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Abstract. In this paper we explore some of the connections between
cooperative game theory and the utility maximization framework for
routing and flow control in networks. Central to both approaches are
the allocation of scarce resources between the various users of a net-
work and the importance of discovering distributed mechanisms that
work well. The specific setting of our study is ad-hoc networks where a
game-theoretic approach is particularly appealing. We discuss the under-
lying motivation for the primal and dual algorithms that assign routes
and flows within the network and coordinate resource usage between the
users. Important features of this study are the stochastic nature of the
traffic pattern offered to the network and the use of a dynamic scheme
to vary a user’s ability to send traffic. We briefly review coalition games
defined by a characteristic function and the crucial notion of the Shap-
ley value to allocate resources between players. We present a series of
experiments with several test networks that illustrate how a distributed
scheme of flow control and routing can in practice be aligned with the
Shapley values which capture the influence or market power of individual
users within the network.

1 Introduction

In this paper we explore some of the connections between cooperative game the-
ory and the utility maximization framework for routing and flow control in net-
works. Central to both approaches are the allocation of scarce resources between
the various users of a network and the importance of discovering distributed
mechanisms that work well.

The specific setting of our study is ad-hoc networks and we examine the
scheme proposed in [5].

The paper is organized as follows. In Sect. 2 we explain the basic model and
quantites of interest largely following the notation used in [5]. We discuss the
underlying motivation for the primal and dual algorithms that assign routes
and flows within the network and coordinate resource usage between the users.
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Important features of this study are the stochastic nature of the traffic pattern
offered to the network and the use of a dynamic scheme to vary a user’s ability
to send traffic. We also review coalition games defined by a characteristic func-
tion and the crucial notion of the Shapley value to allocate resources between
participants.

Section 3 presents a series of experiments with several test networks that
illustrate how a distributed scheme of flow control and routing can in practice
be aligned with the Shapley values which capture the influence or market power
of individual users within the network.

2 Models

In this section we outline the basic models and quantities of interest. The essen-
tial features follow those given in [5].

2.1 Basic Models

Let N be the set of nodes and let R be a set of routes. For each j ∈ N
write RS(j) ⊂ R for the set of routes which start at j and RD(j) ⊂ R for
the set of routes which end at j.

For each source s we will denote by xs the flow starting at s which flows at
rate yr on route r ∈ RS(s) with

xs =
∑

r∈RS(s)

yr . (1)

Then the amount of flow, cj , through a node j ∈ N is given by

cj =
∑

r:j∈r∧r∈RS(j)∪RD(j)

yr +
∑

r:j∈r∧r �∈RS(j)∪RD(j)

2yr (2)

where the first term aggregates all flows either starting or ending at j and where
the second term aggregates all flows transiting both in and out of node j (and
thus contribute twice to the quantity cj). A node is constrained by some capac-
ity, Cj , for aggregate flow so that

cj ≤ Cj ∀j ∈ N . (3)

Similarly, we suppose that receiving and transmitting flows by a node con-
sumes electrical power and we write γj for the power consumed at node j which
we express in terms of the flows as

γj =
∑

r∈RS(j)

yre
T
jr +

∑
r∈RD(j)

yre
R +

∑
r:j∈r∧r �∈RS(j)∪RD(j)

yr

(
eR + eT

jr

)
. (4)

Here we suppose that the power consumed at node j by a flow of rate yr is yre
R

for receiving and yre
T
jr for forwarding from j to the next node along the route r
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after node j. We further suppose that receiving power consumption does not
depend on the identity (and hence location) of the transmitter whereas trans-
mitting does depend on the identity of the receiver. The total power consumed
at node j is constrained by a quantity Γj , that is

γj ≤ Γj ∀j ∈ N . (5)

2.2 Optimization Framework

Here we shall describe how flows xs are determined given the constraints on
bandwidth Cj and power consumption Γj .

We shall suppose the existence of prices μjr for use of node j by a unit amount
of flow on route r and determine flows xs and yr by a primal algorithm such
that

xs =
∑

r∈RS(s)

yr =
ws

minr∈RS(s)
∑

j∈r μjr
(6)

for given quantities ws and with the proviso that yr is only positive on routes r
that attain the minimum in the denominator of the expression on the right-
hand side. Thus, the action is to select flows such that the rate of spend-
ing, xs

∑
j∈r μjr , is minimal over the choice of routes r ∈ RS(s) and has value ws

per unit time.
The underlying rationale for this primal algorithm is that of proportional

fairness which adopts a maximization of utility with the specific choice U(x) =
w log x as the utility function [4,7,10].

The prices μjr are intended to depend on current flows xs in order to align
demand for resources of bandwidth and power with their provision given in
term of the quantities Cj and Γj . The dependence is through separate prices for
bandwidth and power written μB

j and μP
j , respectively. Specifically, we write

μjr =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

eT
jrμ

P
j + μB

j j is the source for route r (so r ∈ RS(j))(
eR + eT

jr

)
μP

j + 2μB
j j is a transit node for route r

(so j ∈ r ∧ r �∈ RS(j) ∪ RD(j))
eRμP

j + μB
j j is the destination for route r (so r ∈ RD(j)) .

(7)
All the flows xs, yr and the various prices μjr, μ

B
j , μP

j will further depend on
time and we use this dependence to specify the dual algorithm in which prices
are adjusted over time according to the following equations

d

dt
μB

j (t) =
κμB

j (t)
Cj

(cj − Cj) (8)

d

dt
μP

j (t) =
κμP

j (t)
Γj

(γj − Γj) (9)

where κ is a small positive constant.
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2.3 Coalition Games and Shapley Values

We now turn to coalition games and their use in resource allocation problems.
We suppose that a game is composed of a collection of N players corresponding
to the source nodes in the ad-hoc network and that for each subset or coalition
of players S ⊆ N there is a payoff v(S) given by the characteristic function.
The characteristic function, v : P(N) 
→ R, determines the maximum payoff
that the coalition S can guarantee themselves by coordinating the actions of its
members, whatever the other players decide. See [8,9] for further discussion of
coalition games and the Shapley value approach.

We shall assume that v(∅) = 0 and that v(·) is superadditive, that is

v(S ∪ T ) ≥ v(S) + v(T ) (10)

whenever S ∩ T = ∅.
An important notion for allocating the value v(N) of the full coalition amongst

the players is given by the Shapley value φi(v) defined by

φi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!
|N |! (v(S ∪ {i}) − v(S)) . (11)

It may shown that the vector of Shapley values (φi(v) : i ∈ N) forms an
imputation. That is, they are an assignment of the value v(N) between the
players where the assignment to player i is at least as great as they could obtain
independently of the other players so that

∑
i∈N

φi(v) = v(N) (12)

φi(v) ≥ v({i}) , ∀i ∈ N . (13)

Note that to compute the Shapley values we require the characteristic func-
tion v(S) to be determined for each of the 2N possible coalitions of the full set
of players N . In our experiments described later in Sect. 3 we have 10 players
and so there are 210 = 1024 possible coalitions to consider.

The primal and dual algorithms are motivated by the underlying utility max-
imization framework and there is a large body of work that now supports that
approach. A recent survey of this approach is given in [3]. The central notions
are economic ones and relate to competitive Walrasian equilibria in exchange
markets [8,10]. A connection between the non-cooperative notions of compet-
itive equilibria and the cooperative notion of a Shapley value is through the
value equivalence theorem of [2]. This work establishes how in a continuum set-
ting of many small players the allocations associated with the Shapley values
are the same as the competitive allocations. The approach we take studies these
allocations in ad-hoc networks with a finite numbers of players.
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The value equivalence theorem builds on earlier work that establishes a core
equivalence theorem relating in a similar continuum setting the competitive
allocations to those in the core of the game [1,8]. In general, the core of a
cooperative game in characteristic form is the (possibly empty) set of imputa-
tions (xi : i ∈ N) such that

∑
i∈S

xi ≥ v(S) ∀S ⊂ N . (14)

We do not study the core further in this paper but instead concentrate on the
use of the Shapley values.

2.4 Stochastic Features

The experiments discussed in Sect. 3 add stochastic features to the model dis-
cussed so far. We shall suppose that each source node s is controlled by a Markov
process Ds(t) that assigns the destination node for the current flow starting at s.
We also allow Ds(t) to take a further state, labelled 0, indicating that there is
no current flow associated with source node s. Thus, Ds(t) ∈ {0, 1, . . . , N} \ {s}
and Ds(t) = d (d �= 0) means that the user s has flow starting at s and ter-
minating at d. If Ds(t) = 0 then the user s is currently inactive and necessar-
ily xs(t) = 0. As the Markov processes (Ds(t) : s ∈ N) change state then so
do the sets RS(·) and RD(·) describing the sets of routes corresponding to the
random source-destination pairs.

In our experiments the random holding times in the different states are in-
dependent exponentially distributed random variables with a common parame-
ter λ. The permitted transitions of Ds(t) are such that from the inactive state
(Ds(t) = 0) the source will select any destination from {1, 2, . . . , N}\{s} equally
likely. In the active state (Ds(t) �= 0) the only transition is to the inactive state.
Thus a source alternates between inactive and active periods with a destination
node chosen uniformly at random for each successive active period.

The stochastic effects of the traffic patterns changing over time will accord-
ingly imply a continual adjustment of flows and prices using the joint primal
and dual algorithms. In our experiments we have further adopted the simplifica-
tion that routes chosen (by the least cost primal algorithm) do not subsequently
change during an active period even though prices may fluctuate to an extent
that the chosen routes are nolonger least cost ones.

Thus, the primal algoirthm of equation (6) is revised to

xs(t) =
ws(t)

minr∈RS(s)
∑

j∈r μjr(t)
(15)

if Ds(t) �= 0 and xs(t) = 0 if Ds(t) = 0. The routes r for which yr > 0 are
determined by the minimum above when the flow initially becomes active and
are then maintained without change throughout the active period.
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2.5 Dynamic Schemes

A net balance of transit costs earned over those paid is maintained by the quan-
tity, bs(t), defined for each s ∈ N by

d

dt
bs(t) =

∑
r∈RS(s)

yr(t)μsr(t) − ws(t) (16)

with the initial condition bs(0) = 1. The first term measures revenue from
transit fees per unit time and the second term, ws(t), as already noted, is
the spending rate of source node s on its transit costs incurred by its flow
of xs(t) =

∑
r∈RS(s) yr(t). Here we allow the possibility that spending rates

will vary over time as the function ws(t).
Furthermore, we assume that each source node has an initial endowment,

bs(0), of one unit.

3 Experiments

Having reviewed the basic theory and choice of mechanisms which underly our
model we now explore through a number of experiments the joint behaviour of
the ad-hoc network.

Figure 1 shows the set of 10 nodes, here labelled N = {A, B, . . . , J}, placed
uniformly at random in a square of side 100 units as considered in [5]. Edges
are shown between pairs of distinct nodes that are a Euclidean distance of no
more than 56 units apart. The purpose of these edges is to define the set of
routes available for flow. A possible flow must be along a route corresponding
to a path in the network. The network shown in Fig. 1 is connected but we
shall also consider subnetworks defined by subsets of nodes (and just the edges
incident to nodes within the subset). It is possible for such subnetworks to fail
to be connected (the choice of distance threshold 56 controls which subnetworks
are disconnected). In our experiments we have taken that for a disconnected
subnetwork the flows are set to x(t) = 0 throughout the subnetwork. Other
possibilites could include considering connected components separately.

We shall also consider in our experiments the effect of movement by the nodes
to new locations. Figure 2 shows a new network where node B has moved from
a location on the extreme of the network to a new location determined by the
centroid of the remaining 9 nodes.

In the experiments we have taken the following choice of parameters. The gain
parameter in the primal and dual algorithms is κ = 0.05, the power coefficients
are eR = 0.001 and eT = 0.0001 × d where d is the Euclidean distance from
the transmitting node to the receiver. The bandwidth capacity is Cj = 10 and
the power constraint is Γj = 0.5. The distributions of the holding times for
the active and inactive periods are independent exponential distributions with
means λ−1 = 0.5 seconds.

In the next section we shall discuss the choice of the spending rate parame-
ter, ws(t), for the primal algorithm and discuss two important classes of scheme:
a static case and a dynamic case.



Coalition Games and Resource Allocation in Ad-Hoc Networks 393

●

●

●

●●

●

●

●

●

●

A

B

C

DE

F

G

H

I

J

Fig. 1. A network of 10 nodes N =
{A, B, . . . , J} located uniformly at ran-
dom in a square of side 100 units. An
edge is shown between each pair of
nodes separated by a Euclidean dis-
tance of at most 56 units.
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Fig. 2. A second network of 10
nodes N = {A, B, . . . , J}: compared to
the first network B has now moved to
the centroid of the remaining 9 nodes
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Fig. 3. Node balances over time with a static choice of ws(t) = 0.3. The labels in the
right hand margin identify the node(s). The node balances show clear trends: some
increasing and some decreasing.

3.1 Static Schemes

We now describe a series of experiments with a static choice of spending rate
parameter fixed over time at a value ws(t) = 0.3 the same for each source node.

Figure 3 shows the net balance bs(t) over time for a simulation of dura-
tion 10,000 seconds. All the balances show either clear increasing trends or clear
decreasing trends according to whether the spending rate of 0.3 units per second
is above or below the rate of earning from transit fees charged to other flows.

Such inbalances between spending and earning reflect a disparity between the
market power of the users and the allocation obtained. We demonstrate this by
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Table 1. Sample means and standard deviations of node throughputs calculated from
50 independent replicates

Node A B C D E F G H I J

Mean 4.15 4.16 5.50 6.76 7.56 3.75 6.17 8.16 5.38 7.70
Standard deviation 0.02 0.02 0.03 0.03 0.05 0.02 0.04 0.05 0.02 0.06

considering the observed throughputs under the static scheme with the Shapley
values constructed from a characteristic function formed from the system-wide
throughput of the subcoalitions S ⊂ N for each of the 210 = 1024 possible
subcoalitions of the 10 nodes.

The specific details of the Shapley value calculation are described as follows.
First, for each subcoalition, S, of users the subnetwork was tested for connected-
ness. If the subnetwork was disconnected then we set v(S) = 0. For the connected
subnetworks we set

v(S) = max
S′⊆S

X(S′) (17)

where X(S′) was the observed system-wide throughput of subnetwork S′. Note
that X(S′) = 0 if S′ is disconnected. The use of the maximum over all subcoali-
tions S′ was to ensure the superadditivity property of the characteristic function.
In some subnetworks, S, it was observed that X(S′) > X(S) for S′ ⊂ S which
prevents taking v(S) = X(S) for the characteristic function.

The definition in equation (17) thus admits the coordinated action of the
players of the subcoalition to drop a player if that would strictly increase system-
wide throughput even if this wasn’t the observed behaviour of the scheme when
simulated. Further performance metrics besides system-wide throughput could
easily be incorporated into the definition of the quantity X(·). See [6] for an
alternative means of ensuring the superadditivity property which has important
connections with the game-theoretic notion of a stable set of imputations.

The random quantity, X(S), was estimated in our experiments by a long-
run average over the randomly varying traffic patterns driven by the Markov
processes (Ds(t) : s ∈ N). Table 1 shows the sample means and sample standard
deviations of the node throughputs from 50 independent simulation replicates.
The standard deviations show little variability in the estimates of the mean.

Figures 4 and 5 show the correspondence between the observed throughputs
and the Shapley values and in each case the proportion of throughput or of
the sum of the Shapley values, v(N) =

∑
i∈N φi(v) is given. As just noted it is

possible for the system-wide throughput to be less than v(N) and so we consider
proportions only throughout our comparisons.

Figure 4 shows the Shapley values and observed throughputs according to the
locations of the nodes. It is clear that nodes at extreme locations (such as B,
C, E and H) receive far larger shares of the system-wide throughput than is
allocated by the share of the Shapley value. Conversely, nodes close to the centre
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Fig. 4. Shapley values and observed
values for the proportion of through-
puts by node with static choice
of ws(t) = 0.3. The radius of the circles
measure either the proportion of the
Shapley value or the observed through-
put.
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Fig. 5. Scatter plot of observed val-
ues and Shapley values with the static
choice of ws(t) = 0.3. The near hori-
zontal dashed line is a least squares fit
to the data points.

of the network (such as A, F and I) receive smaller shares of the system-wide
throughput than those allocated according to the Shapley value.

These effects are also apparent from Fig. 5 which shows a scatter plot of the
shares of the throughputs and Shapley values. Also shown here is the dashed
line given by least squares fit to the data which is far from diagonal.

The dynamic models of the next set of experiments attempt to correct this
bias which favours nodes at the extreme of the network with little market power
in preference to those near the centre of the network with the largest Shapley
values.

3.2 Dynamic Schemes

Here we take the spending rate parameters as the functions of the balance bs(t)
given by

ws(t) = αbs(t) (18)

for a constant α ∈ (0, 1). For the experiments discussed here we took α = 0.3.
In this way a larger balance feeds through to a higher spending rate and if the
net balance drops the spending rate is reduced accordingly.

Figure 6 shows the net balances under the dynamic scheme. All balances start
at bs(0) = 1 given by the initial endowment and then evolve over time to fluctuate
about constant levels. The sum of the net balances,

∑
s∈N bs(t) = N = 10

remains fixed over time since all spending by one node is earnt by other nodes.
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node with dynamic choice of ws(t) =
αbs(t). There is a much closer corre-
spondence between the Shapley values
and the observed throughputs in the
dynamic case.
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From Fig. 6 we can see that nodes B and C have net balances bs(t) that
converge to zero while node I has the highest net balance. Figures 7 and 8 show
the shares of system-wide throughput and of Shapley value obtained under the
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Fig. 9. Shapley values and observed
values after node B has moved to the
centroid
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Fig. 10. Scatter plot of the propor-
tion of Shapley values and observed
throughputs after node B has moved
to the centroid

Table 2. Estimated node throughputs under the dynamic scheme in the two networks

Node A B C D E F G H I J

B at extreme 5.81 0.01 0.02 9.06 2.27 4.81 8.25 3.45 8.76 10.02
B at centroid 5.86 11.16 0.02 10.51 2.19 3.52 9.05 3.28 11.56 9.92

dynamic scheme. We can see that there is a much closer correspondence between
the observed share of the throughput obtained by each player and that given
by the Shapley value approach. Thus market power and outcomes have been
more closely aligned than under the static scheme. The line of least squares fit
to the dynamic data is very close to the diagonal line and the departures from
the diagonal line are more modest than for those in the static scheme.

Figures 9 and 10 show the dynamic scheme in operation in the second net-
work where node B is nolonger on the periphery of the network but placed
at the centroid of the remaining 9 nodes. The figures show that the shares of
the system-wide throughput and of the Shapley value are quite tighly aligned
around the diagonal line in Fig. 10. In [5], the authors considered a trajectory for
node B which started at the extreme position and passed through the centroid
position and then on towards the upper boundary of the square. The system-
wide throughput increases as B moves along this trajectery towards the centroid.
In our experiments the throughput increased from 52.45 to 67.07. In both net-
work scenarios the allocations obtained by the dynamic scheme closely align
with Shapley values and thus the market power of the node. Table 2 shows the
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node throughputs obtained under the dynamic scheme in the two networks and
reveals that the majority of the additional system benefit arising as B moves to
the more favourable position at the centroid accrues to B itself.

4 Conclusions

In this paper we have studied the scheme for resource allocation given in [5] for
ad-hoc networks and have explored the connections between this scheme and
notions from cooperative game theory. The Shapley value is one such notion
that has enabled a broader understanding of how resource allocation takes place
with this scheme.

Further work remains to investigate how widely these connections between
cooperative game theory and the underlying utility maximization framework for
flow control and routing in networks can be extended.

Acknowledgements. RJG acknowledges support from the UK EPSRC grant ref-
erence GR/S86266/01 and the International Technology Alliance in Network and
Information Science (ITA).
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