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Abstract

Cutaneous leishmaniasis ranks among the tropical diseases least known and most

neglected in Libya. World Health Organization reports recognized associations of Phleboto-

mus papatasi, Psammomys obesus, andMeriones spp., with transmission of zoonotic cuta-

neous leishmaniasis (ZCL; caused by Leishmania major) across Libya. Here, we map risk

of ZCL infection based on occurrence records of L.major, P. papatasi, and four potential

animal reservoirs (Meriones libycus,Meriones shawi, Psammomys obesus, andGerbillus

gerbillus). Ecological niche models identified limited risk areas for ZCL across the northern

coast of the country; most species associated with ZCL transmission were confined to this

same region, but some had ranges extending to central Libya. All ENM predictions were sig-

nificant based on partial ROC tests. As a further evaluation of L.major ENM predictions, we

compared predictions with 98 additional independent records provided by the Libyan

National Centre for Disease Control (NCDC); all of these records fell inside the belt pre-

dicted as suitable for ZCL. We tested ecological niche similarity among vector, parasite,

and reservoir species and could not reject any null hypotheses of niche similarity. Finally,

we tested among possible combinations of vector and reservoir that could predict all recent

human ZCL cases reported by NCDC; only three combinations could anticipate the distribu-

tion of human cases across the country.

Author Summary

Zoonotic cutaneous leishmaniasis (ZCL) represents a major public health problem in

North Africa where Leishmania major is the potential etiological agent associated with all

ZCL cases. In many countries across North Africa, L.major is transmitted by the sand fly

PLOS Neglected Tropical Diseases | DOI:10.1371/journal.pntd.0004381 February 10, 2016 1 / 16

OPEN ACCESS

Citation: Samy AM, Annajar BB, Dokhan MR,

Boussaa S, Peterson AT (2016) Coarse-resolution

Ecology of Etiological Agent, Vector, and Reservoirs

of Zoonotic Cutaneous Leishmaniasis in Libya. PLoS

Negl Trop Dis 10(2): e0004381. doi:10.1371/journal.

pntd.0004381

Editor: Aysegul Taylan Ozkan, Hitit University,

Faculty of Medicine, TURKEY

Received: July 12, 2015

Accepted: December 19, 2015

Published: February 10, 2016

Copyright: © 2016 Samy et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are

credited.

Data Availability Statement: Data are openly

available via Figshare repository (DOI: 10.6084/m9.

figshare.1613478).

Funding: AMS was supported by the Graduate

Fulbright Egyptian Mission Program (EFMP). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing Interests: The authors have declared

that no competing interest exist.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0004381&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.6084/m9.figshare.1613478
http://dx.doi.org/10.6084/m9.figshare.1613478


Phlebotomus papatasi, with rodents as likely reservoir hosts. In Libya, ZCL cases are

underestimated for lack of reporting, insufficient information about the distribution of

ZCL, and interactions between local environmental conditions and different disease com-

ponents. This situation worsened with recent political and socio-economic changes in the

country, with expansion and rapid increases in numbers of cases across the country. For

management and planning of leishmaniasis control, predicting the potential geographic

distribution of risk of infection with the disease is important to guide such programs. We

introduced ecological niche model as a tool for risk-mapping of both ZCL cases and distri-

butions of associated species. Our models were able to anticipate areas of highest risk with

statistical significance, lending confidence that they were successful in identifying areas of

transmission risk.

Introduction

Leishmaniasis remains one of the major public health problems in the Mediterranean Basin. In

Libya, two forms of leishmaniasis occur: visceral leishmaniasis (VL), and cutaneous leishmani-

asis (CL). VL has been reported in the country since 1904; however, little information is avail-

able on leishmaniasis epidemiology as regards the insect vector species and vertebrate

reservoirs involved in transmission [1–3]. VL was identified from northeastern Libya and

southern Saharan and sub-Saharan areas [1,4,5]. CL is most prevalent in the northwestern part

of the country [2,6,7]. CL is caused by two species of Leishmania: Leishmania major Yakimoff

& Schokhor, 1914 and L. tropicaWright, 1903 (Kinetoplastida: Trypanosomatidae). Leish-

mania major is the etiological agent of zoonotic CL (ZCL), where the parasite is thought to cir-

culate in small-mammal reservoirs (Meriones libycus Lichtenstein, 1823 (Rodentia: Muridae),

Gerbillus gerbillus Olivier, 1801 (Rodentia: Muridae), Psammomys obesus Cretzschmar, 1828

(Rodentia: Muridae),M. shawi Duvernoy, 1842 (Rodentia: Muridae)) and is transmitted by the

sand fly Phlebotomus papatasi (Scopoli), 1786 (Diptera: Psychodidae) [2,7,8]. Leishmania tro-

pica is the causative organism for anthroponotic CL (ACL); zoonotic foci have also been

reported from rock hyrax in Kenya, and Israel [9,10], and gerbil in Egypt [11], where the dis-

ease is transmitted by the sand fly P. sergenti Parrot, 1917 (Diptera: Psychodidae) [10,11].

In Libya, seasonal wadis provide potential suitable conditions of climate and vegetation for

vertebrate populations to maintain transmission [12]. The sand fly P. papatasi has a wide geo-

graphic distribution, from northern Africa to India [13]; it is considered as a proven vector of

ZCL in North Africa [11]. In most field surveys in the country, P. papatasi and P. sergenti were

the most abundant species [7,14,15]; however, P. papatasi was most frequent in the northern

part of the country.

Recently, the World Health Organization identified four possible transmission systems of

ZCL, based on associated mammal reservoirs: Ps. obesus,Meriones spp., Rhombomys opimus

Lichtenstein, 1823 (Rodentia: Muridae), andMastomys spp. Thomas, 1915 (Rodentia: Muri-

dae) [16]. Limited epidemiological studies have been carried out in the country to characterize

the roles of several species of reservoir hosts in maintaining CL in Libya. Leishmania major

was identified fromMeriones libycus [12], andM. shawi [16] in endemic areas of the north-

western part of the country. Early studies revealed Ps. obesus as the potential natural reservoir

host of L.major in many North African countries including Libya [12,17]; Ps. obesus was most

prevalent along wadi edges from Sahara to the Middle East, where high density of this species

is associated with abundant vegetation and halophilic plants [17].Meriones spp. are thought to

play an important role in ZCL outbreaks by maintaining the parasite in nature in the long
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term.Meriones shawi andM. libycus have been found repeatedly to be naturally infected with

L.major in Libya [12], Tunisia [18–20], Morocco [21], and Algeria [22].

Most ZCL outbreaks in North African countries have been tied to epidemiological modifica-

tions and environmental changes [23,24], highlighting the importance of understanding the

epidemiology of ZCL in this region. This study represents a first effort to understand the ecol-

ogy and geography of ZCL using remote-sensing data across Libya to predict ZCL risk areas.

We used ecological niche modeling approaches to identify the distribution of sand fly vector

species, mammal reservoirs, and the pathogens to test their patterns of overlap in environmen-

tal space, which illuminate details of the local ZCL cycle in Libya where these species coexist.

Materials and Methods

Study area

Libya is situated in North Africa on the Mediterranean coast between Egypt and Tunisia. The

country lies between 18 and 33° N latitude and 8 and 25° E longitude. Dominant climate condi-

tions include hot-summer Mediterranean and hot desert climates [25]: coastal lowlands have

very hot summers and mild winters, while the desert interior has long, hot summers and high

diurnal temperature ranges, with very dry conditions. Precipitation declines rapidly to the inte-

rior with distance from the coast. Libya lacks large rivers and streams, and extended droughts

are frequent; however, the government has constructed a network of dams for water manage-

ment [26].

Input data

Based on the leishmaniasis surveys in Libya, ZCL is endemic in the northwestern regions of the

country. We collected records for all organisms involved in the ZCL transmission cycle includ-

ing the pathogen (L.major), vector (P. papatasi), and potential mammal reservoirs (Ps. obesus,

M. libycus,M. shawi, G. gerbillus). We retrieved vector and pathogen data from our own sur-

veillance, and the PubMed database using keywords of species’ names and Libya. When L.

major was identified at the coarser district level (e.g. [2]), NCDC provided details for the exact

locations of these cases for the purpose of this study. Leishmania major records based on clini-

cal features only were excluded from analysis to avoid possible diagnostic errors in species

identification; we included all records identified rigorously by either zymodeme analysis (i.e.

MON-25) of 16 enzymatic loci [27] or restriction fragment length polymorphisms of the ribo-

somal internal transcribed spacer 1 (ITS1) region [2]. Host and vector species included in the

study were identified by reference to previously published morphological keys [28–30]. Data

were included if a geographic reference was linked to any of the six species (geographic coordi-

nates or textual descriptions). Other records of Ps. obesus,M. libycus,M. shawi, and G. gerbillus

were obtained from the Global Biodiversity Information Facility (www.gbif.org), VertNet

(http://www.vertnet.org/), and our own field surveillances across the country. When geo-

graphic references were textual in nature, we assigned longitude-latitude coordinates via refer-

ence to Google Earth (https://www.google.com/earth/). All occurrence data were filtered to

eliminate duplicate records and longitude-latitude coordinates falling from outside Libya.

Environmental data sets by which to characterize environmental landscapes across Libya

were obtained from three sources. (1) Advanced Very High Resolution Radiometer

(NOAA-AVHRR) satellite imagery was obtained from the European Distributed Institute of

Taxonomy (EDIT; http://bit.ly/1TDsUQM). These data comprise monthly mean Normalized

Difference Vegetation Index (NDVI) coverage from 1982 to 2000, rescaled to a range of 1 to

255; we calculated mean, maximum, minimum, median, and range across the 12 monthly

NDVI layers. (2) Climatic data layers representing 35 variables were obtained from global
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climatologies in CliMond (https://www.climond.org/; S1 File). (3) Digital elevation model were

obtained from the Shuttle Radar Topography Mission (SRTM; http://srtm.usgs.gov/) at 1 km

spatial resolution. All variables were resampled in ArcGIS 10.2 (Environmental Systems

Resource Institute, Redlands, California) to a spatial resolution of 10 x 10' (�20 x 20 km).

The particular environmental variables were chosen for modeling in light of their likely

importance in shaping the geographic distributions of the species of interest in this study

[25,31]. We selected historical NDVI and climatic data to cover the same time interval as when

most records were obtained for the species. NDVI has been identified in previous epidemiolog-

ical studies as an important variable by which to convey seasonality resulting from changing

temperature or moisture availability, and to understand broad-scale patterns of land use and

land cover and their effects on pathogen populations and transmission [32]. NDVI is signifi-

cantly correlated also with details of soil conditions, including type of soil, water content, and

soil moisture [33–36]. Principal components analysis (PCA) was applied to the environmental

variables to reduce multicollinearity and dimensionality. We used the first 10 principal compo-

nents, which summarized more than 95% of the overall variance, to summarize environmental

variation across Libya.

Ecological niche modeling

The MaxEnt algorithm [37] was used to estimate the fundamental ecological niche of the six

species in this study. The fundamental ecological niche is defined as the set of environmental

conditions under which a species is able to maintain populations without immigrational sub-

sidy [38]. Correlational ecological niche models (ENMs) estimate niches by relating known

occurrences to environmental values to identify conditions associated with the species pres-

ence. We calibrated ENMs within the districts where sampling was most detailed, and then

transferred the model across all of Libya. MaxEnt was specified to conduct 100 bootstrapping

replicates for each species. We used medians across the replicates as a final niche estimate for

each species. All ENMs were converted to binary maps using a least training presence (i.e. low-

est probability value of the occurrence points used in calibration of the models) thresholding

approach adjusted to permit 5% omission in light of some probably erroneous records likely

remaining in our data set [39].

Model evaluation

To test the robustness of the ENMs in predicting the occurrences of the species accurately

across unsampled areas of Libya, a partial receiver operating characteristic (ROC) approach

was used [39]. This approach potentially allows differential weighting of omission (i.e., false

negatives, leaving out actual distributional area) and commission errors (i.e., false positives,

including unsuitable areas in prediction) and concentrates attention on parts of error space

most relevant to niche modeling [39]. We selected 50% of the occurrence points of each species

at random to test the ENMs by comparing the reduced threshold-independent area under the

curve to null expectations: the dataset was bootstrapped, and probabilities obtained by direct

count. AUC ratios were calculated via a software partial ROC available as a visual basic applica-

tion at http://bit.ly/1JusDwz, based on 100 iterations and an E = 5% omission threshold.

An additional independent 98 records from the Libyan National Centre for Disease Control

(NCDC) were used to test the model’s ability to predict the distribution of new ZCL cases

across Libya. These samples were identified in the NCDC laboratory based on PCR protocols

from previous studies (e.g. [2,11]). We checked these records to remove any occurrences

matching these used in calibrating ENMs, but none coincided with those used in model calibra-

tion. We used a one-tailed cumulative binomial probability distribution that assessed the
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probability of obtaining the observed level of correct prediction by a chance alone given the

background expectation of correct predictions and based on the proportional coverage of the

region by the thresholded model prediction.

Niche breadth and overlap

Niche breadth was estimated for each species based on the inverse concentration measure in

ENMTools (http://enmtools.blogspot.com/). For successful ZCL transmission, pathogen, vec-

tor, and host species should overlap spatially and ecologically [31,40]. Here, ZCL transmission

requires presence of L.major, P. papatasi, and at least one of the mammal reservoir species.

We used background similarity tests [41] to assess similarity between pairs of estimated niches.

We first estimated the accessible area (M) for each species in the study [42]; the accessible area

for L.major was identified based on the distribution of that species across the country, where

the species occurs only in the northwestern part.M estimates for the other species included all

or at least a subset of the northern parts of the country depending on the species’ current

distributions.

To test the null hypothesis of niche similarity between each pair of niches, we used D-statis-

tics and Hellinger's I implemented in ENMTools [41]. Niche similarity was tested with respect

to all environmental variables used to develop the ENM for each species. The background simi-

larity test is based on generating random points from across the accessible area of one species

in numbers equal to the numbers of real occurrence data available for that species in the study,

with 100 replicate samples, and comparing an ENM based on these “background” points to the

ENM of the other species. The null hypothesis of niche similarity was rejected if the D or I val-

ues fell below the 5th percentile in the random-replicate distribution of similarity values [41].

We assumed that areas could be considered as at risk of ZCL transmission when all neces-

sary elements for transmission co-occur [40]. We used the ENMs for P. papatasi and the four

candidate ZCL reservoirs to identify areas of overlap between the vector and each of the possi-

ble hosts. These grids were obtained by multiplying the binary ENM of P. papatasi with the

binary grid for the host species. We used a one-tailed cumulative binomial test to assess the

relationship between the areas of vector-reservoir overlap and independent leishmaniasis

human case records from the NCDC.

Results

We collected a total of 348 occurrences for P. papatasi, L.major, and four candidate reservoir

species across Libya. Occurrence records are fully and openly available via Figshare repository

(https://dx.doi.org/10.6084/m9.figshare.1613478). These data were concentrated along the

northern coast of Libya (Fig 1). Phlebotomus papatasi was recorded from 84 localities, whereas

L.major was characterized by 50 localities.Meriones libycus was the most commonly recorded

mammal reservoir (104 sites) followed by Ps. obesus (48), G. gerbillus (32), andM. shawi (30).

ENMs developed for these six species are illustrated in Fig 1; ENMs calibrated across the coun-

try (for comparison) are presented in the Supporting Information (S2 File).

ENMs predicted most of the species to range across the northern coast of Libya; however,

three species had broader potential distributions extending south to central Libya (M. libycus,

M. shawi, Ps. obesus). The ENM for L.major predicted highest suitability in a belt between 30–

33° N. These areas included many western provinces (e.g., Nalut, Yafran, Nuqat Al Khams, Al

Jifarah, Sabratah, Misrata, Al Marqab, Gharyan, Babratah, Az Zawiya, Tajura, Tarhunati, Bani

Walid, and Sirte), but also some eastern provinces (e.g., Al Jabal Al Akhdar, Al Qubbah, Al

Hizam Al Akhdar, and Ajdabiya). The potential distribution of P. papatasi extended across the

northern coast of Libya, but also in a disjunct area in central east Libya. All ENMs calibrated
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for these species were significantly robust based on partial ROC tests, with AUC ratios uni-

formly above 1 (P< 0.001; Table 1).

In the most recent CL outbreaks across Libya, NCDC identified L.major in cases from 98

sites. The L.major ENM predicted 98 out of 98 of these additional independent data, which is

statistically better than random expectations (P< 0.001). These additional independent data

thus corroborated the L.major ENM, and the ability of that model to anticipate all recent cases

of ZCL identified (Fig 2).

Niche breadth was least in L.major and P. papatasi, and greater in the mammal species;

indeed only G. gerbillus had niche breadth similar to L.major (S3 File). We visualized the

Fig 1. Thresholded potential distribution maps for Leishmania major, Phlebotomus papatasi, and four candidate mammal reservoir species
potentially associated with the zoonotic transmission of cutaneous leishmaniasis.Models were calibrated across sampled areas (S), and transferred
across all Libya. Blue points are occurrences, pink areas are modeled suitable conditions, and gray areas are unsuitable conditions.

doi:10.1371/journal.pntd.0004381.g001

Table 1. Results of partial ROC analysis to test statistical significance of ecological nichemodel predictions. A value of 1.0 is equivalent to the per-
formance of a random classifier. These results were based on 100 bootstrap replicates, and statistical significance was assessed via bootstrapping and com-
parison with a random classifier ratio of 1.0.

Species Mean Minimum Maximum

Leishmania major 1.92 1.91 1.95

Phlebotomus papatasi 1.94 1.93 1.98

Gerbillus gerbillus 1.57 1.50 1.88

Meriones libycus 1.56 1.35 1.89

Psammomys obesus 1.71 1.64 1.96

Meriones shawi 1.78 1.72 1.94

doi:10.1371/journal.pntd.0004381.t001
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environmental conditions where these species occur: L.major and P. papatasi were at low ele-

vations, and mostly under a maximum temperature of 25°C–37°C (Fig 3). The other species

had similar responses to environmental conditions; however, they tend to be distributed along

a broader environmental range (except G. gerbillus; S4 File).

The background similarity tests comparing the ENMs of parasite, vector, and possible reser-

voirs were uniformly unable to reject the null hypothesis of niche similarity between these spe-

cies (P> 0.05; Fig 4 & S5 File). This result indicates the niche estimate for L.major could not

be distinguished from those of the vector or the four potential reservoirs. We used NicheA to

visualize overall overlap between the species based on three dimensions of PCAs (Fig 5), which

revealed broad overlap in environmental conditions used by six species.

Finally, we combined the modeled distribution of the vector P. papatasi with those of each

of the potential reservoirs as hypotheses of system that could support zoonotic transmission of

CL across Libya (Fig 6). Results revealed that P. papatasi-M. libycus, P. papatasi-M. shawi, and

P. papatasi-Ps. obesus systems predicted recent ZCL well (P< 0.01); the first two predicted

100% of the cases reported to the NCDC, but Ps. obesus identified only 85.7% of these cases (84

out of 98). The P. papatasi-G. gerbillusmap was able to predict only 29 of 98 records, not better

than null expectations (P> 0.05).

Discussion

Numerous recent studies have attempted to map potential distributions of key species involved

in leishmaniasis transmission in several countries in Europe and the Americas [43,44]. Africa,

however, has seen only a few efforts to map vector populations [31,45–47]. Libya sees many CL

cases [3]; for example, 6284 cases were identified there in 2006 alone (S6 File). CL case rates are

still underestimated owing to inefficient infrastructure for early notifications of cases, and lack

of public awareness among doctors and patients [3]. For the national control program to be

successful, all organisms associated with leishmaniasis transmission should be identified and

understood in detail (i.e. vectors, reservoirs, and pathogens).

We developed this mapping exercise across Libya for several reasons. (1) Most prominently,

we wished to map the potential distribution of ZCL cases across the country. (2) We strove to

map the potential distribution of 5 other organisms potentially associated with the disease’s

dynamics in Libya. (3) We wished to test niche similarity among the set of species involved.

Fig 2. Relationship of ecological nichemodeling predictions to the distribution of 98 sites with L.major cases reported by the Libyan National
Centre for Disease Control in recent outbreaks across Libya. The blue dotted circle represented localities where these independent data were collected,
and pink represent the belt predicted suitable for the Leishmania major.

doi:10.1371/journal.pntd.0004381.g002
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Finally, (4) we tested the possible reservoir-vector combinations that could allow better predic-

tion of ZCL cases. All of these analyses will help to understand the disease risk areas across the

country and guide possible control programs.

Our models identified risk areas across both the western and eastern portions of the north

coast of the country. Although all previous studies in Libya had found CL cases only in the

western provinces, some recent reports have provided evidence of CL occurrence in eastern

Fig 3. Visualization of Leishmania major, and Phlebotomus papatasi ecological niches in example dimensions.Overall set of environments available
across Libya in gray; modeled suitable conditions for the species occurrences in pink. Similar visualizations of ecological niches for the potential mammal
reservoir species are in the Supporting Information (S4 File).

doi:10.1371/journal.pntd.0004381.g003
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Fig 4. Example background similarity tests showing overall niche overlap between ecological nichemodels for pairs of species: (A) Leishmania

major—Phlebotomus papatasi and (B) Leishmania major –Meriones libycus. The vertical purple line shows observed niche overlap, and the histograms
show the distribution of the background similarity values among 100 random replicates, for the I and D similarity metrics. On the maps, red and blue shading
indicates the modeled suitable areas for the two species; purple shading shows areas of overlap between the two species. Results for other species are
given in the Supporting Information (S5 File).

doi:10.1371/journal.pntd.0004381.g004
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sites as well (e.g. Ajdabiya, and Al Jabal Al Akhdar; [48]). Although this report [48] is the only

one to place CL at these sites, most CL surveillance has concentrated in western Libya [2,6,7],

so this results is perhaps expected. Our ENMs found suitability of both regions for ZCL trans-

mission, benefitting from higher-resolution environmental data, and consideration of areas

that were sampled and accessible to each species [42,49].

The risk of ZCL transmission in North Africa appears to be determined by the joint dynam-

ics of vectors and mammal reservoir populations [16]. When we visualized the environmental

conditions suitable for the species examined in this study, they were most prevalent in a maxi-

mum temperature range of 25°C–37°C, similar to other recent reports across North Africa and

Middle East [50–52]. These latter studies reported that P. papatasi was abundant in semi-arid

and arid steppe zones, and that low and high temperatures are key in limiting its distribution

and activity [50–52]. For example, P. papatasi in Morocco was less active at temperatures of

11–20°C and 37–40°C [52]. The distributional patterns of L.major and P. papatasi estimated

in this study concords with these latter reports [51,52]. Northern coastal regions of Libya are

characterized by a Mediterranean climate, whereas the rest of the country has hot, dry desert

climates that are unfavorable for these species, with maximum summer temperatures over

40°C apparently. Previous studies have shown that water is a major limiting factor for sand

flies and for leishmaniasis abundance and spread, respectively [53]. Phlebotomus papatasi can-

not tolerate the extreme conditions of temperature and low humidity associated with the rare

rainfall in the south, although the species is well established in other deserts where conditions

Fig 5. Visualization of ecological niches of Leishmaniamajor, Phlebotomus papatasi, and animal
reservoir in three environmental dimensions (PC1, PC2, and PC3). Niches are represented as minimum
volume ellipsoids to illustrate the limits under which the species has been sampled. Gray shading represents
environmental background, green ellipsoid represents the potential mammal reservoir, yellow is the vector
Phlebotomus papatasi, and purple represents Leishmania major.

doi:10.1371/journal.pntd.0004381.g005
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are more mesic (e.g., Negev Desert [53]). Our study identified an interesting prediction of the

presence of suitable environmental conditions in central Libya, associated with construction of

new water resources [26] and raised concerns for changes in the eco-epidemiology of leishman-

iasis across the country as water resources (S7 File) and agricultural activities are established in

southern parts of the country. These important anthropogenic changes will be key factors in

affecting distributions of vectors and reservoir hosts of ZCL across Libya; for example, in other

studies in the region, soil moisture was an important variable in determining vector and reser-

voir abundance [54,55]; anthropogenic disturbance was also identified as favoring conditions

for vector and larger host populations in Israel [56]. The effects of these two factors may be

reflected among some of environmental variables included in our study, but their absence in

explicit terms still marks a limitation to our study; a more detailed picture of ZCL transmission

risk in the region will need to consider their possible effects on long-term sand fly and rodent

abundances.

Most recent ZCL cases occurred at relatively low elevations; the areas near Al Jabal Al

Gharbi alone accounted for most cases (S7 File) [2,57]. Similar observations were reported for

L.major, P. papatasi, and wild mammals in Morocco [58]. Elevation and temperature are not

the only factors influencing the distribution of ZCL cases: precipitation has also been shown to

play a role [45]. Low-elevation northern areas, where L.major and P. papatasi species occur in

high densities, are characterized by the highest precipitation in the country [45].

Although testing niche similarity among species was unable to distinguish among hypothe-

ses of ZCL hosts, as was possible in our previous analyses in Egypt [31], our analyses of possible

species combinations excluded G. gerbillus as a main reservoir across Libya. In our previous

analysis in Egypt, however, we found marked niche similarity between P. papatasi and L.

major, but none between L.major and P. sergenti in terms of geographic distribution and eco-

logical niche [31], supporting the idea that carefully constructed ENMs are able to predict dis-

ease risk based on models of vectors and reservoir hosts in a complex transmission system like

Fig 6. Relationship of additional independent human case records to the areas where pairs of vector Phlebotomus papatasi andmammal
reservoir species can occur.Green areas are areas of overlap between P. papatasi and each of the potential mammal reservoirs; white dotted circle
represent localities where human cases were predicted successfully; blue dotted circles indicate case records not predicted successfully by the model
combination.

doi:10.1371/journal.pntd.0004381.g006
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leishmaniasis. In this study, 85.7% of cases were predicted successfully, focusing on areas

where Ps. obesus co-occurred with the vector. WHO had reported that Ps. obesus was likely the

main reservoir of ZCL in Libya [16]; however, our results more strongly supported the two

Meriones spp.–P. papatasi system, which were able to anticipate all recent human cases. Evi-

dence for this association has also been found in the form of high infection rates with L.major

inMeriones tristrami in the most recent ZCL foci documented in Israel [59]; these observations

provide mounting evidence that jird play a major role in disease transmission across the region.

This study took Libya as a target population for illuminating the identity and distribution of

reservoir hosts in the complex ZCL cycle. Indeed, simply the definition of “reservoir host”

remains unresolved [60–62]; early studies defined reservoir host as the “ecological system in

which the infection agent survives indefinitely” [60], but later studies focused on definition in

reference to a specific target population [61]. Certainly, some confusions in reservoir definition

still exist; the specification of particular target populations emphasizes the importance of geo-

graphic and ecological associations in defining reservoir hosts, which underlines the approach

in this study. As a result, we urge development of similar studies regarding other target popula-

tions to examine spatial and temporal relationships of these hosts, and characterize differences

in ZCL dynamics among regions.

The study of the association among these organisms in both spatial and temporal dimen-

sions is of great added values to map the ZCL risk areas across Libya, guide the control pro-

gram across the country, and provided the first detailed maps for the potential distributions of

organisms associated with the zoonotic transmission cycle across Libya. An early study shed

light on disease ecology and possible host-pathogen associations [63], discussing criteria of

host geographic distribution, pathogen range within the host range, regional distributions of

organisms in different biomes and habitats, relative prevalence of the pathogen among host

subpopulations, temporal and fine-scale spatial pattern of host-pathogen dynamics, and inte-

grative time- and place-specific predictive models. These criteria were discussed as major steps

to promote understanding of pathogen-host associations in complex transmission cycles. This

study applied most of these criteria to the complex ZCL cycle in Libya but we note knowledge

gaps in Libya regarding the prevalence of L.major among different host subpopulations, and

the dynamics and potential distribution of host and parasite at finer scales across the country.

Filling these gaps as regards the disease system in Libya will promote a more detailed picture

both for its ecology and for control programs.

Leishmaniasis control programs should consider our findings by applying integrated

approaches to combating ZCL by considering the environmental risk factors that we have

explored. That is, if a particular combination of host and vector species is necessary for leish-

maniasis transmission, then strategies by which to interrupt that transmission can focus on

removing the pathogen, the vector, or key hosts from the system. Such measures may be imple-

mented via educational programs in risk areas, mass drug administration in infected commu-

nities, and host or vector control programs. Our future work will focus on possible hotspots in

the less-well-known areas of the country via intensive disease surveillance and sampling of all

relevant organisms. More deeply, we plan to consider socioeconomic variables in tandem with

the physical environmental variables for a more universal model that links physical, biological,

and human factors in this complex disease system.

Supporting Information

S1 File. Detailed description of the CliMond variables used in the model. Details on these

variables are also available via https://www.climond.org/.
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S2 File. Thresholded potential distribution maps for Leishmania major, Phlebotomus papa-

tasi, and four candidate mammal reservoir species potentially associated with the zoonotic

transmission of cutaneous leishmaniasis.Models were calibrated directly across Libya. The

pink areas represent modeled suitable conditions, and gray areas were modeled as unsuitable

for the species.

(PDF)

S3 File. Values of niche breadth for Leishmania major, Phlebotomus papatasi, and the four

potential mammal reservoirs.

(PDF)

S4 File. Visualizations of ecological niches of four potential mammal reservoirs in two

environmental dimensions. The diagram shows the overall environment available across

Libya (gray), and the suitable conditions for species occurrences (pink).

(PDF)

S5 File. Background similarity tests of ecological niche overlap between species. The red

vertical line represent the observed niche overlap between the two ENMs in the question. The

results of the background similarity tests were based on Schoener’s D (left column) and Hellin-

ger’s I (right column) similarity metrics.

(PDF)

S6 File. Total annual number of cases reported to the Libyan National Centre for Disease

Control 2004–2013. These cases were reported by the local health units in each province and

notified to the center for control measures based on the endemic status of each focus. These

cases were identified by passive surveillance, and were not diagnosed to the species level.

(PDF)

S7 File. Localities with high zoonotic cutaneous leishmaniasis incidence and water resource

management across Libya. Districts with high incidence are shown in blue, and localities

within each district is presented as a dotted points. The map of Libya at the top shows the dis-

tribution of areas with water resource management initiatives as blue circles.

(PDF)
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