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Abstract

Power gating is one of the most effective techniques in reducing the 
standby leakage current of VLSI circuits. In this paper we introduce 
a new approach for sleep transistor sizing which minimizes the total 
sleep transistor width for a coarse-grain multi-threshold CMOS 
circuit assuming a given standard cell and sleep transistor 
placement. First, the circuit is decomposed into a set of modules, 
each containing the set of logic cells that are closest to a sleep 
transistor cell. Next given an upper bound on the overall circuit 
speed degradation, the global timing slack is distributed among 
different clusters using a delay-budgeting. The slack distribution 
result is then used to size the sleep transistors such that the total 
sleep transistor width is minimized while accounting for the 
parasitic resistances of the virtual ground net. Results show that the 
proposed sizing algorithm produces sleep transistor sizes that are 
40% smaller than those produced by previous approaches. 

1. Introduction 
Multi-threshold CMOS (MTCMOS) technology provides low 
leakage and high performance operation by utilizing  high 
speed, low Vt transistors for logic cells and low leakage, high 
Vt devices as sleep transistors. Sleep transistors disconnect 
logic cells from the power supply and/or ground to reduce the 
leakage in the sleep mode. There is a performance 
degradation associated with the sleep transistor insertion. 
This is due to the IR-drop across the MTCMOS cells in the 
active mode of operation. For a fixed placement, the amount 
of the performance degradation depends on the size of the 
MTCMOS switch cells. The larger the sleep transistors are, 
the lower the performance degradation is. However, the 
amount of the power consumption will increase with the size 
of the sleep transistors. Therefore, there is a trade-off 
between the amount of the performance degradation and the 
power consumption of the sleep transistors in an MTCMOS 
circuit. This makes MTCMOS cell sizing one of the most 
important issues in the coarse-grain MTCMOS design flows. 

In some applications performance is too critical and the 
designer cannot afford any performance degradation due to 
MTCMOS. In [1] authors propose to separate timing critical 
standard cells from the non-critical ones by placing them in 
different rows and by doing the power gating only for the 
non-critical standard cell rows. They have shown that a high 
leakage saving can be achieved while losing a small amount 
of performance. In this paper, we assume that MTCMOS is 
applied to all standard cell rows. Furthermore, no rail sharing 
is assumed for the neighbor rows.  

There have been several works addressing sleep 
transistor sizing for MTCMOS circuits [2]-[8]. In [3] cells 
inside the circuit are clustered such that their switching 
current profiles are mutually exclusive. In [4] cells in the 
circuit are clustered using bin-packing or set partitioning to 
reduce total sleep transistor width. In [5] virtual rail routing is 

employed to use a distributed sleep transistor network 
(DSTN) in order to reduce the total sleep transistor size. In [6] 
and [7], the authors propose algorithms to calculate the drop 
voltages in a distributed sleep transistor network and use that 
in sizing the sleep transistors.  

Most of the clustering-based sleep transistor sizing 
algorithms, propose special type of circuit clustering to 
reduce the total sleep transistor width. In order to implement 
these approaches, logic cells inside the same cluster need to 
be placed close together; however, since most of the state of 
the art industrial flows use timing-driven placement, 
MTCMOS circuit clustering will result in performance 
degradation. On the other hand DSTN-based sleep transistor 
sizing approaches do not use the total available slack 
optimally. Therefore, they tend to oversize the sleep 
transistors [5]-[7]. In this paper, we present a delay-
budgeting algorithm to size the sleep transistors in a circuit. 
We assume that the placement of the logic cells and sleep 
transistor cells are known and given. We then propose a 
delay-budgeting algorithm to optimally use the total available 
slack and size the sleep transistors optimally.  

The remainder of this paper is organized as follows. 
Section 2 talks about the coarse-grain MTCMOS layout style. 
Section 3 describes the proposed sizing algorithm while 
section 4 shows the results obtained by applying the sizing 
algorithm. Section 5 concludes the paper. 

2. Coarse-Grain MTCMOS Layout  
Figure 1 shows a typical standard cell row in a coarse-grain 
MTCMOS design which comprises of standard cells and an 
MTCMOS sleep transistor (which is also included in the cell 
library as a standard cell). There are two types of coarse-
grain MTCMOS switches: headers and footers. A footer cell 
basically consists of an NMOS sleep transistor which is used 
to disconnect the true VSS (TVSS) net from the virtual VSS 
(VVSS) rail. A header cell, however, consists of a PMOS 
sleep transistor used to disconnect the true VDD (TVDD) net 
from the virtual VDD (VVDD) rail. From here on wherever we 
talk about MTCMOS switch cells, or sleep transistors, footer 
cells are intended. Discussions about footer cells, with 
obvious modifications, are also applicable to header cells. 

 
 
 
 
 
 
 

Figure 1: Portion of a typical cell row in a coarse-grain 
MTCMOS circuit, also showing a sleep transistor. 
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To make the coarse-grain MTCMOS flow better adapted 
to the ASIC design flow, MTCMOS switch cells have to be 
treated as regular standard cells by the CAD tools. This 
requires these cells to be designed similar to the regular 
standard cells. More precisely, all the MTCMOS switch cells 
have to include power and ground rails that are aligned with 
the corresponding rails of other standard cells. In addition, 
the switch cells must also have the same height as any other 
library cell. Figure 2 shows typical layout of coarse-grain 
header and footer cells. It can be seen from the figure that 
both header and footer cells have separate VSS and VDD rails 
similar to all the other standard cells.  

 
 
 
 
 
 

 

Figure 2: Typical layout styles of coarse-grain 
MTCMOS switches: (left) header, (right) footer. 

The VDD rail in the footer cell is not connected to 
anything inside the cell; in contrast, the VSS rail is connected 
to the TVSS pin through an NMOS transistor. The VSS rail of 
each footer cell will be connected to the VSS rail of the row 
that this footer cell belongs to. The TVSS pin, on the other 
hand, will be connected to the true ground mesh which will 
be routed in a separate metal layer, e.g., M4. Therefore, the 
VSS rail (VSS net) of the footer cell becomes part of the VVSS 
net of the cell row after the footer cell is inserted into the row. 
Each MTCMOS switch cell contains an input pin and an 
output pin which are used for cell characterization. The input 
pins for the header and footer cells are SLEEP and SLEEPB 
(SLEEP ), respectively. These pins are the control pins to turn 
the switch ON and OFF. The output of the footer cell is VSS, 
while the input is the TVSS.  
MTCMOS switch cells can be placed in many different 
fashions among the cells in a circuit. Figure 3 shows the 
column-aligned sleep transistor placement style.  

 

Figure 3: Column-aligned sleep-transistor placement. 
The dashed boxes represent MTCMOS switch cells. All 

the other standard cells are assumed to be placed in the blank 
area between switch cells. The TVSS mesh lines are also 
shown in the figure. They will be used for routing the TVSS 
pins in various switch cells. Because of its simple 
power/ground network routing strategy, it is desirable to 
uniformly distribute the switch cells on each standard cell 

row and to have them aligned vertically one under the other 
as we traverse different cell rows. 

The switch cell placement problem may be formulated 
and solved as an optimization problem by itself; however, we 
assume here that the placement of the logic and MTCMOS 
switch cells is fixed and given. We present an algorithm to 
optimally size the sleep transistors for the given placement. 

3. Sleep Transistor Sizing with Delay Budgeting  
The notion of a module associated with each sleep transistor 
is explained with the help of Figure 3. A module is defined 
based on the existing cell placement and the location of the 
TVSS lines (or alternatively, the sleep transistor cell that lies 
underneath this line) over the standard cell layout. In 
particular, module (r,i) denotes the module that is formed 
around the ith sleep transistor in the rth row of the standard 
cell layout. The cells belonging to this module are those that 
are in the rth row and are closest in distance to the ith sleep 
transistor in that row. We ignore the VVSS rail resistance 
between the cells inside each such module. The VVSS nodes 
of different modules are connected through the VVSS rail, 
whose resistance is taken into account by considering a 
resistor between the VVSS nodes of two adjacent modules as 
shown in Figure 4 by

( ), 1SS r iVr −
and 

( ),SS r iVr . In this figure, 

( ),
( )

r iMI t  and 
( ),

( )
r istI t denote, respectively, the discharging 

current of module M(r,i) and the current flowing through the 
sleep transistor corresponding to this module as a function of 
time. Note for the rest of this paper, each row is considered 
separately from the other rows in the circuit; therefore, the 
index r can be eliminated for simplicity. For example, Mi 
represents the ith module of a typical row in the circuit.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Sleep transistors, the corresponding 
modules, and parasitic model of the VVSS rail. 

During the active operation, sleep transistors work in the 
linear mode, and each sleep transistor may be replaced by its 
equivalent linear region resistor. For the ith sleep transistor, of 
a typical row, the value of this resistor is calculated as: 
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Current state-of-the-art sleep transistor sizing algorithms 
[6]-[7] minimize the total sleep transistor width subject to a 
maximum IR voltage drop on the virtual node of each 
MTCMOS switch cell. In these approaches, the DC noise 
constraint for the virtual node of a MTCMOS switch is 
somehow related to the tolerable delay increase in the circuit. 
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In fact, none of these approaches talk about selecting the drop 
constraints optimally. The most trivial way that is used is to 
uniformly slow down all the modules which results in a 
single drop constraint for all modules. In reality, using a 
single maximum IR voltage drop value on all virtual nodes is 
over constraining the problem and indeed avoidable. Instead, 
one would like to set the DC noise constraint for the virtual 
node of each MTCMOS switch based on the minimum 
tolerable delay increase (i.e., the positive timing slack) for 
any logic cell in the corresponding module. The voltage drop 
allocation on the virtual nodes of the MTCMOS switches 
should thus be closely related to the timing slack allocation to 
individual cells in the circuit. In the next section, we provide 
an example to show that for a specified maximum delay 
penalty for the whole circuit, the manner in which the 
positive timing slack is distributed among different modules 
in the circuit greatly affects the sleep transistor sizing 
solution. Solving this delay budgeting problem and 
combining it with sleep transistor sizing is precisely the 
contribution of the present paper. 
3.1. Background and Motivational Example 
Consider a logic cell located in the ith module, Mi, of a typical 
row of a CMOS circuit. Let d denote the 50% propagation 
delay of this cell. To a first order, we have:  

( )
L DD

DD tL

C Vd
V V α∝

−
 (1) 

where CL denotes the load capacitance of this cell, VtL is the 
threshold voltage of low-Vt devices in the cell, and α is the 
velocity saturation index, which models the short channel 
effect [9]. Suppose this cell is placed in module Mi in the 
MTCMOS circuit. Let 'd denote the propagation delay of this 
cell in the MTCMOS circuit. Again we have:  

( )
' L DD

DD i tL

C Vd
V v V α∝

− −
 (2) 

where vi is the voltage of the VVSS node associated with 
module Mi, the module that this cell belongs to. Using Taylor 
series expansion, the delay increase is calculated as [8]:  

' i

DD tL

vd d d d
V V

∆ = − ∝
−

 (3) 

It can be seen that the degree of the delay degradation 
ratio (DDR), i.e., ∆d/d, for each cell is directly proportional to 
the voltage drop at the VVSS node of the module that this cell 
belongs to. In order to achieve a fixed given DDR value for a 
circuit, it is enough to have a set of constraints guaranteeing 
that none of the vi voltages exceed a fixed voltage value,     
Vi-max. This is the approach that most of the conventional 
methods use to obtain the voltage drop constraints for 
different modules. We show that the voltage drop constraints 
obtained using this approach are not the optimal values. The 
best way to explain this observation is with the aid of an 
example. 

Consider the circuit shown in Figure 5. The circuit 
consists of four inverters and two sleep transistors modeled 
as resistors in the figure. Each inverter drives a FO4 load. We 

divide this circuit to two modules, M1 and M2. Module M1 
comprises of the first two inverters, i.e., inverters with size 1 
and 4 while module M2 consists of the last two inverters, i.e., 
inverters with size 16 and 64. 
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Figure 5. An inverter chain with four inverters and two 
modules. Sleep transistors are replaced by resistors. 

One sleep transistor is used per module in the MTCMOS 
circuit. When R1=R2=0, using a 65nm CMOS process 
technology deck, the total VIN-VOUT low-to-low propagation 
delay is 103ps. Table 1 shows the propagation delay share 
and the peak discharge current value for each module in the 
normal operation mode (as opposed to the sleep mode). 

 

Table 1. Propagation delay and peak current values for 
the two modules of Figure 5. 

Module Module Delay 
(pico sec) 

Module Peak 
Current (mA) 

M1 46 0.3 

M2 57 4.65 

We assume that after inserting sleep transistors a 
maximum DDR of 10% is acceptable, which gives us a total 
positive timing slack of 10.3ps. This slack can be distributed 
between the two modules in many different ways. Depending 
on how this slack is distributed between the two modules, 
different maximum voltage drop constraints and different 
total sleep transistor widths are obtained. Table 2 shows 
some of these choices. It can be seen that how precisely the 
total slack is distributed between the two modules will have a 
large impact on the total sleep transistor size (which is 
proportional to summation of inverse resistance values).  

 

Table 2. Total sleep transistor conductance as a function 
of the timing slack distribution for two modules. 

Circuit 
Module 
Delay 
(ps) 

Total 
Delay 
(ps) 

Sleep Tx 
Resistance 

(Ω) 

∑Ri
-1 

(Ω-1) 

CMOS TM1=46 
TM2=57 103 R1=0 

R2=0  
TM1=50.6 
TM2=62.7 113.3 R1=250 

R2=9 0.1151 

TM1=52 
TM2=61.3 113.3 R1=330 

R2=2 0.5030 MTCMOS 

TM1=48 
TM2=65.3 133.3 R1=110 

R2=25 0.0491 

The first row in the MTCMOS section in the table corresponds 
to the uniformly distributed slack between both modules, i.e., 
both modules have the same DDR of 10%. In this case ∑Ri

-1 
value is 0.1151Ω-1. The second row in the MTCMOS section 
corresponds to the case when most of the total available slack 
(approximately 80%) is given to M1 and the rest (20%) is 
given to M2. In this case ∑Ri

-1 value is 0.5030Ω-1 which is 
much more than the first case. Finally the third row in the 
MTCMOS section corresponds to the case when only 20% of 
the total available slack is given to M1, and most of the total 



available slack is reserved for M2. This case results in the 
minimum ∑Ri

-1 value, which is 0.0491Ω-1.  
This example clearly shows that slowing down all the 

modules in a circuit uniformly, i.e., with the same DDR, will 
not result in the minimum total sleep transistor width solution. 
The problem statement has to be formulated in such a way 
that the total available slack due to the maximum allowed 
DDR is distributed among different modules optimally while 
being aware of the discharge current of different modules. 
Intuitively, we should slow down modules with large amount 
of discharging current more than the ones with smaller 
amount of discharging current, current-aware optimization.  
In this paper we first formulate the sleep transistor sizing 
problem as a delay-budgeting problem. Then we present a 
current-aware sizing algorithm to find the optimum solution. 
3.2. Problem Formulation  
Consider a combinational circuit. The timing constraints for 
the circuit are given as an input arrival time An for each 
primary input PIn, and as a required arrival time Rk at each 
primary output POk. We let an and rn denote the output arrival 
and required times of cell Cn and dn denote the propagation 
delay of this cell. Knowing the primary input arrival times, 
we can calculate arrival time at the output of each cell as the 
summation of the maximum input arrival times of the cell 
and the cell propagation delay. Similarly, required time can 
be calculated knowing the required time for the primary 
outputs and the propagation delays of different cells in the 
circuit. The slack at each node is:  

n n ns r a= −  (4) 
After inserting the MTCMOS cells and imposing the new 

required times for the primary outputs, all the arrival and 
required times for different nodes in the circuit will change. 
We show arrival time, required time and slack for the output 
of Cn in the MTCMOS circuit by ' ' ', ,n n na r s , respectively. Thus:  

' ' '
n n ns r a= −  (5) 

The propagation delay of each cell will also change. We 
show delay of Cn in the MTCMOS circuit by '

nd  where:  
'
n n nd d d= + ∆  (6) 

Now suppose Cn is placed in module Mi in the MTCMOS 
circuit. From (3) we have: n nd dδ∆ = × where:  

i

DD tL

v
V V

δ =
−

 (7) 

The arrival time for Cn in the MTCMOS circuit, '
na , is:  

{ }' ' 'max= +
nn fanins of C na a d  (8) 

From (6) and (7), the arrival times in the MTCMOS circuit 
can be calculated in terms of the VVSS node voltages of 
different modules in the MTCMOS circuit. Thus, arrival times 
in the MTCMOS circuit, '

na ’s, can be written in terms of vi’s.  
Required time of the output of Cn in MTCMOS circuit is:  

{ }' ' 'min= −
nn fanouts of C nr r d  (9) 

The delay-budgeting constraints can be written as follows: 
' ' ' 0; 1 CELL_NUMn n ns r a n= − ≥ ≤ ≤  (10) 

Where '
na and '

nr are calculated from (8) and (9) while 
CELL_NUM denotes the total number of the cells (nodes) in 
the circuit. Since the propagation delay values for each cell in 
the MTCMOS case are not known and they depend on the vi 
values of different modules, and since (8) and (9) include 
max{.} and min{.} operations, the complexity of optimizing 
an objective function on the domain defined by these 
constraints is high. To simplify the problem, we may 
consider only the critical timing paths when formulating the 
problem constraints, i.e., we get rid of the min and max 
operators in (8) and (9). However, the potential weakness of 
this approach is that the critical paths in the CMOS circuit are 
not necessarily the critical paths in the MTCMOS circuit [2]. 
Fortunately, this difficulty can be addressed by taking into 
account the K most critical paths in the CMOS circuit to build 
the set of constraints for the optimization problem.  

The delay degradation of a given path πk in the circuit 
due to applying power gating can be written as the 
summation of the delay degradations of all the cells in that 
path. The delay degradation for any cell Cn in the circuit can 
be calculated from (3) assuming that Cn belongs to Mi. Note 
as far as delay degradation of Cn is concerned, vi in (3), or (7), 
can be calculated in terms of 

istR  as follows: 

maxminmax ,⎡ ⎤
⎣ ⎦=

C Cn n

i i

t t
i st stv R I  (11) 

Where maxminmax ,⎡ ⎤
⎣ ⎦

C Cn n

i

t t
stI is the maximum value of the current 

flowing through 
istR during the time window that cell Cn is 

switching, i.e., [tCn
min, tCn

max]. The delay degradation of a 
given path πk can be calculated using (6), (7) and (11) [8]:  

( ) ( )

maxminmax ,

θ θ

π
π π

⎡ ⎤
⎣ ⎦

∈ ∈

∆ = ∆ =
−∑ ∑

C Cn n

C Cn n

k

n k n k

t t
st st

n n
DD tLC C

R I
d d d

V V
 (12) 

where the summation is taken over all cells in path πk. Cn 
represents a cell in πk, and θ(Cn) is the index of the module 
that cell Cn belongs to; e.g., if Cn is in Mi, then θ(Cn)=i. 
Based on what we have discussed so far, the delay-budgeting 
based sizing problem can be formulated as follows:  
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Figure 6. Delay-budgeting based sleep transistor 

sizing problem. 



In Figure 6, the clock cycle is divided into N equal time 
intervals and tj denotes the beginning time of the jth interval. 

( )
iM jI t is the switching current of module Mi at time tj.  

These equations implicitly construct the maximum current 
waveform through each sleep transistor at N timing instances 
in a clock cycle while considering the timing windows during 
which a logic cell can change its output value. The equation 
corresponding to ( )

ist jI t  calculation in Figure 6 is obtained 
by writing the KCL equations for different nodes of the VVSS 
rail, i.e., this equation accounts for different current flow 
paths in the virtual ground net through adjacent sleep 
transistors.  The first set of the constraints are the critical path 
constraints, while the second set of constraints capture the 
maximum allowed voltage drop on the VVSS rail. 
3.3. Algorithm 
In this section we describe a current-aware sizing algorithm 
(c.f. Section 3.1) which solves the sleep transistor sizing 
problem presented in 3.2. We can show that the first set of 
the constraints in Figure 6 can be written as a set of linear 
equations in terms of variables, 

istR , as follows:  

1

DDR_MAX; 1
i

M

ki st
i

a R k K
=

≤ ≤ ≤∑  (13) 

where aki is 0 if module i does not lie on the kth critical path; 
otherwise, it is calculated by collecting all the coefficients 
corresponding to 

istR  in 
k

dπ∆ .  
Definition 1: At any given step of the sizing algorithm, the 
most critical module (MCM) is the module with the 
maximum delay contribution to the K most critical paths, i.e.,  

1

arg max
i

i

K

ki st
M k

MCM a R
=

= ∑  (14) 

Definition 2: At any step of the algorithm the best candidate 
module (BCM) is defined as the module whose sleep 
transistor upsizing by a certain percentage will result in the 
largest delay improvement for unsatisfied paths.  
Lemma 1: BCM is the MCM over the paths that do not meet 
the delay constraint, i.e.:  

{ }( )| 1 , DDR_MAX
kkBCM MCM k K dππ= ≤ ≤ ∆ >  (15) 

Proofs are straight-forward and omitted for brevity. Note that 
BCM is not unique and there can exist more than one BCM at 
any step of the algorithm. 
Definition 3: Least-cost BCM (LBCM) is defined as the BCM 
whose sleep transistor upsizing will result in the minimum 
increase in the objective function in Figure 6.  
If there is only one BCM, then we have LBCM=BCM. 
Lemma 2:  LBCM can be found as:  

DDR_MAX
1

arg min
i

d k

K

ki
M BCM k

LBCM a

π∆ >

= =

= ∑  
(16) 

Lemma 2 makes the sizing algorithm be aware of the 
discharging current of the module (current-aware algorithm). 
From the discussion presented above, we propose the 
following sleep transistor sizing algorithm. At the beginning 
we use an algorithm similar to the one presented in [7], 

Slp_Initialize, in order to satisfy the second set of the 
constraints in Figure 6 (i.e., the virtual ground voltage upper 
bound). The resulted

istR values will typically be too large to 
meet the first set of constraints in Figure 6 (i.e., the timing 
constraints). They are thus fed into the main sleep transistor 
sizing algorithm, Slp_Sizing, which will iteratively size up 
the sleep transistors until all the timing constraints are met. 

 

Algorithm: Slp_Initialize(IMi(t), VVSS_MAX)  
 
  1:   /*Initializing variables*/ 
  2:   for i=1 to M do 
  3:      

ist MAXR R= ; 

  4:   end for 
  5:   calculate ( )

ist jI t and ( ) ( )
i ii j st st jv t R I t= for all i, j ; 

  6:   while (vi(tj) > VVSS_MAX for some i or j) do 
  7:       Mm=FindMinModule{VVSS_MAX - vi(tj)}; 
  8:       _ ( )

m mst st jR VVSS MAX I t=  for all  j; 

  9:       update ( )
ist jI t and ( ) ( )

i ii j st st jv t R I t=  for all i, j; 

10:   end while 
11:   return 

istR for all i;  

Figure 7. Initializing optimization variables and 
satisfying the second set of constraints. 

At each iteration step, the Slp_Sizing algorithm checks if 
all the constraints are satisfied. If there is any unsatisfied 
constraint, the algorithm searches for the LBCM and reduces 
the corresponding resistance value by α%, and updates 

( )
ist jI t  and vi(tj) values, and passes them to the next iteration. 

Slp_Sizing algorithm stops when all the constraints are 
satisfied. This algorithm is described in detail in Figure 8. 

 

Algorithm: Slp_Sizing(Rsti-initial, IMi(t), VVSS_MAX) 
 
  1:   calculate ( )

ist jI t  and ( ) ( )
i ii j st initial st jv t R I t−= for all i, j ; 

  2:      while (min_slack < 0) 
  3:           find LBCM and m=LBCM; 
  4:           

m m mst st stR R Rα= − ; 

  5:           update ( )
ist jI t and ( ) ( )

i ii j st st jv t R I t= for all i, j; 

  6:           min_slack = ∞;  
  7:           for k=1 to K, j=1 to N 
  8:                 if ( DDR_MAX min_slack

k
dπ∆ − < ) 

  9:                       min_slack = 
k

dπ∆ – DDR_MAX; 

10:                 end if 
11:           end for 
12:      end while 
13:   return(

istR ) for all i;    

 
Figure 8. Current-aware sleep transistor sizing 

algorithm by delay budgeting. 

4. Results 
ISCAS-85 benchmark circuits have been used in this paper. 
We use SIS to generate optimized gate level netlists. All the 
benchmark circuits are first optimized using “script.rugged” 
in SIS. We use a 65nm technology library to perform timing-



driven technology mapping. Output information of SIS is 
passed to our sizing algorithm written in MATLAB. 
Placement of the sleep transistors is fixed, and we use 
column-based placement described in section 2. A maximum 
DDR of 10% has been used in the simulations 
(DDR_MAX=10%). The rail resistance between each pair of 
module is assumed to be 0.1

iVSSr = Ω for all i values. The 
maximum number of the critical paths considered in this 
paper, K in Figure 8, is 100, and α = 0.1 in Figure 8.  

In order to estimate discharging current for each module, 
we use rectangular current model used in [8]. Table 3 shows 
the total sleep transistor width in units of λ for the ISCAS-85 
benchmark circuits where λ is the minimum feature size, 
32.5nm in this paper. We have also compared the results of 
our delay-budgeting algorithm with the proposed algorithm 
in [6] and TP algorithm in [7]. Table 3 also shows results for 
these two algorithms, and the saving that is achieved by the 
delay-budgeting algorithm compared to these two approaches.  

 

Table 3. Total sleep transistor size in units of λ. 
DDR_MAX=10%, K=100, α=0.1. 

Total sleep 
TX width (λ) Circuit # of cells # of 

Footers [6] 
C17 7 2 53 

9sym 276 30 786 
C432 214 30 811 
C880 467 55 1290 
C1355 546 60 1437 
C3540 1307 280 3920 
C5315 1783 320 5799 
Avg.   2.0 

 

Total sleep TX width (λ) 
TP in [7]     Proposed 

Proposed 
vs. [6] (%) 

Proposed 
vs. [7] (%) 

44 16 70 64 
715 312 60 56 
665 343 57 48 

1173 579 55 51 
1597 727 49 54 
3469 1679 57 52 
5631 3372 42 40 
1.89 1 55 52 

In order to compare the results of the proposed delay-
budgeting algorithm with the TP algorithm in [7], we 
implemented the TP algorithm. In our implementation of this 
algorithm, we picked the fixed drop constraints for all the 
modules such that all the modules would slow down by 10%. 
However, the proposed delay-budgeting algorithm distributes 
the given 10% slack optimally among the modules and 
achieves smaller total sleep transistor width. In order to 
approximate the results of the algorithm proposed in [6], we 
used the total sleep transistor width obtained from our 
implementation of [7] and estimate the total sleep transistor 
width in [6] using the data given in Table 1 of [7]. As it is 

seen from the table, the proposed approach saves more than 
40% of the total sleep transistor area compared to [6] and [7].  

5. Conclusions 
We introduced a new approach for minimizing the total sleep 
transistor width for a coarse-grain MTCMOS circuit assuming 
a given standard cell and sleep transistor placement. Our 
algorithm takes a maximum allowed circuit slowdown factor 
and produces the sizes of various sleep transistors in the 
standard cell layout while considering the DC parasitics of 
the virtual ground net. We showed that the problem can be 
formulated as a sizing with delay budgeting problem and 
solved efficiently using a heuristic sizing algorithm which 
implicitly performs maximum current calculation through 
sleep transistors while accounting for different current flow 
paths in the virtual ground net through adjacent sleep 
transistors. This technique uses at least 40% less total sleep 
transistor width compared to other approaches. 
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