
Coarse-Grain MTCMOS Sleep Transistor Sizing Using Delay Budgeting
Ehsan Pakbaznia and Massoud Pedram

University of Southern California
{pakbazni, pedram}@usc.edu

Abstract

Power gating is one of the most effective techniques in reducing the
standby leakage current of VLSI circuits. In this paper we introduce
a new approach for sleep transistor sizing which minimizes the total
sleep transistor width for a coarse-grain multi-threshold CMOS
circuit assuming a given standard cell and sleep transistor
placement. First, the circuit is decomposed into a set of modules,
each containing the set of logic cells that are closest to a sleep
transistor cell. Next given an upper bound on the overall circuit
speed degradation, the global timing slack is distributed among
different clusters using a delay-budgeting. The slack distribution
result is then used to size the sleep transistors such that the total
sleep transistor width is minimized while accounting for the
parasitic resistances of the virtual ground net. Results show that the
proposed sizing algorithm produces sleep transistor sizes that are
40% smaller than those produced by previous approaches.

1. Introduction
Multi-threshold CMOS (MTCMOS) technology provides low
leakage and high performance operation by utilizing high
speed, low Vt transistors for logic cells and low leakage, high
Vt devices as sleep transistors. Sleep transistors disconnect
logic cells from the power supply and/or ground to reduce the
leakage in the sleep mode. There is a performance
degradation associated with the sleep transistor insertion.
This is due to the IR-drop across the MTCMOS cells in the
active mode of operation. For a fixed placement, the amount
of the performance degradation depends on the size of the
MTCMOS switch cells. The larger the sleep transistors are,
the lower the performance degradation is. However, the
amount of the power consumption will increase with the size
of the sleep transistors. Therefore, there is a trade-off
between the amount of the performance degradation and the
power consumption of the sleep transistors in an MTCMOS
circuit. This makes MTCMOS cell sizing one of the most
important issues in the coarse-grain MTCMOS design flows.

In some applications performance is too critical and the
designer cannot afford any performance degradation due to
MTCMOS. In [1] authors propose to separate timing critical
standard cells from the non-critical ones by placing them in
different rows and by doing the power gating only for the
non-critical standard cell rows. They have shown that a high
leakage saving can be achieved while losing a small amount
of performance. In this paper, we assume that MTCMOS is
applied to all standard cell rows. Furthermore, no rail sharing
is assumed for the neighbor rows.

There have been several works addressing sleep
transistor sizing for MTCMOS circuits [2]-[8]. In [3] cells
inside the circuit are clustered such that their switching
current profiles are mutually exclusive. In [4] cells in the
circuit are clustered using bin-packing or set partitioning to
reduce total sleep transistor width. In [5] virtual rail routing is

employed to use a distributed sleep transistor network
(DSTN) in order to reduce the total sleep transistor size. In [6]
and [7], the authors propose algorithms to calculate the drop
voltages in a distributed sleep transistor network and use that
in sizing the sleep transistors.

Most of the clustering-based sleep transistor sizing
algorithms, propose special type of circuit clustering to
reduce the total sleep transistor width. In order to implement
these approaches, logic cells inside the same cluster need to
be placed close together; however, since most of the state of
the art industrial flows use timing-driven placement,
MTCMOS circuit clustering will result in performance
degradation. On the other hand DSTN-based sleep transistor
sizing approaches do not use the total available slack
optimally. Therefore, they tend to oversize the sleep
transistors [5]-[7]. In this paper, we present a delay-
budgeting algorithm to size the sleep transistors in a circuit.
We assume that the placement of the logic cells and sleep
transistor cells are known and given. We then propose a
delay-budgeting algorithm to optimally use the total available
slack and size the sleep transistors optimally.

The remainder of this paper is organized as follows.
Section 2 talks about the coarse-grain MTCMOS layout style.
Section 3 describes the proposed sizing algorithm while
section 4 shows the results obtained by applying the sizing
algorithm. Section 5 concludes the paper.

2. Coarse-Grain MTCMOS Layout
Figure 1 shows a typical standard cell row in a coarse-grain
MTCMOS design which comprises of standard cells and an
MTCMOS sleep transistor (which is also included in the cell
library as a standard cell). There are two types of coarse-
grain MTCMOS switches: headers and footers. A footer cell
basically consists of an NMOS sleep transistor which is used
to disconnect the true VSS (TVSS) net from the virtual VSS
(VVSS) rail. A header cell, however, consists of a PMOS
sleep transistor used to disconnect the true VDD (TVDD) net
from the virtual VDD (VVDD) rail. From here on wherever we
talk about MTCMOS switch cells, or sleep transistors, footer
cells are intended. Discussions about footer cells, with
obvious modifications, are also applicable to header cells.

Figure 1: Portion of a typical cell row in a coarse-grain
MTCMOS circuit, also showing a sleep transistor.

VDD

VVSS

1 3 4
2

SLEEPB

TVSS

VDD

VVSS

1 3 4
2

SLEEPB

TVSS

978-3-9810801-3-1/DATE08 © 2008 EDAA

To make the coarse-grain MTCMOS flow better adapted
to the ASIC design flow, MTCMOS switch cells have to be
treated as regular standard cells by the CAD tools. This
requires these cells to be designed similar to the regular
standard cells. More precisely, all the MTCMOS switch cells
have to include power and ground rails that are aligned with
the corresponding rails of other standard cells. In addition,
the switch cells must also have the same height as any other
library cell. Figure 2 shows typical layout of coarse-grain
header and footer cells. It can be seen from the figure that
both header and footer cells have separate VSS and VDD rails
similar to all the other standard cells.

Figure 2: Typical layout styles of coarse-grain
MTCMOS switches: (left) header, (right) footer.

The VDD rail in the footer cell is not connected to
anything inside the cell; in contrast, the VSS rail is connected
to the TVSS pin through an NMOS transistor. The VSS rail of
each footer cell will be connected to the VSS rail of the row
that this footer cell belongs to. The TVSS pin, on the other
hand, will be connected to the true ground mesh which will
be routed in a separate metal layer, e.g., M4. Therefore, the
VSS rail (VSS net) of the footer cell becomes part of the VVSS
net of the cell row after the footer cell is inserted into the row.
Each MTCMOS switch cell contains an input pin and an
output pin which are used for cell characterization. The input
pins for the header and footer cells are SLEEP and SLEEPB
(SLEEP), respectively. These pins are the control pins to turn
the switch ON and OFF. The output of the footer cell is VSS,
while the input is the TVSS.
MTCMOS switch cells can be placed in many different
fashions among the cells in a circuit. Figure 3 shows the
column-aligned sleep transistor placement style.

Figure 3: Column-aligned sleep-transistor placement.
The dashed boxes represent MTCMOS switch cells. All

the other standard cells are assumed to be placed in the blank
area between switch cells. The TVSS mesh lines are also
shown in the figure. They will be used for routing the TVSS
pins in various switch cells. Because of its simple
power/ground network routing strategy, it is desirable to
uniformly distribute the switch cells on each standard cell

row and to have them aligned vertically one under the other
as we traverse different cell rows.

The switch cell placement problem may be formulated
and solved as an optimization problem by itself; however, we
assume here that the placement of the logic and MTCMOS
switch cells is fixed and given. We present an algorithm to
optimally size the sleep transistors for the given placement.

3. Sleep Transistor Sizing with Delay Budgeting
The notion of a module associated with each sleep transistor
is explained with the help of Figure 3. A module is defined
based on the existing cell placement and the location of the
TVSS lines (or alternatively, the sleep transistor cell that lies
underneath this line) over the standard cell layout. In
particular, module (r,i) denotes the module that is formed
around the ith sleep transistor in the rth row of the standard
cell layout. The cells belonging to this module are those that
are in the rth row and are closest in distance to the ith sleep
transistor in that row. We ignore the VVSS rail resistance
between the cells inside each such module. The VVSS nodes
of different modules are connected through the VVSS rail,
whose resistance is taken into account by considering a
resistor between the VVSS nodes of two adjacent modules as
shown in Figure 4 by

(), 1SS r iVr −
and

(),SS r iVr . In this figure,

(),
()

r iMI t and
(),

()
r istI t denote, respectively, the discharging

current of module M(r,i) and the current flowing through the
sleep transistor corresponding to this module as a function of
time. Note for the rest of this paper, each row is considered
separately from the other rows in the circuit; therefore, the
index r can be eliminated for simplicity. For example, Mi
represents the ith module of a typical row in the circuit.

Figure 4. Sleep transistors, the corresponding
modules, and parasitic model of the VVSS rail.

During the active operation, sleep transistors work in the
linear mode, and each sleep transistor may be replaced by its
equivalent linear region resistor. For the ith sleep transistor, of
a typical row, the value of this resistor is calculated as:

()
1

i

i

st
st i ox DD tH

W
R C V V

L
µ

−
⎛ ⎞⎛ ⎞

= −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

Current state-of-the-art sleep transistor sizing algorithms
[6]-[7] minimize the total sleep transistor width subject to a
maximum IR voltage drop on the virtual node of each
MTCMOS switch cell. In these approaches, the DC noise
constraint for the virtual node of a MTCMOS switch is
somehow related to the tolerable delay increase in the circuit.

M(r, i-1) M(r, i) M(r, i+1)

(r,i-1)MI (t)
(r,i)MI (t)

(r,i+1)MI (t)

SS(r,i)VrSS(r,i-1)Vr

(r,i-1)stW
(r,i)stW

(r,i+1)stW

(r,i-1)stI (t)
(r,i)stI (t)

(r,i+1)stI (t)

M(r, i-1) M(r, i) M(r, i+1)

(r,i-1)MI (t)
(r,i)MI (t)

(r,i+1)MI (t)

SS(r,i)VrSS(r,i-1)Vr

(r,i-1)stW
(r,i)stW

(r,i+1)stW

(r,i-1)stI (t)
(r,i)stI (t)

(r,i+1)stI (t)

VVSS

VDD

VVSS

TVSS TVSS TVSS

Module 1 of row 1 Module 2 of row 1

VVSS

VDD

VVSS

TVSS TVSS TVSS

Module 1 of row 1 Module 2 of row 1

SLEEP
TVDD

VSS

VDD

SLEEP
TVDD

VSS

VDD

SLEEPB

TVSS

VSS

VDD

SLEEPB

TVSS

VSS

VDD

In fact, none of these approaches talk about selecting the drop
constraints optimally. The most trivial way that is used is to
uniformly slow down all the modules which results in a
single drop constraint for all modules. In reality, using a
single maximum IR voltage drop value on all virtual nodes is
over constraining the problem and indeed avoidable. Instead,
one would like to set the DC noise constraint for the virtual
node of each MTCMOS switch based on the minimum
tolerable delay increase (i.e., the positive timing slack) for
any logic cell in the corresponding module. The voltage drop
allocation on the virtual nodes of the MTCMOS switches
should thus be closely related to the timing slack allocation to
individual cells in the circuit. In the next section, we provide
an example to show that for a specified maximum delay
penalty for the whole circuit, the manner in which the
positive timing slack is distributed among different modules
in the circuit greatly affects the sleep transistor sizing
solution. Solving this delay budgeting problem and
combining it with sleep transistor sizing is precisely the
contribution of the present paper.
3.1. Background and Motivational Example
Consider a logic cell located in the ith module, Mi, of a typical
row of a CMOS circuit. Let d denote the 50% propagation
delay of this cell. To a first order, we have:

()
L DD

DD tL

C Vd
V V α∝

−
 (1)

where CL denotes the load capacitance of this cell, VtL is the
threshold voltage of low-Vt devices in the cell, and α is the
velocity saturation index, which models the short channel
effect [9]. Suppose this cell is placed in module Mi in the
MTCMOS circuit. Let 'd denote the propagation delay of this
cell in the MTCMOS circuit. Again we have:

()
' L DD

DD i tL

C Vd
V v V α∝

− −
 (2)

where vi is the voltage of the VVSS node associated with
module Mi, the module that this cell belongs to. Using Taylor
series expansion, the delay increase is calculated as [8]:

' i

DD tL

vd d d d
V V

∆ = − ∝
−

 (3)

It can be seen that the degree of the delay degradation
ratio (DDR), i.e., ∆d/d, for each cell is directly proportional to
the voltage drop at the VVSS node of the module that this cell
belongs to. In order to achieve a fixed given DDR value for a
circuit, it is enough to have a set of constraints guaranteeing
that none of the vi voltages exceed a fixed voltage value,
Vi-max. This is the approach that most of the conventional
methods use to obtain the voltage drop constraints for
different modules. We show that the voltage drop constraints
obtained using this approach are not the optimal values. The
best way to explain this observation is with the aid of an
example.

Consider the circuit shown in Figure 5. The circuit
consists of four inverters and two sleep transistors modeled
as resistors in the figure. Each inverter drives a FO4 load. We

divide this circuit to two modules, M1 and M2. Module M1
comprises of the first two inverters, i.e., inverters with size 1
and 4 while module M2 consists of the last two inverters, i.e.,
inverters with size 16 and 64.

1 4VIN VOUT

R1

CL=FO4

16 64

R2

VA

1 4VIN VOUT

R1

CL=FO4

16 64

R2

VA

Figure 5. An inverter chain with four inverters and two
modules. Sleep transistors are replaced by resistors.

One sleep transistor is used per module in the MTCMOS
circuit. When R1=R2=0, using a 65nm CMOS process
technology deck, the total VIN-VOUT low-to-low propagation
delay is 103ps. Table 1 shows the propagation delay share
and the peak discharge current value for each module in the
normal operation mode (as opposed to the sleep mode).

Table 1. Propagation delay and peak current values for
the two modules of Figure 5.

Module Module Delay
(pico sec)

Module Peak
Current (mA)

M1 46 0.3

M2 57 4.65

We assume that after inserting sleep transistors a
maximum DDR of 10% is acceptable, which gives us a total
positive timing slack of 10.3ps. This slack can be distributed
between the two modules in many different ways. Depending
on how this slack is distributed between the two modules,
different maximum voltage drop constraints and different
total sleep transistor widths are obtained. Table 2 shows
some of these choices. It can be seen that how precisely the
total slack is distributed between the two modules will have a
large impact on the total sleep transistor size (which is
proportional to summation of inverse resistance values).

Table 2. Total sleep transistor conductance as a function
of the timing slack distribution for two modules.

Circuit
Module
Delay
(ps)

Total
Delay
(ps)

Sleep Tx
Resistance

(Ω)

∑Ri
-1

(Ω-1)

CMOS TM1=46
TM2=57 103 R1=0

R2=0
TM1=50.6
TM2=62.7 113.3 R1=250

R2=9 0.1151

TM1=52
TM2=61.3 113.3 R1=330

R2=2 0.5030 MTCMOS

TM1=48
TM2=65.3 133.3 R1=110

R2=25 0.0491

The first row in the MTCMOS section in the table corresponds
to the uniformly distributed slack between both modules, i.e.,
both modules have the same DDR of 10%. In this case ∑Ri

-1
value is 0.1151Ω-1. The second row in the MTCMOS section
corresponds to the case when most of the total available slack
(approximately 80%) is given to M1 and the rest (20%) is
given to M2. In this case ∑Ri

-1 value is 0.5030Ω-1 which is
much more than the first case. Finally the third row in the
MTCMOS section corresponds to the case when only 20% of
the total available slack is given to M1, and most of the total

available slack is reserved for M2. This case results in the
minimum ∑Ri

-1 value, which is 0.0491Ω-1.
This example clearly shows that slowing down all the

modules in a circuit uniformly, i.e., with the same DDR, will
not result in the minimum total sleep transistor width solution.
The problem statement has to be formulated in such a way
that the total available slack due to the maximum allowed
DDR is distributed among different modules optimally while
being aware of the discharge current of different modules.
Intuitively, we should slow down modules with large amount
of discharging current more than the ones with smaller
amount of discharging current, current-aware optimization.
In this paper we first formulate the sleep transistor sizing
problem as a delay-budgeting problem. Then we present a
current-aware sizing algorithm to find the optimum solution.
3.2. Problem Formulation
Consider a combinational circuit. The timing constraints for
the circuit are given as an input arrival time An for each
primary input PIn, and as a required arrival time Rk at each
primary output POk. We let an and rn denote the output arrival
and required times of cell Cn and dn denote the propagation
delay of this cell. Knowing the primary input arrival times,
we can calculate arrival time at the output of each cell as the
summation of the maximum input arrival times of the cell
and the cell propagation delay. Similarly, required time can
be calculated knowing the required time for the primary
outputs and the propagation delays of different cells in the
circuit. The slack at each node is:

n n ns r a= − (4)
After inserting the MTCMOS cells and imposing the new

required times for the primary outputs, all the arrival and
required times for different nodes in the circuit will change.
We show arrival time, required time and slack for the output
of Cn in the MTCMOS circuit by ' ' ', ,n n na r s , respectively. Thus:

' ' '
n n ns r a= − (5)

The propagation delay of each cell will also change. We
show delay of Cn in the MTCMOS circuit by '

nd where:
'
n n nd d d= + ∆ (6)

Now suppose Cn is placed in module Mi in the MTCMOS
circuit. From (3) we have: n nd dδ∆ = × where:

i

DD tL

v
V V

δ =
−

 (7)

The arrival time for Cn in the MTCMOS circuit, '
na , is:

{ }' ' 'max= +
nn fanins of C na a d (8)

From (6) and (7), the arrival times in the MTCMOS circuit
can be calculated in terms of the VVSS node voltages of
different modules in the MTCMOS circuit. Thus, arrival times
in the MTCMOS circuit, '

na ’s, can be written in terms of vi’s.
Required time of the output of Cn in MTCMOS circuit is:

{ }' ' 'min= −
nn fanouts of C nr r d (9)

The delay-budgeting constraints can be written as follows:
' ' ' 0; 1 CELL_NUMn n ns r a n= − ≥ ≤ ≤ (10)

Where '
na and '

nr are calculated from (8) and (9) while
CELL_NUM denotes the total number of the cells (nodes) in
the circuit. Since the propagation delay values for each cell in
the MTCMOS case are not known and they depend on the vi
values of different modules, and since (8) and (9) include
max{.} and min{.} operations, the complexity of optimizing
an objective function on the domain defined by these
constraints is high. To simplify the problem, we may
consider only the critical timing paths when formulating the
problem constraints, i.e., we get rid of the min and max
operators in (8) and (9). However, the potential weakness of
this approach is that the critical paths in the CMOS circuit are
not necessarily the critical paths in the MTCMOS circuit [2].
Fortunately, this difficulty can be addressed by taking into
account the K most critical paths in the CMOS circuit to build
the set of constraints for the optimization problem.

The delay degradation of a given path πk in the circuit
due to applying power gating can be written as the
summation of the delay degradations of all the cells in that
path. The delay degradation for any cell Cn in the circuit can
be calculated from (3) assuming that Cn belongs to Mi. Note
as far as delay degradation of Cn is concerned, vi in (3), or (7),
can be calculated in terms of

istR as follows:

maxminmax ,⎡ ⎤
⎣ ⎦=

C Cn n

i i

t t
i st stv R I (11)

Where maxminmax ,⎡ ⎤
⎣ ⎦

C Cn n

i

t t
stI is the maximum value of the current

flowing through
istR during the time window that cell Cn is

switching, i.e., [tCn
min, tCn

max]. The delay degradation of a
given path πk can be calculated using (6), (7) and (11) [8]:

() ()

maxminmax ,

θ θ

π
π π

⎡ ⎤
⎣ ⎦

∈ ∈

∆ = ∆ =
−∑ ∑

C Cn n

C Cn n

k

n k n k

t t
st st

n n
DD tLC C

R I
d d d

V V
 (12)

where the summation is taken over all cells in path πk. Cn
represents a cell in πk, and θ(Cn) is the index of the module
that cell Cn belongs to; e.g., if Cn is in Mi, then θ(Cn)=i.
Based on what we have discussed so far, the delay-budgeting
based sizing problem can be formulated as follows:

maxmin

1

1

max ,

Minimize

s.t. : 1. DDR_MAX; 1

2. () VVSS_MAX; 1 ,1

where:

; 1 ,1

,

i

i

k

i i

C Cn n

i i

k

n k

M

st
i

st st j

t t
st st

n
C DD tL

R

d k K

R I t i M j N

R I
d d k K j N

V V
i j

π

π
π

−

=

⎡ ⎤
⎣ ⎦

∈

∆ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤

∆ = ≤ ≤ ≤ ≤
−

∀

∑

∑

0 1

1 1 1 1

1 1

: () () 0 and

() () () ()
() ()

N

i i i i i i i i

i i

i i i i

st j st j

st st j st st j st st j st st j
st j M j

VSS VSS VSS VSS

I t I t

R I t R I t R I t R I t
I t I t

r r r r

+

− − + +

− −

= =

= + + − −

Figure 6. Delay-budgeting based sleep transistor

sizing problem.

In Figure 6, the clock cycle is divided into N equal time
intervals and tj denotes the beginning time of the jth interval.

()
iM jI t is the switching current of module Mi at time tj.

These equations implicitly construct the maximum current
waveform through each sleep transistor at N timing instances
in a clock cycle while considering the timing windows during
which a logic cell can change its output value. The equation
corresponding to ()

ist jI t calculation in Figure 6 is obtained
by writing the KCL equations for different nodes of the VVSS
rail, i.e., this equation accounts for different current flow
paths in the virtual ground net through adjacent sleep
transistors. The first set of the constraints are the critical path
constraints, while the second set of constraints capture the
maximum allowed voltage drop on the VVSS rail.
3.3. Algorithm
In this section we describe a current-aware sizing algorithm
(c.f. Section 3.1) which solves the sleep transistor sizing
problem presented in 3.2. We can show that the first set of
the constraints in Figure 6 can be written as a set of linear
equations in terms of variables,

istR , as follows:

1

DDR_MAX; 1
i

M

ki st
i

a R k K
=

≤ ≤ ≤∑ (13)

where aki is 0 if module i does not lie on the kth critical path;
otherwise, it is calculated by collecting all the coefficients
corresponding to

istR in
k

dπ∆ .
Definition 1: At any given step of the sizing algorithm, the
most critical module (MCM) is the module with the
maximum delay contribution to the K most critical paths, i.e.,

1

arg max
i

i

K

ki st
M k

MCM a R
=

= ∑ (14)

Definition 2: At any step of the algorithm the best candidate
module (BCM) is defined as the module whose sleep
transistor upsizing by a certain percentage will result in the
largest delay improvement for unsatisfied paths.
Lemma 1: BCM is the MCM over the paths that do not meet
the delay constraint, i.e.:

{ }()| 1 , DDR_MAX
kkBCM MCM k K dππ= ≤ ≤ ∆ > (15)

Proofs are straight-forward and omitted for brevity. Note that
BCM is not unique and there can exist more than one BCM at
any step of the algorithm.
Definition 3: Least-cost BCM (LBCM) is defined as the BCM
whose sleep transistor upsizing will result in the minimum
increase in the objective function in Figure 6.
If there is only one BCM, then we have LBCM=BCM.
Lemma 2: LBCM can be found as:

DDR_MAX
1

arg min
i

d k

K

ki
M BCM k

LBCM a

π∆ >

= =

= ∑
(16)

Lemma 2 makes the sizing algorithm be aware of the
discharging current of the module (current-aware algorithm).
From the discussion presented above, we propose the
following sleep transistor sizing algorithm. At the beginning
we use an algorithm similar to the one presented in [7],

Slp_Initialize, in order to satisfy the second set of the
constraints in Figure 6 (i.e., the virtual ground voltage upper
bound). The resulted

istR values will typically be too large to
meet the first set of constraints in Figure 6 (i.e., the timing
constraints). They are thus fed into the main sleep transistor
sizing algorithm, Slp_Sizing, which will iteratively size up
the sleep transistors until all the timing constraints are met.

Algorithm: Slp_Initialize(IMi(t), VVSS_MAX)

 1: /*Initializing variables*/
 2: for i=1 to M do
 3:

ist MAXR R= ;

 4: end for
 5: calculate ()

ist jI t and () ()
i ii j st st jv t R I t= for all i, j ;

 6: while (vi(tj) > VVSS_MAX for some i or j) do
 7: Mm=FindMinModule{VVSS_MAX - vi(tj)};
 8: _ ()

m mst st jR VVSS MAX I t= for all j;

 9: update ()
ist jI t and () ()

i ii j st st jv t R I t= for all i, j;

10: end while
11: return

istR for all i;

Figure 7. Initializing optimization variables and
satisfying the second set of constraints.

At each iteration step, the Slp_Sizing algorithm checks if
all the constraints are satisfied. If there is any unsatisfied
constraint, the algorithm searches for the LBCM and reduces
the corresponding resistance value by α%, and updates

()
ist jI t and vi(tj) values, and passes them to the next iteration.

Slp_Sizing algorithm stops when all the constraints are
satisfied. This algorithm is described in detail in Figure 8.

Algorithm: Slp_Sizing(Rsti-initial, IMi(t), VVSS_MAX)

 1: calculate ()

ist jI t and () ()
i ii j st initial st jv t R I t−= for all i, j ;

 2: while (min_slack < 0)
 3: find LBCM and m=LBCM;
 4:

m m mst st stR R Rα= − ;

 5: update ()
ist jI t and () ()

i ii j st st jv t R I t= for all i, j;

 6: min_slack = ∞;
 7: for k=1 to K, j=1 to N
 8: if (DDR_MAX min_slack

k
dπ∆ − <)

 9: min_slack =
k

dπ∆ – DDR_MAX;

10: end if
11: end for
12: end while
13: return(

istR) for all i;

Figure 8. Current-aware sleep transistor sizing

algorithm by delay budgeting.

4. Results
ISCAS-85 benchmark circuits have been used in this paper.
We use SIS to generate optimized gate level netlists. All the
benchmark circuits are first optimized using “script.rugged”
in SIS. We use a 65nm technology library to perform timing-

driven technology mapping. Output information of SIS is
passed to our sizing algorithm written in MATLAB.
Placement of the sleep transistors is fixed, and we use
column-based placement described in section 2. A maximum
DDR of 10% has been used in the simulations
(DDR_MAX=10%). The rail resistance between each pair of
module is assumed to be 0.1

iVSSr = Ω for all i values. The
maximum number of the critical paths considered in this
paper, K in Figure 8, is 100, and α = 0.1 in Figure 8.

In order to estimate discharging current for each module,
we use rectangular current model used in [8]. Table 3 shows
the total sleep transistor width in units of λ for the ISCAS-85
benchmark circuits where λ is the minimum feature size,
32.5nm in this paper. We have also compared the results of
our delay-budgeting algorithm with the proposed algorithm
in [6] and TP algorithm in [7]. Table 3 also shows results for
these two algorithms, and the saving that is achieved by the
delay-budgeting algorithm compared to these two approaches.

Table 3. Total sleep transistor size in units of λ.
DDR_MAX=10%, K=100, α=0.1.

Total sleep
TX width (λ) Circuit # of cells # of

Footers [6]
C17 7 2 53

9sym 276 30 786
C432 214 30 811
C880 467 55 1290
C1355 546 60 1437
C3540 1307 280 3920
C5315 1783 320 5799
Avg. 2.0

Total sleep TX width (λ)
TP in [7] Proposed

Proposed
vs. [6] (%)

Proposed
vs. [7] (%)

44 16 70 64
715 312 60 56
665 343 57 48

1173 579 55 51
1597 727 49 54
3469 1679 57 52
5631 3372 42 40
1.89 1 55 52

In order to compare the results of the proposed delay-
budgeting algorithm with the TP algorithm in [7], we
implemented the TP algorithm. In our implementation of this
algorithm, we picked the fixed drop constraints for all the
modules such that all the modules would slow down by 10%.
However, the proposed delay-budgeting algorithm distributes
the given 10% slack optimally among the modules and
achieves smaller total sleep transistor width. In order to
approximate the results of the algorithm proposed in [6], we
used the total sleep transistor width obtained from our
implementation of [7] and estimate the total sleep transistor
width in [6] using the data given in Table 1 of [7]. As it is

seen from the table, the proposed approach saves more than
40% of the total sleep transistor area compared to [6] and [7].

5. Conclusions
We introduced a new approach for minimizing the total sleep
transistor width for a coarse-grain MTCMOS circuit assuming
a given standard cell and sleep transistor placement. Our
algorithm takes a maximum allowed circuit slowdown factor
and produces the sizes of various sleep transistors in the
standard cell layout while considering the DC parasitics of
the virtual ground net. We showed that the problem can be
formulated as a sizing with delay budgeting problem and
solved efficiently using a heuristic sizing algorithm which
implicitly performs maximum current calculation through
sleep transistors while accounting for different current flow
paths in the virtual ground net through adjacent sleep
transistors. This technique uses at least 40% less total sleep
transistor width compared to other approaches.

Acknowledgement - This research was supported in part by the
National Science Foundation under grant no. 0509564.The authors
would like to thank the strategic technology group in LSI
Corporation for their valuable discussions and comments.

References
[1] A.Sathanur, A.Pullini, L.Benini, A.Macii, E.Macii, M.Poncino,

“Timing-driven row-based power gating,” Proc. Int’l Symp. on
Low Power Electronics and Design, pp. 104-109, 2007.

[2] J. Kao, A. Chandrakasan, and D. Antoniadis, “Transistor sizing
issues and tool for multi threshold CMOS technology,” Proc.
Design Automation Conference, pp. 409-414, 1997.

[3] J. Kao, S. Narenda and A. Chandrakasan, “MTCMOS
hierarchical sizing based on mutual exclusive discharge
patterns,” in Proc. Design Automation Conference, pp. 495-
500, 1998.

[4] Mohab Anis, S. Areibi, and M. Elmasry, “Design and
optimization of multithreshold CMOS (MTCMOS) circuits,”
IEEE Trans. on CAD of Integrated Circuits and Systems, pp.
1324-1342, October 2003.

[5] C. Long, L. He, “Distributed sleep transistor network for power
reduction,” IEEE Trans. on VLSI Systems, Volume: 12, No. 9,
pp. 937-946, September 2004.

[6] D. S. Chiou, S. H. Chen, S. C. Chang, and C. Yeh, “Timing
driven power gating,” Proc. of the Design Automation
Conference, pp. 121-124, 2006.

[7] D. S. Chiou, D. Juan, Y. Chen, and S. Chang, “Fine-grained
sleep transistor sizing algorithm for leakage power
minimization,” Proc. Design Automation Conference, pp. 81-
86, 2007.

[8] A. Ramalingam, B. Zhang, A. Devgan and D. Pan, “Sleep
transistor sizing using timing criticality and temporal currents,”
Proc. Asia South Pacific Design Automation Conference, pp.
1094-1097, 2005.

[9] T. Sakurai and A. Newton, “Alpha-power law MOSFET model
and its applications to CMOS inverter delay and other
formulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584–594,
Apr. 1990.

