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We present a coarse-grained simulation method for complex charged systems. This mesoscopic
model couples a hydrodynamic description to a free energy functional accounting for the interactions
between solvent(s) and charged solutes. It is implemented in a hybrid lattice-based algorithm,
whereby the evolution of the overall mass and momentum is taken care of via a Lattice Boltzmann
scheme, whereas the composition and ionic concentrations are updated using the link-flux method.
Several applications illustrate the power of this coarse-grained model for charged heterogeneous
media : The transport of charged tracers in charged porous media, the deformation of an oil droplet
in water under the effect of an applied electric field, and the distribution of ions at an oil-water
interface as a function of their affinity for both solvents.
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INTRODUCTION

The study of complex fluids and heterogeneous ma-
terials offers significant challenges because of the wide
range of relevant length and time scales involved.
Flow in porous media, the equilibrium and kinetic
properties of membranes, oil/water mixtures or the
electrokinetics of drops and colloids are examples of
situations where the system evolves on scales much
larger than molecular ones. Even the equilibrium
structures characteristic of these systems are orders
of magnitude larger than the molecular scale. Thus a
simple atomistic description is not suitable and the
use of soft coarse-grained potentials has become a
standard alternative [1]. Under the action of external
forces, the situation in these heterogeneous materials
is even more involved, because of the hydrodynamic
coupling between solutes and solvent. Hence, also the
dynamic behaviour needs to be accounted for within
a consistent coarse-grained approach.

A variety of strategies have been proposed to face
these challenges. The combination of soft potentials
and local thermostats which conserve momentum lo-
cally, as Dissipative Particle Dynamics [2] or the Lowe-
Andersen thermostat [3], has allowed to reach hydro-
dynamic scales while keeping track of some micro-
scopic details. Ideas from kinetic theory have also
lead to flexible tools. Stochastic Rotation Dynam-
ics couples molecular solutes to a coarse-grained sol-
vent which recovers hydrodynamic behaviour [4]. Lat-
tice Boltzmann (LB) [5], a method evolved from lat-

tice gases to describe the hydrodynamics of fluids at
long scales, has been extended to account for complex
fluids. In particular, the combination of free energy
based models coupled to a hydrodynamic description
was introduced by Yeomans et al. [6–8] for simulations
of non-ideal fluids and binary mixtures and later ex-
tended for other systems such as binary mixtures with
surfactants [9–11] liquid crystals [12–15], ternary mix-
tures [16] or active fluids [17]. LB methods are partic-
ularly well suited for hydrodynamic simulations of flu-
ids, especially in complex media, for it is in principle
easy to parallelize the codes and to implement bound-
ary conditions at solid/fluid interfaces [18]. This al-
lowed the simulation of binary fluids in porous me-
dia [19], colloids at an oil-water interface [20–22] and
suspensions of charged colloids [23].

Standard LB schemes for complex fluids often lead
to spurious fluxes across solid-fluid boundaries or at
liquid-liquid interfaces [24]. This can become catas-
trophic when one deals with charged solutes, as such
fluxes could result in a progressive breakdown of elec-
troneutrality. To overcome this difficulty, Capuani
et al. [25, 26] introduced the link-flux method to re-
produce the convective-diffusive dynamics of charged
species in an electrolyte. Within this hybrid scheme,
the overall mass and momentum of the fluid are
evolved using a LB algorithm, whereas the ionic con-
centrations are updated using the link-flux method
(for diffusion and migration) in combination with an
advection scheme (for convection). This algorithm
satisfies detailed balance at steady-state and allows
to rigorously cancel fluxes into the solid, even in pres-
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ence of moving boundaries.
We want to put forward a general scheme to deal

with complex charged fluids making use of this hybrid
strategy, by combining the LB treatment of the sol-
vent with a continuum treatment of binary charged
fluids. We show how starting from a general free
energy functional it is possible to obtain a dynamic
scheme consistent with the prescribed thermodynam-
ics and how it can be coupled to the LB method for the
fluid flow. Several applications illustrate the power of
this coarse-grained model for charged heterogeneous
media : The transport of charged tracers in charged
porous media, the deformation of an oil droplet in wa-
ter under the effect of an applied electric field and the
distribution of ions at an oil-water interface as a func-
tion of their affinity for both solvents. We compare
with analytic predictions in the appropriate limits to
illustrate that it is possible to achieve quantitative
control of the performance of the model.

FREE-ENERGY BASED MODEL OF

NON-IDEAL MIXTURES

In this section, we present the description of a
complex mixture of solvents and charged solutes in
terms of mesoscopic variables, the associated thermo-
dynamic properties and the hydrodynamic equations
governing their dynamics.

Mesoscopic description

Our aim is to describe charged solutes in heteroge-
neous media involving solid-liquid or liquid-liquid (e.g.
oil-water) interfaces. For not too concentrated solu-
tions, we can treat the fluid as a continuum, whose
state is characterized by its local mass density ρ(r, t)
and concentrations in each solute ρk(r, t). In the fol-
lowing we will always consider 1:1 electrolytes and de-
note the corresponding solutes by + and − for cations
and anions, respectively. For oil-water mixtures, we
also introduce the local composition

φ(r) =
ρo(r) − ρw(r)

ρo(r) + ρw(r)
∈ [−1; 1] (1)

where the w and o subscripts refer to water and oil,
respectively. Immiscible fluids are characterized by re-
gions where φ is almost constant (φ ∼ −1 in water and
φ ∼ +1 in oil) separated by a ”sharp” interface. The
underlying assumption in the above description is to
consider the fluid can be seen as locally homogeneous,
although density, composition and solute concentra-
tions can vary on a larger scale.

Thermodynamics

The thermodynamics of the system is determined
by its free energy, expressed as the functional :

F [φ, ρ+, ρ−] =

∫

dr FV [φ(r), ρ+(r), ρ−(r)] (2)

where FV is a free energy density. Follow-
ing Onuki [27–29] we separate the contributions
Fmix[φ] describing the immiscible solvents and
F ions[φ, ρ+, ρ−] describing ions in a solvent of com-
position φ. The mixing contribution is chosen of the
Landau-Ginzburg form :

Fmix =

∫

dr

[

−1

2
Bφ2 +

1

4
Bφ4 +

1

2
K(∇φ)2

]

. (3)

The first two terms correspond to the bulk phase be-
haviour, with minima for φ = ±1, while the last
reflects the cost of sustaining interfaces. The di-
mension of B is energy×length−3 and that of K
is energy×length−1. This standard choice gives at
equilibrium a planar interface of the form φ(x) =
tanh(x/ξ) with a width ξ =

√

2K/B and a surface

tension σ =
√

8KB/9.
The ionic contribution of the free energy consists of

an ideal, a solvation and an electrostatic term :

F ions =

∫

dr
∑

α=±
ρα(r) [kBT (ln ρα(r) − 1) − µα

+V solv
α (r) +

zαe

2
ψ(r)

]

(4)

where z± = ±1 is the valency of the ions, µα is a refer-
ence chemical potential and the electrostatic potential
ψ is solution of the Poisson equation :

∇ · [ǫ(r)∇ψ(r)] = − [ρ+(r) − ρ−(r)] e . (5)

The dielectric constant ǫ(r) depends on the local com-
position of the fluid. Although it could be a priori an
intricate function of φ, it is reasonable to assume a
linear relation ǫ(r) = ǭ [1 − γφ(r)] with ǭ = ǫw+ǫo

2 the
average dielectric constant and γ = ǫw−ǫo

ǫw+ǫo
∈ [0; 1] the

dielectric contrast.
The ionic solvation potential V solv

± accounts for the
different solvation free energy in the two solvents. It
is therefore natural to parametrize it as a function of

the composition as V solv
± (r) = ∆µ±

1+φ(r)
2 , where we

have introduced for each ion the solvation free energy
difference between water and oil ∆µ± = µo

± − µw
±,

also referred to as extraction or Gibbs transfer free
energy in the electrochemistry community. As the
free energy (2) does not exclude in principle values
of the composition parameter outside the φ ∈ [−1, 1]
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range, we have considered that the physical properties
(ǫ, V solv

± ) for φ < −1 are that of water (ǫw, 0) and for
φ > 1 that of oil (ǫo,∆µ±).

Let us now briefly analyze the properties of this free
energy in terms of the chemical potentials associated
to ρ± and φ and the corresponding thermodynamic
forces acting on the fluid. The ionic chemical poten-
tials are of the usual form :

µ± =
δF
δρ±

= kBT ln ρ± + V solv
± + z±eψ , (6)

while the chemical potential corresponding to the sol-
vent mixture reads :

µφ =
δF
δφ

= µmix
φ + µsolv

φ + µel
φ . (7)

The first term is simply :

µmix
φ = −Bφ(r) +Bφ(r)3 −K∇2φ(r) . (8)

When the solvation free energy is taken as V solv
± (r) =

∆µ±
1+φ(r)

2 the second term is :

µsolv
φ =

[ρ+(r)∆µ+ + ρ−(r)∆µ−]

2
. (9)

Finally, the electrostatic contribution is :

µel
φ =

E(r)2

2

δǫ

δφ
= −γǭ

2
E(r)2 . (10)

Excess chemical potential gradients give rise to
a thermodynamic force (per unit volume) that can
be expressed as a pressure gradient from the Gibbs-
Duhem equality :

f th
V = −∇P = φ∇µφ + ρ+∇µex

+ + ρ−∇µex
− (11)

where the ex superscript refers to the excess chem-
ical potentials. Each part of the chemical potentials
(mixing, solvation and electrostatic) contribute to this
force. For example, gradients of µex

± give rise to the
force ρelE, with E = −∇ψ the electric field, and gra-
dients of µel

φ are the source of the dielectrophoretic

force (ǫ(r)− ǭ)∇
(

E
2

2

)

. The latter drives oil-rich fluid

elements (φ > 0, ǫ < ǭ) towards region where E2 is
small and water-rich fluid elements towards region of
higher E2 (note that ∇µel

φ also generates a compo-
sition flux in addition to this force) and is particu-
larly important in phenomena such as electrowetting.
These electrostatic contributions to chemical potential
gradients illustrate some new features captured by our
free energy model compared to previous ones used in
Lattice Boltzmann simulations of binary mixtures.

Hydrodynamics

The thermodynamic description of the system
needs to be supplemented by a set of prescriptions
for the dynamics. Overall mass conservation of the
fluid implies :

∂tρ+ ∇ · (ρu) = 0 (12)

with u the local barycentric velocity of the fluid. Mo-
mentum conservation of the fluid and viscous dissipa-
tion then enter in the Navier-Stokes equation, which
reads for and incompressible fluid :

∂tu + u · ∇u = ν∇2u +
fV

ρ
(13)

where ν = η/ρ is the kinematic viscosity and fV =
fext
V +f th

V is the sum of the externally applied force and
thermodynamic force (11). Although we have not con-
sidered this in the following, it is in principle possible
to introduce a composition-dependent viscosity [30].

The composition φ and ionic concentrations ρ± also
satisfy conservation laws :

∂tφ+ ∇ · (φu) = −∇ · jφ (14a)

∂tρ± + ∇ · (ρ±u) = −∇ · j± (14b)

where we have introduced fluxes in the barycentric
frame jφ and j±. The latter are given by phenomeno-
logical equations, namely :

j± = −D±ρ±∇(βµ±) (15)

with D± the ionic diffusion coefficients, and the Cahn-
Hilliard equation for the composition :

jφ = −M∇µφ (16)

with M a mobility. The units of M differ from those
of D± and a diffusivity (in m2s−1) of the interface can
be defined as Dφ = MB(−1 + 3φ2) with B from (3).
Note that near the interface φ ∼ 0 and Dφ < 0 : this
”negative diffusion” maintains the composition jump
at the interface.

Discussion

The above description of mixtures of solvent and
ions and the particular choice of free energy functional
are very similar to the ones adopted by Onuki [27–
29]. The functional differs only on two points.
First, we follow previous LB studies of binary mix-
ture [18, 20, 31, 32] and use the Landau-Ginzburg
(LG) functional (3) instead of the Bragg-Williams
one for numerical convenience. The combination of
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LG and electrostatic free energies (without solvation
terms) has also been used to investigate the wetting
of a solid substrate by ionic solutions [33]. The sec-
ond difference with Onuki’s approach consists in using
ρelψ for the electrostatic energy instead of ǫ(∇ψ)2.
This more natural choice, consistent e.g. with the
DFT work of van Roij et al. [34, 35], doesn’t re-
quire any approximations for the treatment of ”image
charges”.

A major difference with both Onuki’s and van
Roij’s work is that the present model captures not only
the equilibrium states of the system, but also its dy-
namics. It shares many features with Dynamical Den-
sity Functional Theory [36–39], since it relies on an
expression of fluxes proportional to gradients of chem-
ical potentials. The free energy functional described
above is relatively simple, for it neglects e.g. the effect
of the finite size of the ions and correlations beyond
the mean-field level. This description is perfectly valid
for dilute solutions of 1:1 electrolytes and can be im-
proved if more concentrated solutions or multivalent
ions are considered. Moreover, it captures the pres-
ence of immiscible solvents and the (possibly asym-
metric) affinity of the ions for one of them. The free
energy model put forward in this paper can be seen
as a simple limiting case of more elaborate free energy
functionals. The essential difference with DDFT is
that the hydrodynamic behaviour of the fluid is prop-
erly described (it satisfies the Navier-Stokes equation
resulting from momentum conservation and viscous
dissipation), whereas most DDFT studies consider a
fluid at rest or mediating hydrodynamic interactions
between large solutes via effective interactions (Oseen
or Rotne-Prager tensors) [40]. This latter approach
can be efficient for suspensions of solid particles, but
is not valid a priori for liquid droplets in another liq-
uid.

LATTICE SIMULATIONS

The coarse-grained model introduced in the previ-
ous section couples a hydrodynamic description of the
fluid to a free energy based representation of its ther-
modynamic behaviour. The purpose of the present
section is to introduce the computational methods
used to solve numerically the coupled evolution equa-
tions for the composition, ionic concentrations and
fluid velocity. The general strategy relies on the use
of different lattice models, which are described here
successively.

Hybrid lattice scheme

For non-ideal multicomponent fluids, the standard
LB approach treats all species on the same footing
and populations (see below) are associated to each
component. This can become computationally expen-
sive for more than two components. Nevertheless, this
approach has recently been applied for a mixture of
two solvents and two reactive solutes by Furtado et

al. [41] to study the convective drop motion driven
by non-linear kinetics. An alternative is to use a hy-
brid LB / finite elements approach, whereby the LB
fluid is described by populations evolving as before,
but the order parameters (e.g. the composition φ)
are described by scalar fields evolving according to fi-
nite elements schemes [42, 43]. As mentioned in the
introduction, such methods may suffer from spurious
fluxes which motivated the development of the link-
flux method by Capuani et al. [25, 26]. Here we gener-
alize the link-flux approach to the more complex case
of ions in a mixture of solvents. The overall mass and
momentum are taken care of via a Lattice Boltzmann
scheme, whereas the composition φ and ionic concen-
trations ρ± are updated using the link-flux method.
We now develop these two steps.

Lattice Boltzmann

Lattice Boltzmann (LB) is a well established
method for hydrodynamic simulations based on ki-
netic theory [5, 44]. The Boltzmann equation is a
mesoscopic kinetic equation which determines the evo-
lution of the probability density function f(r,v, t) of
finding a fluid particle with a velocity v at position
r and time t. The hydrodynamic fluid variables are
derived as moments in velocity space of the distri-
bution function starting with the fluid local density
ρ =

∫

fdv and mass flux ρu =
∫

fvdv. Although the
relaxation of the distribution function toward equilib-
rium is determined by a nonlinear collision operator,
the Bhatnagar-Gross-Krook (BGK) model [45] shows
that proper hydrodynamics can be already recovered
from a linearized collision operator if it is isotropic
and conserves mass and momentum.

LB tracks the dynamics of fluid populations, fi =
f(r, ci, t), which evolve on the nodes r of a lattice of
spacing ∆x moving to neighbouring nodes at finite
time steps through a finite set of allowed velocities
{ci}i∈[1,Nmax]. The hydrodynamic variables are ob-

tained as appropriate quadratures ρ =
∑

i wifi and
ρu =

∑

i wifici, where the weights wi are associ-
ated to the chosen set of velocities. The particle dis-
tributions fi also relax at each time step toward a
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prescribed equilibrium distribution through a linear
collision operator which conserves mass and momen-
tum and ensures that the the solvent mass density
ρ and velocity u follow the Navier-Stokes equations,
(12) and (13), on distances larger than ∆x. The nat-
ural units in LB simulations are the lattice spacing
∆x and the time step ∆t. They are fixed by the
properties of the system: In the following, the lattice
spacing is chosen as a fraction of the Bjerrum length
lB = e2/4πǫkBT (approximately 0.7 nm in water at
room temperature), while the time step is determined
by the value of the solvent viscosity.

The force per unit volume fV acting on the fluid also
enters in the collision rule. The issue of computing
the thermodynamic force (11) from the state (φ, ρ±)
of the system will be addressed in the next section.
For numerical accuracy and stability reasons, the fluid
velocity must remain small compared to the sound ve-
locity cs. This small Mach number limit implies that
the forces are also small, i.e. that χT fV ∆x≪ 1, with
χT the fluid compressibility (χT = 1/ρc2s for the LB
fluid). Each term in the excess free energy density
contributes to the force (11) and we can derive con-
ditions accordingly. This leads for the Fmix contri-
bution (3) to χTB ≪ ξ/∆x and similar requirements
are obtained for the solvation and electrostatic ones.

Link-flux method

The composition of the fluid is characterized by the
order parameters φ and ρ± and evolves according to
Eqs. (14), (15) and (16). The numerical solution of
these equations is achived by the link-flux method.
This method was introduced by Capuani et al. [25, 26]
in order to prevent spurious solute fluxes across solid-
fluid interfaces. It focusses on solute fluxes between
lattice nodes rather than the amount of solute at each
nodes. Integrating the conservation laws (14) over a
volume corresponding to one lattice node and using
Green’s formula, we associate the variation of φ and
ρ± to the fluxes of jφ and j± across the surface A0 of
the cell (for more details, see Ref. [25]). The latter
can be separated into the contributions of each link
between the considered node and all its neighbours :

ρ±(r, t+ ∆t) − ρ±(r, t)

∆t
∆x3 = −A0

∑

i

ji
±(r) (17)

where i refers to the discrete velocities and ji
± to

the contribution of link i between r and r + ci∆t
to the outward flux of j±. A similar expression
can be written for the composition with link-fluxes
ji
φ. In order to ensure that the ions follow a Boltz-

mann distribution at equilibrium, we rewrite (15) as

j± = −D±e
−βµex

± ∇[ρ±e
βµex
± ] and express the link-

fluxes in the symmetrized form :

ji
±(r) = −d±

e−βµex
± (r) + e−βµex

± (r+ci∆t)

2

×
[

ρ±(r + ci∆t)e
βµex
± (r+ci∆t) − ρ±(r)eβµex

± (r)

∆i

]

(18)

with d± = D±/A0 and ∆i = ||ci∆t||. For links cross-
ing solid-fluid boundaries (i.e. such that r + ci∆t is
a solid node) we enforce ji

± = 0 so that such links do
not carry any solute into the solid. For the solvent
order parameter φ we use the simpler form :

ji
φ(r) = −mφ

µφ(r + ci∆t) − µφ(r)

∆i
(19)

with mφ = M/A0 to recover the Cahn-Hilliard expres-
sion (16).

The link-flux algorithm just described takes care of
the diffusive fluxes jφ and j±. The advective fluxes
φu and ρ±u are treated in a separate step described
in detail in ref. [25]: It consists in transferring par-
ticles according to the overlap between the consid-
ered cell (around a node) translated by u∆t and each
of its neighbouring cells. Finally, the update of the
composition also modifies the local force (11) act-
ing on the fluid. The thermodynamic force acting
on node r is the average of the forces on each link
fV (r) =

∑

iwiFi(r)ci, with :

Fi(r) = −φ(r)
ji
φ(r)

mφ

− kBT
∑

α=±

[

ji
α(r)

dα
− ρα(r + ci∆t) − ρα(r)

∆i

]

(20)

For the ionic part we substract the ideal term
ρ±∇µ±id = ∇ρ± from the link flux, because only
the excess (solvation and electrostatic) term ρ±∇µex

±
contributes to the force.

The computation of the chemical potentials µ± and
µφ require the evaluation at the lattice nodes of the
electrostatic potential ψ and its gradient E = −∇ψ,
as well as ∇2φ (see Eqs. (8) and (10)). The electro-
static potential is determined from the local charge
and dielectric constant by solving the Poisson equa-
tion (5) with the Successive Over Relaxation (SOR)
method [46], which also requires to compute gradi-
ents and Laplacian of φ and ψ. We have implemented
a modified SOR algorithm with the additional term
arising from the spatial variations of the permittiv-
ity. The following stencils are used to compute these
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differential operators :

∇ψ(r) =
1

∆t

∑

i

wi

c2s
[ ψ(r + ci∆t) − ψ(r) ] ci (21a)

∇2ψ(r) =
2

∆t2

∑

i

wi

c2s
[ ψ(r + ci∆t) − ψ(r) ] (21b)

This choice was motivated by numerical accuracy con-
siderations, but also by the fact that it is fully con-
sistent with the discretization used for the LB part of
the hybrid scheme.

CHARGED TRACERS IN CHARGED

POROUS MEDIA

We now show a first application of the method in-
troduced in the previous section in which no oil is
present. To assess the behaviour of a forced, charged
fluid, we consider a slit of width L with charged walls
(charge density σel < 0) and compensating coun-
terions in the fluid as a simple representation of a
porous medium. In equilibrium, the counterion con-

centration is ρ+(x) = α2

2πlB
1

cos2 αx , where α satisfies
αL
2 tan αL

2 = πσelLlB/e. If an electric field of strength
E0 is applied parallel to the solid walls, an electroos-
motic flow develops in the confined fluid,

uy(x) = uref ln
cosαx

cosαL/2
(22)

where the amplitude satisfies uref ≡ eE0/2πηlB. In
Fig. 1 we compare the theoretical predictions and the
computed values for the flow field for increasing charge
of the solid walls. One can see that the method de-
scribes quantitatively the osmotic flow deep into the
non-linear regime of electrostatic coupling (αL → π).
Previous work has shown that other dynamic quanti-
ties, such as the dispersion of charged tracers by this
flow, can be easily recovered [47].

A very useful quantity to analyze the diffusive dy-
namics in porous media is the time-dependent dif-
fusion coefficient D(t), that can be measured by
NMR [48]. At short times D(t) coincides with the
molecular diffusion coefficient D. For neutral tracers,
the short-time behaviour of D(t) reflects the geometry

of the pores [49]: D(t)
D ∼ 1 − 4

9
√

π
S
Vp

√
Dt with Vp the

pore volume, S the surface of the solid. The long time
limit of D(t) is the effective diffusion coefficient :

De = lim
t→∞

D(t) (23)

which reflects the connectivity between pores through-
out the medium. The ratio De/D is often referred to
as the inverse of the tortuosity. The effective tracer

FIG. 1: Steady state flow profile across a slit of width
L = 60∆x (with lB = 0.4∆x) for an applied electric field of
magnitude βeE0L = 3 as a function of the the solid surface
charge density. Symbols are simulation results while the
continuous curves correspond to the theoretical prediction.

diffusion coefficient through charged porous materials
is known to depend on its charge. For example, it has
been observed in clays (negatively charged minerals)
that the ratio De/D for cations is larger than for neu-
tral tracers, whereas that for anions is smaller [50–52].
This can be at least partly explained by the so-called
Donnan effect : The concentration of co-ions (resp.
counterions) in the pores of the material is smaller
(resp. larger) than the concentration of salt in the
reservoirs used to impose a concentration gradient to
the sample, and this modifies the effective concentra-
tion gradient inside the sample.

Even if we correct for this effect, we expect that
ions of different charge will follow different pathways
through the pores and this might influence the ob-
served value of De. In the framework of the proposed
model, we can analyze D(t) as the integral of the
tracer’s velocity autocorrelation function (VACF) us-
ing the Moment Propagation [47, 53–55]. It is worth
emphasizing that the present analysis is possible be-
cause we are able to evaluate D(t) numerically. Al-
though this has been done for neutral tracers by aver-
aging over trajectories of explicit tracer particles [56],
we found no such analysis for charged tracers.

System

We will analyze the diffusion of charged tracers in
a porous medium consisting of a compact FCC lattice
of charged spheres of radius R with a surface charge
density σel < 0 whose pores are saturated with an
electrolyte solution of concentration ρb. The void frac-
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tion (porosity) of 1 − π/3
√

2 ∼ 26% is divided into
large octahedral (Oh) cavities of radius rOh

∼ 0.41R
connected by smaller tetrahedral (Td) pores of ra-
dius rTd

∼ 0.22R. The size of the bottlenecks be-
tween Oh and Td pores is approximately 0.15R. The
electrostatic potential distribution inside the pore is
controlled by the salt concentration, with a typical
double-layer thickness κ−1

b = (8πlBρb)
−1/2, with lB

the Bjerrum length. The Debye length κ−1
b corre-

sponds to the exponential decay of the potential near
a planar interface, for not too high a surface potential
ψS (compared to kBT/e and using the potential of the
solution ”far” from the surface as a reference). The
latter depends on the surface charge density and the
salt concentration in the medium.

Simulations were performed on a a3 = (100∆x)3

lattice, with spheres of radius R = a/2
√

2 ∼ 35.4∆x.
The lattice spacing is 2.5lB ∼ 1.75 nm, so that the
Oh (resp. Td) pore size is ∼25.8 nm (resp. 13.9 nm).
The charge density of the solid is σel ∼ −0.04 e/nm2,
and we considered salt concentrations ρb correspond-
ing to (κbR)−1 ∈ [0.02; 0.57]. The molecular diffusion
coefficients are D± = 5 10−2(∆x2/∆t). The system is
initialized with cations and anions distributed homo-
geneously and evolved until the equilibrium distribu-
tion is reached.

Results and discussion

The time-dependent diffusion coefficient D(t) for
tracers of valency ±1 and 0 with the same molecular
diffusion coefficient D are computed using the mo-
ment propagation method. The results show that the
charge of the ion influences both the value of De and
the transient regime to reach this asymptotic value.
De/D is larger (resp. smaller) for cations (resp. an-
ions) than for neutral tracers. This is in agreement
with experimental observations (which also reflect the
Donnan effect). D(t) also tends towards De faster
(resp. more slowly) for cations (resp. anions) than
neutral tracers. This can be quantified by a charac-
teristic time :

τ =

∫ ∞

0

D(t) −D

De −D
dt (24)

Fig. 2 shows the variation of tracer’s diffusion and
the relaxation time τ with salt concentration ρb. The
extension of the diffuse layer (approximately κ−1

b ) de-
creases with increasing ρb. Both De and τ for the
charged tracers tend towards the values for neutral
tracers at high ρb. This effect has been observed in
diffusion experiments (also reflecting the smaller Don-
nan effect in that case). To our knowledge, there is no

experimental measurements of time-dependent diffu-
sion coefficient for ions in clays.

FIG. 2: Effective diffusion coefficient for charged tracers,
as a function of the salt concentration. The results for
neutral (◦), cationic (�) and anionic (⋄) tracers , normal-
ized by the molecular diffusion coefficient D, are reported
as a function of the equivalent Debye length in a bulk so-
lution κ−1

b = (8πlBρb)
−1/2 divided by the radius R of the

spheres. The insert shows the characteristic time to ex-
plore the porosity accessible to each tracer, normalized by
R2/D.

The variations of De/D and τ with the tracer
charge and salt concentrations reflect how tracers go
from one cavity to another to explore the whole poros-
ity. Smaller Td pores act as bottlenecks through which
tracers must pass to go from one Oh pore to another.
In addition to this purely geometric (entropic) effect,
the electrostatic potential distribution in the porosity
also affects the motion of charged tracers. The electro-
static potential ψ(r) in the pore is always larger than
the surface potential ψS and increases with increasing
distance from the surfaces. Thus ψ is larger near the
center of Oh pores (see the disconnected isopotential
surfaces for a large ψ, in red in Fig. 2) than in Td pores
and anions feel a repulsive electrostatic force when ap-
proaching the latter. This decreases the probability to
go from one Oh cavity to the next and consequently
De is smaller than for netral tracers. This also implies
that it takes longer for anions to explore the volume
accessible to them (although this volume is smaller
than for neutral species that are not repelled from the
surfaces) and the corresponding τ is larger.

As opposed to anions, cations accumulate near the
surface. As can be seen in Fig. 3, the diffuse layer
forms a continuous volume throughout the porosity
and cations can follow preferential pathways along the
surfaces. This surface diffusion mechanism is more
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FIG. 3: Isopotential curves for a FCC lattice of charged
spheres where the porosity contains solvent, counterions
and salt. The grey surface is an electric isopotential curve
for a value close to the surface potential while the red
surfaces correspond to a larger value of the electrostatic
potential. Each lattice node in the solid phase is repre-
sented as a blue dot, while fluid nodes are not indicated
for clarity.

efficient than for neutral cations, since exploring a
smaller volume takes less time than exploring the
whole Oh pores. Hence the larger De and smaller
τ for cations. In both cases, there is a clear inter-
play between the geometric and electrostatic effects.
At higher concentrations, the potential variations are
screened and the effect of the above-mentioned mech-
anisms are less pronounced.

DIELECTRIC DROPLETS UNDER AN

ELECTRIC FIELD

In this section, we apply our mesoscopic model to
the deformation of an oil droplet in water under an ap-
plied electric field, in the absence of ions. Because of
surface tension, the equilibrium shape of an oil droplet
in water corresponds to the minimal interface area (a
disk in 2D, a sphere in 3D) and there exists an ex-
cess (Laplace) pressure inside the drop : PL = σ

Rd
in

2D and 2σ
Rd

in 3D, with σ the surface tension and Rd

the drop radius. When the drop and the suspending
liquid have different dielectric constants (i.e. when

γ =
ǫw − ǫo
ǫw + ǫo

6= 0), applying an electric field E polar-

izes the drop and the anisotropic electrostatic stress
tensor tends to elongate it in the direction of the field.

The final shape is governed by the balance between
electrostatic and surface tension forces. For small ap-
plied fields the equilibrium shape is an ellipse in 2D
(an ellipsoid in 3D) and the deformation is defined as
D = (b − a)/(b + a) with b (resp. a) its large (resp.
small) axis. In the small E limit, an analytical result
for the deformation in the 2D case can be obtained
following the lines of [57] for spherical droplets, with
the result (see below):

Dtheor =
1

4
γ2(1 + γ)

ǭE2Rd

σ
(25)

where ǭ = (ǫw + ǫo)/2.

System

We performed simulations of a two-dimensional oil
droplet in water. Because of periodic boundary con-
ditions in all directions, this corresponds to an array
of infinite cylinders. The box size is N × N × 1 lat-
tice points, with N = 50 or 100. The parameters
entering in the free energy (3) are βB∆x3 = 10−3

and βK∆x = 3 10−3, giving a theoretical interface
width of ξ =

√

2K/B ∼ 2.45∆x. and a surface ten-

sion βσ∆x2 =
√

8KB/9 ∼ 1.63 10−3. This choice
of parameters ensures that the interface is thin while
remaining well resolved on the lattice. In particu-
lar, we checked that in the case of a planar interface
(1D geometry) the simulated systems reproduces ac-
curately the φ(x) = tanh(x/ξ) profile with the ex-
pected width. These parameters also fulfill the condi-
tion χTB ≪ ξ/∆x. The interface mobility M is such
that MB = 10−2∆x2/∆t.

After equilibrating the system, we turn on the elec-
tric field E by solving the Poisson equation under
the condition of a potential drop −EL between both
sides of the simulation box (to be consistent with
the periodic boundary conditions). The electrostatic
potential inside and outside the droplet is reported
in Fig. 4 together with the correspongindg electric
field lines, for a large dielectric contrast γ = 0.9
and an applied electric field βeE∆x = 10−3. The
average dielectric constant ǭ = (ǫw + ǫo)/2 is such
that l̄B = βe2/4πǭ = 0.4∆x. Simulation results for
two system sizes are shown : The smaller (b) cor-
responds to a box size L = 50∆x and a droplet ra-
dius Rd = 14.1∆x, the larger (d) to L = 100∆x,
Rd = 28.2∆x. These results are compared to the an-
alytical solution for an isolated cylinder :

E(r) = (1 + γ)E0 , r < Rd

E(r) = E0 + γR2
d∇

(

E0 · r
r2

)

, r > Rd (26)
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FIG. 4: Electrostatic potential (background) and electric
field lines (the color of streamlines indicates the magnitude
of the field, with red for large fields) for an oil droplet
in water under an electric field. The oil-water interface
is indicated as a dashed line. The dielectric constrast is
γ = 0.9. Analytical results for an isolet droplet (a and c)
are compared to simulation results with periodic boundary
conditions (b and d). The effect of the finite width (ξ =
2.45∆x for b and d) is more visible for the smaller system
(a,b: box size L = 50∆x, droplet radius Rd = 14.1∆x)
than with the larger one (c,d: L = 100∆x, Rd = 28.2∆x).

with E0 the applied field, evaluated on the nodes of
the same lattices (a and c). Each part of the fig-
ure represents 1/4 of the simulation box. The figures
for the smaller system (a and b) have been magnified
to appear of the same size as the larger one (c and
d). The field lines are computed numerically from the
electrostatic potential and colored according to the
magnitude of the local electric field.

The simulation results for a system with periodic
boundary conditions are in good agreement with the
analytical solution for an isolated droplet. In partic-
ular, the field lines tend to bypass the less dielectric
droplet and are thus closer to each other in the wa-
ter phase. The field strength is smaller in the water
phase, where the dielectric constant is higher. The
analytical solution (26) corresponds to an infinitely
thin interface (ξ = 0) with a discontinuous dielec-
tric constant, whereas in simulations the latter varies
smoothly over a distance ∼ ξ. The effect of the fi-
nite width is more pronounced for the smaller system
(ξ/Rd ∼ 0.17) and the agreement with (26) is excel-
lent for the larger (ξ/Rd ∼ 0.09). Although smaller
ξ/Rd can be reached by decreasing ξ, the latter should
remain at least of a few ∆x for the variations of the
composition φ to be well resolved on the lattice.

Results and discussion

Under the applied electric field, gradients of µφ lead
to an evolution of the composition φ, corresponding
to a deformation of the droplet. The precise loca-
tion of the interface is defined by the curve φ(r) = 0,
which is fitted to an ellipse to obtain the deforma-
tion D. Results are reported in Fig. 5 as a function
of the dielectric contrast γ for two droplet radii and
two electric field strengths. For the simulation param-
eters used here, the largest deformation is < 10−2 so
that we are always in the small deformation limit as-
sumed in Eq. (25). Simulation results are in excellent
agreement with the analytical ones. This demonstrate
that the simulation method faithfully reproduces the
prediction of the continuous free energy model.

FIG. 5: Deformation of a 2D-oil droplet in water, as a
function of the dielectric contrast γ = (ǫw − ǫo)/(ǫw + ǫo).
The deformation D is normalized by ǭE2Rd/σ, with ǭ =
(ǫw + ǫo)/2, E the applied field, Rd the droplet radius
and σ the surface tension. Simulation results are for two
droplet radii (Rd = 14.1∆x for �, × and 28.2∆x for ◦,
+) and two electric field strengths (βeE∆x = 10−3 for
◦,� and 3 10−3 for ×,+) with the same interface width
ξ = 2.45∆x. The solid line corresponds to the analytical
solution (25).

The deviations observable only for large values of γ
depend mainly on the radius Rd and less significantly
on the applied electric field E. This can be under-
stood by analyzing the effect of the finite width on
the energy balance leading to the final shape of the
droplet and the theoretical deformation (25). In the
case of a thin interface (ξ = 0) and assuming that the
field at steady-state is still given by (26), we find that
the electrostatic energy stored in the droplet when the
field is turned on is (per unit length of the cylinder) :
∫

drop
1
2 (ǫoE

2
in − ǫwE

2
0 )dS = − 1

2 ǭ(1 + γ)γ2E2
0S, with
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S = πR2
d the section area of the droplet. This term

tends to increase S by deforming the droplet and is
balanced by the increase in surface energy σ2πRdD
(per unit length of the cylinder). The corresponding
deformation D is given by Eq. (25).

The main effect of the finite width ξ is that the
smooth variation of ǫ at the interface leads to a
O(ξRd ǭ(1 + γ)γ2E2

0) correction to the electrostatic
term, resulting in a smaller driving force for the
deformation. This explains the field-independent
O(ξ/Rd) deviation of the simulation results from
Dtheor/(ǭE

2Rd/σ) observed in Fig. 5. Other possi-
ble field-dependent corrections do not seem to be ob-
served.

The results shown in this section demonstrate that
the lattice simulation scheme is able to reproduce
quantitatively the behaviour of a system consisting of
two immiscible dielectric fluids under an electric field.
We have not considered here the possibility of alter-
ing the phase behaviour of the solvent mixture in an
inhomogeneous electric field, but this phenomenon is
also captured by the free energy model used for our
simulations [58].

IONS AT AN OIL-WATER INTERFACE

In this last section, we further exploit the power of
our coarse-grained description by considering ions at a
planar oil-water interface. The two solvents may have
different dielectric constants and the ions different
affinities for the two solvents (∆µ± = µo

± − µw
± 6= 0).

The salt is partioned between the two phases and the
salt concentration ratio is ρo/ρw = exp(−β∆µav) with
∆µav = (∆µ+ + ∆µ−)/2. In the case of asymmetric
solvation (∆µ+ 6= ∆µ−) there exists at equilibrium an
electrostatic potential difference (Donnan potential)
across the interface ψD = ψo−ψw = (∆µ−−∆µ+)/2e.
In that case there is a charge separation over dis-
tances characterized by two different Debye lengths
κ−1

o,w = (2βe2ρo,w/ǫo,w)−1/2. For large values of the
dielectric contrast or of ∆µav, they can differ by sev-
eral orders of magnitude.

Experimental investigations of such interfaces at
the microscopic scale have revealed that the interplay
between solvation and electrostatic forces at the in-
terface is rather complex [59]. This is particularly
true if there is a dielectric constrast between the two
phases (γ 6= 0) resulting in image charges interactions.
While Onuki accounted for them by an effective ”im-
age charge potential” in his free energy description
of mixtures of oil, water and ions [27, 28], van Roij
et al. [35] suggested a Poisson-Boltzmann (PB) treat-
ment for a thin planar interface introducing a shift s

between the true solvent interface (where the dielec-
tric constant changes) and the location of the jump
∆µ± in solvation potential felt by the ions. When
x < 0 (resp. x > 0) corresponds to the oil (resp.
water) phase, assuming s > 0 and setting ψ(∞) = 0,
we can write their result for the electrostatic potential
as :

ψPB =















































ψD − ψD

A
eκox ,

x < 0

ψD − ψD

A
[cosh(κix) + n sinh(κix)] ,

x ∈ [0, s]
ψD

A
e−κw(x−s)p[n cosh(κis) + sinh(κis)] ,

x > s

(27)

where A = (1 + np) cosh(κis) + (n + p) sinh(κis),
n =

√

ǫo/ǫw, p =
√

ρo/ρw = exp(−β∆µav/2) and
the screening length in the intermediate region is
κ−1

i = (2βe2ρo/ǫw)−1/2. This analytical result is ex-
act only in the linearized regime, i.e. potential differ-
ences small compared to kBT/e. Here we report lat-
tice simulations based on our free energy model and
compare the resulting ionic profiles to the prediction
of the PB treatment for a flat interface.

System

We peformed simulations of flat oil-water interfaces
in a simulation box consisting of N × 1 × 1 lattice
points with N = 500 and containing two interfaces
(one O/W and one W/O). Owing to the periodic
boundary conditions, the system corresponds to an
infinite stack of oil and water slabs of width 2Lo and
2Lw (we used Lo = Lw = 125∆x). There are sev-
eral relevant lengthscales in the system: The interface
width ξ, the Debye screening lengths κ−1

o,w and the
size of both phases Lo,w. The width of the interface
should be small compared to all other lengthscales :
κo,wξ ≪ 1 and ξ ≪ Lo,w. In principle, the electric
double-layers can overlap, especially in the oil phase
where κ−1

o is larger. This is even a crucial point to ex-
plain the electrostatic stabilization of surfactant free
water droplets in oil [60, 61]. In the present paper,
we want to assess the validity of our coarse-grained
simulation method by comparison with known results
for an isolated interface and therefore consider only
the limit κo,wLo,w → ∞. In particular, this condi-
tion is necessary for the salt concentrations to reach
bulk values ρo,w corresponding to well-defined screen-
ing lengths. Otherwise the amount of ions in the
double layers could be non-negligible compared to the
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amount of ions in the bulk oil and water phases and
the latter couldn’t be considered as reservoirs. All
simulations were performed using mixing free energy
parameters βB∆x3 = 10−2 and βK∆x = 3 10−2 with
a mobility such that MB = 5 10−2∆x2/∆t. These
values of B and K lead in the absence of ions to an
interface width ξ ∼ 2.45∆x. Results are given only for
one of the two interfaces in the simulation box, with
x < 0 (resp. x > 0) corresponding to the oil (resp.
water) phase.

Results and discussion

FIG. 6: Ionic profiles at an oil (left) - water (right) in-
terface, for γ = 0, β∆µ± = ±4, lB = 0.8∆x and
ρw∆x3 = 4.7 10−4. Symbols are simulation results. Lines
are analytical results based on Eq. (27) with a shift s = 0
for the electrostatic potential ψPB. Dashed lines corre-
sponds to the fully lineared solution, solid lines to the re-
exponentiated one (see text). The insert compares the
simulation results (symbols) for φ and ψ to the analytical
solutions (lines).

We first investigate the influence of the solvation
free energy differences ∆µ± on the structure of the in-
terface by considering a system without image charges
(ǫw = ǫo, i.e. γ = 0). Fig. 6 compares simulation re-
sults to analytical predictions based on Eq. (27) for
β∆µ± = ±4, corresponding to hydrophilic cations
and hydrophobic anions. From the PB ionic chemi-
cal potential µPB

± = ±eψPB + V solv
± we compute the

ionic concentrations either as ρ± = ρwe−βµPB
± or as

the linear expansion ρw
(

1 − βµPB
±

)

. In the follow-
ing, we refer to the former as the reexponentiated PB
result (RPB, see e.g. Ref. [62]) and to the latter as
the linearized PB result (LPB). Since β∆µav = 0 we
expect equal salt concentrations in both phases and

equal screening lengths (since we also have γ = 0)
κ−1

o,w ∼ 10.3∆x, with a relatively good separation of
length scales (κo,wξ < 1 and κo,wLo,w > 1). We also
expect a Donnan potential difference ψD = −4kBT/e
across the interface.

This figure shows that the LPB approximation fails
to reproduce the ionic profiles, as expected for this
large value of βeψD. It even predicts negative concen-
trations near the interface. Adding the quadratic term
in βeψD to approximate ρ± significantly improves the
agreement while remaining consistent with the linear
approximation for the potential (not shown). The
RPB result, although not fully consistent with this
approximation, is in quantitative agreement with the
simulations, except at the interface where the finite
width ξ smoothens the jump in ionic concentrations.
The insert of Fig. 6 shows that the composition profile
is close to φth(x) = − tanh(x/ξ) and that the electro-
static potential is very well described by the linearized
PB solution ψPB(x) with a shift s = 0. Note that
Eq. (27) for ψPB is obtained under the assumption
ξ = 0, and that potential differences are small com-
pared to kBT/e. Surprizingly, simulations for a finite
ξ with relatively large values of βeψD give similar re-
sults for the electrostatic potential even in the transi-
tion region where the ionic profiles differ. Although it
is not easily seen on this insert, the simulated profile
is in fact sharper than φth(x).

FIG. 7: Ionic profiles in the water phase for γ = 0.0,
β∆µav = 0, lB = 0.8∆x, ρw∆x3 = 4.9 10−4 and Donnan
potentials βeψD = −1 (a), −2 (b) and −3 (c). Simulation
results (symbols) are compared to the RPB result (see
text) for a thin interface (solid line) and for V solv

± corre-
sponding to φth(x) = − tanh(x/ξ) (dashed line) expected
for an ion-free interface.

Increasing βeψD while keeping β∆µav = 0 in-
creases the charge separation and the excess of ions
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at the interface compared to the bulk concentration.
Before analyzing quantitatively the influence of ψD

on these quantities, let us examine the effect of the
finite interface width on the ionic profiles ρ±(x) and
the influence of the solvation free energy on the com-
position profile φ(x). Fig. 7 reports the ionic pro-
files for γ = 0.0, β∆µav = 0 and Donnan potentials
βeψD = −1,−2 and −3. Simulation results are com-
pared to the RPB solution for a thin interface (ξ = 0)
and for solvation potentials V solv

± corresponding to a
composition φth(x) = − tanh(x/ξ) expected for an
ion-free interface, where ξ =

√

2K/B. The main ef-
fect of the finite interface width is to smoothen ionic
concentration profiles over a distance ∼ ξ. Beyond
this distance the concentrations are equal to the thin
interface result. The profiles are better described by
the combination of ψPB with the smoothed solvation
potentials, but the agreement deteriorates as |ψD| in-
creases. This is because the composition profile φ(x)
also deviates from φth(x) as |ψD| increases : The
larger the solvation free energy difference (i.e. the
larger |ψD|), the sharper the interface.

We now analyze how the finite width ξ of the inter-
face affects the overall excess of ions near the interface,
quantified by the adsorption :

Γ =

∫ 0

−∞
[ρ+(x) + ρ−(x) − 2ρo] dx

+

∫ ∞

0

[ρ+(x) + ρ−(x) − 2ρw] dx . (28)

Fig. 8 compares the simulated adsorption to the LPB
result :

ΓLPB =
κ

8πlB

(βeψD)2

4
(29)

with κ = κo = κw and lB the Bjerrum length common
to both phases (since γ = 0). This result is obtained
by expanding ρ±(x) to second order in βµPB

± , for the
linear expansion yields Γ = 0. The error bars reported
in Fig. 8 correspond to the estimate :

δΓ =
1

2

(
∫ 0

−∆x

[ρ+(x) + ρ−(x) − 2ρo] dx

+

∫ ∆x

0

[ρ+(x) + ρ−(x) − 2ρw] dx

)

(30)

with ∆x the lattice spacing. The agreement between
the simulation and LPB results is seen to be very
good, except at very large ψD. This performance of
the LPB approximation even for βeψD > 1 where it
fails to predict the ionic profiles can be traced back
to a compensation of errors. The RPB result, much
closer to the simulated ionic profiles, predicts larger

adsorptions than the LPB approximation. But the fi-
nite interface width smoothens the ionic profiles and
therefore diminishes the value of Γ. In addition, for
the largest ψD, Γ is not small compared to the amount
of ”bulk” ions ρoLo + ρwLw ∼ 0.12∆x−2 so that the
simulated system cannot be considered as an isolated
interface in contact with infinite reservoirs.

FIG. 8: Ionic adsorption Γ and surface charge density
σel of the oil phase as a function of ψD for γ = 0 and
β∆µav = 0. Simulation results (symbols) for lB = 0.8∆x
are compared to the linearized Poisson-Boltzmann results
for ξ = 0 (lines) given by Eqs. (29) and (31).

The good agreement between the simulated ψ and
linearized PB result ψPB suggests that the electric
charge density is also close to the PB solution. In
particular, the total electric charge of each phase σel =

σo = −σw =
∫ 0

−∞(ρ+ − ρ−)e dx can be compared to
the PB prediction for ξ = 0 :

σLPB
el

e
=

κ

4πlBA
(βeψD) (31)

with here A = 2 (see Eq. (27)). Fig. 8 also displays
σel as a function of the Donnan potential ψD for the
simple case β∆µav = 0 and γ = 0. The error bars cor-

respond to δσel = 1
2

∫ ∆x

−∆x |ρ+ − ρ−| e dx. This figure
shows that simulation results are indeed well described
by Eq. (31) and confirms that the charge separation
at the interface is proportional to ψD, except at very
large ψD. The symmetric interface behaves as a ca-
pacitor of permittivity ǫ and width κ−1, with capaci-
tance per unit area ǫκ. When submitted to a potential
difference ψD, each side builds up a charge per unit
area σel ∝ ǫκψD. The good agreement between the
simulation and PB results for σel is consistent with
the finding of ref. [35] that global quantities related
to the partitioning between the two phases are not in-
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fluenced by the finite interface width if it is smaller
than the interfacial Debye length.

All results presented so far concerned the symmet-
ric solvation case β∆µav = 0. Simulations in the
asymmetric case also give the expected results. For
example, we find that the salt concentration ratio
ρo/ρw decreases from e−1 ∼ 0.37 for β∆µ+ = +2
and β∆µ− = 0 (hence β∆µav = +1) to e−3 ∼ 5 10−2

for β∆µ+ = +4 and β∆µ− = +2 (β∆µav = +3).
While these two conditions correspond to the same
ψD = −kBT/e, the former yields a larger adsorption
Γ. In addition, the ionic profiles are again in quantita-
tive agreement with the RPB solution for a shift s = 0.
This choice gives the best agreement when there is no
dielectric contrast between the two solvents.

FIG. 9: Ionic profiles at the oil (left) - water (right) in-
terface for γ = 0.5, β∆µ± = ±2, lB = 0.8∆x, ρw∆x3 =
4.9 10−4 and a shift s = −1.25∆x. Simulation results
(symbols) are compared to analytical results for a thin in-
terface (solid line) and for the combination of ψPB with
solvation potentials V solv

± corresponding to a composition
φth(x) = − tanh(x/ξ) (dashed line). The insert compares
the simulation (symbols) and analytical (lines) results for
the composition φ and electrostatic potential ψ.

When γ 6= 0 the situation is more complex and even
the sign of s depends on γ, ∆µ+ and ∆µ−. An ex-
ample of such a situation is illustrated in Fig. 9. The
best agreement with Eq. (27) was obtained in that
case for a shift s = −1.25∆x. All other parameters
being fixed, we find that for increasing ∆µ+ = −∆µ−
the required shift also increases. Simulation results
for the electrostatic potential are well described by
the PB result for a vanishing width ξ = 0 and a finite
shift. Therefore the minimal model of van Roij et al..
to account for image charges seems to be appropriate,
at least for the explored range of parameters. Even for
βeψD > 1, where the fully linear PB approximation

fails, we find that the reexponentiated PB result gives
an accurate description of ionic profiles. Moreover,
our results show that the finite width of the inter-
face affects the ionic profiles in such a way that the
electrostatic potential is still close to the PB predic-
tion. These profiles are accurately described by the
combination of ψPB with solvation potentials V solv

±
corresponding to an unperturbed composition profile
φth(x) = − tanh(x/ξ). In particular, ”far” from the
interface, the effect of the finite width on solvation
forces is negligible and the ionic profiles coincide with
the result for ξ = 0. As shown previously in the case
γ = 0, we expect for larger ψD a perturbation of the
composition profile and a corresponding modification
of the ionic concentrations.

The results presented in this section demonstrate
the ability of our coarse-grained simulation scheme to
study the interface between two immiscible solvents in
presence of ions, including the effect of their (possibly
asymmetric) affinity for both phases. To assess the
validity of the simulation scheme we only showed re-
sults in the one-dimensional case, for which analytical
predictions are available. Simulation in two or three
dimensions is straightforward.

CONCLUSION

We have presented a coarse-grained simulation
method for complex charged systems. This meso-
scopic model couples a hydrodynamic description to a
free energy functional accounting for the interactions
between solvent(s) and charged solutes. All the pa-
rameters entering in the model, such as free energy pa-
rameters (e.g. related to ion solvation), solvent viscos-
ity or ionic diffusion coefficients are, at least in princi-
ple, computable by simulations at the molecular level.
We described the implementation of this model in a
hybrid lattice-based scheme, whereby the evolution of
the overall mass and momentum is taken care of via a
Lattice Boltzmann scheme, whereas the composition
and ionic concentrations are updated using the link-
flux method. We presented several applications of the
coarse-grained simulation method: the transport of
charged tracers in charged porous media, the defor-
mation of an oil droplet in water under the effect of
an applied electric field, and the distribution of ions at
an oil-water interface as a function of the ions affinity
for both solvents. When possible, we compared our
simulation results to exact or approximate analytical
results to investigate the range of simulation parame-
ters that can be used to recover the continuous results
(e.g. the effect of a finite interface width).

The proposed method will be very useful to sim-
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ulate the dynamics of complex mixtures of solvents
and ions. In particular, it will be interesting to in-
vestigate electrokinetic phenomena at a charged oil-
water interface, or of oil-water mixtures in charged
porous media. Understanding electrokinetic effects in
these systems might be very helpful in designing new
electro-acoustic oil recovery techniques or monitoring
devices. This coarse-grained simulation method could
also be applied to the study of electrowetting and of
microfluidic devices, particularly those based on elec-
trokinetic pumping.

Although surfactant free emulsions can be stabi-
lized by the presence of salt, the most usual situation
also involves sufactant molecules at the interface and
in solution. As free energy based models for mixtures
of oil, water and surfactants have already been pro-
posed, it should be rather straightforward to couple
them to the one introduced in the present paper. One
physical feature not included in the method presented
here is the presence of thermal fluctuations. It would
be interesting to investigate the possibility of includ-
ing fluctuations as is done in the fluctuating lattice-
Boltzmann method [63, 64].
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