
Coalition Structure Generation: Dynamic Programming Meets Anytime
Optimization

Talal Rahwan and Nicholas R. Jennings
School of Electronics and Computer Science, University of Southampton, Southampton, UK

{tr,nrj}@ecs.soton.ac.uk

Abstract

Coalition structure generation involves partitioning a set of
agents into exhaustive and disjoint coalitions so as to maximize
the social welfare. What makes this such a challenging prob-
lem is that the number of possible solutions grows exponen-
tially as the number of agents increases. To date, two main ap-
proaches have been developed to solve this problem, each with
its own strengths and weaknesses. The state of the art in the
first approach is the Improved Dynamic Programming (IDP) al-
gorithm, due to Rahwan and Jennings, that is guaranteed to find
an optimal solution in O(3n), but which cannot generate a so-
lution until it has completed its entire execution. The state of
the art in the second approach is an anytime algorithm called
IP, due to Rahwan et al., that provides worst-case guarantees
on the quality of the best solution found so far, but which is
O(nn). In this paper, we develop a novel algorithm that com-
bines both IDP and IP, resulting in a hybrid performance that
exploits the strength of both algorithms and, at the same, avoids
their main weaknesses. Our approach is also significantly faster
(e.g. given 25 agents, it takes only 28% of the time required by
IP, and 0.3% of the time required by IDP).

Introduction

A key organizational paradigm in multi-agent systems is the
coalition-based organization in which members of the same
coalition coordinate their activities to achieve the collective’s
goal(s). When effective, such coalitions can improve the
performance of the individual agents and/or the system as a
whole, especially when tasks cannot be performed by a single
agent or when a group of agents perform the tasks more effi-
ciently. Applications of coalition formation include distributed
vehicle routing (Sandholm & Lesser 1997) and multi-sensor
networks (Dang et al. 2006), among others.

To date, a number of coalition formation algorithms have
been developed to determine which of the many potential
coalitions should actually be formed. To do so, they typically
calculate a value for each coalition, known as the coalition
value, which provides an indication of the expected outcome
that could be derived if that coalition was formed. Then, hav-
ing computed all the coalition values, the decision about the
optimal coalition(s) to form can be taken. One of the main
bottlenecks that arise in this formation process is that of coali-
tion structure generation (CSG). Specifically, given the value

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of every possible coalition, the CSG problem involves parti-
tioning the set of agents into exhaustive and disjoint coalitions
so as to maximize the social welfare. Such a partition is called
a coalition structure. In this context, it is usually assumed that
the value of a coalition does not depend on the actions of non-
members. Such settings are known as characteristic function
games (CFGs). Many (but clearly not all) real-world multi-
agent problems happen to be CFGs (Sandholm et al. 1999;
Sandholm & Lesser 1997). However, finding the optimal
coalition structure in a CFG setting has been proved to be NP-
complete (Sandholm et al. 1999). To combat this complexity,
a number of algorithms have been developed in the past few
years. These can be classified as follows (Rahwan & Jennings
2008):

1. Dynamic programming: Algorithms in this class use dy-
namic programming techniques to avoid the evaluation of
every possible coalition structure. The state of the art in this
class of algorithms is the IDP algorithm (Rahwan & Jen-
nings 2008), which improves on the widely-used dynamic
programming (DP) algorithm (Yeh 1986).1 The main ad-
vantage of IDP is that, for n agents, it guarantees to find an
optimal solution in O(3n) time. However, the downside is
that it only produces a solution when it has completed its
entire execution. This means that no partial or interim so-
lutions are available, which is undesirable, especially given
large numbers of agents, since the time required to return
the optimal solution might be longer than the time available
to the agents.

2. Heuristics: A number of heuristics have been developed to
solve the CSG problem. Shehory and Kraus (1998), for ex-
ample, proposed a greedy algorithm that puts constraints on
the size of the coalitions that are taken into consideration.
Sen and Dutta (2000), on the other hand, use an order-based
genetic algorithm. Although these algorithms return solu-
tions relatively quickly, they do not provide any guarantees
on finding the optimal. In fact, their solutions can always
be arbitrarily worse than the optimal, and even if these algo-
rithms happen to find an optimal solution, it is not possible
to verify this fact.

3. Anytime optimal algorithms: The rationale behind this
line of research is that, if the search space is too large to
be fully searched, then the alternative does not necessarily
have to be applying heuristics that return “good” solutions

1More details can be found in the next section.

Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

156

with absolutely no guarantees on their quality. Between
these two extremes lies a class of anytime algorithms that
generate initial solutions that are guaranteed to be within a
bound from the optimal. These algorithms can then improve
on the quality of their solutions, and establish progressively
better bounds, as they search more of the search space, un-
til an optimal solution is found. Being anytime is important
since the search space grows exponentially with the num-
ber of agents involved, meaning that the agents might not
always have sufficient time to run the algorithm to comple-
tion. Moreover, being anytime makes the algorithm more
robust against failure; if the execution is stopped before the
algorithm would normally have terminated, then it can still
provide the agents with a solution that is better than the ini-
tial, or any other intermediate, one. The state of the art
in this class of algorithms is the IP algorithm (Rahwan et
al. 2007b), which uses a novel representation of the search
space, and uses branch-and-bound techniques that allow the
pruning of huge portions of the search space.2 However, the
algorithm is still O(nn), meaning that it might, in the worst
case, end up searching the entire space.

As can be seen, these different classes have their relative
strengths and weaknesses. Given this, there is scope to com-
bine methods to try and obtain the best features of the con-
stituent parts. In particular, we focus here on the classes that
return optimal solutions or, at least, provide guarantees on the
quality of their solutions (i.e. classes 1 and 3). Specifically, we
focus on the state of the art in both of these classes (namely
IDP and IP). By comparing these two algorithms, we find
that IP’s advantage over IDP is that it returns solutions any-
time, and that it returns an optimal solution much quicker. On
the other hand, IDP’s advantage over IP lies in the worst-case
computational complexity, which is O(3n) instead of O(nn).
Now, as discussed earlier, each of these properties (i.e. be-
ing anytime, returning an optimal solution quickly, and hav-
ing low complexity) is highly desirable. However, none of the
algorithms that are available in the literature has all of these
properties. In other words, given the current state of the art, the
agents have no choice but to give up one of these properties for
another. What would be desirable, then, is to develop an algo-
rithm that has all of these properties, even if this meant that the
“quality” of some of these properties will be slightly affected.
For example, compared to IP, it might be more desirable to use
an anytime algorithm that performs a pre-processing stage to
reduce the number of solutions that could (in the worst case)
be examined, even if this meant that the agents would have to
wait a little longer before the algorithm can return an initial
solution. Moreover, what would be even more desirable is to
have full control over this trade-off in quality between different
properties.

Against this background, our contribution to the state of the
art lies in developing a novel algorithm (called IDP-IP) that
does exactly that. As the name suggests, the main idea is to
combine IDP with IP, resulting in a hybrid approach in which
the agents can control the performance as required, depending
on the problem domain. Specifically, this is done by simply
adjusting a single parameter (denoted m) to one of the follow-
ing values: 1, 2, . . . , ⌊(2 × n)/3⌋; setting m to 1 causes the

2Again see the next section for more details.

performance to be identical to IP, and setting it to ⌊(2 × n)/3⌋
causes the performance to be identical to IDP. More impor-
tantly, setting m anywhere between these two extremes deter-
mines how much of IP’s properties, and how much of IDP’s
properties, to have in our hybrid approach. In such a case, we
expected that the time that IDP-IP requires to return an optimal
solution would be somewhere between IDP and IP. However,
we were surprised to find that IDP-IP, given a relatively small
value of m, is significantly faster than both IDP and IP!

The remainder of this paper is structured as follows. In the
next section, we analyse how IDP and IP work. We then detail
the IDP-IP hybrid and evaluate its performance.

Analysing IDP and IP

In this section, we start by explaining how DP works, and how
IDP improves on DP.3 After that, we explain how IP works.
First, however, we provide some basic notations. In particu-
lar, we will denote by A the set of agents, n the number of
agents, v the input table (i.e. v[C] is the value of coalition C),
and V (CS) the value of coalition structure CS. Moreover, the
terms “coalition structure” and “solution” will be used inter-
changeably.

The DP algorithm

The way this algorithm works is by computing two tables,
namely f1 and f2, each with an entry for every possible coali-
tion. In more detail, for every coalition C ⊆ A, the algorithm
computes f1[C] and f2[C] as follows. First, it evaluates all the
possible ways of splitting C in two, and compares the highest
evaluation with v[C] to determine whether it is beneficial to
split C. If so, then the best splitting (i.e. the one with the high-
est evaluation) is stored in f1[C], and its evaluation is stored in
f2[C]. Otherwise, the coalition itself is stored in f1[C] and its
value is stored in f2[C].4 Note that every splitting {C ′, C ′′}
is evaluated as follows: f2[C

′] + f2[C
′′]. This implies that, in

order to evaluate the possible splittings of a coalition C, the
algorithm first needs to compute f2 for the possible subsets of
C. Based on this, the algorithm does not evaluate the splittings
of the coalitions of size s until it has finished computing f2 for
the coalitions of sizes 1, . . . , s−1. Figure 1 shows an example
of how f1 and f2 are computed given A = {1, 2, 3, 4}.

Once f1 and f2 are computed for every coalition, the op-
timal coalition structure, denoted CS∗, can be computed re-
cursively. In our example, this is done by first setting CS∗ =
{1, 2, 3, 4}. Then, by looking at f1[{1, 2, 3, 4}], we find that it
is more beneficial to split {1, 2, 3, 4} into {1, 2} and {3, 4}.
Similarly, by looking at f1[{1, 2}], we find that it is more
beneficial to split {1, 2} into {1} and {2}, and by look-
ing at f1[{3, 4}], we find that it is more beneficial to keep
{3, 4} as it is. The optimal coalition structure is, therefore,
{{1}, {2}, {3, 4}}.

The IDP algorithm

In order to improve on DP, Rahwan and Jennings discovered a
link between DP and the coalition structure graph, which con-

3Understanding how IDP improves on DP is crucial since some of the
techniques that are used to gain this improvement are similar to those that
we use in our hybrid algorithm.

4The special case in which C contains only one agent is dealt with
separately; in this case, we always have: f1[C] = C and f2[C] = v[C].

157

Figure 1: Example of how the DP algorithm computes f1 and
f2, given A = {1, 2, 3, 4}.

sists of a number of nodes and a number of edges connecting
these nodes. Specifically, every node in the graph represents
a coalition structure, and every edge represents the merging of
two coalitions into one (when followed downwards) and the
splitting of one coalition into two (when followed upwards).
The nodes are categorized, based on the number of coalitions
in each node, into levels Li : i ∈ {1, 2, . . . , n} such that
Li contains the nodes (i.e. coalition structures) that contain
i coalitions. Figure 2 shows an example of 4 agents.

Figure 2: The coalition structure graph of 4 agents.

Looking at this graph, it was possible to visualize how DP
works. Basically, given a coalition structure CS, the split-
ting of a coalition C ∈ CS into {C ′, C ′′} can be seen as a
movement from the node that contains CS to the node that
contains (CS\C)∪{C ′, C ′′}. The way DP works is by evalu-
ating every possible movement in the graph, and then, starting
at the bottom node and moving upwards through a series of
connected nodes (which is called a “path”) until an optimal
node is reached, after which no movement is beneficial. The
dashed path in figure 2 shows how DP found the optimal in the
previous example (which was shown in figure 1).

From this visualization, it is apparent that, any coalition
structure containing more than two coalitions has more than
one path leading to it. For example, starting from the bottom
node, one could reach {{1}, {2}, {3, 4}} through three differ-
ent paths, which are shown in figure 2 using dotted, dashed,

and bold lines. Given this insight, Rahwan and Jennings
then showed that, as long as there exists a path leading to the
optimal node, DP will be able to find it. Based on this, the
basic idea behind IDP was to avoid the evaluation of as many
splittings as possible, which corresponds to the removal of as
many edges from the graph as possible, while still maintaining
at least one path to every node in the graph. In more detail, let

Es′s′′

be the set of all the edges that involve the splitting of a
coalition of size (s′ + s′′) into two coalitions of sizes s′ and
s′′, where s′ ≤ s′′. Moreover, let E∗ be a subset of edges that
is defined as follows:

E∗ = (
⋃

s′′≤n−(s′+s′′) Es′s′′

)∪(
⋃

s′+s′′=n Es′s′′

) (1)

Rahwan and Jennings prove that the edges in E∗ are
sufficient for every node to have a path leading to it. Based
on this, IDP only evaluates those edges, and, in so doing,
performs considerably fewer operations than DP. Another
improvement of IDP over DP is to significantly reduce the
memory requirements (see Rahwan & Jennings 2008).

The IP algorithm

This algorithm uses a novel representation of the search space,
which partitions the coalition structures into sub-spaces based
on the sizes of the coalitions they contain. In more detail, a
sub-space is represented by an integer partition of n.5 For ex-
ample, given 4 agents, the possible integer partitions are [4],
[1, 3], [2, 2], [1, 1, 2], [1, 1, 1, 1], and each of these represents a
sub-space containing all the coalition structures within which
the coalition sizes match the parts of the integer partition.6 For
example, [1, 1, 2] represents the sub-space of all the coalition
structures within which two coalitions are of size 1, and one
coalition is of size 2.

What is interesting about this representation is that, for
every sub-space, it is possible to compute upper and lower
bounds on the value of the best solution that can be found in
it. To this end, let Maxs and Avgs be the maximum, and the
average, value of the coalitions of size s respectively. Also,
let I(n) be the set of integer partitions of n, and SI be the
sub-space that corresponds to the integer partition I ∈ I(n).
Then, for all I ∈ I(n), it is possible to compute an upper
bound UBI on the value of the best solution in SI as fol-
lows: UBI =

∑
s∈I Maxs. Similarly, a lower bound LBI

on the value of the best solution in SI can be computed as
follows: LBI =

∑
s∈I Avgs.7 These bounds are then used

to establish worst-case guarantees on the quality of the best
solution found so far, and to prune any sub-space that has
no potential of containing a solution better than the current
best one. As for the remaining sub-spaces, IP searches them
one at a time, unless a value is found that is higher than the
upper bound of another sub-space, in which case, that sub-
space no longer needs to be searched. Searching a sub-space
is done using an efficient process that applies branch-and-

5Recall that an integer partition of a positive integer number x con-
sists of a set of positive integers (called “parts”) that add up to exactly x
(Skiena 1998).

6We use the square brackets instead of the curly brackets to distin-
guish between an integer partition and a coalition.

7Interestingly enough, Rahwan et al. (2007b) proved that this lower
bound is actually the average value of all the solutions in SI .

158

bound techniques to avoid examining every solution in it. For
more details on the IP algorithm, see (Rahwan et al. 2007a;
2007b).

Combining IDP and IP

In this section, we present our hybrid algorithm (IDP-IP) and
then evaluate its performance.

The hybrid algorithm

Given the differences between IDP and IP, in terms of the
space representation as well as the search techniques that are
being used, it is non-trivial to determine how these two algo-
rithms can be combined. We first developed what we call an
integer partition graph, which is similar to a coalition structure
graph, except that every node in Ls now represents an integer
partition containing s parts, and every edge now represents a
replacement of two parts (i′, i′′) with one part (i = i′ + i′′)
when followed downwards, and a replacement of one part (i)
with two parts (i′, i′′ : i′ + i′′ = i) when followed upwards.
An example is shown in figure 3(A).

Figure 3: The integer partition graph of 6 agents; (A) shows all
the edges in the graph, while (B) shows only those that involve
replacing 2 with 1, 1, or replacing 6 with 1, 5, or 2, 4, or 3, 3.

Looking at this graph enables us to visualize how IDP
searches the sub-spaces that are represented by different inte-
ger partitions. Basically, by evaluating the possible splittings
of every coalition of size s into two coalitions of sizes s′ and
s′′, IDP is actually evaluating the movements (in the integer
partition graph) that involve replacing s with s′, s′′. Similarly,
by making a movement from one coalition structure CS1 to
another CS2, IDP is actually making a movement from one in-
teger partition (I1 : CS1 ∈ SI1

) to another (I2 : CS2 ∈ SI2
).

Given this link between IDP and IP, we now show how the
two algorithms can be combined. Basically, instead of setting
IDP to evaluate the possible splittings of the coalitions of size
s ∈ {1, 2, . . . , n}, we can set it to evaluate only those of the
coalitions of size s ∈ {1, 2, . . . ,m − 1,m, n}, where m <
n. As for the coalitions of the remaining sizes, we simply set
f2[C] = v[C]. This corresponds to the removal of the edges
(in the integer partition graph) that involve replacing an integer
i : m < i < n with two smaller ones. As a result, some nodes
will no longer have an edge leading to them. Figure 3(B), for
example, shows the case where m = 2. As can be seen, the
nodes that are shown in gray no longer have an edge leading
to them. Now if the optimal solution happened to be in a sub-
space that is represented by one of those nodes, or by a node
that can only be reached through one of those nodes, then IDP
will no longer be able to find it. However, by combining IDP
with IP, the optimal solution can still be found. This is based
on the following two observations:

1. When IP searches through a sub-space SI , it finds the coali-
tion structure that satisfies: arg maxCS∈SI

∑
C∈CS v[C].

2. When IDP makes a movement from one coalition struc-
ture CS1 to another CS2, the following always holds:∑

C∈CS1
f2[C] =

∑
C∈CS2

f2[C].8 Moreover, when IDP
reaches a coalition structure, say CS3, after which no
movement is beneficial, then the following always holds:∑

C∈CS3
f2[C] =

∑
C∈CS3

v[C] = V (CS3). This implies
that, for every coalition structure CS, the value of the best
coalition structure that could be reached from CS can be
computed as follows:

∑
C∈CS f2[C]. Based on this, the

best movement that could be made from a sub-space SI

is the one made from the coalition structure that satisfies:
arg maxCS∈SI

∑
C∈CS f2[C].

Based on these two observations, if we replace v[C] with
f2[C], then, whenever IP searches through a sub-space SI ,
it would find the coalition structure in SI from which the
best movement can be made (i.e. the one that satisfies:
arg maxCS∈SI

∑
C∈CS f2[C]). It is, then, possible to make

the required movements from that particular coalition struc-
ture using IDP. The result, in this case, will be the best of
all the coalition structures that belong to SI or to any other
sub-space SJ (where J is an integer that is reachable from I).
Based on this, our hybrid approach consists of the following
two main steps:

1. IDP is initially used to compute f1 and f2 for the coalitions
of size s ∈ {1, . . . ,m, n} and to make the best movements
from the bottom node in the integer partition graph (while
only taking into consideration the nodes that are still con-
nected to the bottom one).

2. IP and IDP are then iteratively used to search through the
remaining sub-spaces. Specifically, for every sub-space SI

such that I has no edge leading to it, IP is used to find the
coalition structure in SI from which the best movements can
be taken, and IDP is then used to make those movements.

Applying these two steps ensures that every sub-space is taken
into consideration, and that the optimal coalition structure
is found. However, in order to apply the second step, we
need to first identify the set of nodes that have no edges

leading to them, denoted Ĩ(n). Recall that an edge represents
the replacement of two integers i′, i′′ with i = i′ + i′′ when
followed downwards. Also recall that such an edge is removed
if m < i′ + i′′ < n. Based on this, if we denote by |I| the

number of parts within an integer partition I , then the set Ĩ(n)
can be defined as follows:

Ĩ(n) = {I ∈ I(n) : |I| > 1 and ∀i′, i′′ ∈ I,m < i′+i′′ < n}

The sub-spaces that need to be searched by IP would

then be SI : I ∈ Ĩ(n). Note that Rahwan et al.’s IP algorithm
avoids searching a sub-space SI if UBI is smaller than the
value of the best solution found so far. In our hybrid approach,
however, it might still be worthwhile to search SI since there

8This comes from the fact that CS1 and CS2 include the same coali-
tions, except for one coalition in CS1 (denoted C1), which is replaced
with two coalitions in CS2 (denoted C′

1
and C′′

1
). Moreover, the fact that

IDP has replaced C1 with C′

1
, C′′

1
implies that it had previously set f1[C1]

to either C′

1
or C′′

1
. This, in turn, implies that: f2[C1] = f2[C′

1
]+f2[C′′

1
].

159

could be a coalition structure in it from which IDP can make
particular movements such that another coalition structure is
reached that is better than the current best. In other words, the
pruning, in our case, needs to be based on an upper bound on
the value of the best coalition structure that could be found in
SI or in any other sub-space SJ such that J is reachable from

I . We will denote such an upper bound by ÛBI . Moreover,

we will denote by V̂ (CS) the value of the best coalition
structure that could be reached from CS. What we need, then,

is to compute an upper bound on maxCS∈SI
V̂ (CS). Note,

however, that V̂ (CS) =
∑

C∈CS f2[C].9 Based on this, if we

define M̂axs as follows:

∀s ∈ {1, . . . , n} : M̂axs = max C⊆A,|C|=s f2[C]

then M̂axs can be used to compute ÛBI in the same way that

Maxs is used to compute UBI (i.e., ÛBI =
∑

s∈I M̂axs).

Similarly, if we define Âvgs as follows:

∀s ∈ {1, . . . , n} : Âvgs = avg C⊆A,|C|=s f2[C]

then, a lower bound on maxCS∈SI
V̂ (CS), denoted L̂BI ,

can be computed in the following way: L̂BI =
∑

s∈I Âvgs.
Note that this lower bound is actually the average of

V̂ (CS) : CS ∈ SI . This comes from the fact that LBI is
the average of the values of all the coalition structures in SI

(Rahwan et al. 2007b), which means that the following holds:

∑
s∈I avgC⊆A,|C|=sv[C] = avgCS∈SI

∑
C∈CS v[CS] (2)

Based on this, if we replace every v in (2) with f2, we

find that: L̂BI = avgCS∈SI
V̂ (CS).

What is interesting about IDP-IP is that the performance can
be controlled by simply adjusting m. In this context, although
the maximum value that m can take is n−1, the following the-
orem implies that it practically makes no difference whether m
is set to

⌊
2×n

3

⌋
or to any other value that is greater than

⌊
2×n

3

⌋
.

Theorem 1. IDP does not evaluate any of the possible
splittings of a coalition of size s ∈ {

⌊
2×n

3

⌋
+ 1, . . . , n− 1}.10

Note that, if we set m to
⌊

2×n
3

⌋
, then the performance

of IDP-IP becomes identical to IDP.11 On the other hand, if
we set m to 1, then the performance becomes identical to IP.
More importantly, by setting m anywhere between these two
extremes, we can determine how much of IDP, and how much
of IP, to use in our hybrid approach.

Performance evaluation

Given 25 agents, and given different values of m, table 1 shows
the number of splittings that are evaluated by IDP, and the
number of sub-spaces that are pruned (i.e. that no longer need

9This comes from our second observation which was mentioned ear-
lier in this section.

10The proof is provided in the appendix.
11This is because step 1 of IDP-IP would involve the evaluation of

every splitting in E∗. As a result, every node in the integer partition
graph will have an edge leading to it (i.e. IP will not be used).

to be searched by IP). As can be seen, given small values of
m, IDP evaluates a small number of splittings, and, in return,
prunes substantial portions of the search space. For example,
by only evaluating 17669915 splittings, which takes 0.2 sec-
onds on our PC, it prunes 1776 sub-spaces, and these contain
over 4.6 × 1018 possible coalition structures (which makes
99.6% of the search space).12 However, as the value of m
increases, the number of evaluated splittings increases signif-
icantly, and the number of pruned solutions decreases signifi-
cantly. For example, increasing m from 14 to 15 causes IDP
to evaluate an additional 4.7× 1010 splittings (which takes 2.3
hours) only to prune an additional 0.0000009% of the search
space! This is because, when IDP evaluates the possible split-
tings of every coalition of size s into two coalitions of sizes s′

and s′′ (s′+s′′ = s), it prunes every sub-space SI : s′, s′′ ∈ I ,
and the smaller s is, the more likely it is for an integer partition
to contain two parts that sum up to s.

Table 1. Given 25 agents, the figure shows the number of evaluated
splittings, as well as the number of pruned coalition structures, when
running IDP up to m = 2, . . . , 16.

Note that we are the first to provide such an understand-
ing of how the dynamic programming approach works. This
is because this approach has only been used in the literature
to find the optimal coalition structure, in which case the main
concern is usually the total number of operations that it re-
quires to run to completion. In contrast, we show that this
approach can also be used to prune parts of the search space,
and that, even if the algorithm is not run to completion, it can
still be extremely useful. In fact, when setting m to a relatively
small value, IDP becomes considerably more efficient than IP
at pruning the search space. This fact is reflected in figure 4,
which shows (on a log scale) the time required to run IDP-IP
given 25 agents.13 The figure also shows the time required by
IP (when m = 1) and IDP (when m = 16). Here, the algo-
rithm was tested against the four value distributions that are
widely used in the CSG literature (Larson & Sandholm 2000;
Rahwan et al. 2007b): normal, uniform, sub-additive, and
super-additive. As can be seen, given small values of m, IDP-
IP always outperforms both IDP and IP (e.g., given a normal
distribution, IDP-IP takes only 28% of the time required by IP,
and 0.3% of that required by IDP, and that is when m = 7).
Given other value distributions that reduce IP’s capability to
prune the space, we believe that IDP-IP could outperform IP

12The PC on which we ran our simulations had 4 processors (each is
an Intel(R) Xeon(R) CPU @ 2.66 GHz), with 3GB of RAM.

13Similar results were observed given different numbers of agents.

160

by orders of magnitude, and that is mainly because the im-
provements that are obtained by initially running IDP (i.e. the
portions of the space that are pruned) remain the same given
any value distribution.

Figure 4: Given 25 agents, and given different values of m, the
figure shows (on a log scale) the time required for IDP-IP to
return the optimal solution.

Conclusions

In this paper, we combine the state of the art in two of the main
approaches to the CSG problem, namely IDP and IP, result-
ing in a hybrid approach that significantly outperforms both
of them. Specifically, this hybrid initially uses dynamic pro-
gramming to prune the search space, and then uses an efficient
anytime search procedure to focus on the most promising re-
gions of the space. Moreover, depending on the preferences
of the user, as well as the context of the search, the relative
time spent on each of the two components (i.e. IDP and IP)
can be adjusted to give the best possible performance. For fu-
ture work, there are two main avenues of further work. First,
we would like IDP-IP to automatically tune its m parameter
so that it can determine when to switch from IDP to IP at run-
time. Second, we would like to examine the worst-case com-
plexity of IDP-IP. In particular, we would like to determine
how this varies between O(nn) and O(3n) as the value of m
increases from 1 to

⌊
2×n

3

⌋
.

References
Dang, V. D.; Dash, R. K.; Rogers, A.; and Jennings, N. R. 2006. Overlapping coalition

formation for efficient data fusion in multi-sensor networks. In AAAI-06, 635–640.

Larson, K., and Sandholm, T. 2000. Anytime coalition structure generation: an average

case study. J. Exp. and Theor. Artif. Intell. 12(1):23–42.

Rahwan, T., and Jennings, N. R. 2008. An improved dynamic programming algorithm

for coalition structure generation. In AAMAS-08.

Rahwan, T.; Ramchurn, S. D.; Dang, V. D.; and Jennings, N. R. 2007a. Near-optimal

anytime coalition structure generation. In IJCAI-07, 2365–2371.

Rahwan, T.; Ramchurn, S. D.; Giovannucci, A.; Dang, V. D.; and Jennings, N. R.

2007b. Anytime optimal coalition structure generation. In AAAI-07, 1184–1190.

Sandholm, T. W., and Lesser, V. R. 1997. Coalitions among computationally bounded

agents. Artificial Intelligence 94(1):99–137.

Sandholm, T. W.; Larson, K.; Andersson, M.; Shehory, O.; and Tohme, F. 1999.

Coalition structure generation with worst case guarantees. Artificial Intelligence 111(1–

2):209–238.

Sen, S., and Dutta, P. 2000. Searching for optimal coalition structures. In Proceedings

of the Fourth International Conference on Multiagent Systems, 286–292.

Shehory, O., and Kraus, S. 1998. Methods for task allocation via agent coalition

formation. Artificial Intelligence 101(1–2):165–200.

Skiena, S. S. 1998. The Algorithm Design Manual. New York, USA: Springer.

Yeh, D. Y. 1986. A dynamic programming approach to the complete set partitioning

problem. BIT Numerical Mathematics 26(4):467–474.

Appendix: Proof of Theorem 1

We need to prove that any edge involving the splitting of
a coalition of size s ∈ {

⌊
2×n

3

⌋
+ 1, . . . , n − 1} into two

coalitions of sizes s′, s′′ (where s′ ≤ s′′) does not belong to
E∗. From (1), we can see that it is sufficient to prove that
s′′ > n − (s′ + s′′) for all s′, s′′. Note that s′ + s′′ = s, and

that s′′ ≥
⌈

s
2

⌉
(this comes from the facts that s′ ≤ s′′ and

s′ + s′′ = s). Based on this, what we need to prove is the
following:

∀s ∈ {
⌊

2×n
3

⌋
+1, .., n},∀s′′ ∈ {

⌈
s
2

⌉
, .., s−1} : s′′ > n−s. (3)

Note that, if the inequality in (3) holds for the smallest
possible value of s′′ (which minimizes the left hand side of
the inequality), then it must hold for every possible value of
s′′. Similarly, if the inequality holds for the smallest possible
value of s (which maximizes the right hand side) then it must
hold for every value of s. Therefore, it is sufficient to prove
that the inequality in (3) holds for the smallest possible values
of s, s′′. In other words, it is sufficient to prove that:

⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
> n − (

⌊
2×n

3

⌋
+ 1) (4)

This can be proved by mathematical induction. In more
detail, we will prove that, if equation (4) is true for n, then it is
also true for (n+3). After that, we will show that equation (4)
is true for n = 3, n = 4, and n = 5. Specifically, assuming
that equation (4) is true for n, we will prove that:

⌈
(
⌊

2×(n+3)
3

⌋
+ 1)/2

⌉
> (n+3)−(

⌊
2×(n+3)

3

⌋
+1) (5)

This can be done as follows:

⌈
(
⌊

2×(n+3)
3

⌋
+ 1)/2

⌉
=

⌈
(
⌊

2×n
3 + 2

⌋
+ 1)/2

⌉

=
⌈
(
⌊

2×n
3

⌋
+ 2 + 1)/2

⌉

=
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
+ 1

> n−(
⌊

2×n
3

⌋
+1)+1 (because of (4))

= n −
⌊

2×n
3

⌋
Moreover, we have:

(n + 3) − (
⌊

2×(n+3)
3

⌋
+ 1) = n + 3 − (

⌊
2×n

3 + 2
⌋

+ 1)

= n + 3 − (
⌊

2×n
3

⌋
+ 2 + 1)

= n −
⌊

2×n
3

⌋

This means that (5) is true whenever (4) is true. Now, all we
need to show is that (4) is true for n = 3, n = 4, and n = 5:

• For n = 3,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n−(

⌊
2×n

3

⌋
+1) = 0

• For n = 4,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n−(

⌊
2×n

3

⌋
+1) = 1

• For n = 5,
⌈
(
⌊

2×n
3

⌋
+ 1)/2

⌉
= 2 and n−(

⌊
2×n

3

⌋
+1) = 1

161

