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Abstract

We study a stochastic nonlocal partial differential equation, arising in the context

of modelling spatially distributed neural activity, which is capable of sustaining

stationary and moving spatially localized ‘activity bumps’. This system is

known to undergo a pitchfork bifurcation in bump speed as a parameter (the

strength of adaptation) is changed; yet increasing the noise intensity effectively

slowed the motion of the bump. Here we study the system from the point of view

of describing the high-dimensional stochastic dynamics in terms of the effective

dynamics of a single scalar ‘coarse’ variable, i.e. reducing the dimensionality of

the system. We show that such a reduced description in the form of an effective

Langevin equation characterized by a double-well potential is quantitatively

successful. The effective potential can be extracted using short, appropriately

initialized bursts of direct simulation, and the effects of changing parameters on

this potential can easily be studied. We demonstrate this approach in terms of (a)

an experience-based ‘intelligent’ choice of the coarse variable and (b) a variable

obtained through data-mining direct simulation results, using a diffusion map

approach.

Mathematics Subject Classification: 60H15,65P30,37G35,45K05,82C31

1. Introduction

Pattern formation at large spatial scales in the cortex is a field of much recent interest

[5, 9, 11, 15, 35]. Neural dynamics are intrinsically noisy, so it is natural to study the effects of

noise on models for such pattern formation. In this paper we revisit a noisy model for pattern

formation in a neural system [31] but this time concentrating on describing its dynamics in a
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Figure 1. A typical simulation of system (3) and (4). The profile of u is shown as a function of space

and time (values indicated by shadebar). Parameters are M = 100, η = 10−4, A = 0.17, τ = 5.

low-dimensional way. If an accurate low-dimensional description can be found, it will have

obvious advantages over the original description of the system, in terms of simulation, analysis

and understanding.

We consider the partial integrodifferential system

∂u(x, t)

∂t
= −u(x, t) +

∫ π

−π

J (x − y)f [I + u(y, t) − a(y, t)] dy, (1)

τ
∂a(x, t)

∂t
= Au(x, t) − a(x, t) (2)

on the domain −π � x � π with periodic boundary conditions, originally analysed by Laing

and Longtin [31], as a simple model for pattern formation in a neural field. The variable

u(x, t) describes the neural activity at position x and time t . The function J describes the

spatial coupling within the network, with J (x − y) being the strength of coupling between

neurons at position x and neurons at position y. The function f (I) describes the firing rate

of a single neuron with input I . The quantities A, I and τ are constant. The value of A

determines the strength of adaptation, I is a background current applied to all neurons and

τ is the adaptation time constant. Equation (2) represents the effects of spike frequency

adaptation. Without (2) systems of this form have been used to model orientation tuning in the

visual system, working memory and the head direction system [5, 15]. Variants including (2)

have recently been explored [9–11, 23, 35].

In our numerical implementation we spatially discretize the domain with M equally spaced

points, resulting in the 2M ordinary differential equations (ODEs)

dui

dt
= −ui +

2π

M

M∑

j=1

Jijf (I + uj − aj ), (3)

τ
dai

dt
= Aui − ai, (4)

for i = 1, . . . , M , where Jij = J (2π |i − j |/M). As in Laing and Longtin [31] we set

I = −0.1, τ = 5 and use f (x) = (1 + tanh(10x))/2 and J (x) = 0.05 + 0.24 cos x, with

M = 100. We add noise to the system by adding a Gaussian white noise term ξi(t) to each

of (3), with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj (s)〉 = 2ηνijδ(t − s), where νij = 0 if i �= j and 1 if

i = j . Initially we set the parameters A = 0.17 and η = 10−4; we will study the effect of

varying them below.

At the deterministic limit η = 0, for these parameter values the system dynamics ultimately

exhibit a single stable activity bump that moves around the (periodic) domain in one direction

(determined by the initial condition), at a constant velocity. If η �= 0, the bump motion

becomes stochastic, exhibiting occasional switches in direction. This effect, studied by Laing

and Longtin [31], is illustrated in figure 1; they concentrated on the net distance travelled

during a finite time interval. For small η the bump moved in only one direction, so that the net
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distance travelled was quite far (effectively proportional to the time); for η greater than a certain

value, switches in direction lead to a much smaller net distance travelled. This phenomenon

was referred to as noise-induced stabilization.

Laing and Longtin [31] showed that for a coupling function of the form used here,

system (1) and (2) underwent a pitchfork bifurcation in speed as A was increased. They then

added Gaussian white noise to the normal form of a pitchfork bifurcation, and qualitatively

reproduced the noise-induced stabilization. However, the actual derivation of a ‘noisy

normal form’ from the original system with noise was not attempted. (Note that Curtu and

Ermentrout [11] have derived normal forms for the deterministic bifurcation from stationary

to moving bumps for a model similar to (1) and (2).)

In this paper we will demonstrate numerically that the noisy discretized system (3) and

(4) undergoes what we will characterize as an effective pitchfork bifurcation in speed as A

is increased, and investigate the effects of varying noise intensity. This computer-assisted

bifurcation analysis will be performed assuming that the dynamics of the high-dimensional

stochastic system (3) and (4) can be effectively described by the dynamics of a single, scalar

coarse-grained observable (variable). The evolution of this variable can be determined by

running many short, appropriately initialized simulations of (3) and (4), in the spirit of the

‘equation-free’ framework [27, 30].

The value of our scalar variable V (defined below) can be interpreted as the position of a

‘particle’ moving in a potential, subject to noise. Beyond the effective pitchfork bifurcation

the potential is double-welled; before the bifurcation, it is single-welled. Each of the two wells

correspond to persistent motion in one direction (left or right); in the case of a single well we

have a stationary (on average) activity bump. Since the system is isotropic, we expect the

double well to be symmetric. Although we cannot analytically derive the effective potential

and noise in our hypothesized Langevin description for V , we will show how they can be

estimated using appropriately initialized short bursts of simulation of (3) and (4). Once the

effective potential is approximated, we can locate its maxima and minima (which correspond

to unstable and stable fixed points for the particle, respectively) and estimate average transition

times between minima (corresponding to bump direction switches). By determining how the

potential changes as A and η are varied we can also numerically obtain a bifurcation diagram

for its extrema, which takes the place of the traditional steady-state bifurcation diagram for

the deterministic problem. This technique allows us to identify transition states (potential

maxima, corresponding to unstable steady states), which would be extremely difficult if not

impossible to do using long simulations alone. An interesting point is that we can quantify

the relationship between the noise intensity in the original system, η, and the effective noise

intensity, D(V ), to which the particle in the potential is subject.

2. Results

2.1. Reconstructing the potential

We choose as our coarse scalar variable, V (t), the instantaneous difference in position between

the peak of u(x, t) and the peak of a(x, t). This choice comes from observations of the system

dynamics: practically all system profiles during a long simulation are characterized by a single

peak in each of the variable fields. Furthermore, the difference in the positions of these peaks

is clearly related to the instantaneous speed of the bump: the peak of a normally lags the peak

of u relative to the direction of bump motion—see the bottom panel of figure 2. One can

clearly see in the top two panels of figure 2 that periods of bump motion to the left (right)

are characterized by effectively constant negative (positive) V (t). Factoring out the small
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Figure 2. Simulation results for system (3) and (4). Top row: position of the peak in the u profile

as a function of time; second and third rows: V (t) and �
(i)
2 (defined in section 3), respectively,

for the same time interval; bottom row: spatial profiles of u (cross) and a (filled circles) at times

marked in top panel. Parameters are the same as in figure 1.

amplitude noisy oscillations riding on the bump waveform, we identify the position of the

peak of u(x, t) as the location cu that satisfies

M∑

i=1

sin (xi − cu)ui(t) = 0, (5)

where xi = 2πi/M . (Effectively, we are finding the amount by which a simple sine wave

must be shifted so that its inner product with u(x, t) is zero.) Similarly, ca satisfies

M∑

i=1

sin (xi − ca)ai(t) = 0 (6)

so that V ≡ cu − ca .

To establish the connection between V and the effective potential 	(V ) we assume that

V (t) satisfies an (unknown) Langevin equation. Then, the probability density P(V, t) satisfies
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a Fokker–Planck equation of the form

∂P (V, t)

∂t
=

[
−

∂

∂V
µ(V ) +

∂2

∂V 2
D(V )

]
P(V, t). (7)

The (unknown in closed form) quantities µ(V ) and D(V ) are estimated from ensembles of

brief simulations initialized at V :

µ(V ) = lim

t→0

〈
V 〉/
t 2D(V ) = lim

t→0

〈[
V ]2〉/
t, (8)

where 
V = V (t + 
t) − V (t) and the average is taken over the realization ensemble. More

accurate, maximum likelihood based estimation techniques [1] can also be used. At stationarity

we have P(V ) ∝ exp [−β	(V )] where 	(V ) is the effective potential, related to µ(V ) and

D(V ) by [13, 39]

β	(V ) = const −
∫ V

0

µ(s)

D(s)
ds + log D(V ). (9)

Data for the estimation of µ(V0) and D(V0) for a given value of V0 can be obtained in two

ways. Firstly, we find occurrences of this value in a long simulation; we then track V (t)

over a subsequent time interval (we use 14 time units) for each of these occurrences, and then

average the appropriate quantities. This approach has been used previously to estimate drift

and diffusion terms in Langevin equations [21]. Typical results of estimating µ(V ) and D(V )

using this approach are shown in figure 3 (top and middle). Performing this for a grid of V0

values provides enough data for the numerical estimation of the integral in (9); the results are

shown in figure 3 (bottom).

In the absence of a database from a long enough (equilibrium) simulation, a better—more

economical—way to find µ(V ) and D(V ), and thus 	(V ), is to deliberately initialize the

system with a given value of V0 and then track V (t) over a subsequent time interval (we

again use 14 time units), repeating and averaging as above. The advantage of this approach,

as compared with the previous one, is that it need only be performed for as many V0 values

as necessary for a given accuracy in the integral evaluation. Furthermore, for each such V0

value we can reinitialize as many independent runs as necessary for accurate estimation at

will, without requiring a simulation so long that rare values of V0 are revisited enough times.

Results of the latter type of calculation are shown in figure 4. The only significant difference

in this case is that initializing the system with a particular value of V seems to result in a lower

estimate of both D(V ) and 	(V ) when |V | is large. Recall, however, that these regions are

rarely visited in a simulation, and thus the discrepancy may be attributed to an insufficiently

long database for the first approach. As a comparison, for the amount of averaging performed

here, the total amount of simulation time needed to produce figure 3 is the same as is required

to produce figure 4.

In summary, we have chosen a variable V , whose value describes the state of system (3)

and (4), assumed that it obeyed a Langevin equation, and numerically obtained the effective

potential for the corresponding Fokker–Planck equation.

2.2. Bifurcations

A traditional bifurcation diagram for the deterministic problem with respect to a parameter

such as A would involve tracing branches of steady states and constant shape travelling waves

(which can also be reduced to solutions of a fixed point problem) using pseudo-arclength and

branch switching techniques (e.g. [2]). In the coarse-grained stochastic case, it is natural to

trace instead the zeros of the drift µ(V ) as the same parameter A is varied, using the same

standard bifurcation codes. It is worth noting that for the case of state-dependent noise, the
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Figure 3. Estimation of µ(V ), D(V ) and β	(V ) using the occurrences of V in a long

simulation. Top: estimate of µ(V ). Middle: estimate of D(V ). Bottom: dashed line from

assuming that P(V ) ∝ exp [−β	(V )]; points from assuming a Fokker–Planck equation and

evaluating the integral (9), using the µ(V ) and D(V ) shown in the upper panels. Parameters are

A = 0.17, η = 10−4.

local maxima of the probability density do not exactly correspond to zeros of µ(V ) and one

needs instead to find fixed points of the effective potential given in (9) (zeros of the right-hand

side of (9) differentiated with respect to V ). For the scalar case, one can implement secant-type

iterative methods to converge to the zeros of the appropriate function using function estimates
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Figure 4. Estimation of µ(V ), D(V ) and β	(V ) by initializing the system at a particular value of

V and then running for a short time. Top: estimate of µ(V ). Middle: estimate of D(V ). Bottom:

dashed line from assuming that P(V ) ∝ exp [−β	(V )]; points from assuming a Fokker–Planck

equation and evaluating the integral (9), using the µ(V ) and D(V ) shown in the upper panels.

For each of 36 values of V, 4000 short bursts (duration 14 time units) were run. Parameters are

A = 0.17, η = 10−4. Note the more uniform errorbar sizes compared with those in figure 3.
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Figure 5. Zeros of µ(V ) as a function of A, for η = 10−4. Filled circles indicate stable solutions;

empty circles, unstable. Also shown is a quadratic curve (in V ) that best fits the outer branches.

For each estimation of µ(V ), 10 000 short bursts were run.

only; for the multivariable case matrix-free iterative techniques like Newton–Krylov GMRES

can be used (see [26, 37]).

In the cases we study µ(V ) is well approximated by a cubic function; we take advantage

of this simplification by estimating µ(V ) for just four values of V , uniquely defining this cubic

whose zeros we can then easily find. Such a ‘noisy’ bifurcation diagram is shown in figure 5,

where we vary A. Stability can be determined from the local slope, µ′(V ), at the fixed point,

and is indicated in the figure. Parameters of a different nature, such as the noise intensity or

colour, can also be varied in this context. Figure 6 shows the ‘effective pitchfork’ bifurcation

that occurs as η is varied. This can be thought of as either a ‘noise-induced’ bifurcation [17]

or the delaying of the underlying pitchfork bifurcation by noise [19, 22]. The location of

these effective bifurcations was verified by running long simulations in their vicinity (results

not shown). Note that if we assume in advance that the potential 	(V ) is symmetric (as

the underlying system is), the cubic function representing µ(V ) would have no quadratic or

constant terms, so that only two evaluations of µ(V ) would be needed to approximate the

required cubic.

2.3. Switching times

One of the most important statistics of our problem is the average time between changes of

direction, or, more generally, the statistics of these switching times for the bump. Based on

our effective Fokker–Planck model and Kramers’ theory, once we have β	(V ) we can also

estimate the average time between switches in direction [13], as

τ ≈
2π exp [β
	]

βD
√

−	′′(Vmin)	′′(0)
, (10)

where Vmin is the value of V at which 	 has a minimum, D = [D(0) + D(Vmin)]/2 and


	 = 	(0) − 	(Vmin). Measurements of D and 	 for η = 10−4 and A = 0.17 give

τ ≈ 3 × 103. A simulation run at these parameter values had mean waiting time 3.5 × 103, in

excellent agreement with our Kramers’ approximation.

Along the same lines, we can quantify how the average switching time, τ , depends on

parameters. Typical results are shown in figure 7. Here, the effective potential is not estimated
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Figure 6. A noise-induced bifurcation. Zeros of µ(V ) as a function of η, for A = 0.175. Filled

circles indicate stable solutions; empty, unstable. For each estimation of µ(V ), 10 000 short bursts

were run.
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Figure 7. (a) Switching time, τ , plotted on a log scale, as a function of A. η = 10−4. (b) Switching

time, τ , plotted on a log scale, as a function of η (also on a log scale). A = 0.175. For both panels, τ

was estimated from a calculation of β	, which itself was computed by initializing V at appropriate

values and then running to observe its short-term evolution.

from a long simulation database, but rather ‘on demand’ by initializing the system at particular

values of V , performing short time simulation bursts, and processing their results as before.

A clear advantage of this approach, as opposed to running the system for long enough to

measure sufficient occurrences of switches, is that very large values of τ can be inferred from

a reasonable number of short simulations. See figure 7, for example, where we can ‘measure’

switching times greater than 106.

For a simulation of a given, fixed duration T , these curves can be used to infer the parameter

values for which we expect to see direction changes. If τ > T , we will typically see the bump

move in one direction only, whereas if τ < T we will see switching, leading to a drop in

the absolute value of the distance travelled during the time T . For example, from figure 7(b)

we see that for simulations of length T = 103, η must be greater than approximately 10−3 to

observe any switching of direction.
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Figure 8. Zeros of µ(V ) as a function of A for coloured noise with correlation time λ = 100 (solid

line and asterisks) and λ = 1 (dashed line and squares). The curves are quadratic functions in V

fitted to the data points.

2.4. White versus coloured noise

In [31] the authors investigated the effects of adding coloured noise to (3)-(4). They found that

increasing the correlation time of the coloured noise made the bump less likely to move. This

was rationalized in terms of ‘frozen’ noise (i.e. spatial inhomogeneity) which was likely to ‘pin’

the bump, preventing it from moving. Increasing the correlation time of the coloured noise was

thought of as interpolating between Gaussian white noise (with delta function autocorrelation

in time) to frozen, spatially structured, noise. Here we investigate the effect again, quantifying

the influence of noise colour on the location of the underlying bifurcation.

As in [31] we add noise to the system by adding a term ηi(t) to each of (3), with 〈ηi(t)〉 = 0

and {〈ηi(t)ηj (s)〉} = 2ǫνij e−|t−s|/λ, where νij = 0 if i �= j and 1 if i = j . The notation {· · ·}
indicates averaging over the initial distribution of η(0) values, taken from a Gaussian with

zero mean and variance 2ǫ. We keep ǫ = 10−4 and vary the correlation time λ. The results

are shown in figure 8 where we have plotted zeros of µ(V ) as a function of A for λ = 1 and

λ = 100. The figure was computed using the short runs initialized at prescribed V values. The

results are consistent with those found in [31], where it was seen that coloured noise was more

effective at slowing the bump than Gaussian white noise of the same power, and that the effect

was stronger for longer correlation times. The results presented here show that this effect can

be rationalized in terms of shifting a bifurcation point. Results for several other values of λ

indicate that as λ is increased, the bifurcation moves to higher values of A (results not shown).

Note that we have assumed that the dynamics of V are still governed by a Langevin equation,

even though there are now temporal correlations in the noise terms. The results shown in

figure 8 were verified by direct simulation.

We have thus performed effective bifurcation analysis of (3) and (4), using the dynamics

of V and its associated potential β	(V ).

3. Diffusion maps and the data-based detection of coarse observables

The previous results relied on our ability to choose a scalar variable, V , whose value correlates

with the state of the high-dimensional system (after brief initial transients have equilibrated).
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Figure 9. Schematic of datapoints (filled circles) in R
2 that lie along a curve (solid line). Euclidean

distance is a good measure of the separation between points A, B and C along the curve but is a

poor measure of the separation of points D, E and F along the curve.

However, we are often faced with dynamical systems for which choosing such a variable is

far from obvious. We then need a systematic procedure for determining, from the results

of a simulation, a good low-dimensional representation of the system state. Such data-

mining, so-called ‘manifold learning’ techniques have been a focus of intense research in

recent years [4, 7, 8, 12, 14, 38, 40]; we will use here the recently developed diffusion map

approach [32, 33]. The general idea is to ‘mine’ the large collection of high-dimensional data

points resulting from a long simulation of our original system (3) and (4), so as to obtain a low-

dimensional description of the data. We now briefly describe the general technique and then

discuss the application to our particular system. More details can be found in the appendix.

3.1. General technique

A large data ensemble from direct simulations of a system can be represented as a cloud of

points in a high-dimensional space; see the schematic in figure 9. When two such points are

very close to one another (i.e. when the Euclidean distance between them is small, as in the

case of points A, B and C in the schematic), we can consider this distance as representative

of the ‘intrinsic similarity’ of the two configurations—in some sense, of how easy it is for the

system dynamics to cause a transition from one configuration to the other. When, however,

this Euclidean distance is larger than some threshold (as in the case of points D, E and F in

the schematic) the Euclidean distance stops being a good measure of the ‘intrinsic similarity’

between configurations—the ‘effort to transition’ from E to F, measured by the arclength

between them, is clearly less than the effort to transition from E to D, even though the Euclidean

distances DE and EF are similar. The main idea underpinning diffusion maps is to perform a

random walk on a graph in which data points are vertices, and connection strengths between

data points are given by a Gaussian kernel of the form K(x, y) = exp(−‖x − y‖2/σ 2).

When the points are farther away than a cutoff (controlled by the parameter σ ) the vertices

are effectively disconnected; when they are very close, the strength of the connection is

controlled by their (small) Euclidean distance. A random walk on such a graph gives rise

to a diffusion distance—starting from the same source point and diffusing on the graph for

some time, we then look for equal density contours; points on such a contour are equally easy
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Figure 10. Left panel: diffusion map plotting components of the top two significant eigenvectors

of Markov matrix M (defined in the appendix) constructed from simulation data. Datapoints are

shaded by (and appear ordered according to) the value of the empirical coordinate V (t) (defined

in section 1). The inset shows the leading eigenvalue spectrum for the diffusion map. Right panel:

3D diffusion map plotting components of top three significant eigenvectors.

to access from the source point, and are therefore at equal diffusion distance from it, even

though their Euclidean distances from the source may vary substantially. The procedure also

provides a set of transformed coordinates; the Euclidean distance in these new coordinates is a

true measure of intrinsic datapoint similarity. The procedure can be thought of as a nonlinear

generalization of principal component analysis [25].

3.2. Results

In our case, we start from a long simulation (of 30 000 time units) during which we sample

the u(x), a(x) profile every 8 time units, giving N = 3 750 data points. We have spatially

discretized with M = 100, so each of these data points is in R
200. (From now on, we use

the same parameter values as those in figure 1.) Using the procedure briefly outlined in the

appendix we process these data forming a Markov matrix whose leading eigenvectors provide

useful ‘reduction coordinates’ for our data. Figure 10 (left panel) shows the simulation data

projected on the first two ‘reduction coordinates’—the first two nontrivial eigenvectors �2 and

�3 of the appropriate Markov matrix. The coordinates of the ith datapoint in this map are

(�
(i)

2 , �
(i)

3 ). The right panel of figure 10 shows a three-dimensional diffusion map, in terms

of the first three nontrivial reduction coordinates. Simulation points in the diffusion map are

coloured according to their associated value of the empirical coordinate V. It is clear that points

are ordered along the curve by their values of this known reaction coordinate. This sorting

of high-dimensional data vectors is obtained in an ‘automated’ fashion by the diffusion map

calculation.

All data instances clearly collapse on a one-dimensional curve. Figure 11 indicates five

representative data points (at values of �2 = −1.8, −1, 0, 1 and 1.8) on this curve. The insets,

showing brief space-time plots initialized at the corresponding data points, clearly indicate

that right-moving states reside on one end of this curve, left moving states on the opposite

end, and transition states between the two reside in the interior of the curve. It is clear that

the curve is one-to-one with the variable �2 (for every value of �2 there exists one point on

the curve); this suggests that �2 would be a good scalar observable for our system. Looking

back, figure 2 (third row) shows the evolution of this ‘computer-derived’ observable during
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Figure 11. Two-dimensional diffusion map representation of long simulation data (as shown in

figure 10). The insets show representative local solution evolution for u profiles initialized at five

different regions of the map (�2 = −1.8, −1, 0, 1 and 1.8). Shadebar shown at top of figure

indicates u values in space–time plots.
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Φ
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Figure 12. Coordinate V (t) versus top significant eigenvector coordinate �
(i)
2 for long simulation

results.

our system dynamics; it is clearly capable of capturing the direction switches in the system

in a manner comparable with the ‘experience-based’ coordinate V . Another possible scalar

observable we considered is the arclength distance along the curve connecting components

of the top two eigenvectors, i.e. arclength along the curve in the left panel of figure 10. The

variation in this observable is comparable to that of �2 and also accurately describes the

direction of travel of the bump during the simulation (results not shown). Figure 12 plots

the simulation data in terms of the two coarse coordinates: the experience-based V and the

data-based �2. At first sight, a one-to-one correspondence between the two observables is

apparent, suggesting that our experience-based coordinate was indeed a good choice.

The processing of the database from a long, equilibrium run simulation that gave us

an effective potential in terms of the observable V can now also be performed in terms

of the computer-assisted observable �2; the resulting two-well effective potential and the
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Figure 13. Effective potential β	 estimated in terms of diffusion map coordinate �
(i)
2 . Dashed

line: from assuming that P(�
(i)
2 ) ∝ exp [−β	]; points from assuming a Fokker–Planck equation,

reconstructing µ(�
(i)
2 ) and D(�

(i)
2 ) and computing the integral (9).

corresponding effective Langevin description are practically isomorphic to the V -based

description. The effective potential computed in terms of the computer-assisted observable �2

is shown in figure 13. Thus we have an alternative (equivalent) low-dimensional description

of system (3) and (4) in terms of the variable �2.

3.3. Computing with diffusion map coordinates

When we attempt to directly construct the effective potential in terms of the diffusion map

coordinate �2 (i.e. not from processing a long run database), it becomes necessary to initialize

short simulation bursts consistent with particular values of �2 as well as observe the �2 values

corresponding to results of detailed simulation. The diffusion map calculation that leads to

the identification of the coordinate �2 automatically provides its value on each of the data

points used in the calculation (see the appendix). It therefore becomes important to establish

computational protocols that routinely allow the translation between physical coordinates and

diffusion map coordinates. This translation needs to be possible in both directions: to initialize a

short system run we need to translate a value of �2 to system initial conditions (living in R
200);

processing of the short simulation bursts involves extracting the �2 values of the resulting

states. These translation operations are termed ‘lifting’ and ‘restriction’ in the equation-free

framework [20, 27]. We now briefly discuss possible implementations of such protocols,

starting with the restriction: obtaining the �2 values of new system configurations, not in the

original database, that result from our short simulation bursts.

Referring to the appendix, for points in the original dataset (used to assemble the

neighbourhood matrix K) eigenvalues and eigenvectors of the symmetric kernel Ms are

related by

MsΨj = λjΨj . (11)

For a particular point xi in the dataset we have

N∑

k=1

Ms(xi, xk)�
(k)
j = λj�

(i)
j . (12)
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For a new datapoint x(new) the same formula should be valid. However, while the right-hand

side is unknown, the left-hand side may be computed for the new datapoint, which gives the

following formula for the extension of the diffusion map

�
(new)
j =

1

λj

N∑

k=1

M̃s(x
(new), xk)�

(k)
j , (13)

where M̃s is a generalized kernel which extends to new sample points and is given by

M̃s(x
(new), xk) =

1

N

K(x(new), xk)√
Ey

(
K(x(new), y)

)
Ey′ (K(xk, y′))

. (14)

Equation (13) is called the Nyström formula [3] and allows eigenvector components associated

with new data vectors x(new), outside of the original sample, to be computed by eigenspace

interpolation instead of repeated eigendecomposition of the Markov matrix augmented by the

new data vectors. The expectations appearing in the denominator of (14) are computed from

the empirical data using

Ey (K(x, y)) =
1

N

N∑

i=1

K(x, yi). (15)

Use of the Nyström formula (13) is central to the efficient computation of diffusion map

coordinates associated with a high-dimensional vector (restriction) and also the preparation of

a data vector x (lifting) with desired diffusion map coordinate values. Equation (13) is used to

first compute the eigenvector components �
(new)
j (associated with the symmetric matrix Ms);

diffusion map coordinates (associated with M) for the new data point may then be computed

using

�
(new)
j =

�
(new)
j

�
(new)

1

. (16)

The Nyström formula allows calculation of the diffusion map eigenvector components

�new
j associated with a new data vector x(new). A full eigendecomposition is typically performed

first for a representative subset of simulation datapoints, identifying the relevant eigenvectors.

The Nyström formula is then used to perform the restriction operation in (13) which amounts

to interpolation in diffusion map space.

Our protocol for lifting from prescribed diffusion map coordinates to consistent system

states using stochastic optimization is presented in figure 14. The main step in this lifting

procedure, which produces u(x) and a(x) solution profiles with a specified diffusion map

coordinate, �
targ
2 , is the minimization of a quadratic objective function given by

Obj(�
(i)

2 ) = λOBJ,2(�
(i)

2 − �
targ
2 )2, (17)

where λOBJ,2 is a weighting parameter that controls the shape of the objective away from

its minimum at �
(i)

2 = �
targ
2 . The implicit dependence of the eigenvector components �

(i)
j

(associated with a data vector x(i)) on x(i) and all other data vectors used in the construction of

the neighbourhood matrix K makes this optimization problem challenging. We used here, for

simplicity, the method of simulated annealing (SA) [28,36] to minimize the objective function

defined in (17), and identify a data vector x(targ) with the target diffusion map coordinate �
targ
2 .

Table 1 compares drift and diffusion coefficient values (at �2 = −0.5) estimated by multiple

short simulation bursts, initialized using this lifting protocol, with values computed from a

long time simulation. The agreement is very good.
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Figure 14. Protocol for lifting from diffusion map coordinates using SA. We show (top left)

normalized u and a solution profiles which define the trial vector x(trial). This 200-dimensional

vector is restricted, the ‘location’ of the data vector in the diffusion map is identified (top right) and

the corresponding objective value computed (bottom). The objective value guides the selection of

a new search direction (in R
200), generating a new set of solution profiles (a new x(trial)) and the

above procedure is repeated.

Table 1. Drift and diffusion coefficients at diffusion map coordinate value �∗
2 = −0.5 estimated

by finding occurrences of �∗
2 in a long simulation (database) and by direct initialization at this

value (lifting).

Method µ(�2 = �∗
2) D(�2 = �∗

2)

Database −3.51 × 10−3 3.30 × 10−3

Lifting −3.39 × 10−3 3.20 × 10−3

Given these protocols for lifting and restricting, the entire effective potential and, more

generally, all the bifurcation/switching time computations performed above with our empirical

V coarse variable can be repeated with the �2 variable—a variable extracted in an automated

fashion from a single simulation of the original system. ‘Coarse-grained smoothness’ in

the diffusion map coordinates can be exploited to guide the efficient exploration of the

effective potential surface [18]. Note that due to the ‘lifting/restricting’ computations involved,

calculations using �2 instead of V generally take longer, for a particular accuracy in the

estimate of 	.

4. Discussion and conclusion

In this paper we have revisited a stochastic spatio-temporal pattern forming system originally

used to model activity in the cortex. Previous work [31] investigated the effects of changing

two parameters (spike frequency adaptation strength and noise intensity) on the dynamics of

a spatially localized ‘bump’ of neural activity. Here, we have concentrated on deriving and

using an effective low-dimensional description of the system in terms of a single scalar coarse
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variable, thus simplifying the system. This variable was assumed to satisfy an (unknown)

effective Langevin equation, so that its probability density satisfies an effective Fokker–Planck

equation. By appropriate processing of the results of a long simulation, or—more efficiently—

by appropriately initializing short bursts of simulation of the full system, we estimated the

drift and diffusion functions that appear in the Fokker–Planck equation, and thus determined

an ‘effective potential’ for the system on demand. We have thus bypassed the difficult (if not

impossible) task of deriving such a potential from the original high-dimensional, stochastic

system.

In the second part of the paper we showed how a similar analysis can be performed using a

variable that is extracted by data-mining a sufficiently long system simulation in an automated

fashion, using the diffusion map approach [32,33]. Such an approach should prove particularly

useful when applying these ideas to other systems, since in general a good coordinate (or

coordinates) for a low-dimensional description of a complex system may not be known, nor

easy to guess. The results obtained using this new variable showed good correspondence with

those obtained in the first part of the paper.

Considering more general systems, it is known that in certain limiting cases (e.g. weak

coupling) it is possible to explicitly obtain accurate reduced descriptions (e.g. phase oscillator

equations) for large coupled neural systems [16,24]. Clearly, if such equations can be derived,

they are much easier to use than the approach presented here; our approach is intended for

cases where we believe the reduction is possible, but cannot be explicitly performed. One

of the most challenging tests for a reduction—as we move away from the conditions where

we can guarantee its validity analytically—is to test, on line, whether it is accurate, and—

importantly—whether a different level reduction, with more (or even possibly with fewer)

variables is in order. In our case, this would correspond to devising tests to suggest, on line,

that more than one coarse-grained variable must take part in our effective Langevin equation.

The slight ‘thickness’ of the line in figure 12 could be an indication that, for the parameter

values used, more than one variable may be necessary in our model. Devising such tests—

in effect, testing the hypothesis that the data are locally consistent with a particular model,

e.g. a scalar Langevin equation—is the subject of ongoing research across several disciplines

(statistics, financial mathematics). Integrating such tools in a multiscale simulation framework

is only just starting.

Coarse-graining large scale, faithful neural network computations constitutes an important

subject of intense current research (see, for example, the probability density approach

[6, 29, 34]). Multiscale, coarse-graining numerical algorithms such as the one demonstrated

here have an important role to play in elucidating the types of behaviour possible for such

models and their parametric dependence.

Even though the model discussed here is rather abstract (from a computational

neuroscience point of view) it adds to the body of work demonstrating that it is possible to

obtain useful low-dimensional descriptions of complex systems, both in neural modelling [30]

and elsewhere [13, 27, 39]. These descriptions not only provide insight into the fundamental

dynamics, but enable one to simulate and analyse such systems in an efficient manner. We

expect the methods described here to be widely applicable to other complex systems.
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Appendix

We now give a brief description of the calculation of the coordinates Φ2,Φ3, . . . discussed in

section 3.

We run a simulation of (3) and (4) for 30 000 time units and sample the u(x), a(x) profile

every 8 time units, giving N = 3 750 data points. We have discretized space with M = 100

points, so every data point is actually a vector of 200 values. Using i to index the data points,

we normalize each ui profile by its maximum value (at node mi ∈ {1, . . . M}) and normalize

the ai profile by its nodal value at the corresponding location (ai(mi)). Finally, we shift both

solution profiles by a fixed number of nodes such that the alignment between ui profiles is

maximized (in a least squares sense) thereby factoring out translations. The components of the

simulation data vector xi are given by the resulting 2M nodal values of ui and ai . We define a

pairwise similarity (‘neighbourhood’) matrix K between a representative sample of these data

vectors (collected over the course of a simulation run) as follows:

Ki,j = K
(
xi, xj

)
= exp

[
−

(
‖xi − xj‖

σ

)2
]

, (A.1)

where σ is a parameter that defines the size of the local neighbourhood surrounding each

high-dimensional point. Defining the diagonal normalization matrix Di,i =
∑

j Ki,j , we

construct the Markovian matrix M = D−1K. A few top eigenvectors of the matrix M,

namely Φ2,Φ3, . . . , are used here as a low-dimensional representation of the simulation data.

Components in the eigenvector provide the low-dimensional coordinate for each simulation

data vector. The diffusion map distance is equal to Euclidean distance in the diffusion

map space. In many applications the spectrum of the matrix M possesses a spectral gap,

and this diffusion distance may be approximated by using only a few top eigenvectors.

This approximation has been shown to be optimal under a particular mean squared error

criterion [32].

The matrix M is adjoint to the symmetric matrix Ms defined as follows:

Ms = D1/2M D−1/2 = D−1/2K D−1/2. (A.2)

M and Ms share the same eigenvalues; eigenvectors Φj of M are related to those of Ms, denoted

Ψj , as follows:

Φj = D−1/2
Ψj . (A.3)

We compute the largest eigenvalues and eigenvectors of the symmetric matrix Ms and use (A.3)

to evaluate the eigenvectors of the Markov matrix M. We note that the top eigenvector Ψ1

of Ms, corresponding to the largest eigenvalue λ1 = 1, has components equal to the diagonal

entries of D1/2; it follows from (A.3) that the top, trivial, eigenvector Φ1 of M consists entirely

of ones.

The diffusion map in the left panel of figure 10 is then

xi →

(
Φ

(i)

2

Φ
(i)

3 ,

)
∈ R

2, (A.4)

where Φ
(i)
k is the ith component of Φk.
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