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Abstract 

Forming effective coalitions is a major problem in 

multiagent systems. Coalition structure generation (CSG) 

involves partitioning a set of agents into teams, i.e. 

coalitions. A coalition structure is a set of coalitions. In the 

context of the CSG research, our goal is forming the 

coalition structure that maximizes the social surplus. The 

social surplus is the sum of utilities obtained by forming 

coalitions. Calculating the optimal coalition structure is 

time consuming, therefore recalculating the optimal 

coalition structure should be avoided when an agent leaves 

a coalition structure because of sudden reasons such as an 

accident or an illness. Robust coalition structure generation 

(RCSG) is a variant of CSG focused on the robustness of a 

coalition structure. The robustness of coalition structure is 

the property that the social surplus is kept at the maximum 

when any agents leave the coalition structure. We focused 

on the robustness of each coalition in a coalition structure 

to solve an RCSG problem. Our method finds the optimal 

coalition structure considering the robustness of each 

coalition in the optimal coalition structure. We proposed a 

coalition lattice, which is a novel data structure to represent 

the robustness of coalitions. The paper presents an 

algorithm to construct the coalition lattice from a CSG 

problem and the result of our evaluation. 

Keywords: robust coalition structure generation, robustness 

of coalitions, partial linear model, coalition lattice. 

1. Introduction 

Forming effective coalitions is a major problem in 

multiagent systems. Coalition structure generation (CSG) 

involves partitioning a set of agents into teams, i.e. 

coalitions
(1,2)

. A coalition structure is a set of coalitions. In 

the context of the CSG research, our goal is forming the 

coalition structure that maximizes the social surplus, the 

sum of utilities obtained by forming coalitions. 

Algorithms to find the optimal coalition structure for 

CSG have been proposed. Yeh et al.
(3)

 proposed an 

algorithm based on dynamic programming. Rahwan et al.
(4)

 

proposed Integer Partition (IP) algorithm that is one 

example of anytime algorithms. Rahwan and Jennings
(5)

 

proposed an algorithm that consists of IP algorithm and 

dynamic programming. Michalak et al.
(6)

 proposed a 

decentralized algorithm for optimal coalition structure 

generation problem.  

The robustness of coalition structures is a new important 

problem. The robustness of a coalition structure is the 

property that the social surplus is kept at the maximum 

when any agents leave the coalition structure. Robust 

coalition structure generation (RCSG) is CSG focused on 

the robustness of coalition structures. Okimoto et al.
(7)

 

defined the framework for robust team formation problem 

(RTFP). RTFP is equal to forming a robust coalition in 

RCSG. Okimoto et al. presented the computational 

complexity of RTFP that the order of computational 

complexity is not increased even if we consider the 

robustness of teams. 

We focus on the robustness of coalitions to solve an 

RCSG problem. We developed a conversion algorithm 

from a CSG problem to an RCSG problem under the 

assumption that the characteristic function based on the 

partial linear model, i.e., the characteristic function does not 

satisfy superadditivity and monotonicity partially. We 

propose a coalition lattice, which is a novel data structure to 

represent the robustness of coalitions and present the 

method to solve an RCSG problem. 
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2. Robust Coalition Structure Generation 

(RCSG) Problem 

Robust coalition structure generation (RCSG) problem is 

one of coalition structure generation (CSG) problems 

considering the robustness of the solution
 (8)

. 

Let n be the number of agents, and let A = {a1,a2,…,an}  

be the set of agents. A subset of agents, i.e., a coalition, is 

denoted by S ⊆ A . Let CS be a partition of A  where CS 

is satisfying (1). 

∀i, j i ≠ j( ),  Si∩S j =∅,  S
i
= A

Si∈CS

     (1) 

Each agent belongs to only one coalition at the same time. 

A characteristic function v : 2
A
→Ν  is given. The N is the 

utility of the cooperation with agents of coalition S, denoted 

by v(S) . We assume that v can be calculated in polynomial 

time. The utility of CS, i.e. the social surplus, denoted by 

V (CS) . The value of V (CS)  is calculated by (2). 

V CS( ) = v S
i( )

S
i
∈CS

∑ 	
 	
 	
 (2) 

The optimal coalition structure CS
*
 satisfies (3). 

∀CS :V CS( ) ≤V CS
*( ) 	
 	
 	
 (3) 

Let k be a non-negative integer and A '  be a subset of 

A . CS is the k-robust coalition structure if any coalition 

structure CS’ of A \ A '  does not satisfy (4) where k ≤ "A  

0 ≤ k ≤ A − 2( ).  In CSG, any coalition structure should be 

the 0-robust coalition structure. And the range of k is 

0 ≤ k ≤ A − 2  because all coalition structures are 

A −1( ) -robust coalition structures. 

V CS \ !A( ) <V C !S( ) 	
 	
 	
 (4) 

We should consider 
A
C
k

 patterns to distinguish 

whether the coalition structure is the k-robust coalition 

structure. Fig. 1 shows the example of the judgment of the 

1-robust coalition structure in the case that the number of 

agents is 4, i.e., A = 4 . In Fig. 1, coalition structure (a) is 

one of coalition structures of “Agent 1 to 4.” For (a) to be 

the 1-robust coalition structure, the social surplus of (a) 

should be maximum if any agent leaves (a). Therefore we 

should consider the cases of each agent leave (a) to 

distinguish whether (a) is the 1-robust coalition structure or 

not. Fig. 1 shows the case that “Agent 1” leaves (a). Then, 

we should calculate the social surpluses of all coalition 

structures formed by “Agent 2 to 4.” In Fig. 1, coalition 

structure (b), (c), (d), and (e) are coalition structures of 

“Agent 2 to 4” (except (a)). The social surplus of (a) 

without “Agent 1” should be more than the social surpluses 

of (b), (c), (d), and (e). The social surplus of (a) without 

another agent should be the greatest.  

Now, let CSR be the k-robust coalition structure and CSR’ 

be the k’-robust coalition structure. In RCSG, CSR 

dominates CSR’ if and only if k ≥ k '  and 

V (CS
R
)>V (CS

R
') , or k > k '  and V (CS

R
) ≥V (CS

R
') . 

And CSR is the Pareto optimal and robust coalition structure 

if CSR’ that dominates CS does not exist. In RCSG, our goal 

is to find Pareto optimal and k-robust coalition structures 

where k ≤ "A  0 ≤ k ≤ A − 2( ).  Finding Pareto optimal 

and k-robust coalition structures takes enormous times 

clearly. Therefore the effective method to find the k-robust 

coalition structure is necessary. 

3. Characteristic Function Based on Partial 

Linear Model 

 In coalition structure generation (CSG) problem, there 

are researches focused on the notation of the characteristic 

function
(9)

. There are properties such as superadditivity and 

monotonicity in the characteristic function. When the 

characteristic function satisfies the superadditivity, any 

coalitions Si and Sj where Si∩S j =∅  should satisfy 

v(Si )+ v(S j ) ≤ v(Si∩S j ) . When the characteristic function 

satisfies the monotonicity, any coalitions S and S’ where 

Fig. 1. The example of the judgment of 1-robust. 

TABLE I: All coalitions and utilities of them. (n = 4) 

v v(S) P/N v v(S) P/N 

v({a1}) 1 P v({a2, a4}) 4 N 

v({a2}) 5 P v({a3, a4}) 9 P 

v({a3}) 3 P v({a1, a2, a3}) 10 P 

v({a4}) 4 P v({a1, a2, a4}) 7 N 

v({a1, a2}) 8 P v({a1, a3, a4}) 10 P 

v({a1, a3}) 5 P v({a2, a3, a4}) 8 N 

v({a1, a4}) 3 N v({a1, a2, a3, a4}) 19 P 

v({a2, a3}) 5 N    
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S '⊆ S  should satisfy v(S) ≥ v(S ') . 

 We assume the characteristic function does not satisfy 

superadditivity and monotonicity partially. We apply a 

sparse characteristic function for simplification, which is a 

characteristic function based on the partial linear model 

with a few non-linear parts. In the linear model, the utility 

of S is the sum of utilities of all coalitions formed by one 

agent in S. In this paper, the percentage of non-linear 

utilities of coalitions is called non-linear degree (%). And 

we premise that the non-linear degree is small enough. 

4. Robustness of Coalitions 

	
 Let a  be the agent. The utility of coalition {a}  is 

denoted by v({a}) . In this paper, coalition Sp  satisfying 

(5) is called a positive coalition, and coalition S
n

 

satisfying (6) is called a negative coalition. All coalitions 

that consist of a single agent are positive coalitions. 

v Sp( ) > v a
i{ }( )

ai∈Sp

∑ 	
 	
 	
 (5) 

v S
n( ) < v a

i{ }( )
a
i
∈S

n

∑ 	
 	
 	
 (6) 

Fig. 2 shows the example of the classification of 

coalitions. In Fig. 2, there are two agents, “Agent 1” and 

“Agent 2.” The utility of the coalition formed by only 

“Agent 1” is one, and the utility of the coalition formed by 

only “Agent 2” is two. Therefore the sum of them is three. 

If the utility of the coalition formed by “Agent 1 and 2” is 

five, the coalition is a positive coalition because the utility 

is greater than three. If the utility of the coalition formed by 

“Agent 1 and 2” is two, the coalition is a negative coalition 

because the utility is smaller than three. 

CSG and RCSG problem are the same in respect to 

forming the coalition structure that makes the social surplus 

greater. For example, let CS1 be the coalition structure 

including negative coalition S
n
= {a

1
,a

4
} , and CS2 be the 

coalition structure including {{a1},{a4}}  instead of S
n

. 

Then V (CS1)  is less than V (CS2 ) . Coalition structures 

should have positive coalitions as possible. And coalition 

structure should not have negative coalitions. Because the 

social surplus of the coalition structure that includes 

negative coalitions becomes less than the one that does not. 

In CSG, we can find the optimal coalition structure 

efficiently by considering only positive coalitions. In 

addition, we should consider the robustness of the coalition 

structure in RCSG. CS is the k-robust coalition structure in 

RCSG if no coalition structure CS’ of A \ A '  satisfying  

(4) exists. Computational complexity becomes clearly more 

enormous in RCSG than in CSG. Because we need to 

calculate all optimal coalition structures formed by 

elements of A \ A '  to find the k-robust coalition structure.  

We need to consider all cases that any k agents leave CS 

to distinguish whether CS is the k-robust coalition structure 

or not. CS consists of one or more coalitions. Therefore at 

most k agents potentially leave one of the coalitions in 

RCSG. Then let S’ be the subset of S where S’ is formed by 

remaining agents except k agents in S. We should consider 

the utility of S’. In our research, we focus on the robustness 

of coalitions to find coalition structures with robustness 

efficiently. In this paper, the robustness of S is the property 

that S’ is not a negative coalition if any agents leave S. 

	
 Let Sp be a positive coalition. To be a k-robust coalition 

structure, CS including Sp should keep the utility maximum 

if k agents leave CS. Therefore at most k agents may leave 

Sp. Let Sp’ be a subset of Sp. And let CS '  be the coalition 

structure including Sp’. Sp’ should not be a negative 

coalition. Because V (CS ')  is less than that includes 

coalitions which Sp’ is dissolved instead of Sp’. Let 

S
n
(⊂ Sp) be the negative coalition. S

n

*
 is calculated by (7). 

And the value of k is calculated by (8). Then we call Sp
 

k-L-robust coalition. When S is a k-L-robust coalition, 

S '(⊂ S)  is not a negative coalition if any k agents leave S. 

Fig. 3. Coalition lattice in case of Table I. 

 

Fig. 2. Positive and negative coalition.  
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We can find the optimal coalition structure in RCSG by 

calculating the robustness of all coalitions. 

S
n

*
= argmax

S
n

S
n
	
 	
 	
 (7) 

k = Sp − Sn
*
−1	
 	
 	
 (8) 

5. Coalition Lattice 

	
 We need to clarify the inclusive relation of each coalition 

to calculate the robustness of coalitions. In our research, we 

propose coalition lattice CL that is a new data structure for 

the robustness of coalitions. On CL, a node is a coalition 

described in the characteristic function. And CL is the data 

structure that connected two nodes with inclusive relation 

by an arc. 

5.1 Data Structure 

	
 We summarize the example of the characteristic function 

in case that the number of agents is four 

( A = {a1,a2,a3,a4} ) in Table I. And Fig. 3 is an image of 

CL in case of Table I. CL in Fig. 3 shows the inclusive 

relations of all coalitions in case that the number of agents 

is four in Table I. And CL is assumed that the upper limit is 

the whole coalition and that the lower limit is the empty set. 

Therefore, CL is divided a floor with the number of the 

agents in the coalitions. In Fig. 3, a circular node shows a 

positive coalition and a rectangle node shows a negative 

coalition. The left lower value of each node represents the 

number digitized the robustness of the node. For example, 

if the value of a node is zero, then the coalition is 

0-L-robust. However, the robustness of an empty coalition 

is not given because the empty set has no value in the 

characteristic function. We can calculate the robustness of 

each coalition easily by constructing CL such as Fig. 3 

because we can obtain the inclusive relation of each 

coalition. 

We describe a method to calculate the robustness of each 

coalition, i.e. value k of k-L-robust, on CL. Let a be an 

agent. And let CS be the optimal coalition structure where 

CS includes the coalition {a}. When a leaves CS, 

V (CS \ {a})  is kept maximum because other coalitions in 

CS are not affected by the secession of a at all. Therefore 

the robustness of the coalition formed by a single agent is 

infinity, i.e. k =∞ . In addition, the robustness of the 

negative coalition is k = −∞  as a matter of convenience. 

Any negative coalition should not exist in CS. When 

negative coalition S
n

 exists in the child node that is the 

subset of positive coalition Sp on CL, the robustness of Sp is 

calculated by (8) where S
n
= S

n

*
. We assume the case that 

there is not negative coalition in the child node of Sp. Let 

k
min

 be the minimum value of k in the child node of Sp. 

And let S
min  be a kmin-L-robust coalition. The difference of 

the number of agents between Sp and S
min

 is M, i.e., 

M=|Sp|−|S
min

|. Even if M agents leave Sp, Sp without M 

agents is not a negative coalition. Therefore, we can 

calculate the robustness of Sp by k = k
min
+M  when there 

is not negative coalition in the child node of Sp. 

5.2 Algorithm 

 We describe an algorithm to construct a coalition lattice 

in Algorithm 1. Let CL be a coalition lattice, A be a set of 

agents, S be a coalition, and l be the numerical value of the 

robustness of S. Algorithm 1 returns a coalition lattice with 

robustness k, a set of agent A, and characteristic function v. 

CL is a set of i,S, l . ∀S ⊂ A  are sorted ascending order 

 

Algorithm 1 Construct a Coalition Lattice 

Require:  

Ensure: Necessary parts of CL 

1:  

2: for  to  do 

3:     

4: end for 

5: for  to  do 

6:     

7:    if  is positive then 

8:        

9:    else if  is negative then 

10:        

11:    end if 

12: end for 

13:  

 

k ≥ 0

CL← {}

i = 0 A

CL←CL∪ i,GetS(i),+∞{ }

i = A +1 2
A

−1

S←GetS(i)

S

CL←CL∪ i,S,Calculate(S){ }
S

CL←CL∪ i,S,−∞{ }

CL← i,S, l k ≤ l, i,S, l ∈CL{ }

 

Algorithm 2  in Algorithm 1 

Require:  

Ensure:  

1:  

2: for all  do 

3:    if  is negative then 

4:        

5:    else 

6:        

7:    end if 

8:    if  then 

9:        

10:    end if 

11: end for 

 

l =Calculate(S)

S >1

l
min
=Calculate(S)

l
min
← +∞

S
child
, l
child

∈Child(S)

S
child

l '← S − S
child

−1

l '← l
child

+ S − S
child

l
min
> l '

l
min
← l '
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by S . And index i corresponds to all coalitions. 

	
 CL is initialized in line 1 to 4 in Algorithm 1. The 

function GetS(i)  returns S corresponding to i. The value 

of i from 1 to A  represents the case where S is formed by 

a single agent. At line 3, Algorithm 1 adds the node with 

the robustness of S to CL as +∞ . 

For the coalition with more than two agents, CL is 

constructed in bottom up (as described in line 5 to 12 in 

Algorithm 1). For all coalitions, Algorithm 1 distinguishes 

S whether it is a positive or negative coalition, and adds 

each node to CL in line 7 to 11. If S is a positive coalition, 

Algorithm 1 adds the node to CL after calculating the 

robustness of S by the function Calculate(S) shown in 

Algorithm 2. Calculate(S)  returns the robustness of S by 

considering the child nodes of S. If S is a negative coalition, 

Algorithm 1 adds the node with the robustness of S to CL as 

−∞  at line 10. 

The required coalitions to find the k-robust coalition 

structure are not all coalitions on CL. To form the k-robust 

coalition structure, we should use only the coalitions that 

the robustness is greater than k. At line 13, Algorithm 1 

prunes the extra part of CL by using k. 

Fig. 4 shows the calculation of the robustness on a 

coalition lattice. The function Calculate(S)  in Algorithm 

2 takes (a) (the positive coalition in Fig. 4) as input. The 

child nodes of (a) are the positive coalition and the negative 

coalition. Let la be the robustness of (a). And let Schild be the 

child node of (a). In this case, la is calculated by 

l
a
= S − S

child
−1 . Therefore la is (N −1)− (N − 2)−1= 0 . 

Next, Calculate(S)  in Algorithm 2 takes (b) (the positive 

coalition in Fig. 4) as input. The child nodes of (b) are two 

positive coalitions. Let lb be the robustness of (b). And let 

Schild be the child node of (b). In this case, lb is calculated by 

l
b
=min(l

child
)+ S − S

child
. The function min(l

child
)  returns 

the smallest value of the robustness among the child nodes. 

In Fig. 4, the robustness of the child nodes are 2 and 0. 

Therefore lb is 0+ N − (N −1) =1 . 

We show a method to use CL. We enumerated all 

coalition structures in case that the number of agents is 4 in 

Table II. And we calculated the social surpluses of all 

coalition structures by using Table I. The greatest value of 

the social surplus is 19 in Table II. Therefore the coalition 

structure {{a1, a2, a3, a4}} is the optimal and 0-robust 

coalition structure in RCSG problem and the optimal 

coalition structure in CSG problem. We find the optimal 

and 1-robust coalition structure. In Fig. 3, the coalitions 

with the robustness that is greater than 1 are {a1, a2}, {a1, 

a3}, {a3, a4}, {a1}, {a2}, {a3}, and {a4}. We can use these 

coalitions to find the optimal and 1-robust coalition 

structure, then we check the social surpluses of coalition 

structures that are {{a1}{a2}{a3}{a4}}, {{a1, a2}{a3}{a4}}, 

{{a1, a2}{a3, a4}}, {{a1}{a2}{a3, a4}}, {{a1, a3}{a2}{a4}}. 

The social surplus of {{a1, a2}{a3, a4}} is greatest, and the 

coalition structure {{a1, a2}{a3, a4}} is the optimal and 

1-robust coalition structure. The coalition structure is also 

the optimal and 2-robust coalition structure because the 

robustness of {a1, a2}, {a1, a3}, {a3, a4}, {a1}, {a2}, {a3}, 

and {a4} are greater than two.  

In RCSG, our goal is to find Pareto optimal and k-robust 

coalition structures ( 0 ≤ k ≤ A − 2 ). Let CS0 be the 0-robust 

coalition structure, i.e. {{a1, a2, a3, a4}}. And let CS1 be the 

1-robust coalition structure, i.e. {{a1, a2}{a3, a4}}. And let 

CS2 be the 2-robust coalition structure, i.e.{{a1, a2}{a3, 

a4}}. We check the domination of them by comparing 

V(CS0), V(CS1), and V(CS2). CS0 is the Pareto optimal and 

0-robust coalition structure because no coalition structures 

dominated CS0. V(CS2) is equal to or more than V(CS1). CS1 

is not the Pareto optimal and 1-robust coalition structure 

because CS2 dominates CS1. CS2 is the Pareto optimal and 

2-robust coalition structure because no coalition structure 

dominated CS2. In RCSG, We can find Pareto and k-robust 

coalition structure by using CL. 

Fig. 4. Calculation of the robustness of coalitions on CL 

TABLE II: All coalition structures. (n = 4) 

CS V(CS) CS V(CS) 

{{a1}{a2}{a3}{a4}} 13 {{a1 , a4}{a2 , a3}} 8 

{{a1 , a2}{a3}{a4}} 15 {{a1}{a4}{a2 , a3}} 10 

{{a1 , a2}{a3 , a4}} 17 {{a1 , a2 , a3}{a4}} 14 

{{a1}{a2}{a3 , a4}} 15 {{a1 , a2 , a4}{a3}} 10 

{{a1 , a3}{a2}{a4}} 14 {{a1 , a3 , a4}{a2}} 15 

{{a1 , a3}{a2 , a4}} 9 {{a2 , a3 , a4}{a1}} 9 

{{a1}{a3}{a2 , a4}} 8 {{a1 , a2 , a3 , a4}} 19 

{{a1 , a4}{a2}{a3}} 12   
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6. Evaluation 

We inspected the execution time for constructing CL by 

using Algorithm 1 and Algorithm 2. We gathered the 

processing time to construct CL depending on the number 

of the agents and the non-linear degree. 

The result is described in Fig. 5. The range of A  is 

from 10 to 20. The range of the non-linear degree deg is 

from 10% to 100%. Each coalition is classified into positive 

or negative coalitions when deg is 100%. When A  is less 

than 15, Algorithm 1 calculated in around one second. 

However, when A  is 20 and deg is 100%, the calculation 

took about 29 minutes. It is a matter of course, but the 

execution time becomes enormous when there are a lot of 

coalitions. In our research, the number of coalitions to be 

considered will be reduced by defining the sparse 

characteristic function based on partial linear model. If the 

non-linear degree of the sparse characteristic function is 

small enough, Algorithm 1 constructs CL in around 30 

minutes in the case that A  is more than 30. 

The number of possible coalition structures increases 

exponentially with the number of agents. CSG problem is 

NP-hard. In RCSG, we typically need to calculate all cases 

that k agents leave the coalition structure to distinguish 

whether the coalition structure is the k-robust coalition 

structure or not. Finding all Pareto optimal and k-robust 

coalition structures takes an enormous amount of time. We 

typically have to calculate NP problem numerous times to 

solve RCSG problem, i.e. the computational complexity 

will be NP
NP

. 

7. Conclusion 

	
 Robust coalition structure generation (RCSG) problem is 

a two-objective combinatorial optimization problem for 

multiagent systems considering leaving coalitions. An 

RCSG problem solver should solve an exponential number 

of CSG problems. We developed on a new date structure 

and algorithm to solve the problem efficiently. 

	
 Our contribution is the coalition lattice, a novel data 

structure for translating an RCSG problem to a CSG. It 

means that an RCSG problem is solvable by using an 

existing CSG algorithm. Our evaluation showed that our 

method is feasible because the construction time of the 

coalition lattice for 20 agents is about 29 minutes at worst.  
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