to set up rules of interaction such that
communities of self-interested agents will form benefi-
cial coalitions. There are several attributes of the rules
of interaction that might be important to the designers
of these self-interested agents (as discussed further by
Rosenschein in [0]):

1. Efficiency: The agents should not squander re-
sources when they come to an agreement; there should
not be wasted utility when an agreement is reached.
Since the coalition game is superadditive it means that
the sum of utilities of the agents should be equal to
v(N).
2. Stability: Since the coalition game is superaddi-
tive, the full coalition can always satisfy the efficiency
condition, and therefore we will assume that the full
coalition will be formed. The stability condition then
relates to the payoff vector (ux, u2,..., Un) that assigns
to each agent i a utility of ui. There are three levels
of stability (rationality) conditions: individual, group
and coalition rationality. Individual Rationality means
that that no individual agent would like to opt out of
the full coalition; i.e., ui > v({i}) = 0. Group Ratio-
nality (Pareto Optimality) means that the group as a
whole would not prefer any other payoff vector over this
vector; i.e., ~i~1 ui = v(n). This condition is equiva-
lent to the efficiency condition above. Coalition Ratio-
nality means that no group of agents should have an
incentive to deviate from the full coalition and create
a sub-coalition; i.e., for each subset of agents S C_ N,

ui > v(S).
3. Simplicity: It will be desirable for the overall in-
teraction environment to make low computational de-
mands on the agents, and to require little communica-
tion overhead.
4. Distribution: Preferably, the interaction rules will
not require a central decision maker, for all the obvious
reasons. We do not want our distributed system to
have a performance bottleneck, nor collapse due to the
single failure of a special node.
5. Symmetry: Two symmetric agents should be as-
signed the same utility by the mechanism (two agents
are symmetric when they contribute exactly the same
value to all possible coalitions).

How are these attributes satisfied in the coalition
game that constitutes a multi-agent subadditive TOD?
The criterion of efficiency requires that the full coali-
tion be formed--nothing else guarantees efficiency
(from Theorem 1). The requirement of stability means
that the utility assignment for the full coalition should
satisfy the following condition: there does not exist a
group of agents all of whom can do better by forming
a sub-coalition with one another.

We will develop a mechanism for subadditive TODs
such that agents agree on the all-or-nothing deal, in
which each agent has some probability of executing all
the tasks. The question that we will try to answer now
is "What should be the division of utilities among all
agents in the full coalition?"

Coalition rationality is the strongest stability con-
dition, and implies individual rationality and group
rationality 2. However, this condition is very strong,

2All payoffs that satisfy the coalition rationality condi-
tions are called the core of the game in the game theory
literature. See, for example, [0].
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Figure 2: Example of an Unstable Encounter

and cannot always be satisfied.
Consider the encounter from a three-agent Postmen

Domain that can be seen in Figure 2.
The Post Office is in the center. The length of

each arch is 1. The encounter is (T1 = {a,d},T2 
{b, e}, Tz = {c, f}) z. Each agent can deliver his let-
ters with a cost of 4 (i.e., c(Tx) = c(T2) = c(Ta) = 4).
The cost of delivering the union of the letters of any
two agents is 5 (i.e.,c({Tx U T2}) c( {T~ U Ta}) =
c({T~. U T3]) = 5).

Therefore, the value of any two agents’ coalition is
(2.4)-5 = 3 (i.e., v({1, 2}) = v({1, 3}) = v({2, 
3).

The cost of delivering all the letters is 8. Therefore,
the value of the full coalition is (3*4)-8 = 4. We would
like to find a payoff vector (Ul, u2, ua) that satisfies the
following conditions:
(1) Ul > v({1}) = 0, > v({ 2}) = 0 , u3 > v({ 3}) = 0
(2) ul + us >_ v({1,2}) = 3, ul + > v({ 1,3}) =
3, us + ua > v({2, 3}) = 
(3) Ul + us + u3 _> v({1,2,3})= 

Since the full coalition is also the maximal valued
configuration, condition (3) is satisfied by equality (i.e.,
ul + us + us = 4). If we add up all the inequalities, we
will have Ul+U2+Ua >= 4½, which cannot be satisfied.
This means that in any division of the value of the full
coalition among the agents there will be at least two
agents that will prefer to opt out of the coalition and
form a sub-coalition! For example, assume that the full
coalition is formed with payoff vector (1, 1, 2). Agents
1 and 2 can get more by forming a coalition (i.e., by
excluding agent 3 from the coalition). The new payoff

1 1vector can then be (1 ~, 17,0). This coalition and payoff
vector is also not startle, since now agent 3 can tempt
agent 2 (for example) to form a coalition with 3 
promising 2 more utility. The new payoff vector can
then be (0,2, 1). However, now agent 1 can convince
the two agents that they all can do better by forming
the full coalition again. The new payoff vector can then
be(½, 1 ’2g, 1~). This coalition is also not stable...

Shapley Value

The Shapley Value [0; 0] for agent i is a weighted aver-
age of all the utilities that i contributes to all possible

3Agent 1 has to deliver letters to addresses a and d,
agent 2 has to deliver letters to addresses b and e, and
agent 3 has to deliver letters to addresses c and f.

coalitions. The weight of each coalition is the prob-
ability that this coalition will be formed in a random
process that starts with the one-agent coalition, and in
which this coalition grows by one agent at a time such
that each agent that joins the coalition is credited with
his contribution to the coalition. The Shapley Value is
actually the expected utility that each agent will have
from such a random process (assuming any coalition
and permutation is equally likely).

Definition 6 Given a superadditive coalition game
with transferable utility in normal characteristic form
(N,v), the Shapley Value is defined to be: ui 

~ScNjeS (n-lsl-1)!lSl!./o., u {i}) - v(S).
The Shapley Value satisfies the efficiency, symmetry,

and individual rationality conditions [0; 011 However,
it does not necessarily satisfy the coalition rationality
condition. The Shapley Value divides the utility of the
full coalition among the agents according to the aver-
age contributions of agents to all possible coalitions.
Agents that contribute more (on the average) get 
bigger share of the group utility. Agents that do not
contribute at all get no utility. Agents that contribute
in the same way (symmetric agents) get the same util-
ity.

Definition 7 We define the additional value that
agent i adds to coalition S as A~(S) v(SU{i})-v(S).

The Shapley Value can then also be defined as:

(n- ISl- 1)!lSl!ai,S).,,EUi
n!

ScN,i¢.S

Definition 8 For a given encounter (T1, T2,..., T,)
in a TOD < T,A,c > we will define VS C N,c(S) 
c(Uies

According to the above definition, we can see that:
VS C_ N, v(S) = Ei~s c(~) - c(S).

at(s) = v(S u {i}) - v(S) 
u U

jes jes jes des

at(s) = c(T,) - (c(T, - 4U
jes des

Definition 9 We define the additional cost that agent
i adds to a coalition S as Ai(S) -- c(S U {i}) - c(S).

If we use this definition, we can see that: A~(S) 
(c(~) - A~(S)). Therefore, the Shapley Value 
defined now by:

~,
(n -ISl- 1)!lSl!

.! no(s) Ui

ScN,if~S

2 (n- ISl- 1)!ISI!c(T ) _n!
ScN,i~S

91



Theorem 2 The following holds:

Z (n- ISIn!- 1)!1S1! = 1
SCN,iCS

Since

It i = (n -ISl- 1)!lSl!e(7~)_
n!

ScN,i¢S
Z (n- ISl- 1)!lSl! A,c(S)’

n!
ScN,ig.S

then from Theorem 2 we can conclude that:

ui = c(Ti) - (n - ISI- 1)!ISI!A~(S).n!SCN,i¢.S

Theorem 3 The Shapley Value is also: ui = e(Ti) -
zx (s) = c(S u {i})-ESc N,if[S n!

c(S), i.e., the additional cost that agent i adds to a
coalition S.

Agent i’s Shapley Value is the difference between the
cost of its goal and its weighted average cost contri-
bution to all possible coalitions. The cost that agent
i can contribute to a coalition, is bounded by c(7~).
Therefore, the average contribution is also bounded by
c(~), which also means that the Shapley Value is pos-
itive (i.e., satisfies the individual rationality contribu-
tion) and bounded by c(T/) (which is also the maximal
utility that an agent can get according to our model)¯
Thus (as we promised above in Section ), our model
never attempts to transfer to an ’agent more utility
than he can get by simply having his tasks performed
by others. Even though our "transferable utility" is
limited by the agent’s stand-alone cost (since no actual
money is being transferred), this poses no problem in
our model.

Mechanisms for Subadditive TODs

We can define a Shapley Value-based mechanism for
subadditive TODs that forms the full coalition and di-
vides the value of the full coalition using the Shapley
Value. The mechanism simply chooses the following
(all-or-nothing) mixed deal, (Pl, P2,..., P,0, such that

p~ = ~s~,,,,as <’-IsL-")’lsl’~(s)
c(N)

To show that this all-or-nothing deal is well-defined,
nwe need to show that Vi E N: 0 _< pi < 1; ~i=1Pi = 1.

Pi is the ratio between the weighted average cost
contribution and the cost of the union of all tasks¯
The weighted average cost contribution is always pos-
itive, and it is hounded by c(7]), which (due to 
monotonicity of c) is less than or equal to c(N).
Therefore, 0 _< Pi _< 1. The Shapley Value is ui =

C(~) -- EScN,ifIS (n-lSl-X)!ISI! in! Ac(S). Therefore, Pi =

The sum of the probabilities is therefore

n ~ n n

~-~P/=Z c(T/)- ui _ 1---,:, ,:, i:1 i=1

Since we know that the Shapley Value satisfies the
nefficiency condition, i.e., )--~i=1 ul = v(N), we can con-

elude that
n

~Pl-- 1
c(N) (Z c(7)) -- 

i=1 i=1

LFrom the definition of v(N) we can additionally con-
elude that

Pi = c(~)-( c(Ti)-c(N))) = 
i=1 ~ " i:1 i=1

Thus, executing this all-or-nothing deal will give
each agent i an expected utility of c(Ti)-pi c(N), which
is exactly the Shapley Value ui.

Theorem 4 The above all-or-nothing deal is well-
defined, (i.e., Vi E N: 0 < Pi < 1; ~i~1Pi = 1.) and
gives each agent i an expected utility which is exactly
the Shapley Value ui.

Evaluation of the Mechanism

The above mechanism gives each agent its Shapley
Value. The mechanism is thus symmetric and effi-
cient (i.e., satisfying group rationality), and also sat-
isfies the criterion of individual rationality. However,
as was seen in Example 2, no mechanism can guar-
antee coalition rationality. Besides failing to guaran-
tee coalition rationality, the mechanism also does not
satisfy the simplicity condition. It requires agents to
calculate the Shapley Value, a computation which has
exponential computational complexity.

The computational complexity of a mechanism
should be measured relative to the complexity of the
agent’s standalone planning problem. This relative
measurement would then signify the computational
overhead of the mechanism. Each agent in a Task Ori-
ented Domain needs to calculate the cost of his set
of tasks, i.e., to find the best plan to achieve them.
Calculation of the value of a coalition is linear in the
number of agents in the coalition 4. The calculation of
the Shapley Value requires an evaluation of the value
of all (2’~) possible coalitions. In Section below we will
show that there exists another Shapley-based mecha-
nism that has linear computational complexity.

Concave TODs
We here review definitions of concave Task Oriented
Domains, discussed by Zlotkin and Rosenschein in [0]i

4The cost of set of task need to be calculated only linear
number of times.
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Definition 10 [Concavity]: TOD < 7",.,4, e > will
be called concave if for all finite sets of tasks X C
Y, z c 7", we have c(Y 0 Z)- c(Y) < c(X U Z)- c(X).

In other words, the cost that arbitrary set of tasks
Z adds to set of tasks Y cannot be greater than the
cost Z would add to a subset of Y.

Theorem 5 All concave TODs are also subadditive.

All concave TODs are also subadditive. It turns out
that general subadditive Task Oriented Domains can
be restricted, becoming concave Task Oriented Do-
mains. For example, the Postmen Domain is subad-
ditive, when the graphs over which agents travel can
assume any topology. By restricting legal topologies
to trees, the Postmen Domain become concave.
Definition 11 A coalition game with transferable
utility in normal characteristic form (N, v) is convex
if for any coalitions S, V, v(S) + v(V) < v(S U V) 
v(S n v).

In convex coalition games, the incentive for an agent
to join a coalition grows as the coalition grows. Just as
there is a relationship between subadditive TODs and
superadditive coalition games, so there is a relationship
between concave TODs and convex coalition games.

Theorem 6 Any encounter (T1,T2,...,Tn) in a con-
cave TOD induces a convex coalition game (N, v).

Theorem 7 [Shapley (1971)]: In convex coalition
games, the Shapley Value always satisfies the criterion
of coalition rationality.

In concave TODs, the Shapley-based mechanism in-
troduced above is fully stable, i.e., satisfies individual,
group and coalition rationality.

The Random Permutation Mechanism
The Shapley Value is equal to the expected contribu-
tion of an agent to the full coalition, assuming that all
possible orders of agents joining and forming the full
coalition are equally likely.This leads us to a much sim-
pler mechanism called the Random Permutation Mech-
anism: Agents choose a random permutationand form
the full coalition, one agent after another, according
to the chosen permutation. Each agent (i) gets util-
ity (wi) that equal to its contribution to the coalition,
at the time he joined it. This is done by agreeing
on the all-or-nothing deal, (Pl,P2,...,Pn), such that:

Theorem 8 If each permutation has an equal chance
to be chosen, then the Random Permutation Mecha-
nism gives each agent an expected utility that is equal
to its Shapley Value.

The Shapley-based Random Permutation Mecha-
nism does not explicitly calculate the Shapley Value,
but instead calculates the cost of only n sets of tasks.
Therefore, it has linear computational complexity. The
problem of coalition formation is reduced to the prob-
lem of reaching consensus on a random permutation.

Consensus on Permutation

No agent would like to be the first one that starts the
formation of the full coalition (since this agent by defi-
nition gets zero utility). If the domain is concave (and
therefore the coalition game is convex), each agent has
an incentive to join the coalition as late as possible.
To ensure stability, we need to find a consensus mech-
anism that is resistant to any coalition manipulation.
No coalition should be able, by coordination, to influ-
ence the resulting permutation such that the members
of~the coalition will be the last ones to join the full
coalition. For example, this means that no coalition of
n- 1 agents could force the single agent that is out of
the coalition to go first.

We will use the simple cryptographic mechanism
that allows an agent to encrypt a message using a
private key, to send the encrypted message, and then
to send the key such that the message can be unen-
crypted.

Using these tools, each agent chooses a random per.
mutation and a key, encrypts the permutation using
the key, and broadcasts the encrypted message to all
other agents. After he has received all encrypted mes-
sages, the agent broadcasts the key. Each agent un-
encrypts all messages using the associated keys. The
consensus permutation is the combination of all per-
mutations.

Each agent can make sure that each permutation has
an equal chance to be chosen even if he assumes that
the rest of the agents are all coordinating their permu-
tations against him (i.e., trying to make him be the
first). All he needs to do is to choose a random per-
mutation. Since his permutation will also be combined
into the final permutation, everything will be shuffled
in a way that no one can predict.

The Random Permutation Mechanism has only lin-
ear computational complexity and uses a linear number
of broadcasts. When it is implemented using crypto-
graphic tools, it is a non-manipulable Shapley-based
mechanism, and therefore symmetric, efficient, and in-
dividual rational. In concave TODs, it is also coalition
rational.

Conclusions
We have considered the kinds of n-agent coordination
mechanisms that can be used in Task Oriented Do-
mains (TODs), when any sub-group of agents may
engage in task exchange to the exclusion of others.
We concentrated attention on subadditive TODs, and
showed that the full coalition is the most efficient coali-
tion. We discussed attributes that might be desirable
in a mechanism that divides group utility among its
members.

We presented a simple Shapley Value-based coalition
formation mechanism that uses cryptographic tech-
niques for subadditive TODs. The mechanism is ef-
ficient, symmetric, and individual rational. When the
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domain is also concave, the mechanism also satisfies
coalition rationality.

Future research will consider non-subadditive TODs.
It will also consider issues of incentive compatibility in
multi-agent coalition formation, investigating mecha-
nisms that can be employed when agents have partial
information about the goals of their group members
and can deceive one another about this private infor-
mation.
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