
Engineering Conferences International

ECI Digital Archives

The 14th International Conference on Fluidization
– From Fundamentals to Products

Refereed Proceedings

2013

Coarse-Grained Models for Momentum, Energy
and Species Transport in Gas-Particle Flows
Sankaran Sundaresan
Princeton University

Stefan Radl
Gratz University of Technology

Christian C. Milioli
Princeton University

Fernando E. Milioli
Princeton University

Follow this and additional works at: http://dc.engconfintl.org/fluidization_xiv

This Article is brought to you for free and open access by the Refereed Proceedings at ECI Digital Archives. It has been accepted for inclusion in The

14th International Conference on Fluidization – From Fundamentals to Products by an authorized administrator of ECI Digital Archives. For more

information, please contact franco@bepress.com.

Recommended Citation
Sankaran Sundaresan, Stefan Radl, Christian C. Milioli, and Fernando E. Milioli, "Coarse-Grained Models for Momentum, Energy and
Species Transport in Gas-Particle Flows" in "The 14th International Conference on Fluidization – From Fundamentals to Products",
J.A.M. Kuipers, Eindhoven University of Technology R.F. Mudde, Delft University of Technology J.R. van Ommen, Delft University
of Technology N.G. Deen, Eindhoven University of Technology Eds, ECI Symposium Series, (2013). http://dc.engconfintl.org/
fluidization_xiv/2

http://dc.engconfintl.org?utm_source=dc.engconfintl.org%2Ffluidization_xiv%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/fluidization_xiv?utm_source=dc.engconfintl.org%2Ffluidization_xiv%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/fluidization_xiv?utm_source=dc.engconfintl.org%2Ffluidization_xiv%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/refereed?utm_source=dc.engconfintl.org%2Ffluidization_xiv%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dc.engconfintl.org/fluidization_xiv?utm_source=dc.engconfintl.org%2Ffluidization_xiv%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:franco@bepress.com


Coarse-Grained Models for Momentum, Energy and Species 
Transport in Gas-Particle Flows 

Sankaran Sundaresana, Stefan Radl
b
, Christian C. Milioli

a
 and Fernando E. Milioli

a
  

aDept. of Chemical and Biological Engineering, Princeton University, 08544 
Princeton, NJ, USA; T: 1-609-258-4583; E: sundar@princeton.edu 

bGraz University of Technology; Institute for Process and Particle Engineering, 

Inffeldgasse 13/III, 8010 Graz, Austria, T: 43-316-873-30412, E: radl@tugraz.at 

ABSTRACT 

Coarse-grained (a.k.a. filtered) models for gas-particle flows strive to resolve coarse 
flow structures, while capturing the consequences of smaller scale processes 

through filter-size dependent closures. Through a combination of Euler-Euler and 

Euler-Lagrange simulations, we find that at small length scales the principal 

competition is between gravitational and particle phase stress, while at larger length 

scales it is between gravitational and particle inertia.  

INTRODUCTION 

Gas-particle flows in bubbling and circulating fluidized beds are inherently unstable, 

and they manifest fluctuations in velocities and local suspension density over a wide 

range of length and time scales. As in single-phase turbulent flows, it is impractical to 
resolve all the scales of fluctuations in process devices. Coarse-grained models for 

such flows strive to resolve only the coarse flow structures; the consequences of 

smaller scale processes appear in these models through filter-size dependent 

closures for the inter-phase exchange rates, effective stresses and scalar dispersion 
coefficients (1,2). These closures have been developed in the literature by analyzing 

the flow structures observed in detailed simulations of fluidized systems using typical 

values for the properties of gases and particles. Proper adaptation of these closures 
to other gas-particle systems require good understanding of the characteristic scales 

which must be used to cast the transport problem in dimensionless form, which 

motivates the following simple question.   
 

Consider fluidization of monodisperse particles (of diameter 
  
d

1
and density 

  
!

s1
) by a 

gas (of viscosity 
  
µ

g1
and density 

  
!

g1
) in a periodically repeating domain 

characterized by length . Let the terminal settling velocity of this particle and the 

average volume fraction of particles in the domain be denoted by
  
u

t1
and 

 
!

s
, 

respectively. Upon fluidization, which is sustained by imposing an average pressure 

gradient of 
   
!

s1
"

s
+ !

g1
"

g( )g , inhomogeneous structures will form and the average 

slip velocity
  
u

s1
 in the statistical steady state will, in general, be different from that for 

the homogeneously fluidized state, namely, 
  
u

s1

o
. Unlike

  
u

s1

o
, 

  
u

s1
depends on 

  
!

d1
.  

  
u

s1
!

d1
" 0( ) = u

s1

o
; it increases monotonically with 

  
!

d1
and 

  
u

s1
!

d1
"#( ) = u

s1

#
. Let us 

now suppose that we are given a second geometrically similar system (where all 

  
!

d1



quantities are now denoted by subscript 2) with the same 
 
!

s
and are asked to 

identify conditions that would ensure that these two systems are similar.   
 

As the flow characteristic of each system is dynamic in nature, we must be specific 

about the extent of similarity. For similarity at all scales, one must match all possible 
dimensionless groups between the two systems. Dimensional analysis leading to a 

list of relevant dimensionless groups in fluidization problems has been studied 

extensively in the literature; e.g., see ref. (3,4,5). In general, it is difficult to match all 

these dimensionless groups in laboratory experiments, and this has led people to 
investigate how one can partition these dimensionless groups into those that are 

critical and those which are of secondary importance; e.g., see ref. (4,5).   

 
In the fluidization example that we posed above, as the average slip velocity is an 

important macroscopic quantity of interest, we ask how 
  
!

d1
 and 

  
!

d 2
should be 

related so that 
  
u

s1
/ u

t1
= u

s2
/ u

t 2
. Through Euler-Lagrange simulations of fluidization 

in very small periodic domains where particle interactions are tracked (commonly 

known in the fluidization community as Computational Fluid Dynamics-Discrete 

Element Method, CFD-DEM), we have identified the scaling that very nearly 

achieves this similarity: 
  
!

d1
/ L

II ,1
= !

d 2
/ L

II ,2
, where

  
L

II
= u

t

2
/ g( )Fr

p

!2/3
. Here 

  
Fr

p
= u

t

2
/ gd  is the particle Froude number. This scaling naturally arises when 

viscous and gravitational forces balance each other and the particle phase viscous 

stress is modeled using kinetic theory of granular materials. 
 

We then examined similarity in much larger periodic domains via kinetic theory 

based two-fluid model simulations. We filtered the results in such simulations using 

filters of different sizes and examined how various filtered quantities should be 
scaled in order to best match the two fluidized beds. As explained in detail below, an 

inertial characteristic length 
  
L

I
= u

t

2
/ g  emerged as an alternate, and perhaps more 

relevant, scale. This scaling emerges when inertial and gravitational forces balance 

each other. 

 

TWO-FLUID MODEL 

We begin with the widely used two-fluid model for gas-particle flows: 
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Here, the interaction force term is written as 
   
! = " #

s
$%&

g
+ ' v

g
" v

s( )  where !  is 

the friction coefficient, for which the model proposed by Wen & Yu (6) is among the 



most widely used. In most fluidized beds, 
 
!

s
"

s
>> !

g
"

g
; so, the inertial terms on the 

left hand side of the particle phase momentum balance (eq. 3) are much more 
important than those in the gas phase momentum balance (eq. 2).  Furthermore, the 

gas-phase deviatoric stress is of little consequence; hence 
 
!"#

g
$ !p

g
. The particle 

phase stress is usually modeled using the kinetic theory of granular materials – e.g., 
see ref. (7,8). It is well known that in gas-fluidized beds, the gas phase pressure 

gradient in the vertical direction, the fluid particle-drag force and the gravitational 

force on the particles are all of the same order of magnitude.    

 
We observe that the rate of dissipation of mechanical energy per unit volume in our 

test example scales as
 
!

s
"

s
u

t
g ; this represents conversion of mechanical energy 

to thermal energy through inelastic collisions and viscous dissipation in the gas 
phase. By demanding that the rate of dissipation by inelastic collisions (in the 

granular energy balance) scale as
 
!

s
"

s
u

t
g , we find that the granular temperature 

  
T ~ u

t
gd( )

2/3

; it then follows that the kinetic-theory-based estimate for particle phase 

viscosity is: 
  
µ

s
~ !

s
d u

t
gd( )

1/3

. In contrast, phenomenological models often postulate 

that 
  
µ

s
~ !

s
u

t
d .  

 

One can readily ascertain through numerical simulations that in our test problem the 
gas and particle phase velocities scale with the terminal settling velocity. Thus, 

proper scaling of eqs. (1)-(3) should employ particle density and terminal settling 

velocity as core variables, leaving us the task of identifying the characteristic length, 
for which we have several choices:  

1. 
  
L

I
= u

t

2
/ g  to balance the inertial and gravitational terms in eq. (2); 

2. 
  
L

II
= u

t

2
/ g( )Fr

p

!2/3
to balance the viscous and gravitational terms using the 

kinetic theory based scaling for viscosity;  

3. 
  
L

III
= u

t

2
/ g( )Fr

p

!1/2
to balance the viscous and gravitational terms using the 

phenomenological scaling for viscosity; 

4. 
  
L

IV
= u

t

2
/ g( )Fr

p

!1
= d  to balance the viscous and inertial terms using the 

phenomenological scaling for viscosity; and 

5. 
  
L

V
= u

t

2
/ g( )Fr

p

!4/3
to balance the viscous and inertial terms using the kinetic 

theory based scaling for viscosity. 

These can be written compactly as 
  
L = u

t

2
/ g( )Fr

p

n
, with optimal choice of the 

exponent n remaining to be found. 

CFD-DEM APPROACH 

In this approach (9), we solve the Newton’s equations of motion for all the particles 
instead of the continuum particle phase continuity and momentum balances 

presented above. The particles are assumed to be frictional, inelastic spheres, 



interacting with each other through a linear spring-dashpot model with frictional slider 

(“soft sphere approach”). Details are omitted for the sake of brevity.  

NUMERICAL SIMULATIONS AND RESULTS 

CFD-DEM Simulations 

The parameters used in the base case simulations are as follows: d = 75 µm; gas 

and particle densities are 1.3 and 1500 kg/m3; gas viscosity = 1.8x10-5 Pa.s. The 
corresponding terminal settling velocity = 0.219 m/s. The particle Froude number 

and Reynolds number (based on terminal velocity) are 65 and 1.18, respectively.  

Simulations were performed in a 
  
!

d
,!

d
,4!

d
( )  periodic domain, with 

 
!

d
=4mm and 

various  between 0.02 and 0.25 (typical for CFB risers), but we present below 

only the time-averaged value of the 

scaled domain-average slip velocity in 

the statistical steady state for = 

0.05. The simulation domain was 

discretized into 16x16x64 fluid grids for 
this base case. The DEM model 

parameters were assigned typical 

values, but they did not have any 

significant effect on the slip velocity and 

so are not listed.  

We then carried out simulations for 

particles of several different diameters, 

while fixing all the other parameters. 
Clearly, this is one way of changing the 

particle Froude and Reynolds numbers. The 
domain size was scaled using various 

choices for the reference length described 

above. The fluid grid resolution was 
maintained at 16x16x64, which is equivalent 

to saying that the same reference length 

was used to scale both the domain and fluid 

cell lengths. The scaled domain-average slip 

velocity was computed in each case.  

Figure 1 shows snapshots of particle volume 

distributions in a thin vertical slice (~7 

particle diameters thick) for different Froude 

numbers (with = 0.05) in simulations 

employing 
 
L

II
 as the characteristic length.  

Analogous results are obtained for other 

characteristic lengths as well. The formation of such structures lowers gas-particle 

interaction and hence to gas flow rate needed to support the weight of the particles is 

 
!

s

 
!

s

 
!

s

 Figure 1: Snapshots of particle 

distribution for various Frp.  

Figure 2: Summary of domain-

average slip velocities. 



larger than what one would need in a homogeneous suspension.  Figure 2 shows 

the scaled domain-average slip velocity corresponding to several different choices of 

characteristic lengths and = 0.05. It is readily clear that the best results are 

obtained for n = -2/3. This suggests that at such small scales (only of the order of a 

few tens of particle diameters, as can be discerned by the size of the simulation 
domain), the appropriate length scale is set by the competition between gravity and 

effective particle phase deviatoric stress arising through particle-particle interaction.  

Note that the Reynolds number is different in the various simulations, but was not 

taken into consideration in the scaling analysis. It appears in the expression for the 

friction coefficient; yet, it apparently plays only a secondary role.  

Two-fluid Model Simulations 

Using MFIX (10) as the simulation platform, transient simulations of a kinetic theory 

based two-fluid model (7) were also performed for the base case mentioned above in 
a large two-dimensional square periodic domain (16cm x 16cm) with a grid resolution 

of 0.125cm x 0.125cm. The 

results in the statistical steady 
state of such simulations were 

filtered using filters of different 

sizes, as described in detail 

elsewhere (11). Simulations 
were done for several different 

filter sizes, filtered volume 

fraction and , but for the 

sake of brevity we present, as 

a representative case, only the 

results obtained for a filter size 
of 4 cm (for the base case) and 

filtered particle volume fraction 

of 0.15 obtained from 

simulations with = 0.15.  

We then examined how one should scale the filter size for other Froude number 
values so that appropriately scaled filtered quantities were essentially the same for 

all Froude numbers. In view of results presented in Figure 2, we allowed the grid 

resolution to scale with n = -2/3 (so that in all the cases we were resolving the flow 
field on a length scale given by the competition between gravity and the particle 

phase deviatoric stress arising through particle-particle interactions). Figure 3 shows 

the scaled slip velocity for different Froude numbers. The triangles and circles were 

obtained when the filter size was scaled using 
  
L

I
= u

t

2
/ g  and 

  
L

II
= u

t

2
/ g( )Fr

p

!2/3
, 

respectively. Although both scaling yield nearly the same results, the inertial scaling 

appears to be slightly superior for the larger particles; for the smaller particles, the 

trend is somewhat erratic for both scaling, and this could be due to grid 
independence being more difficult to achieve for smaller particles. Comparing this 

with the results presented in Figure 2, it seems reasonable to infer the following: (a) 

while the n = -2/3 is distinctly superior to n = 0 scaling for small filter sizes, they 

become comparable for larger filter sizes; or, (b) while the n = -2/3 is distinctly 
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Figure 3: Scaled slip velocity at different 

Froude numbers: Triangles: LI scaling; 

Circles: LII scaling. 



superior to n = 0 scaling for small filter sizes, the n = 0 scaling becomes more 

appropriate for larger filter sizes (i.e., as filter size increases, the exponent shifts 
from -2/3 towards 0). At the present time, it is not possible to discriminate between 

these two hypotheses.  

For the base case system, which has been studied in detail in the literature (11), the 

fluctuations arising from the clusters and streamers contribute much more to the 

filtered viscosity of the particle phase, when the filter size,
  
!

f
= 0.5 cm or larger; 

these fluctuations are associated with the inertial terms on the left hand side of eq. 

(2), and the particle phase stress associated with fluctuations at the scale of the 

individual particles (captured by 
 
!

s
 in eq. 2) contribute negligibly. Thus, inertial 

scaling 
 
L

I
 does appear to be the most meaningful scale for filter size larger than 

~0.5 cm for the base case.  

Filtered viscosity scaling can be examined in several different ways: 

a) As mentioned earlier, the rate of dissipation of mechanical energy per unit 

volume in our test example scales as
 
!

s
"

s
u

t
g ; if one adapts the typical scaling 

analysis of single-phase turbulent flow 
  
!

s
"

s
u

t
g ~ !

s
"

s
u

f

3
/ #

f
 where 

 
u

f
 is 

the average fluctuation velocity at the filter scale. So, 
  
u

f
~ gu

t
!

f( )
1/3

; and, the 

filtered particle phase viscosity 
  
µ

f ,s
~ !

s
u

f
"

f
  
~ !

s
gu

t
"

f( )
1/3

"
f
.  

b) A simpler scaling argument would assert that the fluctuating velocity scales as 

the terminal velocity and so 
  
µ

f ,s
~ !

s
u

f
"

f
~ !

s
u

t
"

f
. 

Indeed, the filter size dependence observed for the 75 micron particles in earlier 

studies (12), namely ~1.2, is in between these two estimates.  

Our recent study shows that the filtered dispersion coefficients for momentum, 

species and energy in both gas and particle phases (2) 
  
~ !

f

2 S  where  S  is the 

filtered scalar shear rate. This is exactly the same scaling as in the Smagorinsky 

model for sub-grid dispersion in single-phase turbulence (13), which further supports 

the inertial origin for the dispersion arising from sub-filter scale processes. This 
  
!

f

2 S
scaling does away with a need to identify reference length scale for the dispersion 

coefficients. 

DISCUSSION 

The physical implication of the results presented above is as follows. Fine structure 
(typically on a scale of tens of particle diameters) seen in gas-particle flow is set by 

the competition between gravitational stress and deviatoric stress in the particle 

phase (attributable to streaming, collisional and frictional interactions, and captured 
by the kinetic theory of granular materials). On a coarser scale (several hundred 



particle diameters), the meso-scale fluctuations play a much larger role. The relevant 

length scales for coarse and fine structures are 
 
L

I
 and 

 
L

II
, respectively.   

Results gathered in this study and in the literature suggest that the dispersion 

coefficients for momentum, species and energy for the particle and fluid phases in 

filtered two-fluid models for gas-particle flows is a consequence of sub-filter scale 

velocity fluctuations, and so inertial scaling is suggested for these quantities. 

CONCLUSION 

The friction coefficient to be used in coarse-grid simulations of gas-particle flows will, 

in general, be different from the microscopic friction coefficients commonly used for 

nearly homogeneous suspensions.  Specifically, the sub-filter scale inhomogeneities 

will lower the effective friction coefficient. How to scale the filter size appearing in the 
model for this reduction in the friction coefficient remains an unresolved question. 

Our CFD-DEM simulations suggest that when the filter size is only on the order of a 

few tens of particle diameters, it is best scaled using a characteristic length obtained 
by balancing particle phase deviatoric stress and gravitational stress. With much 

larger filter sizes, proper choice of characteristic length is less clear; it seems likely 

that the characteristic length gradually shifts to one defined by the balance of inertial 
and gravitational stresses. It should be noted that at sufficiently large filter sizes the 

correction to the friction coefficient appears to become independent of filter size 

(e.g., see ref. 12,14); so, this difference may not be critical in simulation of flows in 

large process vessels using filtered models, where one would essentially be using 

the large-filter-size asymptote for the friction coefficient. 
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NOTATION 
d particle diameter [m] 

 
Fr

p
 Particle Froude number 

 g
  gravitational acceleration [m/s²] 

 
L

I
! L

V
 various reference lengths [m] 

 
L

f
 reference length to scale the filter lengths [m] 

 
p

g
  gas pressure [Pa] 

 T   granular temperature [m2/s²] 

 
u

f
  fluctuating velocity at filter scale [m/s] 

 
u

s
  gas-particle slip velocity [m/s] 

 
u

t
  terminal settling velocity [m/s] 

  
v

g
;v

s
  velocity (gas; particle) [m/s] 



 
V

slip
  domain-average gas-solid slip velocity [m/s] 

 
Greek Symbols 

  
!

d
;!

f
 length (domain; filter) [m] 

  
!

s
;!

g
  density (particle; fluid) [kg/m³] 

  
!

s
;!

g
  volume fraction (particle; fluid) 

  
µ

s
,µ

g
  viscosity (particle; fluid)  [Pa.s] 

  
µ

f ,s
  filtered particle phase viscosity [Pa.s] 

  
!

s
;!

g
  stress (particle; fluid) [Pa] 
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