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The coarse-grained density of states is computed for an electron in a three-dimensional 
random array of impurities by the method of ensemble average of periodic systems (MEAPS) 
combined with the the Monte Carlo method. The model on which the calculation is made 
is due to Matsubara and Toyozawa CM-T) based on the tight binding approximation for the 
impurity band states. The result of the calculation qualitatively agrees with that of the Monte­
Carlo calculation of Majlis based on the ensemble average of small systems. It shows how 
the perturbative approach of M-T is good at high concentration of impurities but it is a poor 
approximation at low concentration. A merit of the MEAPS compared with the method of 
ensemble average of small systems is discussed. 

~ 1. Introduction 

In the :first paper of the present series1
) it has been proved that in an 

aperiodic linear chain the state density of phonons or electrons coarse-grained 

over a certain energy interval can be approximated by a suitable ensemble average 
of the state densities of periodic systems. In the second paper2) histograms 

of frequency spectra of isotopically disordered diatomic linear chains for various 

sets of long and short range order parameters have been calculated by using 

the above-mentioned method of ensemble average of periodic systems (MEAPS) 

and have been compared with the result calculated by the negative-fact or-counting 

method developed by Dean et a]}) It has been numerically shown that the 

suitable choice of the width of histograms is very important for the result of 

the MEAPS to be a good approximation; the choice can be done by referring 

to the stability of the histogram with the change of the ensembles. The com­
parison then indicates that the MEAPS using periodic chains with not more 
than 8 atoms in a unit cell gives better approximation than the moment method 
using 20 moments. In view of such satisfactory results in a linear chain we 

have tried to appl~ this method to three-dimensional systems. 

Various approximation methods have been devised and developed for what 
they call the random lattice problem. Among others the method for obtaining 

Green's function by summing up certain types of terms in the perturbation 
expansion4

),5) seems to have a wide range of applicability. lIowever, in such 
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methods so far the nature of the approximation is not so clear that one must 

worry about the reliability of the results. In fact such a method predicted 

qualitatively wrong frequency spectra for isotopically disordered linear chain.5
) 

In this paper vye calculate as an example of three-dimei1sional random 

systems the coarse-grained energy spectra of the model or a doped valence 

semiconductor exhibiting impurity band conduction vvhich \vas introduced by 

Matsubara and ToyozCl\va. G
),*) Their model Hamiltonian is given by 

11 = ); "\ ~mna?n*an , (1·1) 
'In::\:.n 

where a?n * and a nL denote the operators ror creat.ing and annihilating an electron 

at the m-th impurity site. It is assumed that "\7?n?t depends only upon the dis­

tance between the relevant sites such that 

(1· 2) 

(1· 3) 

(1·4) 

where Fa and a are posltlye constants. By comparing our results v,vith those 

of Matsubara and Toyoza\va's obtained from the above mentioned perturbative 

approach, we numerically show that how their approximation is good at high 

concentration of impurities but poor at low concentration. 

After our main result had been read at the annual meeting of the physical 

society of Japan held in Sapporo in October 1966, Monte-Carlo calculations of 

the impurity band states using the same model were published by J\IIajlis.7) 

His conclusion is qualitatively the same as ours. I-Iowever, the method is some­

what different. He determined the positions of .LV impurities in a volume La of 

the crystal, using a special computer library subroutine to generate 3N random 

Cartesian coordinates inside the volume such that c = Nj La = (impurity concen­

tration); the maxim urn number of .LV was 80. Then he calculated the density 

of states of such a system. He approximated the density of states of random 

systems with a given impurity concentration by taking an average over the 

ensemble of such systems. Since the system on which he calculated is a small 

one, the size effect may give a systematic error. One must note, for instance, 

that the simple cubic Bravais lattice containing 5 X 5 X 5 = 125 atoms has as many 

as 53 - 33 = 98 atoms on its surface. 

On the other hand, since we deal with periodic systems in the MEAPS, we 

have no surface effect at all. Indeed, as shown in Appendix the MEAPS can give 

a correct second moment of energy eigenvalues vvhile Majlis's method should give 

it a non-negligible error. Of course, our result, too, is an approximation for 

the energy spectrum since we have represented the random systems by an 

*) Hereafter reference 6) is referred to as M-T. 
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ensemble avexage of a finite llumbex of periodic systems with unit cells COll­

ta1l1l1lg a finite number of atoms. However, we emphasize that our approach 

is of the nature such that one can reduce the error by increasing the width of 

histograms, that is, by increasing the degree of coarse-graining in energy as 

proved and demonstrated in the previous papers. 

In § 2 we describe our. method of calculating the coarse-grained spectrum 

of Matsubara and Toyozawa's model. In § 3 the results of the numerical cal­

eulation are given and § 4 is devoted to discussion. 

§ 2. Calculation of coarse-grained spectrulll of 
Matsubara and Toyozawa~s DIode] 

Let us assume that impurities are located only at the lattiee points of a 

simple eubie lattiee with a lattiee eonstant equal to 1. Eaeh lattiee point is 

assumed. to eontain at most one impurity atom, and the probability of a lattiee 

point being oceupied by an impurity is equal to c independent of the configu­
ration of impurities oecupying the other lattiee points. 

average 

For the 

We try to approximate sueh infinite random system by an ensemble 

of periodie systems whose unit eell has 10 X 10 X 10 latti~e points. 
periodie system we may re\vrite the Hamiltonian introdueed in (1·1) as 

(2 -I) 

where aip denotes an annihilation operator of an eleetron at the /1-th site of the 

i-th unit cell, and 

(2·2) 

We deeompose the position veetor as 

(2· 3) 

whereRi is the position vector of the fixed point of the i-ih unit eell, so that 

the set of R/s constitutes the set of lattice veetors of the periodic system. 
It is eonvenient to expand the operator aip in the form 

. (lil"==L-:l
j2 ~ Jlp(l£)exp (il,,·Ri)' 

k 
(2·4) 

where L is an appropriately large integer and k a wave veetor whose eomponent 

is one of (2n/LJVI)l, (l=O, 1,2, "', L---l); ]\;1 is a linear dimension of a unit 

cell and here M = 10. Equation (2 ·1) is now written as 

II = ~ ~ VJlV (k) it* (I,,) Ap (k), 
k fl,V 

(2·5) 

where we put 

(2·6) 
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the summation being taken over the lattice vectors of the periodic system. 

The relations 

17~ (1£) = 17/"v ( - k) = 17v/" (k) 

hold as a consequence of Eq. (2·6). 

Introduce a dimensionless concentration 

(2·7) 

(2·8) 

following J11-1'. The normalized energy level density 1S a functio.n of only 

energy E and jJ, and is denoted by D (E; jJ). 

F or the sake of convenience of numerical computation henceforth we usually 

set c = 0.01, so that for given j) \Ve determine a by (2·8). By making use of 

a standard subroutine to generate a uniform pseud'o-random number with the 

method of mixing, we construct a unit cell structure containing n impurities. 

vVe then solve the eigenvalue problem for the n-dimensional matrix F./"v (k) given 

by (2·6) and from the dispersion relation thus obtained we calculate the level 

density of the periodic system \vith the given unit cell structure. 

Let Dn (E; jJ) be the level density averaged over the periodic system with 

all the possible unit cell structure consisting just of n impurities. One may 

expect in view of the results of the MEAPS for one-dimensional systems that 

under suitable coarse-graining with respect to energy E the state density D (E; p) 
can be approximated by 

D (E; jJ) = ~ 'wnDn(E; j), (2· 9) 
1! 

where Wn 1S the binomial distribution for the weight factor, that 1S, 

w" ~ ( 1~~0 ) (0.01),,(1- 0.01),°00.". (2 ·10) 

Since ~';~5 'lon=::::().92, in the practical calculation we have restricted the value 

of n from 5 through 15 and replaced (2·9) by 

15 

D (E; jJ) =:::: ~ wnDn (E; jJ) /0.92. (2·9') 
n=5 

Even so, since it is a formidable task to exhaust all the possible unit cell 

structure, we use the Monte Carlo method for obtaining Dn(E; jJ). In order 
to determine the suitable number of samples, and suitable width of coarse-graining 

(histogram), we have applied the stability test which was proved effective in 

the previous \'lorks. We must determine the \vidth of histograms of density 

of states so as to reproduce the histograms for different sets of samples within a 

limited error, say, of 10 %. Moreover the width H7 of histograms must be so chosen 

that the histogram is stable for a change of the average number of impurities 

in a unit cell, that is, in the present case stable for a change of the value of 

c around 0.01 for given value of jJ. Next, for :fixed width VV of histograms the 
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Table 1. Number of samples, 8(p, 1/), necessary to be ensemble-averaged for a given set of 
both concentration p and number of impurities n under fixed energy width (W/Vo=O.I) and error 
criterion (10%). T(p, n) indicates total number of samples used in the present calculation for 
given p and n. 

8(p, 10) 

T(p, 10) 

n 

8(32, n) 

T(32, n) 

p=o.s 

l/Hi 

50 
140 
100 

10 
20 

1-

1/8 I 1/4 

50 50 
140 140 
100 100 

10 

30 

I 
I 
I 
I 
I 
I 
I 

380 

7 

10 
20 

1/2 1 

30 20 
140 50 
50 110 

280 100 

8 9 10 

10 5 5 
20 20 15 

O(E)Vo/N 
I 

10.3 

-0.2 

0.1 

2 4 8 

15 10 10 
50 40 35 
30 20 15 
(i0 40 30 

11 12 I 13 

5 4 4 
15 15 10 

P=O,5 

IG 
[ 
--.- ... 

5 
15 
10 

20 

14 

3 

i 5 

33 

5 

15 
10 

20 

15 

3 

5 

r2 

-10,1 l~n_ 
~JL, . OO~:'5· -~o==.=r.5-0:0 ___ l.~_ 

0.5 E/Vo 
E I V --- -_. - I -- - -- - J 

o - 1.0 - 0.5 0.0 
Fig. I-a). Fig. I-b), 

Fig. l. An example of histograms of state density DCE) for p=0.5 obtained from different set of values 
for c and a, where they are related to by Eq. (2·8). Solid lines correspond to c=O.OI and broken 
lines to c=0.005. Curve a) shows a pattern with 20 samples for both c values and b) exhibits 
stability of the coarse-grained spectrum averaged over larger ensembles: 140 samples for c=O.Ol 
and 280 samples for c=0.005. 

necessary number of samples S CiJ, n) to be contained in a set depends both on 

the values of jJ and n. For W = 0.1 Va, as we have found suitable, the number 

of samples used was as shown in Table 1. Stability of the coarse-grained quantity 

for change of both c and a for a given value of jJ is tested as shown in Fig 1. 

~ 3. Results of calculation 

Our calculation was made for jJ which is equal to 21n, (nl ::::::. -- 4, - 3, "', 5), 

and the result is given in Figures for the density of states. Figures 1 and 2 
may serve to illustrate how individual s<lmpl;es exhibit eigenvalues and how to 
choose the width of histograms. 

i) Low concentration cases Ci) = 1/16, 1/8, 1/4). 

The density of states shows a symmetric feature since most impurities are 1S0-
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P=o.125 
D(E)~/N 

1 

+3 03 
p:: 0.25 

I 

-10.2 . 0.2 

-01 01 

1 _ L DO 
0..5 E/Vo 

____ ..L____ _ ____ ~~ __ L___________ ~ ___ J __ I 
-\.0. -0..5 -1.0. -0..5 DO. 0.5 E/V -1.5 

o 

Fig. 3-a). Fig. 3-b). 

Fig. 3. Coarse-grained density of states DCE) for low concentration is shown as histograms. Curve 
a) for p=O.125 and b) for p=O.25. For reference DCE) from M-T are drawn as broken lines 
in Figs. 3b) to 5b). 

p:: 0.5 

Fig. 1-a). 

p:: 2.0 

Fig. 4-c). 

D(E)~/N D(E)\b1 f\ 

I p:: \.0 - 03 f3 
- 0.2 -10.2 

I 

~Ol ~~----; 1101 I -_. , 

I _!"_r : 
I __. 

_J _~ _ I _ l~-l_ 00 
E/Vc-1.5 -1.0. -0..5 0..0. 0..5 E/Vo 

Fig. 4-h). 

D(E)\(/N 

P=4.0 

- 0.2 

Fig. 1-d). 

D(E)Va/N 

0.2 

0.1 

LOO 
1.0 

Fig. 4. Coarse-grained density of states DCE) for intermediate concentration is shown as histograms. 
Curve a) for p=O.5, b) for /)=1.0, c) for p=2.0 and d) for p=4.0. 
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p= 8.0 

Fig. 5-a). 

P=32.0 

-1.0 

Fig. 5-c). 

K. Okada and H. Afatsuda 

D(ElVo/N 

03 

0.2 

- 0.1 

P=16.0 
r, 
I I 
I I 
I I 
I I 
I I 
I I 

r..l I 

I 

I 
I 
I 
I 

D(ElVo/N 

- 0.3 

0.2 

: - 0.\ 
I 
I 
I 
I 
I 
I 

DO 
1.0 

'~=-=--:::~=-=-=---~-::'"==---~-~~~'-~~h-L 0.0 
-1.0 0.0 E/V 1.0 

o 

D(El\S/N 

0.3 

0.2 

0.1 

'(0 GO 

Fig. 5-b). 

Fig. 5. Coarse-grained density of states D(E) 

for high concentration is shown as histo­
grams. Curve a) for p=8.0, b) for j)=16.0 

apd c) for p=32.0. 

lated and therefore the calculation of 

the density of states for P<1/16 is 

trivial. In this region of concentra­

tion no significant change is seen for 

eigenvalues due to variation of wave 

vector Ie as shown in Fig. 2-a). 

Figures 3--a) and 3-b) show the 

density of states for 1)= 1/8 and 1/4, 

ii) Intermediate concentration 

respecti\'ely.*l 

(jJ= 1/2, 1, 2,4). 

As j) increases the central peak, seen in Figs. 3-a) and 3--b),' is reduced and 

shifted to higher energy region. Figures 4-a) -d) show the density of states 

for j) = 1/2, 1, 2 and 4, respectively. Comparison of our results with M-T's 

indicates rather qualitative difference. The result of M-T seems to overemphasize 

the asymmetry of the density of states. 
iii) High concentration cases (j) = 8, 16, 32) .>:<*l 

The density of states sho\vs a remarkable asymmetry as seen 111 Figs. 5-a), b) 

*) Every figures of 3 to 5 is drawn such that the area of histograms is normalized to 1 when 
Vo is equal to unity. Broken lines are of M-T's in Figs. 3-b) to 5-b). 

**) As one increases the value of p for fixed c the effective force range a-I increases. One 
may therefore suspect that the approximation by the MEAPS for fixed c may become questionable 
for large p and the large k-dependence for jJ=:32.0 may be its reflection. However, for p=32 and 
c=O.Ol by Eq. (2·8) the eHective force range is a- I =3, so that it is smaller than the length of the 
edge of the unit cell, which is equal to 10. Moreover, as p increases the sample-dependence of 
histograms is found to decrease. This fact together with the stability test suggests that the main 
feature of the obtained histogram is reliable even for large jJ. 
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and c) for p = 8, 16 and 32, respectively. 
Agreement with M-T's is good in these cases. Every sample gives similar 

set of eigenvalues to lead to rapid convergence of ensemble averaging. The 

variation of eigenvalues with k becomes appreciable as shown in Fig. 2-c); in 
particular it is remarkable for lowest fevY eigenvalues. 

~ Ll.. Discussion 

In order to compare our result with Majlis's, "ve plot in Fig. 6 the in­
tegrated density of states as calculated by Majlis and by us. Although his 

calculation corresponds to jY = 8.2 while ours for p = 8.0, general agreement is 

satisfactory. However, as enunciated in § 1 there is a systematic discrepancy; 

namely, for 0<E/llo<0.7 n (E; jJ) calculated by Majlis is larger than ours. 

This can be attributed to the size effect, since as shown in Table II in appendix 

his second moment of energy is 

estimated to have an error more 

than 17 % when jJ = 8.0. There­

fore, Majlis's result gives somewhat 

higher density of states in the neigh­

borhood of E= 0 due to the size 

effect. It is to be noted from Table 

II that the error cannot be so much 

reduced with the increment of N, 
while our method is always free 

from this type of error. 

P = 8.2 

N K 
• 10 80 
o 20 80 
o 40 20 
o 40 20 
... 80 5 

-i.O 

Fig. 6. The integrated density of states n (E) 

for jJ=R.O is drawn. 'l'hose by Majlis for 
p=8.2 are plotted, too. 

In our ,calculation impurity sites are restricted on the fixed lattice points, 

while in the calculation of M-T and Majlis impurity sites can be any point in 

the space. This difference is negligible of course when a~l. Although this 

inequality is not necessarily vvell obeyed in our calculation, as shown in Fig. I-b) 

the fact that the obtained histogram is rather insensitive to the change of both 

c and a for the fixed value of j) lends support that the above difference is not 
serious for the results. 

Apart· from the above points the general agreement of our result with 

Majtis's gives confidence to the use of the MEAPS combined with the Monte 
Carlo method. We hope such an approach will disclose other salient features 
of aperiodic systems as well as enable us the calculation of more realistic models, 

where the approximative analytic approach is not free from ambiguity. 
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Appendix 

In general, the eigenvalues Ea (a = 1, 2, "', ~V) of the Nx lV Hermitian matrix 
H = {H'lnn} satisfy the following relations: 

(A·I) 

(A·2) 

If we identify this matrix "with the IVI-T Hamiltonian In the coordinate 

representation, we find by using Eqs. (1·1) - (1· 4) in Eqs. (A ·1) and (A· 2) 
that 

and 

E=o 

<E2)= 1( .. ,( {\7(R-R')}2n(R, R')dRdR', 
lV j j 

(A·3) 

(A·4) 

\vhere < ... ) denotes the ensem ble a\·erage over configurations of impuntIes, and 

n (R, ii') is the probability of finding a pair of impurities at the points Rand 
R' per (unit volume)2. 

Now we consider an infinite simple cubic lattice with unit lattice constant 

and assume that the probability of finding an impurity at a given lattice point 

is equal to c independent of the configuration of impurities occupying other 

lattice points. Of course, impurities are assumed to be situated only on lattice 

points. Then, we have 

co co CD 

(E 2)=c L L ~ \7(lZ12 + 1122+ n32y. (A·5) 
n1 ::-..:::; ~- co n2 = - co ?l;3=-00 

According to the method described in ~ 2, the energy spectrum calculated 

by the MEAPS should give a value for (E2) as given by 

where iti is the length of the cubic unit cell, Ie and L are the same as in Eq. 

(2·4), and p=(jJ1,jJ2,jJ3). Since we ha'('e 
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1 ~ exp {ill:' (p -- p') M} op,P" 
L 3 l~ 

we obtain 

co co 00 

<E 2
)MEAPS=C ~ ~ "\, {V(n 2 L n 2 + Jl 2)) 2 L...J 112 3.[, (A·7) 

111 = --00 1l2= -- co U3 -:::: - 00 

which is nothing but <E 2
) given in (A· 5). 

On the other hand, for a finite lattice with N° lattice points <l{;') becomes 

(A·8) 

In order to estimate the order of magnitude of the dependence of <E 2)if 

on N, vve simply assume that 

VCR) = Yo for R<Ro, 
(A·9) 

=0 for R>Ro. 

Then, on the right-hand side of (A· 8) . when 

(A·I0) 

(a = 1, 2, 3), (in the shaded region in Fig. 7), the summation over {m a } approxi­

mately gives the contribution (4n/3) Vo
2R 03. When at least one of the lla'S fails 

to satisfy (A· 10), the average of the summation over {nza} for given {n a} is 

less than 

(A· 11) 

Therefore, we obtain 

<----) < 13 3 2 f -- --- jJ) E 2 if ~ c----nRo Vo (or N <--,2 \.0 • 

12 
(A·12) 

If we put c· (4n/3) R 03 = jJ and let N be the number of impurities in the cube 
of volume N 3

, then '\ve have N = cN\ so that 

Fig. 7. We denote the number of lattice points 
by N, the force range of V (R) in Eq. (A· 9) 
by Ro and the variable x corresponds to x 
in Eq. (A ·11) . Size effect comes from the 
outside of the shaded region. 
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(A·13). 

Using (A ·12) and (A ·13) we tabulate in Table II the upper bound of (E 2)1"(1 <E-2
) OJ 

for several values of pIN. This shows that even N = 80 as was taken by Majlis 

is not necessarily large enough to neglect the surface effect. 

Table II. 

piN 

0.01 

0.1 

1.0 

Ro/N 

0.134 

0.288 

0.62 

Approximate upper bound of (E2)ii/(E2)co 

References 

1) H. Matsuda, Prog. Theor. Phys., Suppl. No. 36 (1966), 97. 
2) H. Matsuda and N. Ogita, Prog. Theor. Phys. 38 (1967), 81. 
3) P. Dean, Proc. Roy. Soc. 254 (1960), 507; 260 (1961), 263. 

P. Dean and J. L. Martin, Proc. Roy. Soc. 259 (1960), 409. 
P. Dean and M. D. Bacon, Proc. Roy. Soc. 283 (1965), 64. 
J. Hori, Prog. Theor. Phys., Suppl. No. 23 (1962), 3. 

4) S. F. Edwards, Phil. Mag. 3 (1958), 1020; 6 (1961), 617. 
R. Klauder, Ann. of Phys. 14 (1961), 43. 
F. Yonezawa, Prog. Theor. Phys. 31 (1964), 357. 

0.88 

0.83 

0.81 

F. Yonezawa and T. Matsubara, Prog. Theor. Phys. 35 (1966), 357, 759. 
T. Matsubara and T. Kaneyoshi, Prog. Theor. Phys. 36 (1966), 695. 

5) J. S. Langer, J. Math. Phys. 2 (1961), 584. 
R. "\\!. Davies and J. S. Langer,. Phys. Rev. 131 (1963), IG3. 

G) T. Matsubara and Y. Toyozawa, Prog. Theor. Phys. 26 (19(il) , 739. 
7) N. Majlis, Proc. Phys. Soc. 90 (1967), 811. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/39/5/1153/1898574 by guest on 16 August 2022


