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Coarse-graining auto-encoders for molecular dynamics
Wujie Wang1 and Rafael Gómez-Bombarelli 1*

Molecular dynamics simulations provide theoretical insight into the microscopic behavior of condensed-phase materials and, as a

predictive tool, enable computational design of new compounds. However, because of the large spatial and temporal scales of

thermodynamic and kinetic phenomena in materials, atomistic simulations are often computationally infeasible. Coarse-graining

methods allow larger systems to be simulated by reducing their dimensionality, propagating longer timesteps, and averaging out

fast motions. Coarse-graining involves two coupled learning problems: defining the mapping from an all-atom representation to a

reduced representation, and parameterizing a Hamiltonian over coarse-grained coordinates. We propose a generative modeling

framework based on variational auto-encoders to unify the tasks of learning discrete coarse-grained variables, decoding back to

atomistic detail, and parameterizing coarse-grained force fields. The framework is tested on a number of model systems including

single molecules and bulk-phase periodic simulations.
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INTRODUCTION

Coarse-grained (CG) molecular modeling has been used exten-
sively to simulate complex molecular processes with lower
computational cost than all-atom simulations.1,2 By compressing
the full atomistic model into a reduced number of pseudoatoms,
CG methods focus on slow collective atomic motions while
averaging out fast local motions. Current approaches generally
focus on parameterizing coarse-grained potentials from atomistic
simulations3 (bottom-up) or experimental statistics (top-down).4,5

The use of structure-based coarse-grained strategies has enabled
important theoretical insights into polymer dynamics6–9 and lipid
membranes10 at length scales that are otherwise inaccessible.
Beyond efforts to parameterize CG potentials given a pre-defined
all-atom to CG mapping, the selection of an appropriate map plays
an important role in recovering consistent CG dynamics, structural
correlation, and thermodynamics.11,12 A poor choice can lead to
information loss in the description of slow collective interactions
that are important for glass formation and transport. Systematic
approaches to creating low-resolution protein models based on
essential dynamics have been proposed,13 but a systematic
bottom-up approach is missing for organic molecules of various
sizes, resolutions, and functionalities. In general, the criteria for
selecting CG mappings are usually based on a priori considera-
tions and chemical intuition. Moreover, although there have been
efforts in developing back-mapping algorithms,14–18 the statistical
connections are missing to reversibly bridge resolutions across
scales. We aim to address such multi-scale gaps in molecular
dynamics using machine learning.
Recently, machine learning tools have facilitated the develop-

ment of CG force fields19–23 and graph-based CG representa-
tions.24,25 Here we propose to use machine learning to optimize
CG representations and deep neural networks to fit coarse-grained
potentials from atomistic simulations. One of the central themes in
learning theory is finding optimal hidden representations that
capture complex statistical distributions to the highest possible
fidelity using the fewest variables. We propose that finding coarse-
grained variables can be formulated as a problem of learning
latent variables of atomistic distributions. Recent work in
unsupervised learning has shown great potential in uncovering

the hidden structure of complex data.26–29 As a powerful
unsupervised learning technique, variational auto-encoders (VAEs)
compress data through an information bottleneck30 that con-
tinuously maps an otherwise complex data set into a low-
dimensional space and can probabilistically infer the real data
distribution via a generating process. VAEs have been applied
successfully to a variety of tasks, from image de-noising31 to
learning compressed representations for text,32 celebrity faces,33

arbitrary grammars29,34, and molecular structures.35,36 Recent
studies have used VAE-like structures to learn collective molecular
motions by reconstructing time-lagged configurations37 and
Markov state models.38 For the examples mentioned, compression
to a continuous latent space is usually parameterized using neural
networks. However, coarse-grained coordinates are latent vari-
ables in 3D space, and need specially designed computational
parameterization to maintain the Hamiltonian structure for
discrete particle dynamics.
Motivated by statistical learning theory and advances in discrete

optimization, we propose an auto-encoder-based generative
modeling framework that (1) learns discrete coarse-grained
variables in 3D space and decodes back to atomistic detail via
geometric back-mapping; (2) uses a reconstruction loss to help
capture salient collective features from all-atom data; (3)
regularizes the coarse-grained space with a semi-supervised mean
instantaneous force minimization to obtain a smooth coarse-
grained free-energy landscape; and (4) variationally finds the
highly complex coarse-grained potential that matches the
instantaneous mean force acting on the all-atom training data.

RESULTS

Figure 1 shows the general schematics of the proposed frame-
work, which is based on learning a discrete latent encoding by
assigning atoms to coarse-grained particles. In Fig. 1b, we illustrate
the computational graph of Gumbel-softmax reparameteriza-
tion,39,40 which continuously relaxes categorical distributions for
learning discrete variables. We first apply the coarse-grained auto-
encoders to trajectories of individual gas-phase molecules. By
variationally optimizing encoder and decoder networks to
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minimize the reconstruction loss as in Eq. (1), the auto-encoder
picks up salient coarse-grained variables that minimize the
fluctuation of encoded atomistic motions conditioned on a linear
back-mapping function. We adopt an instantaneous-force reg-
ularizer (described in the Methods section), to minimize the force
fluctuations of the encoded space. This facilitates the learning of a
coarse-grained mapping that corresponds to a smoother coarse-
grained free-energy landscape. For the unsupervised learning task,
we minimize the following loss function.

Lae ¼
1

N
Ex�PðxÞ½ðDðEðxÞÞ � xÞ2 þ ρFinstðEðxÞÞ

2� (1)

The first term on the right-hand side of Eq. (1) represents the
atom-wise reconstruction loss and the second term represents the
average instantaneous mean force regularization. The relative
weight ρ is a hyperparameter describing the relative importance
of the force regularization term. The force regularization loss is
discussed in the Methods section and training details in the
Supplementary Information.
We show the unsupervised auto-encoding process for gas-

phase ortho-terphenyl (OTP) and aniline (C6H7N) in Fig. 2. The
results show that the optimized reconstruction loss decreases with
increasing coarse-grained resolution and that a small number of
coarse-grained atoms have the potential to capture the overall
collective motions of the underlying atomistic process. The
reconstruction loss represents the information loss of coarse-
grained particles to represent collective atomistic motions
conditioned on a deterministic back-mapping. In the case of
OTP, an intuitive 3-bead mapping is learned that partitions each of
the phenyl rings. However, such an encoding loses the config-
uration information describing the relative rotation of the two side
rings, resulting in decoded structures that yield higher error. When
the number of coarse-grained degrees of freedom increases to 4,
the additional beads are able to encode more configurational

information than three-bead models and therefore can decode
back into atomistic coordinates with high accuracy. We further
apply the auto-encoding framework to a small peptide molecule
to examine, as a function of CG resolution, the capacity of the
coarse-grained representation to capture the critical collective
variables of the underlying atomistic states. Although it is not able
to recover the arrangement of hydrogen atoms (Fig. 3), the coarse-
grained latent variables of 8 CG atoms can faithfully recover heavy
atom positions and represent different collective states in the
Ramanchadran map as the coarse-grained resolution is increased
(Fig. 3).
The regularization term (second term in Eq. (1)) addresses the

instantaneous mean forces that arise from transforming the all-
atom forces. Inspired by gradient domain regularization in deep
learning41–43 and the role of fluctuations in the generalized
Langevin framework,44 we minimize the average instantaneous
force as a regularization term to facilitate the learning of a smooth
coarse-grained free-energy surface and to average out fast
dynamics. The factor ρ is a hyperparameter that controls the
interplay between reconstruction loss and force regularization and
is typically set to the highest value for which the CG encoding still
uses all alloted dimensions.
In Figs 4, 5, 6, and 7, we demonstrate the applicability of the

proposed framework to bulk simulations of liquids for small- (
C2H6, C3H8) and long-chain (C24H50) alkanes. Coarse-grained
resolutions of 2 and 3 are used for ethane and propane,
respectively, while two coarse-grained resolutions of 8 and 12
are used for the C24H50 alkane melt. We first train an auto-encoder
to obtain the latent coarse-grained variables for ethane, propane,
and C24H50, and subsequently train a neural network-based
coarse-grained force field with additional excluded volume
interactions using force matching to minimize Eq. (15) (in the
case of C24H50, only the backbone carbon atoms are represented).
Coarse-grained simulations are then carried out at the same

Fig. 1 Coarse-graining auto-encoding framework. a The model consists of an encoder and decoder, and is trained by reconstructing the
original all-atom data by encoding atomistic trajectories through a low-dimensional bottleneck. b The computational graph to parameterize
the CG mapping. The discrete optimization is done using the Gubmel-softmax reparametrization.39,40 c The learning task of reconstruction
molecules conditioned on the CG variables in training time. The decoder is initialized with random weights, and these are variationally
optimized to back-map atomistic coordinates with high accuracy. d Demonstration of continuously relaxation of CG mapping as in Eq. (6). In
this demonstration, the x-axis represents individual atoms, the y-axis represents the two CG atoms. Each atom-wise CG assignment parameters
is a vector of size 2 corresponding to the coarse-graining decision between the two coarse-grained beads. The discrete mapping operator is
parametrized using the Gumbel-softmax reparametrization with a fictitious temperature τ. As τ approaches 0, the coarse-graining mapping
operators effectively sample from a one-hot categorical distribution.
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density and temperature as the atomistic simulation. We include

the training details and model hyperparameters in the Supple-
mentary Information. Coarse-grained forces are evaluated using
PyTorch45 and an MD integrator based on ASE (Atomistic

Simulations Environment).46

By minimizing the instantaneous force-matching loss term

according to Eq. (15) in the Methods section, the neural network
shows sufficient flexibility to reproduce a reasonably accurate
structural correlation function. In the case of C24H50 (Figs 6 and 7),
the neural network captures the bimodal bond length distribution

for the coarse-grained C24H50chains and reproduces the end-to-

end distance distribution and mapped monomer pair distribution
function accurately. The mean squared displacement plots for all
systems demonstrate faster dynamics than the atomistic ground

truth due to loss of atomistic friction in the coarse-grained space.
For C24H50, we also investigate the decoded C-C structural
correlations shown in Fig. 8. The inter-chain structural correlation
shows good agreement with the underlying atomistic ground

truth, while the C–C bond distances are predicted to be shorter
because the coarse-grained super-atoms can only infer average

Fig. 3 Coarse-graining encoding and decoding for alanine dipeptide. a demonstrates the auto-encoding process for alanine dipeptide
molecules at three different resolutions. Although the hydrogen atoms cannot be reconstructed accurately because of their relatively faster
motions, the critical back-bone structures can be inferred with high accuracy by using a resolution of 3 CG atoms or greater. b comparison of
dihedral correlation (Ramachandran map) between decoded atomistic distributions and atomistic data.

Fig. 2 Quantifying reconstruction and mean force losses in Auto-Encoder training of gas-phase molecules with different resolutions.
Coarse-graining encoding and decoding for OTP (a) and aniline (b) with different resolutions. As the coarse-grained resolution increases, the
auto-encoder reconstructs molecules with higher accuracy. For the coarse-graining of OTP into 3 pseudo atoms, it automatically makes the
coarse-graining decision of grouping each of the phenyl rings into one of the three pseudo-atoms and this mapping also yields a lower value
for the mean force. For coarse-graining aniline into two atoms, the coarse-graining decision learned is to group the NH2 moiety along with the
two carbons and group the rest of the molecules into another pseudo-atom. However, we observe the coarse-graining mapping decision
depends on the value of ρ which controls the force regularization in Eq. (1). When we choose a larger value of ρ, the mapping favors the
coarse-graining decision of grouping the NH2 and the phenyl group independently and this mapping choice yields a smaller average
instantaneous mean force. c average instantaneous force residue and reconstruction loss of trained model. Although reconstruction loss
decreases with higher resolutions, the average mean force increases with the coarse-graining resolutions because the coarse-graining
mapping has increasingly rough underlying free-energy landscape that involves fast motions like bond stretching.
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carbon poses based on the the deterministic inference framework
using a linear back-mapping. The prospect of stochastic decoding

functions to capture statistical up-scaling is discussed below.

DISCUSSION

Within the current framework, there are several possibilities for

future research directions regarding both the supervised and
unsupervised parts.
Here, we have presented a choice of deterministic encoder

and decoder. However, such a deterministic CG mapping
results, by construction, in an irreversible loss of information.

This is reflected in the reconstruction of average all-atom
structures instead of the reference instantaneous configura-

tions. To infer the underlying atomistic distributions, past
methods have used random structure generation followed by
equilibration.14–17 By combining this with predictive inference
for atomistic back-mapping,18 a probabilistic auto-encoder can

learn a reconstruction probability distribution that reflects the
thermodynamics of the degrees of freedom that were averaged
out by the coarse-graining. Using this framework as a bridge
between different scales of simulation, generative models can

help build better hierarchical understanding of multi-scale
simulations.

Fig. 5 Comparison between atomistic and CG simulation statistics for liquid propane with a CG resolution of 3 per molecule.
a–e structural correlation for propane coarse-grained dynamics compared to the mapped atomistic trajectory. f shows the comparison
between Mean Squared Displacement between CG and mapped atomistic coordinates. CGMD shows faster dynamics compared to the
atomistic ground truth. g shows the learning of a discrete CG mapping during training of the auto-encoder. The rectangular matrix is a
colored representation of matrix Eij , the colors showing relative values of the matrix elements.
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Fig. 4 Comparison between atomistic and CG simulation statistics for liquid ethane using a CG resolution of 2 per molecule. a–c are the
pair correlation functions and bond length distributions of CG trajectories and mapped atomistic trajectories. d shows the comparison
between Mean Squared Displacement for CG and mapped atomistic coordinates, and indicates that CG shows faster dynamics than the
atomistic trajectory. e shows the learning of a discrete CG mapping during training of the auto-encoder. The rectangular matrix is a colored
representation of matrix Eij , the colors showing relative values of the matrix elements.
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Furthermore, neural network potentials provide a powerful
flitting framework to capture many-body correlations. The choice
of force-matching approach does not guarantee the recovery of

individual pair correlation functions derived from full atomistic
trajectories12,47 because the cross-correlations among coarse-
grained degrees of freedom are not explicitly incorporated. More
advanced fitting methods can be incorporated in the current

neural network framework to address the learning of structural
cross-correlation, including iterative force matching47 and relative
entropy method.48

Methods based on force-matching, like other bottom-up
approaches such as relative entropy method, attempt to
reproduce structural correlation functions at one point in the

thermodynamic space. As such, they are not guaranteed to
capture non-equilibrium transport properties12,49 and are not
necessarily transferable among different thermodynamic condi-
tions.12,50–53 The data-driven approach we propose enables

learning over different thermodynamic conditions. In addition,
this framework opens new routes to understanding how the
coarse-grained representation influences transport properties by

a b

c d

e

Fig. 7 Comparison between atomistic and CG simulation statistics for C24H50 with a coarse-grained resolution of 8. a–c are chain end-to-
end distance, bond distance, and inter-chain radial distribution functions, respectively. All of these CG simulation statistics show good
agreement with mapped atomistic ground truth. d The mean-squared displacement of the center of mass of the molecule for CG and mapped
atomistic trajectories. CG simulations show comparable dynamics to the mapped atomistic kinetics. e Snapshot of the coarse-grained
simulation box.

a b

c d

e

Fig. 6 Comparison between atomistic and CG simulation statistics for C24H50 with a coarse-grained resolution of 12. a–c are chain end-to-
end distance, bond distance, and inter-chain radial distribution functions, respectively. All of these CG simulation statistics show good
agreement with mapped atomistic ground truth. d The mean-squared displacement of the center of mass of the molecule for the CG and
mapped atomistic trajectories. CG simulations show faster dynamics than the mapped atomistic kinetics. e Snapshot of the coarse-grained
simulation box.
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training on time-series data. A related example in the literature is
to use a time-lagged auto-encoder37 to learn a latent representa-
tion that best captures molecular kinetics.
In summary, we propose to treat the coarse-grained coordinates

as latent variables which can be sampled with coarse-grained
molecular dynamics. By regularizing the latent space with force
regularization, we train the encoding mapping, a deterministic
decoding, and a coarse-grained potential that can be used to
simulate larger systems for longer times and thus accelerate
molecular dynamics simulations. Our work also enables the use of
statistical learning as a basis to bridge across multi-scale coarse-
grained simulations.

METHODS

Here we introduce the auto-encoding framework from the generative

modeling point of view. The essential idea is to treat coarse-grained

coordinates as a set of latent variables that are the most predictive of the

atomistic distribution while having a smooth underlying free-energy

landscape. We show that this is achieved by minimizing the reconstruction

loss and the instantaneous force regularization term. Moreover, under the

variational auto-encoding framework, we can understand the force

matching as the minimization of the relative entropy between coarse-

grained and atomistic distributions in the gradient domain.

Coarse-graining auto-encoding

The essential idea in generative modeling is to maximize the likelihood of

the data under the generative process:

PðxÞ ¼

Z
PðxjzÞPðzÞdx (2)

where z are the latent variables that carry the essential information of the

distributions and x represents the samples observed in the data. Variational

auto-encoders maximize the likelihood of the observed samples by

maximizing the evidence lower bound (ELBO):

L ¼ EQϕðzjxÞlogPDðxjzÞ �EQϕðzjxÞlog
QϕðzjxÞ

PðzÞ
(3)

where QϕðzjxÞ encodes the data into latent variables, PDðxjzÞ is the
generative process parameterized by D, and PðzÞ is the prior distribution
(usually a multivariate Gaussian with a diagonal covariance matrix) which
imposes a statistical structure over the latent variables. Minimizing the
ELBO by propagating gradients through the probability distributions
provides a parameterizable way of inferring complicated distributions of
molecular dynamics.
Similar to variational auto-encoders with constraint on the latent space,

a coarse-grained latent space should preserve the structure of the
molecular mechanics phase space. Noid et al.3 have studied the general
requirements for a physically rigorous encoding function. In order to
address those requirements, the auto-encoder is trained to optimize the
reconstruction of atomistic configurations by propagating them through a
low-dimensional bottleneck in Cartesian coordinates. Unlike most
instances of VAEs, the dimensions of the CG latent space have physical
meaning. Since the CG space needs to represent the system in position
and momentum space, latent dimensions need to correspond to real-
space Cartesian coordinates and maintain the essential structural
information of molecules.
We make our encoding function a linear projection in Cartesian space

EðxÞ : R3n ! R
3N where n is the number of atoms and N is the desired

number of coarse-grained particles.
Let x be the atomistic coordinates and z be the coarse-grained

coordinates. The encoding function should satisfy the following
requirements:3,54

1. zik ¼ EðxÞ ¼
Pn

j¼1Eijxjk 2 R
3; i ¼ 1¼N; j ¼ 1¼ n,

2.
P

jEij ¼ 1and Eij � 0
3. Each atom contributes to at most one coarse-grained variable z

where Eij defines the assignment matrix to coarse-grained variables, j is the
atomic index, i is the coarse-grained atom index, and k represents the
Cartesian coordinate index. Requirement (2) defines the coarse-grained
variables to be a weighted geometric average of the Cartesian coordinates
of the contributing atoms. In order to maintain consistency in momentum
space after the coarse-grained mapping, the coarse-grained masses are

Fig. 8 Comparison of the decoded backbone carbon atoms with the atomistic ground truth. a the inter-chain C–C radial distributions
shows reasonable agreement between the decoded and original distributions. b The decoded carbon backbones show shorter predicted
bond length because the decoded structures represent the mean reconstruction of an ensemble of carbon chain poses. c demonstrates the
auto-encoding of carbon backbones for C24H50molecules. As a result of loss of mapping entropy, the decoded structures show a straight
backbone compared to the atomistic ground truth.
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redefined as Mi ¼ ð
P

j

E2ij
mj
Þ
�1

3,54 (mj is the mass of atom j). This definition of
mass is a corollary of requirement (3).
The encoder function parameters are initialized randomly as atom-wise

vectors ~ϕj , with its elements ϕij representing the parameter of assigning
individual atom j to coarse-grained atom i; ϕij is further reparameterized to
obtain coarse-graining encoding weights satisfying the requirements
shown above. The goal of the parameterizable coarse-graining encoding
function is to learn a one-hot assignment from each atom to a coarse-
grained variable. Its weights are obtained by normalizing over the total
number of contributing atoms per coarse-grained atom (an alternative is to
normalize based on atomic masses or charges), thus satisfying requirement
(2):

Eij ¼
CijPn
j Cij

(4)

~Cj ¼ one hotðarg max
i

logϕijÞ (5)

~Cj is the coarse-graining one-hot assignment vector for atom j using
Gumbel-softmax reparameterization with each vector element Cij repre-
senting the assignment of atom j to coarse-grained atom i, so that
requirement (3) is automatically satisfied. Gumbel-softmax reparameteriza-
tion is a continuous relaxation of Gumbel-max reparameterization for
differentiable approximation using the softmax function.40 Similar para-
meterization techniques include concrete distributions,39 REBAR55 and
RELAX.56 The Gumbel-softmax reparameterization has been applied in
various machine learning scenarios involving learning discrete structures,57

propagating discrete policy gradient in reinforcement learning58 and
generating context-free grammar.34 The continuously relaxed version of
Eq. (5) is:

Cij ¼
eðlogϕijþgijÞ=τ

P
je
ðlogϕijþgijÞ=τ

(6)

where gij is sampled from the Gumbel distribution via the inverse
transformation gij ¼ �logð�logðuijÞÞ where uij is sampled from a uniform
distribution from 0 to 1. During training, τ is gradually decreased with the
training epoch and the one-hot categorical encoding is achieved in the
limit of small τ. Therefore, the encoding distribution QðzjxÞ is a linear
projection operator parameterized by discrete atom-wise categorical
variables.
For the generation of atomistic coordinates conditioned on coarse-

grained coordinates, we opt for a simple decoding approach via
geometrical projection using a matrix D of dimension n by N that maps
coarse-grained variables back to the original space so that x̂ ¼ DðzÞ ¼Pi¼N

i¼1Djizik where x̂ are the reconstructed atomistic coordinates. Hence,
both the encoding and decoding mappings are deterministic. However,
deterministic reconstruction via a low-dimensional space leads to
irreversible information loss that is analogous to the mapping entropy
introduced in Shell et al.48. In our experiments, by assuming PDðxjzÞ is
Gaussian, the reconstruction loss yields the term-by-term mean-squared
error and is understood as a Gaussian approximation to the mapping
entropy (scaled by the variance) defined by Shell et al.:

Smap ¼ Ex�PðxÞlog
PðxÞΩðEðxÞÞ

PðzÞ
(7)

where ΩðEðxÞÞ is the configuration space volume that is mapped to the
atomistic coordinates. The latent variable framework provides a clear
parameterizable objective whose optimization minimizes the information
loss due to coarse-graining by using the following objective as
reconstruction loss.

minD;ϕLAE ¼ minD;ϕEx�PðxÞEg�Gumbelð0;1ÞðDðEðx; g; τÞÞ � xÞ2 (8)

Hence, we present an analogous interpretation of the reconstruction loss
in Eq. (3) but in the Cartesian space of coarse-grained pseudo-atoms in
molecular dynamics. This loss can be optimized by algorithm 1. A
regularized version is introduced in section C.

Variational force matching

The physical meaning of the regularization term has a natural analogy to
the minimization of Kullback–Leibler divergence (KL divergence for short,
also called relative entropy) in coarse-grained modeling to reduce the
discrepancy between mapped atomistic distributions and coarse-grained
distributions conditioned on a Boltzmann prior. The distribution function
of coarse-grained variables pðzÞ and the corresponding many-body
potential of mean force AðzÞ are:

PCGðzÞ ¼
1

Z

Z
e�βVðxÞδðEðxÞ � zÞdx (9)

where VðxÞ is the atomistic potential energy function and EðxÞ is the
encoding function defined by requirement (2). Unlike the VAE, which
assumes a prior Gaussian structure in the latent space, the coarse-grained
latent prior (1) is variationally determined by fitting the coarse-grained
energy function, and (2) has no closed-form expression for the KL loss. To
recover the true PCGðzÞ requires constrained sampling to obtain the coarse-
grained free-energy. To bypass such difficulties, we parameterize the latent
distributions by matching the instantaneous mean forces.In order to learn
the coarse-grained potential energy VCG as a function of also-learned
coarse-grained coordinates, we propose an instantaneous force-matching
functional that is conditioned on the encoder. Unlike regularizing KL loss in
the context of training a VAE, which is straightforward to evaluate, the
underlying coarse-grained distributions are intractable. However, matching
the gradient of the log likelihood of mapped coarse-grained distributions
(the mean force) is more computationally feasible. Training potentials from
forces has a series of advantages: (i) the explicit contribution on every
atom is available, rather than just pooled contributions to the energy, (ii) it
is easier to learn smooth potential energy surfaces and energy-conserving
potentials59, and (iii) instantaneous dynamics, which represent a trade-off
in coarse-graining, can be better captured. Forces are always available if
the training data comes from molecular dynamics simulations, and for
common electronic structure methods based on density functional theory,
forces can be calculated at nearly the same cost as self-consistent energies.
The force-matching approach builds on the idea that the average force

generated by the coarse-grained potential VCG should reproduce the
coarse-grained atomistic forces from thermodynamic ensembles.19,60,61

Given an atomistic potential energy function VðxÞ with the partition
function Z, the probabilistic distribution of atomistic configurations is:

PðxÞ ¼
1

Z
e�βVðxÞ (10)

The distribution function of coarse-grained variables PCGðzÞ and the
corresponding many-body potential of mean force AðzÞ are:

AðzÞ ¼ �
1

β
lnPCGðzÞ (11)

The mean force of the coarse-grained variables is the average of the
instantaneous forces conditioned on EðxÞ ¼ z54,62, assuming the coarse
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grained mapping is linear:

�
dA

dz
¼ FðzÞ ¼ h�b∇VðxÞiEðxÞ¼z

(12)

b ¼
w

w>∇EðxÞ
(13)

where FðzÞ is the mean force and b represents a family of possible vectors
such that w>

∇EðxÞ≠0. We further define F instðzÞ ¼ �b∇VðxÞ to be the
instantaneous force and its conditional expectation is equal to the mean
force FðzÞ. It is important to note that FinstðzÞ is not unique and depends
on the specific choice of w,61–63 but their conditional averages return the
same mean force. For possible b, we further choose w ¼ ∇EðxÞ which is a
well-studied choice,61,63 so that:

b ¼
∇EðxÞ

∇EðxÞ>∇EðxÞ
¼ C (14)

where b is a function of ∇EðxÞ. In the case of coarse-graining encodings,
b ¼ C where C is the encoding matrix formed by concatenating atom-
wise one-hot vectors as defined in Eq. (6). We adopt the force-matching
scheme introduced by Izvekov et al.60,64, in which the mean-squared error
is used to match the mean force and the “coarse-grained force" is the
negative gradient of the coarse-grained potential. The optimizing
functional, developed based on Izvekov et al., is

minθL ¼ minθE½ðFðzÞ þ ∇zVCGðzÞÞ
2� (15)

where θ are the parameters in VCG and ∇VCG represents the “coarse
grained forces" which can be obtained from automatic differentiation as
implemented in open-source packages like PyTorch.45 However, to
compute the mean force F would require constrained dynamics61 to
obtain the average of the fluctuating microscopic forces. According to
Zhang et al19, the force-matching functional can be alternatively
formulated by treating the instantaneous mean force as an instantaneous
observable with a well-defined average being the mean force FðzÞ:

F instðzÞ ¼ FðzÞ þ ϵðzÞ (16)

on the condition that Ez ½Finst� ¼ FðzÞ. The original variational functional
becomes instantaneous in nature and can be reformulated as the
following minimization target:

minθLinst ¼ minθE½F instðzÞ þ ∇VCGðzÞÞ
2� (17)

Instead of matching mean forces that need to be obtained from
constrained dynamics, our model minimizes Linst with respect to
VCGðzÞ and EðxÞ. Linst can be shown to be related to L with some algebra:
Linst ¼ LþE½ϵðEðxÞÞ2�.19 This functional provides a variational way to find
a CG mapping and its associated force field functions.

Instantaneous mean force regularization

Here we introduce the gradient regularization term that is designed to
minimize the fluctuation in the mean forces. Similar methods involving
gradient regularization have been applied in supervised learning computer
vision tasks to smoothen the loss landscape for improved model
generalization.41–43 In coarse-grained modeling, minimizing the forces is
important for learning the slow degrees of freedom and a smoother free-
energy surface.
Based on the generalized Langevin equation, the difference between

the true mean force and instantaneous mean force ϵðEðxÞÞ can be
approximated as:44,65

ϵðEðxÞ; tÞ ¼ γ
dEðxðtÞÞ

dt
�

Z t

0

βðτÞ
dEðxðt � τÞÞ

dt
dτ þ eηðtÞ þ

Xj

i

Cijηj (18)

where γ is the friction coefficient, βðτÞ is the memory kernel, eηðtÞ is the
colored Gaussian noise, and

Pj
iCijηj is the mapped atomistic white noise.

To avoid the need for special dynamics when running ensemble
calculations, it is desirable to minimize the memory and fluctuation term
to yield dynamics with fewer fluctuation terms. A related example in the
work by Guttenberg et al.44 who compare the memory heuristics among
coarse-grained mapping function. The objective we propose can be
optimized by gradient descent to continuously explore the coarse-grained
mapping space without iterating over the combinatorial spaces. We
perform this regularization by minimizing the mean-squared instantaneous
forces over mini-batches of atomistic trajectories to optimize the CG

mappings.

minϕ;DEx�PðxÞðF instðzÞÞ
2 ¼ minϕ;DEx�PðxÞFðzÞ

2 þ ϵ2ðEðxÞÞ (19)

In practice, this regularization loss is combined with Lae to obtain a
coarse-grained mapping with a certain weight ρ that is added onto the
reconstruction loss. We discuss the practical effect of including the
regularization term in the Supplementary Information.
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