
Proceedings of the Workshop on New Frontiers in Summarization, pages 33–42
Copenhagen, Denmark, September 7, 2017. c©2017 Association for Computational Linguistics

Coarse-to-Fine Attention Models for Document Summarization

Jeffrey Ling and Alexander M. Rush

Harvard University

{jling@college,srush@seas}.harvard.edu

Abstract

Sequence-to-sequence models with atten-

tion have been successful for a variety

of NLP problems, but their speed does

not scale well for tasks with long source

sequences such as document summariza-

tion. We propose a novel coarse-to-fine

attention model that hierarchically reads a

document, using coarse attention to select

top-level chunks of text and fine attention

to read the words of the chosen chunks.

While the computation for training stan-

dard attention models scales linearly with

source sequence length, our method scales

with the number of top-level chunks and

can handle much longer sequences. Em-

pirically, we find that while coarse-to-

fine attention models lag behind state-of-

the-art baselines, our method achieves the

desired behavior of sparsely attending to

subsets of the document for generation.

1 Introduction

The sequence-to-sequence architecture of

Sutskever et al. (2014), also known as the

encoder-decoder architecture, is now the gold

standard for many NLP tasks, including machine

translation (Sutskever et al., 2014; Bahdanau

et al., 2015), question answering (Hermann

et al., 2015), dialogue (Li et al., 2016), caption

generation (Xu et al., 2015), and in particular

summarization (Rush et al., 2015).

A popular variant of sequence-to-sequence

models are attention models (Bahdanau et al.,

2015). By keeping an encoded representation of

each part of the input, we “attend” to the relevant

part each time we produce an output from the de-

coder. In practice, this means computing attention

weights for all encoder hidden states, then taking

the weighted average as our new context vector.

While successful, existing sequence-to-

sequence methods are computationally limited by

the length of source and target sequences. For

a problem such as document summarization, a

source sequence of length N (where N could

potentially be very large) requires O(N) model

computations to encode. However, it makes sense

intuitively that not every word of the source will

be necessary for generating a summary, and so we

would like to reduce the amount of computation

performed on the source.

Therefore, in order to scale attention models for

this problem, we aim to prune down the length of

the source sequence in an intelligent way. Instead

of naively attending to all the words of the source

at once, our solution is to use a two-layer hier-

archical attention. For document summarization,

this means dividing the document into chunks of

text, sparsely attending to one or a few chunks

at a time using hard attention, then applying the

usual full attention over those chunks – we call this

method coarse-to-fine attention. Through experi-

ments, we find that while coarse-to-fine attention

does not perform as well as standard attention, it

does show the desired behavior of sparsely reading

the source sequence.

We structure the rest of the paper as follows. In

Section 2, we introduce related work on summa-

rization and neural attention. In Section 3, we re-

view the encoder-decoder framework, and in Sec-

tion 4 introduce our models. In Section 5, we

describe our experimental setup, and in Section 6

show results. Finally, we conclude in Section 7.

2 Related Work

In summarization, neural attention models were

first applied by Rush et al. (2015) to do headline

33

generation, i.e. produce a title for a news arti-

cle given only the first sentence. Nallapati et al.

(2016) and See et al. (2017) apply attention mod-

els to summarize full documents, achieving state-

of-the-art results on the CNN/Dailymail dataset.

All of these models, however, suffer from the in-

herent complexity of attention over the full docu-

ment. Indeed, See et al. (2017) report that a single

model takes over 3 days to train.

Many techniques have been proposed in the lit-

erature to efficiently handle the problem of large

inputs to deep neural networks. One particular

framework is that of “conditional computation”,

as coined by Bengio et al. (2013) — the idea is

to only compute a subset of a network’s units for

a given input by gating different parts of the net-

work.

Several methods, some stochastic and some de-

terministic, have been explored in the vein of con-

ditional computation. In this work, we will fo-

cus on stochastic methods, although determinis-

tic methods are worth considering as future work

(Rae et al., 2016; Shazeer et al., 2017; Miller et al.,

2016; Martins and Astudillo, 2016).

On the stochastic front, Xu et al. (2015) demon-

strate the effectiveness of “hard” attention. While

standard “soft” attention averages the representa-

tions of where the model attends to, hard attention

discretely selects a single location. Hard attention

has been successfully applied in various computer

vision tasks (Mnih et al., 2014; Ba et al., 2015),

but so far has limited usage in NLP. We will apply

hard attention to the document summarization task

by sparsifying our reading of the source text.

3 Background

We begin by describing the standard sequence-to-

sequence attention model, also known as encoder-

decoder models.

In the encoder-decoder architecture, an encoder

recurrent neural network (RNN) reads the source

sequence as input to produce the context, and a

decoder RNN generates the output sequence using

the context as input.

Formally, suppose we have a vocabulary V . A

given input sequence w1, . . . , wn ∈ V is trans-

formed into a sequence of vectors x1, . . . ,xn ∈
R

din through a word embedding matrix E ∈
R
|V|×din as xt = Ewt.

The encoder RNN is given by a parameterizable

function fenc and a hidden state ht ∈ R
dhid at each

time step t with ht = fenc(xt,ht−1). In our mod-

els, we use the long-short term memory (LSTM)

network (Hochreiter and Schmidhuber, 1997).

The decoder is another RNN fdec that generates

output words yt ∈ V . It keeps hidden state h
dec
t ∈

R
dhid as h

dec
t = fdec(yt,h

dec
t−1) similar to the en-

coder RNN. A context vector is produced at each

time step using an attention function a that takes

the encoded hidden states [h1, . . . ,hn] and the

current decoder hidden state h
dec
t and produces the

context ct ∈ R
dctx : ct = a([h1, . . . ,hn],hdec

t).
As in Luong et al. (2015), we feed the context vec-

tor at time t−1 back into the decoder RNN at time

t, i.e. h
dec
t = fdec([yt, ct−1],h

dec
t−1).

Finally, a linear projection and softmax (the

generator) produces a distribution over output

words yt ∈ V:

p(yt|yt−1, . . . , y1, [h1, . . . ,hn]) =

softmax(Wout
ct + b

out)

The models are then trained end-to-end to mini-

mize negative log-likelihood loss (NLL).

We note that we have great flexibility in how

our attention function a(·) combines the encoder

context and the current decoder hidden state. In

the next section, we describe our models for a(·).

4 Models

We describe a few instantiations for the attention

function a(·): standard attention, hierarchical

attention, and coarse-to-fine attention.

4.1 Standard Attention

In Bahdanau et al. (2015), the function a(·) is im-

plemented with an attention network. We compute

attention weights for each encoder hidden state hi

as follows:

βt,i = h
⊤
i W

attn
h

dec
t ∀i = 1, . . . , n (1)

αt = softmax(βt) (2)

c̃t =
n∑

i=1

αt,ihi (3)

Attention allows us to select the most relevant

words of the source (by assigning higher attention

weights) when generating words at each time step.

Our final context vector is then ct =
tanh(W2[c̃t,h

dec
t]) for W

2 ∈ R
2dhid×dctx a

learned matrix.

Going forward, we call this instantiation of the

attention function STANDARD.

34

4.2 Hierarchical Attention

The attention network of STANDARD is computa-

tionally expensive for long sequences — for each

hidden state of the decoder, we need to compare

it to every hidden state of the encoder in order to

determine where to attend to. This seems unnec-

essary for a problem such as document summa-

rization; intuitively, we only need to attend to a

few important chunks of text at a time. Therefore,

we propose a hierarchical method of attending to

the document — by segmenting the document into

large top-level chunks of text, we first attend to

these chunks, then to the words within the chunks.

To accomplish this hierarchical attention, we

construct encodings of the document at both lev-

els. Suppose we have chunks s1, . . . , sm with

words wi,1, . . . , wi,ni
in chunk si. For the top-

level representations, we use a simple encoding

model (e.g. bag of words or convolutions) on each

si to obtain hidden states h
s
i ∈ R

dsent (see Sec-

tion 5 for details). For the word representations,

we run an LSTM encoder separately on the words

of each chunk; specifically, we apply an RNN on

si to get hidden states hi,j for i = 1, . . . ,m and

j = 1, . . . , ni where hi,j = RNN(hi,j−1, wi,j).

Using the top-level representations h
s
i and

the word representations hi,j , we compute

coarse attention weights αs
1, . . . , α

s
m for the top-

level chunks in the same way as STANDARD,

and similarly compute fine attention weights

αw
i,1, . . . , α

w
i,ni

for each i. We then compute the

final soft attention on word wi,j as αi,j = αs
i ·α

w
i,j

(note this ensures that the weights normalize to 1

over the whole document). Finally, we proceed

exactly as in standard attention by computing the

weighted average over hidden states hi,j to pro-

duce the context, i.e. c̃ =
∑

i,j αi,jhi,j .

We label this attention method HIER. Next, we

consider the hard attention version of this model

to achieve sparsity in our network.

4.3 Coarse-to-Fine Attention

With the previous models STANDARD and HIER,

we are required to compute hidden states over all

words and top-level chunks in the document, so

that if we have M chunks and N words per chunk,

the computational complexity is O(MN) for each

attention step.

However, if we are able to perform conditional

computation and only read M+ of the chunks at

a time, we can reduce the attention complexity to

O(M + M+N), where we choose the chunks to

attend to in O(M) and read the selected chunks in

O(M+N). Note that this expression ignores the

total the number of words of the document, and

the bottleneck becomes the length of each chunk

of text.

In our model, we will apply stochastic sampling

to the top-level attention distribution in the spirit

of hard attention (Xu et al., 2015; Mnih et al.,

2014; Ba et al., 2015) while keeping the lower-

level attention as is. We call our method coarse-

to-fine attention1.

Specifically, using the top-level attention distri-

bution αs
1, . . . , α

s
m, we select a single chunk si by

sampling this distribution. We then set the context

vector as
∑ni

j=1 αw
i,jhi,j , where we use the word

attention weights for the chosen chunk si. Note

that this is equivalent to converting the top-level

distribution αs
i to a one-hot encoding based on the

hard sample, then writing αi,j = αs
i · α

w
i,j as in

HIER. At test time, we take the max αs
i for a one-

hot encoding instead of sampling. We label this

coarse-to-fine method C2F.

Because the hard attention model loses the

property of being end-to-end differentiable, we

use reinforcement learning to train our network.

Specifically, we use the REINFORCE algorithm

(Williams, 1992), also formalized by Schulman

et al. (2015) in the stochastic computation graph

framework. Layers before the hard attention node

receive backpropagated policy gradient ∂L
∂θ

= r ·
∂ log p(α|θ)

∂θ
, where r is some reward and p(α|θ) is

the attention distribution that we sample from.

Rewards and variance reduction We can think

of our decoder RNN as a reinforcement learning

agent where the state is the LSTM decoder state

at time t and actions are the hard attention deci-

sions. Since samples from αt at time t of the

RNN decoder can also affect future rewards, the

total influenced reward is
∑T

s=t rs at time t, where

rt = log p(yt|y1, . . . , yt−1,x) is the single step re-

ward. Inspired by the discount factor from RL, we

slightly modify the total reward: instead of simply

taking the sum, we can scale later rewards with a

discount factor γ, giving total reward
∑T

s=t γs−trs

for the stochastic hard attention node at. We found

1The term coarse-to-fine attention has previously been in-
troduced in the literature (Mei et al., 2016). However, their
idea is different: they use coarse attention to reweight the fine
attention computed over the entire input. This idea has also
been called hierarchical attention (Nallapati et al., 2016).

35

A British military health care worker in Sierra Leone ...

A

...

...

British military health

<s> British worker

worker contracts

...

British

...

+

Figure 1: Model architecture for sequence-to-sequence with coarse-to-fine attention. The left side is the encoder that reads
the document, and the right side is the decoder that produces the output sequence. On the encoder side, the top-level hidden
states are used for the coarse attention weights, while the word-level hidden states are used for the fine attention weights. The
context vector is then produced by a weighted average of the word-level states. In HIER, we average over the coarse attention
weights, thus requiring computation of all word-level hidden states. In C2F, we make a hard decision for which chunk of text
to use, and so we only need to compute word-level hidden states for one chunk.

that adding a discount factor helps in practice (we

use γ = 0.5).

Training on the reward directly tends to have

high variance, and so we subtract a baseline re-

ward to help reduce variance as per Weaver and

Tao (2001). To calculate these baselines, we store

a constant bt for each decoder time step t. We fol-

low Xu et al. (2015) and keep an exponentially

moving average of the reward for each time step

t as bt ← bt + β(rt − bt) where rt is the average

minibatch reward and β a learning rate (set to 0.1).

In addition to including a baseline, we also scale

the rewards by a tuned hyperparameter λ — we

found that scaling helped to stabilize training. We

empirically set λ to 0.3. Therefore, our final re-

ward at time t can be written as

λ

T∑

s=t

γs−t(rs − bs) (4)

ALTERNATE training Xu et al. (2015) explain

that training hard attention with REINFORCE has

very high variance, even when including a base-

line. Thus, for every minibatch of training, they

randomly use soft attention instead of hard atten-

tion with some probability (they use 0.5). The

backpropagated gradient is then the standard soft

attention gradient instead of the REINFORCE gra-

dient. When we use this training method in our

results, we label it as +ALTERNATE.

Multiple samples From our initial experiments

with C2F, we found that taking a single sample

was not very effective. However, we discovered

that sampling multiple times from the attention

distribution αs improves performance.

To be precise, we fix a number kmul for the

number of times we sample from αs. Then, we

sample based on the multinomial distribution µ ∼
Mult(kmul, {αi}

m
i=1) to produce the new top-level

attention vector α̃s, with α̃s
i = µi/kmul. In our re-

sults, we label this as +MULTI.

Intuitively, kmul is the number of top-level

chunks we select to produce the context. With

higher kmul, the hard attention model more closely

approximates the soft attention model, and hence

should lead to better performance. This, however,

incurs a cost in computational complexity.

5 Experiments

5.1 Data

Experiments were performed on a version of

the CNN/Dailymail dataset from Hermann et al.

(2015). Each data point is a news document ac-

companied by up to 4 “highlights”, and we take

the first of these as our target summary. Note that

our dataset differs from related work (Nallapati

et al., 2016; See et al., 2017) which take all the

highlights as the summary, as we were less inter-

ested in target side length and more in correctly

locating sparse attention in the source.

Train, validation, and test splits are provided

with the original dataset along with document to-

kenization and sentence splitting. We do addi-

36

tional preprocessing by replacing all numbers with

and appending end of sentence tokens </s> to

each sentence. We limit our vocabulary size to the

50000 most frequent words, replacing the rest with

<unk> tokens.

5.2 Implementation Details

To ease minibatch training on the hierarchical

models, we arrange the first 400 words of the doc-

ument into a 10 by 40 image and take each row

to be a top-level chunk. For HIER, we also experi-

ment with shapes of 5 by 80 and 2 by 200 (denoted

5X80, 2X200 resp.). These should more closely

approximate STANDARD as the shape approaches

a single sequence.

In addition, we pad short documents to the max-

imum length with a special padding word and al-

low the model to attend to it. However, we zero out

word embeddings for the padding states and also

zero out their corresponding LSTM states. We

found in practice that very little of the attention

ended up on the corresponding states.

5.3 Models

Baselines We consider a few baseline models. A

strong and simple baseline is the first sentence of

the document, which we denote FIRST.

We also consider the integer linear program-

ming (ILP) based document summarizer of Dur-

rett et al. (2016). We apply the code 2 directly on

the test set without retraining the system. We pro-

vide the necessary preprocessing using the Berke-

ley coreference system3. We call this baseline

ILP.

Our models We ran experiments with the mod-

els STANDARD, HIER, and C2F as described

above.

For the coarse attention representations h
s
i of

HIER and C2F, we experiment with convolutional

and bag of words encodings. We use convolu-

tions for the top-level representations by default,

where we follow Kim (2014) and perform a con-

volution over each window of words in the chunk

using 600 filters of kernel width 6. We use max-

over-time pooling to obtain a fixed-dimensional

top-level representation in R
df where df = 600

is the number of filters. For bag of words, we sim-

ply take the top-level representation as the sum of

2https://github.com/gregdurrett/berkeley-doc-summarizer
3https://github.com/gregdurrett/berkeley-entity

the chunk’s word embeddings (for a separate em-

bedding matrix), and we write BOW when we use

this encoding. For BOW models, we fix the word

embeddings on the encoder side (in other models,

they are fine tuned).

As an addition to any top-level representation

method, we can include positional embeddings. In

general, we expect the order of text in the docu-

ment to matter for summarization — for example,

the first few sentences are usually important. We

therefore include the option to concatenate a 25-

dimensional embedding of the chunk’s position to

the representation. When we use positional em-

beddings, we write +POS.

For C2F, we include options +MULTI for

kmul > 1, +PRETRAIN for starting with a model

pretrained with soft attention for 1 epoch, and

+ALTERNATE for sampling between hard and soft

attention with probability 0.5.

5.4 Training

We train with minibatch stochastic gradient de-

scent (SGD) with batch size 20 for 20 epochs,

renormalizing gradients below norm 5. We initial-

ize the learning rate to 0.1 for the top-level encoder

and 1 for the rest of the model, and begin decaying

it by a factor of 0.5 each epoch after the validation

perplexity stops decreasing.

We use 2 layer LSTMs with 500 hidden units,

and we initialize word embeddings with 300-

dimensional word2vec embeddings (Mikolov and

Dean, 2013). We initialize all other parameters as

uniform in the interval [−0.1, 0.1]. For convolu-

tional layers, we use a kernel width of 6 and 600

filters. Positional embeddings have dimension 25.

We use dropout (Srivastava et al., 2014) between

stacked LSTM hidden states and before the final

word generator layer to regularize (with dropout

probability 0.3). At test time, we run beam search

to produce the summary with a beam size of 5.

Our models are implemented using Torch based

on a past version of the OpenNMT system4 (Klein

et al., 2017). We ran our experiments on a 12GB

Geforce GTX Titan X GPU. The models take be-

tween 2-2.5 hours to train per epoch.

5.5 Evaluation

We report metrics for perplexity and ROUGE bal-

anced F-scores (Lin, 2004) on the test set.

4http://opennmt.net

37

With multiple gold summaries in the

CNN/Dailymail highlights, we take the max

ROUGE score over the gold summaries for a

predicted summary, as our models are trained to

produce a single sentence. The final metric is then

the average over all test data points.5

Note that because we are training the model

to output a single highlight, our numbers are not

comparable with Nallapati et al. (2016) or See

et al. (2017).

6 Results

Table 1 shows summarization results. We see

that our soft attention models comfortably beat the

baselines, while hard attention lags behind.

The ILP model ROUGE scores are surprisingly

low. We attribute this to the fact that our models

usually produce a single sentence as the summary,

while the ILP system can produce multiple. ILP

therefore has comparatively high ROUGE recall

while suffering in precision.

Unfortunately, the STANDARD sequence-to-

sequence baseline proves to be difficult to beat.

HIER performs surprisingly poorly, even though

the hierarchical assumption seems like a natural

one to make. We believe that the assumption

that we can factor the attention distribution into

learned coarse and fine factors may in fact be

too strong. Because the training signal is back-

propagated to the word-level LSTM via the coarse

attention, the training algorithm cannot directly

compare word attention weights as in STANDARD.

Thus, the model does not learn how to attend to the

most relevant top-level chunks, instead averaging

the attention as a backoff (see 6.1). Additionally,

the shapes 5X80 and 2X200 perform slightly bet-

ter, indicating that the model prefers to have fewer

sequences to attend to.

C2F results are significantly worse than soft

attention results. As has been previously ob-

served (Zaremba and Sutskever, 2015), training

with reinforcement learning is inherently more

difficult than standard maximum likelihood, as

the signal from rewards tends to have high vari-

ance (even with variance reduction techniques).

Thus, it may be too difficult to train the encoder

(which forms a large part of the model) using

such a noisy gradient. Even with soft attention

pretraining (+PRETRAIN) and alternating training

5We run the ROUGE 1.5.5 script with flags -m -n 2

-a -f B.

(+ALTERNATE), C2F fails to reach HIER perfor-

mance.

While taking a single sample performs quite

poorly, we see that taking more than one sam-

ple gives a significant boost to scores (+MULTI2,

+MULTI3). There seem to be diminishing returns

as we take more samples.

Finally, we note that positional embeddings

(+POS) give a nontrivial boost to scores and causes

the attention to prefer the front of the document.

The exception, C2F + POS, is due to the fact that

the attention collapses to always highlight the first

top-level chunk.

We show predicted summaries from each model

in Figure 2. We note that the ILP system, which

extracts sentences first, produces long summaries.

In contrast, the generated summaries tend to be

quite succint, and most are the result of copying

or paraphrasing specific sentences.

Source: isis supporters have vowed to murder twitter staff because they

believe the site ’s policy of shutting down their extremist pages is a ’

virtual war ’ . </s> a mocked - up image of the site ’s founder jack

dorsey in <unk> was posted yesterday alongside a diatribe written in

arabic , which claimed twitter employees ’ necks are ’ a target for the

soldiers of the caliphate ’ . </s> addressing mr dorsey personally ,

it claimed twitter was taking sides in a ’ media war ’ which allowed ’

slaughter ’ , adding : ’ your virtual war on us will cause a real war on

you . </s> diatribe : an image of twitter founder jack dorsey in <unk>

was posted alongside a rant in arabic </s> ...

GOLD: diatribe in arabic posted anonymously yesterday and shared

online

FIRST: isis supporters have vowed to murder twitter staff because they

believe the site ’s policy of shutting down their extremist pages is a ’

virtual war ’ .

ILP: ISIS supporters have vowed to murder Twitter staff because they

believe the site ’s policy of shutting down their extremist pages is a ’

virtual war ’ . Twitter was taking sides . Islamic State militants have

swept through huge tracts of Syria and Iraq , murdering thousands of

people .

STANDARD: image of jack dorsey ’s founder jack dorsey posted on

twitter

HIER: the message was posted in arabic and posted on twitter

HIER BOW: the message was posted on twitter and posted on twitter

HIER +POS: dorsey in <unk> was posted yesterday alongside a

diatribe in arabic

C2F: ’ lone war ’ is a ’ virtual war ’ image of the islamic state

C2F +MULTI2: isis supporters say site ’s policy of shutting down is a ’

propaganda war ’

C2F +POS +MULTI2: twitter users say they believe site ’s policy of

closure is a ’ media war ’

Figure 2: Predicted summaries for each model. The source
document is truncated for clarity.

6.1 Analysis

Sharpness of Attention We are interested in

measuring the ability of our models to focus on

a single top-level chunk using attention. Quan-

titatively, we measure the entropy of the coarse

attention on the validation set in Table 2. Intu-

38

Model PPL ROUGE-1 ROUGE-2 ROUGE-L

FIRST - 32.3 15.5 27.4
ILP - 29.1 16.0 26.5

STANDARD 13.9 34.7 18.8 32.3

HIER 16.0 33.3 17.5 31.0
HIER BOW 16.3 33.0 17.4 30.7
HIER +POS 15.4 34.2 18.3 31.8
HIER 5X80 15.0 33.9 18.0 31.5
HIER 2X200 14.5 33.9 18.1 31.6

C2F 32.8 28.2 12.9 26.2
C2F +POS 37.8 28.3 12.5 26.1
C2F +MULTI2 25.5 30.0 14.4 27.9
C2F +POS +MULTI2 21.9 31.2 15.3 29.0
C2F +MULTI3 22.9 30.4 14.9 28.3
C2F +PRETRAIN 26.3 29.7 14.2 27.5
C2F +ALTERNATE 23.6 31.1 15.4 28.8

Table 1: Summarization results for CNN/Dailymail (first highlight as target) on perplexity (PPL) and ROUGE metrics.

Model Entropy

STANDARD 1.31
HIER 2.14
C2F 0.15
C2F +MULTI2 0.59
C2F +POS +MULTI2 0.46

Table 2: Entropy over coarse attention, averaged over all at-
tention distributions in the validation set. For reference, uni-
form attention in our case gives entropy ≈ 2.30.

itively, higher entropy means the attention is more

spread out, while lower entropy means the atten-

tion is concentrated.

We compute the entropy numbers by averag-

ing over all generated words in the validation

set. Because each document has been split into

10 chunks, perfectly uniform entropy would be

≈ 2.30.

We note that the entropy of C2F is very low

(before taking the argmax at test time). This is

exactly what we had hoped for — we will see that

the model in fact learns to focus on only a few

top-level chunks of the document over the course

of generation. If we have multiple samples with

+MULTI2, the model is allowed to use 2 chunks at

a time, which relaxes the entropy slightly.

We also observe that the HIER entropy is very

high and almost uniform. The model appears to be

averaging the encoder hidden states across chunks,

indicating that the training failed to find the same

optimum as in STANDARD. We discuss this fur-

ther in the next section.

Attention Heatmaps For the document in Fig-

ure 2, we visualize the coarse attention distribu-

tions produced by each model in Figure 3.

In each figure, the rows are the top-level chunks

of each document (40 words per row), and the

columns are the summary words produced by the

model. The intensity of each box for a given

column represents the strength of the attention

weight on that row. For STANDARD, the heatmap

is produced by summing the word-level attention

weights in each row.

In HIER, we observe that the attention becomes

washed out (in accord with its high entropy) and

is essentially averaging all of the encoder hidden

states. This is surprising because in theory, HIER

should be able to replicate the same attention dis-

tribution as STANDARD.

If we examine the word-level attention (not pic-

tured here), we find that the model focuses on stop

words (e.g. punctuation marks, </s>) in the en-

coder. We posit this may be due to the LSTM “sav-

ing” information at these words, and so the soft at-

tention model can best retrieve the information by

averaging over these hidden states. Alternatively,

the model may be ignoring the encoder and gener-

ating only from the decoder language model.

In C2F, we see that we get very sharp attention

on some rows as we had hoped. Unfortunately, the

model has trouble deciding where to attend to, os-

cillating between the first and second-to-last rows.

We partially alleviate this problem by allowing the

model to attend to multiple rows in hard attention.

Indeed, with +MULTI2 +POS, the model actually

produces a very coherent output by focusing at-

tention near the beginning. We believe that the

improved result for this example is not only due

to more flexibility in where to attend, but a better

39

Figure 3: Sentence attention visualizations for different models. From left to right: (1) STANDARD, (2) HIER, (3) C2F, (4)
C2F +MULTI2 +POS.

encoding model due to the training process.

7 Conclusion

In this work, we experiment with a novel coarse-

to-fine attention model on the CNN/Dailymail

dataset. We find that both versions of our model,

HIER and C2F, fail to beat the standard sequence-

to-sequence model on metrics, but C2F has the de-

sired property of sharp attention on a small subset

of the source. Therefore, coarse-to-fine attention

shows promise for scaling up existing models to

larger inputs.

Further experimentation is needed to improve

these attention models to state of the art. In par-

ticular, we need to better understand (1) the rea-

son for the subpar performance and high entropy

of hierarchical attention, (2) how to control the

variance training of reinforcement learning, and

(3) how to balance the tradeoff between stronger

models and attention sparsity over long source se-

quences. We would also like to investigate alter-

natives to reinforcement learning for implement-

ing sparse attention, e.g. sparsemax (Martins and

Astudillo, 2016) and key-value memory networks

(Miller et al., 2016) (preliminary investigations

with sparsemax were not extremely promising, but

we leave this to future work). Resolving these is-

sues can allow attention models to become more

scalable, especially in computationally intensive

tasks such as document summarization.

40

References

Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu.
2015. Multiple Object Recognition with Visual At-
tention. Proceedings of the International Confer-
ence on Learning Representations (ICLR) .

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation By Jointly
Learning To Align and Translate. ICLR .

Yoshua Bengio, Nicholas Léonard, and Aaron C
Courville. 2013. Estimating or Propagating Gra-
dients Through Stochastic Neurons for Conditional
Computation. CoRR abs/1308.3.

Greg Durrett, Taylor Berg-Kirkpatrick, and Dan Klein.
2016. Learning-Based Single-Document Summa-
rization with Compression and Anaphoricity Con-
straints. Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers) pages 1998–2008.

KM Hermann, T Kocisky, and E Grefenstette. 2015.
Teaching machines to read and comprehend. Ad-
vances in Neural Information Processing Systems
pages 1–9.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation
9(8):1735–1780.

Yoon Kim. 2014. Convolutional Neural Networks for
Sentence Classification. Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2014) pages 1746–1751.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-Source Toolkit for Neural Machine
Translation .

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao,
and Bill Dolan. 2016. A Persona-Based Neural Con-
versation Model. arXiv preprint arXiv:1603.06155
.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop. Barcelona, Spain, volume 8.

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. Emnlp (Septem-
ber):11.

André F. T. Martins and Ramón Fernandez Astudillo.
2016. From Softmax to Sparsemax: A Sparse
Model of Attention and Multi-Label Classification.
Proceedings of The 33rd International Conference
on Machine Learning pages 1614–1623.

Hongyuan Mei, Mohit Bansal, and Matthew R. Walter.
2016. What to talk about and how? Selective Gener-
ation using LSTMs with Coarse-to-Fine Alignment.
Proceedings of NAACL-HLT pages 1–11.

Tomas Mikolov and Jeffrey Dean. 2013. Distributed
representations of words and phrases and their com-
positionality. Advances in Neural Information Pro-
cessing Systems .

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-Value Memory Networks for Directly
Reading Documents. Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP-16) abs/1606.0:1400–1409.

Volodymyr Mnih, Nicolas Heess, Alex Graves, and ko-
ray Kavukcuoglu. 2014. Recurrent models of visual
attention. Advances in Neural Information Process-
ing Systems pages 2204—-2212.

Ramesh Nallapati, Bowen Zhou, Cicero Nogueira dos
Santos, Caglar Gulcehre, and Bing Xiang. 2016.
Abstractive Text Summarization Using Sequence-
to-Sequence RNNs and Beyond. Proceedings of
CoNLL abs/1602.0:280–290.

Jack Rae, Jonathan J Hunt, Ivo Danihelka, Timothy
Harley, Andrew W Senior, Gregory Wayne, Alex
Graves, and Tim Lillicrap. 2016. Scaling Memory-
Augmented Neural Networks with Sparse Reads and
Writes. In D D Lee, M Sugiyama, U V Luxburg,
I Guyon, and R Garnett, editors, Advances in Neu-
ral Information Processing Systems 29, Curran As-
sociates, Inc., pages 3621–3629.

Alexander M Rush, Sumit Chopra, and Jason Weston.
2015. A Neural Attention Model for Abstractive
Sentence Summarization. In Proceedings of the
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP) .

John Schulman, Nicolas Heess, Theophane Weber, and
Pieter Abbeel. 2015. Gradient Estimation Using
Stochastic Computation Graphs. NIPS pages 1–13.

Abigail See, Peter J. Liu, and Christopher D. Man-
ning. 2017. Get To The Point: Summarization with
Pointer-Generator Networks .

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz,
Andy Davis, Quoc Le, Geoffrey Hinton, and Jeff
Dean. 2017. Outrageously Large Neural Networks:
the Sparsely-Gated Mixture-of-Experts Layer. Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR) .

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A Simple Way to Prevent Neural Networks
from Overfitting. Journal of Machine Learning Re-
search 15:1929–1958.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In Advances in neural information process-
ing systems. pages 3104–3112.

41

Lex Weaver and Nigel Tao. 2001. The optimal reward
baseline for gradient-based reinforcement learning.
Proceedings of the Seventeenth conference on Un-
certainty in artificial intelligence pages 538–545.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning 8(3-4):229–256.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron C Courville, Ruslan Salakhutdinov, Richard S
Zemel, and Yoshua Bengio. 2015. Show, Attend and
Tell: Neural Image Caption Generation with Visual
Attention. ICML 14:77—-81.

Wojciech Zaremba and Ilya Sutskever. 2015. Rein-
forcement Learning Neural Turing Machines. CoRR
abs/1505.0.

42

