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ABSTRACT

Understanding the function of complex RNA molecules depends critically on understanding their structure. However, creating
three-dimensional (3D) structural models of RNA remains a significant challenge. We present a protocol (the nucleic acid
simulation tool [NAST]) for RNA modeling that uses an RNA-specific knowledge-based potential in a coarse-grained molecular
dynamics engine to generate plausible 3D structures. We demonstrate NAST’s capabilities by using only secondary structure
and tertiary contact predictions to generate, cluster, and rank structures. Representative structures in the best ranking clusters
averaged 8.0 6 0.3 Å and 16.3 6 1.0 Å RMSD for the yeast phenylalanine tRNA and the P4-P6 domain of the Tetrahymena
thermophila group I intron, respectively. The coarse-grained resolution allows us to model large molecules such as the 158-
residue P4-P6 or the 388-residue T. thermophila group I intron. One advantage of NAST is the ability to rank clusters of
structurally similar decoys based on their compatibility with experimental data. We successfully used ideal small-angle X-ray
scattering data and both ideal and experimental solvent accessibility data to select the best cluster of structures for both tRNA
and P4-P6. Finally, we used NAST to build in missing loops in the crystal structures of the Azoarcus and Twort ribozymes, and to
incorporate crystallographic data into the Michel–Westhof model of the T. thermophila group I intron, creating an integrated
model of the entire molecule. Our software package is freely available at https://simtk.org/home/nast.

Keywords: RNA structure; 3D RNA structure prediction; knowledge-based energy function; coarse-grained modeling

INTRODUCTION

RNA molecules that play catalytic or structural roles form

complex three-dimensional (3D) structures. These diverse

molecules include RNA enzymes (ribozymes), which cata-

lyze RNA cleavage (Stark et al. 1978; Kruger et al. 1982;

Guerrier-Takada et al. 1983), and riboswitches, which are

sequences within some mRNAs that change conformations

upon binding small metabolites and subsequently termi-
nate transcription or block translation (Nahvi et al. 2002;

Winkler et al. 2002a,b; Rodionov et al. 2003; Vitreschak

et al. 2004). Although knowing the structure of these

molecules is fundamental to understanding their function,

we have only a few high-resolution RNA structures from

expensive and lengthy X-ray crystallographic studies. In

addition, partially folded states, misfolded states, and

flexible regions of a molecule may not be amenable to

crystallization. For these reasons, building 3D models of
RNA remains an important challenge (Levitt 1969; Michel

and Westhof 1990; Westhof and Altman 1994; Fink et al.

1996; Lehnert et al. 1996; Shapiro et al. 2007), one in

which the ability to sample diverse conformations is

especially important.

The problem of determining RNA structure breaks

naturally into two subproblems: predicting the secondary

structure, and predicting how the secondary structural
elements assemble to form a 3D structure. For the most

part, RNA secondary structure forms rapidly, and is sub-

stantially complete on a time scale much shorter than the

subsequent interaction of the resulting elements. Phyloge-

netic analysis of aligned RNA homologs is a gold standard

for determining secondary structure (Noller et al. 1981;

James et al. 1988). Sequence-based prediction of RNA
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secondary structure is available through tools such as the

thermodynamic method, Mfold (Zuker 2003), and the

probabilistic method, Contrafold (Do et al. 2006). For 3D

modeling, manual structure predictions by RNA structure

experts have been successful, including the complete mod-

eling of several group I introns (Michel and Westhof 1990;

Lehnert et al. 1996), the RNA component of RNase P

(Harris et al. 1994; Westhof and Altman 1994). Despite
these successes, manual methods are difficult to generalize

and reproduce; they rely extensively on the individual

expertise of the modeler.

A number of computational tools have been developed to

aid in 3D structural modeling; these can be classified based

on whether they are automatic or manual, full atomic or

coarse grained, and physics based or knowledge based. Our

tool, the nucleic acid simulation tool (NAST), is fully
automatic, coarse grained, and uses a statistical potential.

Moreover, it is fast enough to generate ensembles of 10,000

or more candidate structures, and thus gives a sense of the

degree to which the data constrain the conformational space.

MANIP is an interactive tool that allows users to build

RNA structures modularly from fragments frequently

found in RNA; however, this is not an automated method

(Massire and Westhof 1998). ERNA-3D is a molecular
modeling system for generating models of RNA molecules

using known fragment structures and has been used to

model ribosomal RNA structures (Tanaka et al. 1998). Both

MANIP and ERNA-3D are manual tools and generate a

handful of models, whereas an automated method would

allow the generation of large ensembles of structures.

MC-Fold and MC-Sym build full-atomic models of RNA

structures using nucleotide cyclic motifs (Major et al. 1993;
Parisien and Major 2008). This tool is powerful for mod-

eling small RNA segments or small RNA molecules, but

larger structures remain a challenge because of the com-

putational requirements for full-atomic modeling. FARNA

is an automated method that can predict structures of

RNA fragments such as base triplets and pseudoknots,

but efficient conformational sampling is computationally

prohibitive for RNA sequences longer than a few dozen nu-
cleotides (Das and Baker 2007). Both methods are limited

in their conformational sampling because of the complexity

of full-atomic resolution models. A coarse-grained approach

would decrease computational requirements for modeling

large structures.

YUP is a very flexible molecular mechanics framework

that can incorporate coarse-grained and full-atomic models

and associated energy potentials. It has been used to model
RNA structures as well as DNA and protein (Tan et al.

2006). In general, the potentials it uses are tailored to the

problem at hand, but it is an extensible and useful tool for

multiscale modeling. PROTEAN makes probabilistic struc-

ture predictions using uncertain data such as cross-linking

data and is able to predict both small and large structures,

but it only models the relative position of double helical

elements and does not include single-stranded regions

(Fink et al. 1996). Neither of these methods includes

potentials specific to RNA geometry, which would improve

the quality of the models. DMD is a coarse-grained mo-

lecular dynamics tool that incorporates base-pairing and

base-stacking interactions into an energy function to fold

small RNA molecules, but has not been applied to mo-

lecules larger than 100 nucleotides (nt) (Ding et al. 2008).
Of course, full-atomic molecular dynamics simulations

of RNA, in principle, can provide useful insight into the

folding mechanism, but are expensive and usually not used

for initial structural modeling; they are applied most com-

monly to structures solved by crystallography (Sorin et al.

2002, 2004).

RNA structure has critical differences from protein struc-

ture. First, the repertoire of four planar RNA bases is less
diverse than the more heterogeneous 20 amino acids.

Second, the highly negatively charged RNA creates strong

electrostatic interactions within the molecules and with

solvent. Third, there is a much clearer separation of time

scales of secondary structure formation and tertiary struc-

ture formation. Finally, the secondary structure (helical

elements) involves the intimate intertwining of two parts

of the RNA strand that creates significant topological
constraints on the molecule (Fink et al. 1996). In partic-

ular, each double helix can have four single-stranded re-

gions that emanate from it, creating a complex network of

connections.

There has been great interest in the modeling of 3D

protein structures, and methods for proteins may be useful

in the context of RNA (Baker and Sali 2001). In particular,

some methods for estimating protein structure are knowl-
edge based and rely on collecting the statistics of protein

geometry and contact patterns to create objective functions

to be minimized in the search for correct conformations

(Fischer and Eisenberg 1996; Jaroszewski et al. 1998; Jones

1999; Shi et al. 2001; Rohl et al. 2004). The performance of

these methods can match or exceed current physics-based

modeling strategies because they learn from the database of

observed structures. Until recently, the dearth of solved RNA
structures made it difficult to incorporate information from

solved structures into new structure models. However, the

current availability of RNA crystal structures, especially the

ribosome structures (Ban et al. 2000; Yusupov et al. 2001),

allows analysis of structural statistics from solved structures

and the creation of models that obey these statistics.

In our work, we use a coarse-grained representation (one

quasiatom per RNA base) in order to simplify the compu-
tations, as described below. This representation provides a

starting point for further refinement to atomic models. We

note that the strategy we have taken for creating a coarse-

grained representation of RNA is similar to the strategy

adopted by YUP; however, we have chosen the more central

C3 atom, while YUP uses the phosphate along the backbone

(Tan et al. 2006). It is possible that the NAST representation
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and our associated energy function could be incorporated

into YUP, as it is very flexible. Our work also differs from

YUP because we have created a statistics-based potential to

capture RNA geometry at the C3 level of representation, and

we specifically have built NAST to allow experimental in-

formation to be included as a filtering step.

The statistical potential used by NAST ensures that mod-

els will have well-formed secondary structures and plausible
single-stranded regions. The topology of an RNA molecule

also requires tertiary contacts from experiments or phylo-

genetic analysis. In addition, other experimental modalities

provide useful information about RNA structure. Nuclease

footprinting can constrain RNA secondary structure by

detecting base pairing (Galas and Schmitz 1978). Hydroxyl

radical footprinting can measure solvent accessibility of

nucleotides (Tullius 1988; Wang and Padgett 1989; Sclavi
et al. 1997). 29-Hydroxyl acylation analyzed by primer

extension (SHAPE) chemistry can constrain both secondary

structure and tertiary interactions (Merino et al. 2005;

Mortimer and Weeks 2007). Small-angle X-ray scattering

(SAXS) provides information about the radius of gyration,

distribution of pairwise distances, and the general shape of

the molecule (Russell et al. 2000; Doniach 2001). Comparing

a model’s calculated values for each of these types of data to
the experimental values may be a useful filter of structures.

We used measurements related to these experimental tech-

niques to evaluate their value in model selection. In par-

ticular, solvent accessibility can be estimated based on the

exposed surface area of the RNA bases. The radius of gyra-

tion can be estimated from the distribution of pairwise dis-

tances. The shape of the molecule can be approximated with

the three physical principal components.

RESULTS

NAST energy function

NAST models RNA structure at a coarse-grained level: the

position of each base is represented as a single point (Fig.

1A, centered on the C39 atom), and all constraints are
represented with respect to the relative position of these

points (Fig. 1C,D). NAST incorporates the statistics of the

geometry of these points in RNA crystal structure (Fig. 1B)

to constrain the local relationships of bases while gener-

ating an ensemble of structures. These structures are con-

sidered to be at ‘‘nucleotide resolution’’ because we can

distinguish only the positions of nucleotides, and not the

individual atoms comprising them.
We tested NAST by building models of two RNA mol-

ecules and by evaluating their agreement to the coarse-

grained representation of their respective solved crystal

structures. We modeled yeast phenylalanine tRNA and the

P4-P6 independently folding domain of the Tetrahymena

thermophila group I intron. To validate the NAST energy

function, we generated thousands of decoys of each

molecule and assessed how close to the crystal structures

we were able to sample. We further used NAST to model

missing loops in the Azoarcus and Twort ribozyme crystal

structures. We then combined information from the in-

complete crystal structure of the T. thermophila group I

intron with the Michel–Westhof model of the complete

structure to build a combined model that agrees with both

sets of data.

Structure modeling of the yeast phenylalanine
tRNA molecule

Yeast phenylalanine tRNA is a 76-nt molecule for which the

secondary structure and tertiary contacts long have been

known (Levitt 1969). Covariance analysis has determined

four helical regions and four tertiary contacts, which we
show in Supplemental Figure S2 (Klingler and Brutlag

1993). We used only this structural information as input

to NAST and did not use any structural data from the

tRNA crystal structure as input or in determining the sta-

tistical potential. After filtering the ensemble for agreement

with tertiary contact constraints and removing structures

with extremely large NAST energy values, we clustered the

ensemble of decoys into three groups. We show five rep-
resentative structures for each group in Figure 2A, along

with GDT-TS score and RMSD value statistics for those five

structures. We ranked each cluster by average agreement

with ideal and experimental data, including SAXS, solvent

accessibility, and NAST energy (Table 1). All four ranking

metrics selected Group A as the best group, in agreement

with both the RMSD and GDT-TS rankings.

Structure modeling of the medium-sized RNA
molecule P4-P6

The P4-P6 subdomain of the T. thermophila group I intron

is a 158-nt structure that folds independently (Murphy and

Cech 1993; Cate et al. 1996). We initially modeled this

structure using the precrystal secondary structure predic-

tion (Murphy and Cech 1993) and one tertiary contact
known from covariance analysis (Michel and Westhof

1990) as input to NAST (shown in Supplemental Fig.

S2). Using the same ensemble generation protocol as for

tRNA, we clustered the structures into two groups. We

show five representative structures from each group in

Figure 2B, and the average statistics for each cluster in

Table 1. Each metric selected Group A as the best group,

in agreement with the RMSD and GDT-TS rankings.

Sensitivity of P4-P6 modeling to secondary
structure accuracy

To assess the sensitivity of P4-P6 modeling to secondary

structure constraints, we used four constraints with different

percentages of wrong base pairs including the predicted
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structure (26%) and the observed structure (0%). We show

the range of GDT-TS scores and RMSD values for each

ensemble in Figure 3; we did not observe any significant effect

on the quality of structures generated.

Comparison to near-random compact structures

We compared the structures generated by NAST for both

tRNA and P4-P6 with near-random compact structures. We
generated ensembles of near-random compact structures

using the same secondary structure with random tertiary

contacts. We selected near-random structures with similar

radius of gyration distributions as those observed in the

NAST-generated structures. For both tRNA and P4-P6,

structures with similar radii of gyration had significantly

worse GDT-TS scores (low) and RMSD values (high). We

show the distributions of radii of gyration, GDT-TS scores,
and RMSD values in Supplemental Figure S3.

Manipulating large RNA structures

Building missing loops

We used geometric constraints from existing loops in the

crystal structures of the Azoarcus and Twort ribozymes to

build in the loops missing the crystal structures. We show

the coarse-grained models we generated in Figure 4, A and

B, where the crystal structures are gray and the added loops
are pink. We show an ensemble of loop possibilities gen-

erated by NAST.

Combining crystal structure and model

We combined the crystal structure of the T. thermophila

group I intron (Fig. 4C), which is missing several peripheral

helices as well as one loop, with the precrystal structure
Michel–Westhof model (Fig. 4D) to make a combined NAST

model (Fig. 4E). We constrained the P4-P6 and core domains

of the Michel–Westhof model to their geometries in the

crystal structure. The resulting structure is in full agreement

with the crystal structure (pink), while using the Michel–

Westhof model for the missing peripheral helices (gray).

DISCUSSION

NAST is a coarse-grained knowledge-based software pack-

age useful for modeling and manipulating large RNA

molecules at one-point-per-residue resolution. NAST sam-

ples local geometries observed in ribosomal RNA (Fig. 1B)

and uses a simple molecular dynamics engine to sample

conformations that satisfy a given set of secondary struc-

ture and tertiary contact constraints. There is no term in
the energy function for the detection and formation of base

pairs, only a pressure to take on an RNA-like geometry.

Similarly, there is no consideration of electrostatic attrac-

tion or repulsion—we assume that charge is distributed

at the atomic level to neutralize the molecule. Using this

simple approach we successfully generated tRNA and P4-P6

structures, clustered structures by similarity, and ranked clus-

ters by agreement with several types of ideal and experi-
mental data. Representative structures from the best-ranked

FIGURE 1. The NAST energy function. (A) NAST uses a coarse-grained representation of one point per residue centered at the C39 atom
(approximately to scale). (B) Distributions of distances, angles, and dihedrals between consecutive C39 atoms observed in ribosomal RNA (bold)
and generated by the NAST energy function (dashed). (C) Illustration of geometric constraints for nonhelical regions in the NAST energy
function. (D) Geometric constraints used in helical regions by the NAST energy function.
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clusters had average RMSD values of 8.0 Å and 16.3 Å, and

GDT-TS scores of 0.20 and 0.06 for tRNA and P4-P6,

respectively. Given the resolution of our coarse-grained

model, and the range of RMSD and GDT-TS values

observed in near-random compact
structures, these models have significant

topological similarity to their respective

crystal structures. More-sophisticated

conformational sampling techniques

such as replica exchange (Rhee and

Pande 2003) could improve the quality

of the structures. However, given the

low resolution of the coarse-grained
representation, these are likely in the

limit of structural information that can

be attained from NAST models. In

addition to providing information

about the likely topology of a molecule,

NAST models may provide a good

starting point for higher resolution

atomic models.
Although the NAST energy function

was parameterized using a temperature

of 300 K, the temperature and energy

values used and reported by NAST have

no precise physical interpretation,

because we are using a coarse-grained,

knowledge-based energy function and

because we performed no parameteriza-

tion simulations at temperatures other

than 300 K. However, conformational

sampling is still consistent with the Boltz-

mann distribution, so high-temperature

simulations will sample a larger region of

configuration space than low-temperature

simulations.
To simulate a realistic modeling ap-

plication, we used only secondary struc-

ture and tertiary contact information

that was available before the crystal

structures of tRNA and P4-P6 were

solved. In the case of tRNA, this infor-

mation was correct and validated by the

crystal structure. However, the pre-
dicted secondary structure for P4-P6

differs from the native secondary struc-

ture (26% wrong base pairs). To assess

the sensitivity of P4-P6 modeling to the

percentage of wrong base pairs in the

secondary structures, we compared the

range of GDT-TS scores and RMSD

values for structures generated using
four different secondary structures. As

shown in Figure 3, we did not observe

significant differences in the quality of

structures generated using this range of percent wrong base

pairs. This result suggests that the coarse-grained models

generated by NAST are not sensitive to this level of

mistakes in predicted secondary structures, making the

TABLE 1. NAST modeling results for tRNA and P4-P6

Cluster A Cluster B Cluster C

Rank Rank Rank

tRNA
Ideal SAXS error 348 6 80 1 483 6 125 3 354.52 6 92.7 2
Ideal SAS correlation 0.59 6 0.10 1 0.54 6 0.08 2 0.45 6 0.11 3
Experimental SAS

correlation
0.39 6 0.11 1 0.30 6 0.09 3 0.35 6 0.12 2

NAST energy 438 6 47 1 498 6 64 3 467.31 6 63.8 2
GDT-TS 0.14 6 0.05 1 0.08 6 0.04 2 0.06 6 0.03 3
RMSD (Å) 10.3 6 2.3 1 13.9 6 1.9 2 15.55 6 2.19 3

P4-P6
Ideal SAXS error 2540 6 990 1 2973 6 1015 2
Ideal SAS correlation 0.16 6 0.09 1 0.14 6 0.08 2
Experimental SAS

correlation
0.13 6 0.11 1 0.11 6 0.10 2

NAST energy 859 6 83 1 863 6 72 2
GDT-TS 18.55 6 3.11 1 21.30 6 3.03 2
RMSD (Å) 0.0 6 0.0 1 0.0 6 0.0 2

Statistics for each cluster’s agreement to ideal SAXS data, ideal and experimental solvent
accessibility (SAS) data, as well as average NAST energy, GDT-TS, and RMSD scores for
each cluster are shown. Each data type ranked the highest GDT-TS and lowest RMSD
scoring cluster first.

FIGURE 2. NAST modeling of tRNA and P4-P6. The tRNA (A) and P4-P6 (B) crystal
structures and representative structures from each of the clusters of coarse-grained models
generated by NAST.

Coarse-grained modeling of large RNA molecules

www.rnajournal.org 193

 Cold Spring Harbor Laboratory Press on January 24, 2011 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


method useful even in cases where there is uncertainty in

the secondary structure. Additionally, these results sug-

gest that NAST could be useful in generating alternative
ensembles under ‘‘what if’’ scenarios that could suggest the

value of collecting additional experimental data to con-

strain the modeling, including additional tertiary contacts.

We used four different types of data to rank clusters of

structures: (1) ideal SAXS data in the form of distribution

of pairwise distances; (2) ideal solvent accessibility (SAS)

data; (3) experimental SAS data from hydroxyl radical

footprinting experiments; and (4) NAST energy. In most
cases, better agreement with data correlated with better

quality measures, although some correlations were more

significant than others (Table 1). For example, the ensem-

ble of tRNA structures generated by NAST shows a

particularly strong correlation between RMSD values and

ideal SAS. For P4-P6, we find the strongest correlation

between RMSD values and ideal SAXS data, whereas we

observe nearly no correlation between both GDT-TS and
RMSD, and experimental SAS data (Supplemental Table

S3). The comparison between ideal and experimental SAS

data gives us additional insight into the information con-

tent of noisy experimental data. Additionally, we observe

that SAXS data are more useful for P4-P6 modeling than

for tRNA modeling, probably because the shape of P4-P6

is less globular and more information is contained in the

pairwise distance distributions.
In addition to modeling RNA structures based on sec-

ondary structure and tertiary contact information, we used

NAST to complete crystal structure models that have

missing residues at the coarse-grained level. In this ap-

plication of NAST, we used crystal structures as data

sources, providing pairwise distance constraints that can

be constrained more or less strictly. As examples of this

capability, we added the missing loops of the Azoarcus

and Twort ribozyme structures. We also combined crys-

tallography and model data to build a combined model of

the T. thermophila group I intron ribozyme. This func-

tionality can be used to constrain domains such as second-

ary structure based on crystallographic data, while exploring

the conformation space of junctions to study unfolded

conformations.

Because of the computational complexity added with

each additional nucleotide, modeling large RNA structures

is a significant challenge, and most methods do not attempt

to model structures larger than the 76-nt tRNA. NAST’s
coarse-grained resolution allows us to model and manip-

ulate large RNA structures, including modeling the 158-

residue P4-P6, solely from sequence, secondary structure,

and tertiary contacts. Although the coarse-grained resolu-

tion results in models with inherently limited structural

information, they can be used as templates for building

full-atomic resolution structures, and models for experi-

mental tests.
NAST is limited by its need for secondary structure

information. However, these data are available from both

experimental and computational methods and are fre-

quently known from natural or artificial phylogenetics for

RNA molecules with no solved crystal structure. Addition-

ally, we have shown that the level of error observed in the

predicted secondary structure for P4-P6 does not affect

significantly the quality of structures generated. NAST is
also limited by its need for tertiary contacts. Again, this

type of information often is known either through phylo-

genetic analysis or experimental methods. NAST allows the

user to explore the effects of different putative tertiary

contacts on the structure of the molecule.

FIGURE 4. NAST manipulation of large RNA structures. Coarse-
grained addition of missing loops (pink) in Twort (A) and Azoarcus
(B) ribozymes. (C) Crystal of structure of T. thermophila group I
intron with missing helices. (D) Michel–Westhof model of T.
thermophila group I intron. (Teal) Residues for which crystallographic
information is available. (E) Incorporation of crystallographic infor-
mation (gray) into the Michel–Westhof model of T. thermophila
group I intron.

FIGURE 3. Sensitivity of P4-P6 modeling to percentage of wrong
base pairs in the specified secondary structure. Mean and standard
deviation of RMSD (A) and GDT-TS (B) values for structures
generated using 0% (crystal structure), 15%, 26% (predicted second-
ary structure), and 35% wrong base pairs. We observe no significant
effect on the quality of structures generated in this range of wrong
base-pair percentages.
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Modeling RNA right-handed helices is a challenge in

distance-constraint-based modeling such as nuclear mag-

netic resonance (NMR), where left-handed helices some-

times result from the ambiguities in chirality. Because

distance constraints alone are insufficient to specify chirality,

both left- and right-handed helices are equally consistent

with distance data. We guarantee right-handed helices by

constraining four local geometries (including angles) for
each base pair in a helix, as described in the Materials and

Methods section. These constraints allow mapping of helices

to standard geometries with low variance. It is possible to

relax our knowledge-based constraints to allow helices to

bend or otherwise match the standard geometry less strictly.

Lacking specific information to justify relaxation, we en-

forced standard helical geometry.

Defining a van der Waals radius for our coarse-grained
representation of nucleotides is challenging, as nucleotides

are clearly not inherently spherical. We chose to use a small

radius (4 Å) to allow close interactions that are occasion-

ally observed in ribosomal RNA. When we examined the

ribosome, 99.9% of all contacts were allowed by our em-

pirical van der Waals radius. However, a small spherical

radius allows nucleotides to intertwine within helical re-

gions, so we chose to use a slightly larger radius for residues
involved in secondary structure. Using a more-complicated

geometry that better simulates the shape of nucleotides

would reduce the amount of unrealistic packing observed

in NAST structures, but would significantly increase com-

putational complexity.

Because of its low computational requirements, flexibil-

ity in incorporating data both in modeling and filtering,

and ability to model both small and large molecules, NAST
is a useful tool for modeling RNA structures. It requires no

special RNA modeling expertise, uses available information

about the secondary and tertiary structures, and can run on

either a single computer or a cluster. Its primary advantages

are (1) the use of empirical RNA geometric distributions to

create plausible RNA structures; (2) relatively fast modeling

using single-point-per-base models; and (3) the ability to

incorporate data as both constraints and filters on the
models. NAST is available for download with documenta-

tion and all the examples presented in this paper at https://

simtk.org/home/nast.

MATERIALS AND METHODS

We make the following assumptions in our NAST software

package:

1. Secondary structure is specified, and we constrain these

regions to ideal RNA helical geometry.

2. The geometries of regions not involved in secondary structure

follow distributions similar to those observed in solved RNA

structures.

3. We may have knowledge of tertiary interactions within the

molecule (from experimental or phylogenetic analysis).

NAST knowledge-based energy function

Coarse-grained representation of RNA

We use a coarse-grained representation of RNA in which each

nucleotide is represented by the position of its C39 atom (Fig. 1A).

This representation simplifies the computational complexity of

the problem by reducing the number of coordinates to estimate

while still allowing use of nucleotide resolution data such as

secondary structure, tertiary interactions, and solvent accessibility.

NAST energy function

Four types of statistical information contribute to the NAST

energy function:

1. Geometries from solved ribosome structures (distances, angles,

and dihedrals between C39 atoms of two, three, and four

sequential nucleotides, respectively);

2. Repulsive nonbonded interactions between bases i, j

abs i� jð Þ > 3½ �;
3. Ideal helical geometry for nucleotides participating in second-

ary structure; and

4. Long-range interactions between nucleotides participating in

tertiary contacts.

Geometries of solved RNA structures. The energy function used

to sample conformational space is parameterized using statistics

collected from three high-resolution RNA crystal structures of

large ribosomal RNAs: the 50S and 70S subunits of the Escherichia

coli ribosome solved at 3.5 Å resolution (2AW4 chains A and B),

and the 30S subunit of the Thermus thermophilus ribosome solved

at 3.0 Å resolution (1N32). We collected statistics on distances,

angles, and dihedral angles between two, three, and four sequen-

tial nucleotides, respectively (Fig. 1C), and assumed these terms

to be independent. The normalized probability distributions for

these terms are labeled ‘‘Ribosome’’ in Figure 1B for distances,

angles, and dihedrals, respectively. We fit the observed distance

and angle distribution curves empirically to a normal distribution,

and the observed dihedral distribution to a three-term cosine

function. We used the Boltzmann relationship (Equation 1, R =

8.31 J/K mol and T = 300 K) to determine the energy function

that produces these distributions. We give the equations and

coefficients for these functions in Supplemental Table S1. In

Figure 1B we also show the distributions of distances, angles, and

dihedrals in 100 randomly chosen NAST-generated tRNA struc-

tures (labeled ‘‘NAST structures’’). The match between the thick

and dashed lines shows that application of this energy function

results in the desired distributions:

EðxÞ ¼ �RT ln½PðxÞ�: ð1Þ

Nonbonded interactions. We include a term in our energy

function to restrict steric overlap between nonbonded residues

separated in sequence by more than three residues. To do this, we

use the repulsive term of the Lennard-Jones potential with a well

depth of e = 4.184 kJ/mol and hard sphere radii of s = 5 Å and

4 Å for residues in the secondary structure and not in the secondary

structure, respectively (Supplemental Table S1).

Coarse-grained modeling of large RNA molecules

www.rnajournal.org 195

 Cold Spring Harbor Laboratory Press on January 24, 2011 - Published by rnajournal.cshlp.orgDownloaded from 

http://rnajournal.cshlp.org/
http://www.cshlpress.com


Secondary structure geometry. We constrain residues involved

in secondary structure helices with an additional set of geometric

constraints illustrated in Figure 1D, which ensure an ideal RNA

right-handed A9-form helix. These constraints include the dis-

tance between paired residues, one angle, and two dihedrals

between the two strands involved. We give the equations and

parameters for these contributions to the potential in Supple-

mental Table S1.

Tertiary interactions. NAST also incorporates information about

long-range interactions (typically, represented as distances)

between residues, both in the case when the distance is known

(for example, from a crystal structure) and when it is predicted or

measured with noise (for example, from experimental data such as

fluorescence resonance energy transfer [FRET]). When crystal

distances are known, a term is added to the energy potential that

strongly constrains the distance between the two nucleotides by

using a tightly constrained spring potential. We do not consider

packing effects when using distances from crystal structures.

When the distance is not known, we add a weak attractive

potential (z25 times weaker than the potential used for bonds)

between the two residues to the energy function. We give the

equations and parameters for these energetic contributions in

Supplemental Table S1.

Generating decoys

We used two unfolded conformations as starting structures for

decoy generation: an unfolded coil and a circle (Supplemental

Fig. S1). The unfolded coil conformation uses a distance of 5.78

Å, angle of 2.4 rad, and dihedral of 0.3 rad between each se-

quential residue. The unfolded circle conformation separates each

sequential residue by a distance of 5.78 Å and by an offset of 0.2 Å

in the Z-axis so that the residues are not all on the same plane.

For each of these starting conformations, we constrained the

secondary structure and tertiary contacts for 25, 10, and 5 parallel

molecular dynamics runs of 2, 5, and 10 h each. This resulted in

300 CPU hours of molecular dynamics for each molecule. We

filtered the resulting decoys by their observance of the tertiary

contact constraints, using a cutoff of 15 Å. We also removed

structures with unusually high NAST energies (>1500) from the

ensemble.

Computational resources

We used the Stanford Bio-X2 cluster resource of 552 Dell CPUs

with Intel quad-core 2.33 GHz processors to generate the

candidate structures. Although we used a computer cluster to

generate ensembles in parallel, our method does not require a

sophisticated cluster and can be run on a simple workstation with

any number of CPUs. This method also can be modified to run

for more or fewer CPU hours depending on available resources.

Clustering structures

We randomly selected 1500 structures from the filtered ensemble

and clustered them using k-means clustering with a range of

k-values.

Simplified representation

We used a simplified representation of each molecule to reduce

the computational cost of calculating pairwise distances between

decoys, which facilitated clustering. We segmented each molecule

based on secondary structure into helix, loop, and junction

regions (Supplemental Fig. S2). We averaged the position of all

residues in one fragment, resulting in one point per fragment. We

also averaged the positions of all the residues in the molecule to

generate another point (representing the center of mass of the

molecule). This simplified representation resulted in 11 and 18

points for tRNA and P4-P6, respectively. This representation

allowed us to maintain topological information about the posi-

tions of segments relative to each other while reducing the

number of points in each molecule. We used this representation

to calculate all pairwise GDT-TS scores between the 1500

molecules in an ensemble.

k-means clustering

We implemented a k-means clustering algorithm using GDT-TS

scores as the distance measure between the simplified representa-

tions of molecules in an ensemble. We used k values of 2, 3, 4, and

5, and repeated the clustering 10 times for each value of k. For

each clustering round we calculated the ratio of the average within

distance to the average without distance. We selected the k-value

by plotting the best Win/Wout score for each k-value and using the

elbow criterion (Supplemental Fig. S4), where Win/Wout is defined

as the ratio of the average internal distance to the average external

distance for the cluster.

Representative structures

We selected the five structures with the lowest average reduced

GDT-TS score to all other structures in the cluster as representa-

tives of each cluster (Fig. 2). These ‘‘center’’ structures allow the

user to visualize only several structures that represent the ensem-

ble of generated structures.

Ranking clusters

We used three types of data to rank the clusters:

1. Ideal SAXS data;

2. Ideal and experimental solvent accessibility data (SAS); and

3. NAST energy.

For each data type, we averaged the agreement of decoys within

each cluster with the data type to rank the clusters relative to each

other. For ideal SAXS data, we calculated an error value, while for

both ideal and experimental SAS data we calculated a correlation

value. We assumed that lower NAST energy should correlate with

better structures.

We used two scoring methods to evaluate the quality of

structures in each cluster:

1. GDT-TS; and

2. RMSD.

The GDT-TS score calculates the percentage of residues that are

within 1, 2, 4, and 8 Å of the correct position and averages them.
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GDT-TS scores range between 0 and 1, with high scores represent-

ing better structures. RMSD values are a measurement of error in

angstroms, with lower values representing better structures.

Ideal SAXS data

To generate ideal SAXS data, we calculated the distribution of

pairwise distance within the coarse-grained crystal structure of the

molecule. We evaluated decoys by calculating the same distribu-

tion and summing the error over each bin in the distribution of

pairwise distances. We used bins with widths of 4 Å and centers

ranging from 1 to 121 Å (31 bins total). A lower error corresponds

to a better match with the ideal SAXS data.

Ideal and experimental solvent accessibility data

We measured the solvent accessibility profile of each decoy using a

published method (Cavallo et al. 2003), using a radius of 4.5 Å for

nucleotides and a solvent probe radius of 1.5 Å.

To generate experimental solvent accessibility data for tRNA,

we carried out hydroxyl radical footprinting of the yeast phenyl-

alanine tRNA using the protocol described by Das et al. (2005b)

and analyzed using SAFA (Das et al. 2005a). The peak intensities

of the folded tRNA (50 mM Na-MOPS, pH 7.0, 10 mM MgCl2) at

the single-nucleotide level were analyzed using SAFA (Das et al.

2005a) and normalized to the mean protection values for the

entire tRNA.

For P4-P6, we used published hydroxyl radical footprinting

data for P4-P6 (Takamoto et al. 2004).

For each decoy, we calculated the correlation to both the

experimental and ideal solvent accessibility data and averaged the

values in each cluster for ranking.

NAST energy

We used the energy function described above to calculate the

NAST energy of each decoy with the assumption that a lower

NAST energy should correspond to a more RNA-like geometry.

Since the NAST energy is knowledge-based and does not have a

physical interpretation, it is unitless.

Ranking clusters

For each data type, we calculated the average error or agreement

value within a cluster and ranked the clusters based on these

values (Table 1). We assigned a rank of 1 to the cluster with the

lowest ideal SAXS error, largest ideal, and experimental SAS

correlation and lowest NAST energy. We also ranked each cluster

by the two quality measurements GDT-TS and RMSD.

Sensitivity to secondary structure prediction

To assess the sensitivity of our method to the accuracy of the

secondary structure constraints in modeling P4-P6, we used four

sets of constraints with different percentages of wrong base pairs.

The secondary structure predicted before the crystal structure

contains 26% wrong base pairs relative to the secondary structure

observed in the crystal (0% wrong base pairs). We also used two

secondary structure definitions with 15% and 35% wrong base

pairs. We calculated the range of GDT-TS and RMSD scores for

ensembles generated using each secondary structure and show

these ranges in Figure 3.

Manipulating large RNA structures

Modeling the missing loops to the Azoarcus and Twort
ribozyme crystal structures

We used NAST to model the missing loops in the Azoarcus (PDB

ID 1ZZN) and Twort (PDB ID 1Y0Q) ribozymes by adding in the

missing residues under the NAST energy function. The Azoarcus

crystal structure is missing the loop at the end of the P6a helix

(G108–C111), and the Twort ribozyme is missing the end of the

P5 helix (A63–U77). We used the NAST energy function to

equilibrate the structure, resulting in complete coarse-grained

models of the ribozymes. These models are coarse-grained ver-

sions of the crystal structures with realistic geometries for the

missing loops.

Combining crystallographic and modeling data for the
T. thermophila group I intron

Starting with the coarse-grained version of the Michel–Westhof

model of the T. thermophila group I intron, we constrained all

pairwise distances from the crystal structure to generate a

combined model. The resulting model agrees with the crystal

structure for those parts of the molecule solved in the crystal

structure, and with the Michel–Westhof model for the rest of the

molecule.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

ACKNOWLEDGMENTS

This work was supported through the NIH Roadmap for Medical

Research Grant U54 GM072970, by the NIH Grant P01-GM66275,

and by the NSF 0443508 for the RNA Ontology Consortium.

M.A.J. and S.P. are supported by the National Library of Medicine

Training Grant LM-07033. M.A.J. also was supported by the

NIH Biotechnology Training Grant 5 T32GM008412-15. A.L. was

a Damon Runyon Cancer Foundation Research Fellow and was

supported by NIGMS K99-GM079953. We thank Samuel Flores

for helpful comments on the manuscript.

Received July 14, 2008; accepted October 28, 2008.

REFERENCES

Baker, D. and Sali, A. 2001. Protein structure prediction and
structural genomics. Science 294: 93–96.

Ban, N., Nissen, P., Hansen, J., Moore, P.B., and Steitz, T.A. 2000. The
complete atomic structure of the large ribosomal subunit at 2.4 Å
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