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Abstract

We present a framework for question

answering that can efficiently scale to

longer documents while maintaining or

even improving performance of state-of-

the-art models. While most successful ap-

proaches for reading comprehension rely

on recurrent neural networks (RNNs), run-

ning them over long documents is pro-

hibitively slow because it is difficult to

parallelize over sequences. Inspired by

how people first skim the document, iden-

tify relevant parts, and carefully read these

parts to produce an answer, we combine

a coarse, fast model for selecting rele-

vant sentences and a more expensive RNN

for producing the answer from those sen-

tences. We treat sentence selection as a la-

tent variable trained jointly from the an-

swer only using reinforcement learning.

Experiments demonstrate the state of the

art performance on a challenging subset of

the WIKIREADING dataset (Hewlett et al.,

2016) and on a new dataset, while speed-

ing up the model by 3.5x-6.7x.

1 Introduction

Reading a document and answering questions

about its content are among the hallmarks of nat-

ural language understanding. Recently, interest in

question answering (QA) from unstructured doc-

uments has increased along with the availability

of large scale datasets for reading comprehension

(Hermann et al., 2015; Hill et al., 2015; Rajpurkar

et al., 2016; Onishi et al., 2016; Nguyen et al.,

2016; Trischler et al., 2016a).

Current state-of-the-art approaches for QA over

documents are based on recurrent neural networks

†Work done while the authors were at Google.

Query (x) Document (d)

Answer (y)

Sentence Selection (Latent)

Answer Generation (RNN)

Document Summary (d̂)

Figure 1: Hierarchical question answering: the model first
selects relevant sentences that produce a document summary

(d̂) for the given query (x), and then generates an answer (y)

based on the summary (d̂) and the query x.

(RNNs) that encode the document and the ques-

tion to determine the answer (Hermann et al.,

2015; Chen et al., 2016; Kumar et al., 2016;

Kadlec et al., 2016; Xiong et al., 2016). While

such models have access to all the relevant infor-

mation, they are slow because the model needs to

be run sequentially over possibly thousands of to-

kens, and the computation is not parallelizable.

In fact, such models usually truncate the docu-

ments and consider only a limited number of to-

kens (Miller et al., 2016; Hewlett et al., 2016).

Inspired by studies on how people answer ques-

tions by first skimming the document, identifying

relevant parts, and carefully reading these parts to

produce an answer (Masson, 1983), we propose a

coarse-to-fine model for question answering.

Our model takes a hierarchical approach (see

Figure 1), where first a fast model is used to select

a few sentences from the document that are rele-

vant for answering the question (Yu et al., 2014;

Yang et al., 2016a). Then, a slow RNN is em-

ployed to produce the final answer from the se-

lected sentences. The RNN is run over a fixed

number of tokens, regardless of the length of the

document. Empirically, our model encodes the
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d:

s1: The 2011 Joplin tornado was a catastrophic EF5-
rated multiple-vortex tornado that struck Joplin, Mis-
souri . . .
s4: It was the third tornado to strike Joplin since May
1971.
s5: Overall, the tornado killed 158 people . . ., in-
jured some 1,150 others, and caused damages . . .

x: how many people died in joplin mo tornado
y: 158 people

Figure 2: A training example containing a document d, a
question x and an answer y in the WIKISUGGEST dataset.
In this example, the sentence s5 is necessary to answer the
question.

text up to 6.7 times faster than the base model,

which reads the first few paragraphs, while having

access to four times more tokens.

A defining characteristic of our setup is that an

answer does not necessarily appear verbatim in the

input (the genre of a movie can be determined even

if not mentioned explicitly). Furthermore, the an-

swer often appears multiple times in the document

in spurious contexts (the year ‘2012’ can appear

many times while only once in relation to the ques-

tion). Thus, we treat sentence selection as a la-

tent variable that is trained jointly with the answer

generation model from the answer only using re-

inforcement learning. Treating sentence selection

as a latent variable has been explored in classifi-

cation (Yessenalina et al., 2010; Lei et al., 2016),

however, to our knowledge, has not been applied

for question answering.

We find that jointly training sentence selec-

tion and answer generation is especially helpful

when locating the sentence containing the answer

is hard. We evaluate our model on the WIKIREAD-

ING dataset (Hewlett et al., 2016), focusing on ex-

amples where the document is long and sentence

selection is challenging, and on a new dataset

called WIKISUGGEST that contains more natural

questions gathered from a search engine.

To conclude, we present a modular framework

and learning procedure for QA over long text. It

captures a limited form of document structure such

as sentence boundaries and deals with long docu-

ments or potentially multiple documents. Exper-

iments show improved performance compared to

the state of the art on the subset of WIKIREADING,

comparable performance on other datasets, and a

3.5x-6.7x speed up in document encoding, while

allowing access to much longer documents.

% answer avg # of % match
string exists ans. match first sent

WIKIREADING 47.1 1.22 75.1
WR-LONG 50.4 2.18 31.3

WIKISUGGEST 100 13.95 33.6

Table 1: Statistics on string matches of the answer y∗ in the
document. The third column only considers examples with
answer match. Often the answer string is missing or appears
many times while it is relevant to query only once.

2 Problem Setting

Given a training set of question-document-answer

triples {x(i), d(i), y(i)}Ni=1, our goal is to learn a

model that produces an answer y for a question-

document pair (x, d). A document d is a list of

sentences s1, s2, . . . , s|d|, and we assume that the

answer can be produced from a small latent sub-

set of the sentences. Figure 2 illustrates a training

example in which sentence s5 is in this subset.

3 Data

We evaluate on WIKIREADING, WIKIREADING

LONG, and a new dataset, WIKISUGGEST.

WIKIREADING (Hewlett et al., 2016) is a QA

dataset automatically generated from Wikipedia

and Wikidata: given a Wikipedia page about an

entity and a Wikidata property, such as PROFES-

SION, or GENDER, the goal is to infer the tar-

get value based on the document. Unlike other

recently released large-scale datasets (Rajpurkar

et al., 2016; Trischler et al., 2016a), WIKIREAD-

ING does not annotate answer spans, making sen-

tence selection more challenging.

Due to the structure and short length of most

Wikipedia documents (median number of sen-

tences: 9), the answer can usually be inferred from

the first few sentences. Thus, the data is not ideal

for testing a sentence selection model compared

to a model that uses the first few sentences. Ta-

ble 1 quantifies this intuition: We consider sen-

tences containing the answer y∗ as a proxy for sen-

tences that should be selected, and report how of-

ten y∗ appears in the document. Additionally, we

report how frequently this proxy oracle sentence is

the first sentence. We observe that in WIKIREAD-

ING, the answer appears verbatim in 47.1% of the

examples, and in 75% of them the match is in the

first sentence. Thus, the importance of modeling

sentence selection is limited.

To remedy that, we filter WIKIREADING and

ensure a more even distribution of answers

throughout the document. We prune short docu-
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# of uniq. # of # of words # of tokens

queries examples / query / doc.

WIKIREADING 867 18.58M 2.35 489.2

WR-LONG 239 1.97M 2.14 1200.7

WIKISUGGEST 3.47M 3.47M 5.03 5962.2

Table 2: Data statistics.

ments with less than 10 sentences, and only con-

sider Wikidata properties for which Hewlett et al.

(2016)’s best model obtains an accuracy of less

than 60%. This prunes out properties such as

GENDER, GIVEN NAME, and INSTANCE OF.1

The resulting WIKIREADING LONG dataset con-

tains 1.97M examples, where the answer appears

in 50.4% of the examples, and appears in the first

sentence only 31% of the time. On average, the

documents in WIKIREADING LONG contain 1.2k

tokens, more tokens than those of SQuAD (av-

erage 122 tokens) or CNN (average 763 tokens)

datasets (see Table 2). Table 1 shows that the exact

answer string is often missing from the document

in WIKIREADING. This is since Wikidata state-

ments include properties such as NATIONALITY,

which are not explicitly mentioned, but can still

be inferred. A drawback of this dataset is that the

queries, Wikidata properties, are not natural lan-

guage questions and are limited to 858 properties.

To model more realistic language queries, we

collect the WIKISUGGEST dataset as follows. We

use the Google Suggest API to harvest natural

language questions and submit them to Google

Search. Whenever Google Search returns a box

with a short answer from Wikipedia (Figure 3),

we create an example from the question, answer,

and the Wikipedia document. If the answer string

is missing from the document this often implies a

spurious question-answer pair, such as (‘what time

is half time in rugby’, ‘80 minutes, 40 minutes’).

Thus, we pruned question-answer pairs without

the exact answer string. We examined fifty ex-

amples after filtering and found that 54% were

well-formed question-answer pairs where we can

ground answers in the document, 20% contained

answers without textual evidence in the document

(the answer string exists in an irreleveant context),

and 26% contain incorrect QA pairs such as the

last two examples in Figure 3. The data collection

was performed in May 2016.

1These three relations alone account for 33% of the data.

WIKISUGGEST Query Answer

what year did virgina became a state 1788
general manager of smackdown Theodore Long
minnesota viking colors purple
coco martin latest movies maybe this time
longest railway station in asia Gorakhpur
son from modern family Claire Dunphy
north dakota main religion Christian
lands end’ brand Lands’ End
wdsu radio station WCBE

Figure 3: Example queries and answers of WIKISUGGEST.

4 Model

Our model has two parts (Figure 1): a fast sen-

tence selection model (Section 4.1) that defines a

distribution p(s | x, d) over sentences given the in-

put question (x) and the document (d), and a more

costly answer generation model (Section 4.3) that

generates an answer y given the question and a

document summary, d̂ (Section 4.2), that focuses

on the relevant parts of the document.

4.1 Sentence Selection Model

Following recent work on sentence selection (Yu

et al., 2014; Yang et al., 2016b), we build a

feed-forward network to define a distribution over

the sentences s1, s2, . . . , s|d|. We consider three

simple sentence representations: a bag-of-words

(BoW) model, a chunking model, and a (paral-

lelizable) convolutional model. These models are

efficient at dealing with long documents, but do

not fully capture the sequential nature of text.

BoW Model Given a sentence s, we denote by

BoW(s) the bag-of-words representation that av-

erages the embeddings of the tokens in s. To de-

fine a distribution over the document sentences,

we employ a standard attention model (e.g., (Her-

mann et al., 2015)), where the BoW representation

of the query is concatenated to the BoW represen-

tation of each sentence sl, and then passed through

a single layer feed-forward network:

hl = [BoW(x);BoW(sl)]

vl = v⊤ReLU(Whl),

p(s = sl | x, d) = softmax(vl),
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where [; ] indicates row-wise concatenation, and

the matrix W , the vector v, and the word embed-

dings are learned parameters.

Chunked BoW Model To get more fine-grained

granularity, we split sentences into fixed-size

smaller chunks (seven tokens per chunk) and score

each chunk separately (Miller et al., 2016). This

is beneficial if questions are answered with sub-

sentential units, by allowing to learn attention over

different chunks. We split a sentence sl into a fixed

number of chunks (cl,1, cl,2 . . . , cl,J ), generate a

BoW representation for each chunk, and score it

exactly as in the BoW model. We obtain a distribu-

tion over chunks, and compute sentence probabil-

ities by marginalizing over chunks from the same

sentence. Let p(c = cl,j | x, d) be the distribution

over chunks from all sentences, then:

p(s = sl | x, d) =

J∑

j=1

p(c = cl,j | x, d),

with the same parameters as in the BoW model.

Convolutional Neural Network Model While

our sentence selection model is designed to be fast,

we explore a convolutional neural network (CNN)

that can compose the meaning of nearby words. A

CNN is still efficient, since all filters can be com-

puted in parallel. Following previous work (Kim,

2014; Kalchbrenner et al., 2014), we concatenate

the embeddings of tokens in the query x and the

sentence sl, and run a convolutional layer with F

filters and width w over the concatenated embed-

dings. This results in F features for every span of

length w, and we employ max-over-time-pooling

(Collobert et al., 2011) to get a final representa-

tion hl ∈ R
F . We then compute p(s = sl | x, d)

by passing hl through a single layer feed-forward

network as in the BoW model.

4.2 Document Summary

After computing attention over sentences, we cre-

ate a summary that focuses on the document parts

related to the question using deterministic soft at-

tention or stochastic hard attention. Hard attention

is more flexible, as it can focus on multiple sen-

tences, while soft attention is easier to optimize

and retains information from multiple sentences.

Hard Attention We sample a sentence ŝ ∼
p(s | x, d) and fix the document summary d̂ = ŝ

to be that sentence during training. At test time,

we choose the most probable sentence. To extend

the document summary to contain more informa-

tion, we can sample without replacement K sen-

tences from the document and define the summary

to be the concatenation of the sampled sentences

d̂ = [ŝ1; ŝ2; . . . ; ŝK ].

Soft Attention In the soft attention model (Bah-

danau et al., 2015) we compute a weighted av-

erage of the tokens in the sentences according to

p(s | x, d). More explicitly, let d̂m be the mth to-

ken of the document summary. Then, by fixing the

length of every sentence to M tokens,2 the blended

tokens are computed as follows:

d̂m =

|d|∑

l=1

p(s = sl | x, d) · sl,m,

where sl,m is the mth word in the lth sentence
(m ∈ {1, . . . ,M}).

As the answer generation models (Section 4.3)

take a sequence of vectors as input, we average

the tokens at the word level. This gives the hard

attention an advantage since it samples a “real”

sentence without mixing words from different sen-

tences. Conversely, soft attention is trained more

easily, and has the capacity to learn a low-entropy

distribution that is similar to hard attention.

4.3 Answer Generation Model

State-of-the-art question answering models use

RNN models to encode the document and ques-

tion and selects the answer. We focus on a hierar-

chical model with fast sentence selection, and do

not subscribe to a particular answer generation ar-

chitecture.

Here we implemented the state-of-the-art word-

level sequence-to-sequence model with placehold-

ers, described by Hewlett et al. (2016). This mod-

els can produce answers that does not appear in the

sentence verbatim. This model takes the query to-

kens, and the document (or document summary)

tokens as input and encodes them with a Gated

Recurrent Unit (GRU; Cho et al. (2014)). Then,

the answer is decoded with another GRU model,

defining a distribution over answers p(y | x, d̂).
In this work, we modified the original RNN: the

word embeddings for the RNN decoder input, out-

put and original word embeddings are shared.

2Long sentences are truncated and short ones are padded.
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5 Learning

We consider three approaches for learning the

model parameters (denoted by θ): (1) We present

a pipeline model, where we use distant super-

vision to train a sentence selection model inde-

pendently from an answer generation model. (2)

The hard attention model is optimized with REIN-

FORCE (Williams, 1992) algorithm. (3) The soft

attention model is fully differentiable and is opti-

mized end-to-end with backpropagation.

Distant Supervision While we do not have an

explicit supervision for sentence selection, we can

define a simple heuristic for labeling sentences.

We define the gold sentence to be the first sen-

tence that has a full match of the answer string, or

the first sentence in the document if no full match

exists. By labeling gold sentences, we can train

sentence selection and answer generation indepen-

dently with standard supervised learning, maxi-

mizing the log-likelihood of the gold sentence and

answer, given the document and query. Let y∗ and

s∗ be the target answer and sentence , where s∗

also serves as the document summary. The objec-

tive is to maximize:

J(θ) = log pθ(y
∗, s∗ | x, d)

= log pθ(s
∗ | x, d) + log pθ(y

∗ | s∗, x).

Since at test time we do not have access to

the target sentence s∗ needed for answer gen-

eration, we replace it by the model prediction

argmaxsl∈d pθ(s = sl | d, x).

Reinforcement Learning Because the target

sentence is missing, we use reinforcement learn-

ing where our action is sentence selection, and our

goal is to select sentences that lead to a high re-

ward. We define the reward for selecting a sen-

tence as the log probability of the correct answer

given that sentence, that is, Rθ(sl) = log pθ(y =
y∗ | sl, x). Then the learning objective is to maxi-

mize the expected reward:

J(θ) =
∑

sl∈d

pθ(s=sl | x, d) ·Rθ(sl)

=
∑

sl∈d

pθ(s=sl | x, d) · log pθ(y=y∗ | sl, x).

Following REINFORCE (Williams, 1992), we

approximate the gradient of the objective with a

sample, ŝ ∼ pθ(s | x, d):

∇J(θ) ≈ ∇ log pθ(y | ŝ, x)

+ log pθ(y | ŝ, x) · ∇ log pθ(ŝ | x, d).

Sampling K sentences is similar and omitted for

brevity.

Training with REINFORCE is known to be un-

stable due to the high variance induced by sam-

pling. To reduce variance, we use curriculum

learning, start training with distant supervision

and gently transition to reinforcement learning,

similar to DAGGER (Ross et al., 2011). Given an

example, we define the probability of using the

distant supervision objective at each step as re,

where r is the decay rate and e is the index of the

current training epoch.3

Soft Attention We train the soft attention model

by maximizing the log likelihood of the correct an-

swer y∗ given the input question and document

log pθ(y
∗ | d, x). Recall that the answer gener-

ation model takes as input the query x and doc-

ument summary d̂, and since d̂ is an average of

sentences weighted by sentence selection, the ob-

jective is differentiable and is trained end-to-end.

6 Experiments

Experimental Setup We used 70% of the data

for training, 10% for development, and 20% for

testing in all datasets. We used the first 35 sen-

tences in each document as input to the hierarchi-

cal models, where each sentence has a maximum

length of 35 tokens. Similar to Miller et al. (2016),

we add the first five words in the document (typi-

cally the title) at the end of each sentence sequence

for WIKISUGGEST. We add the sentence index as

a one hot vector to the sentence representation.

We coarsely tuned and fixed most hyper-

parameters for all models. The word embedding

dimension is set to 256 for both sentence selection

and answer generation models. We used the decay

rate of 0.8 for curriculum learning. Hidden dimen-

sion is fixed at 128, batch size at 128, GRU state

cell at 512, and vocabulary size at 100K. For CNN

sentence selection model, we used 100 filters and

set filter width as five. The initial learning rate

and gradient clipping coefficients for each model

are tuned on the development set. The ranges for

learning rates were 0.00025, 0.0005, 0.001, 0.002,

0.004 and 0.5, 1.0 for gradient clipping coefficient.

3 We tuned r ∈ [0.3, 1] on the development set.
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Figure 4: Runtime for document encoding on an Intel Xeon
CPU E5-1650 @3.20GHz on WIKIREADING at test time.
The boxplot represents the throughput of BASE and each line
plot shows the proposed models’ speed gain over BASE. Ex-
act numbers are reported in the supplementary material.

We halved the learning rate every 25k steps. We

use the Adam (Kingma and Ba, 2015) optimizer

and TensorFlow framework (Abadi et al., 2015).

Evaluation Metrics Our main evaluation metric

is answer accuracy, the proportion of questions an-

swered correctly. For sentence selection, since we

do not know which sentence contains the answer,

we report approximate accuracy by matching sen-

tences that contain the answer string (y∗). For the

soft attention model, we treat the sentence with the

highest probability as the predicted sentence.

Models and Baselines The models PIPELINE,

REINFORCE, and SOFTATTEND correspond to the

learning objectives in Section 5. We compare

these models against the following baselines:

FIRST always selects the first sentence of the

document. The answer appears in the first

sentence in 33% and 15% of documents in

WIKISUGGEST and WIKIREADING LONG.

BASE is the re-implementation of the best

model by Hewlett et al. (2016), consum-

ing the first 300 tokens. We experimented

with providing additional tokens to match the

length of document available to hierarchical

models, but this performed poorly.4

ORACLE selects the first sentence with the

answer string if it exists, or otherwise the first

sentence in the document.

4Our numbers on WIKIREADING outperform previously
reported numbers due to modifications in implementation and
better optimization.

Dataset Learning Accuracy

FIRST 26.7
BASE 40.1

ORACLE 43.9
WIKIREADING PIPELINE 36.8

LONG SOFTATTEND 38.3
REINFORCE (K=1) 40.1
REINFORCE (K=2) 42.2

FIRST 44.0
BASE 46.7

ORACLE 60.0
WIKI PIPELINE 45.3

SUGGEST SOFTATTEND 45.4
REINFORCE (K=1) 45.4
REINFORCE (K=2) 45.8

FIRST 71.0
HEWLETT ET AL. (2016) 71.8

BASE 75.6
ORACLE 74.6

WIKIREADING SOFTATTEND 71.6
PIPELINE 72.4

REINFORCE (K=1) 73.0
REINFORCE (K=2) 73.9

Table 3: Answer prediction accuracy on the test set. K is the
number of sentences in the document summary.

Answer Accuracy Results Table 3 summarizes

answer accuracy on all datasets. We use BOW en-

coder for sentence selection as it is the fastest. The

proposed hierarchical models match or exceed the

performance of BASE, while reducing the number

of RNN steps significantly, from 300 to 35 (or 70

for K=2), and allowing access to later parts of the

document. Figure 4 reports the speed gain of our

system. While throughput at training time can be

improved by increasing the batch size, at test time

real-life QA systems use batch size 1, where RE-

INFORCE obtains a 3.5x-6.7x speedup (for K=2

or K=1). In all settings, REINFORCE was at least

three times faster than the BASE model.

All models outperform the FIRST baseline, and

utilizing the proxy oracle sentence (ORACLE)

improves performance on WIKISUGGEST and

WIKIREADNG LONG. In WIKIREADING, where

the proxy oracle sentence is often missing and

documents are short, BASE outperforms ORACLE.

Jointly learning answer generation and sentence

selection, REINFORCE outperforms PIPELINE,

which relies on a noisy supervision signal for sen-

tence selection. The improvement is larger in

WIKIREADING LONG, where the approximate su-

pervision for sentence selection is missing for 51%

of examples compared to 22% of examples in

WIKISUGGEST.5

On WIKIREADING LONG, REINFORCE outper-

5The number is lower than in Table 1 because we cropped
sentences and documents, as mentioned above.
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Dataset Learning Model Accuracy

CNN 70.7
PIPELINE BOW 69.2

CHUNKBOW 74.6
WIKI CNN 74.2

READING REINFORCE BOW 72.2
LONG CHUNKBOW 74.4

FIRST 31.3
SOFTATTEND (BoW) 70.1

CNN 62.3
PIPELINE BOW 67.5

CHUNKBOW 57.4
WIKI CNN 64.6

SUGGEST REINFORCE BOW 67.3
CHUNKBOW 59.3

FIRST 42.6
SOFTATTEND (BoW) 49.9

Table 4: Approximate sentence selection accuracy on the de-
velopment set for all models. We use ORACLE to find a proxy
gold sentence and report the proportion of times each model
selects the proxy sentence.

forms all other models (excluding ORACLE, which

has access to gold labels at test time). In other

datasets, BASE performs slightly better than the

proposed models, at the cost of speed. In these

datasets, the answers are concentrated in the first

few sentences. BASE is advantageous in categori-

cal questions (such as GENDER), gathering bits of

evidence from the whole document, at the cost of

speed. Encouragingly, our system almost reaches

the performance of ORACLE in WIKIREADING,

showing strong results in a limited token setting.

Sampling an additional sentence into the doc-

ument summary increased performance in all

datasets, illustrating the flexibility of hard at-

tention compared to soft attention. Addi-

tional sampling allows recovery from mistakes in

WIKIREADING LONG, where sentence selection

is challenging.6 Comparing hard attention to soft

attention, we observe that REINFORCE performed

better than SOFTATTEND. The attention distribu-

tion learned by the soft attention model was often

less peaked, generating noisier summaries.

Sentence Selection Results Table 4 reports sen-

tence selection accuracy by showing the pro-

portion of times models selects the proxy gold

sentence when it is found by ORACLE. In

WIKIREADING LONG, REINFORCE finds the ap-

proximate gold sentence in 74.4% of the examples

where the the answer is in the document. In WIK-

ISUGGEST performance is at 67.5%, mostly due to

noise in the data. PIPELINE performs slightly bet-

ter as it is directly trained towards our noisy eval-

6Sampling more help pipeline methods less.

WR WIKI

LONG SUGGEST

No evidence in doc. 29 8
Error in answer generation 13 15
Noisy query & answer 0 24
Error in sentence selection 8 3

Table 5: Manual error analysis on 50 errors from the devel-
opment set for REINFORCE (K=1).

uation. However, not all sentences that contain the

answer are useful to answer the question (first ex-

ample in Table 6). REINFORCE learned to choose

sentences that are likely to generate a correct an-

swer rather than proxy gold sentences, improv-

ing the final answer accuracy. On WIKIREADING

LONG, complex models (CNN and CHUNKBOW)

outperform the simple BOW, while on WIKISUG-

GEST BOW performed best.

Qualitative Analysis We categorized the pri-

mary reasons for the errors in Table 5 and present

an example for each error type in Table 6. All

examples are from REINFORCE with BOW sen-

tence selection. The most frequent source of error

for WIKIREADING LONG was lack of evidence in

the document. While the dataset does not contain

false answers, the document does not always pro-

vide supporting evidence (examples of properties

without clues are ELEVATION ABOVE SEA LEVEL

and SISTER). Interestingly, the answer string can

still appear in the document as in the first ex-

ample in Table 6: ‘Saint Petersburg’ appears in

the document (4th sentence). Answer generation

at times failed to generate the answer even when

the correct sentence was selected. This was pro-

nounced especially in long answers. For the auto-

matically collected WIKISUGGEST dataset, noisy

question-answer pairs were problematic, as dis-

cussed in Section 3. However, the models fre-

quently guessed the spurious answer. We attribute

higher proxy performance in sentence selection

for WIKISUGGEST to noise. In manual analysis,

sentence selection was harder in WIKIREADING

LONG, explaining why sampling two sentences

improved performance.

In the first correct prediction (Table 6), the

model generates the answer, even when it is not in

the document. The second example shows when

our model spots the relevant sentence without ob-

vious clues. In the last example the model spots a

sentence far from the head of the document.

Figure 5 contains a visualization of the atten-
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Error Type No evidence in doc.

(Query, Answer) (place of death, Saint Petersburg)
System Output Crimean Peninsula

1 11.7 Alexandrovich Friedmann ( also spelled Friedman or [Fridman] , Russian : . . .
4 3.4 Friedmann was baptized . . . and lived much of his life in Saint Petersburg .

25 63.6 Friedmann died on September 16 , 1925 , at the age of 37 , from typhoid fever that
he contracted while returning from a vacation in Crimean Peninsula .

Error Type Error in sentence selection
(Query, Answer) (position played on team speciality, power forward)
System Output point guard

1 37.8 James Patrick Johnson (born February 20 , 1987) is an American professional basketball player
for the Toronto Raptors of the National Basketball Association ( NBA ).

3 22.9 Johnson was the starting power forward for the Demon Deacons of Wake Forest University

W
IK
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U

G
G

E
S

T
(W

S
)

Error Type Error in answer generation
(Query, Answer) (david blaine’s mother, Patrice Maureen White)
System Output Maureen

1 14.1 David Blaine (born David Blaine White; April 4, 1973) is an American magician, illusionist . . .
8 22.6 Blaine was born and raised in, Brooklyn , New York the son of Patrice Maureen White . . .

Error Type Noisy query & answer
(Query, Answer) (what are dried red grapes called, dry red wines)
System Output Chardonnay

1 2.8 Burgundy wine ( French : Bourgogne or vin de Bourgogne ) is wine made in the . . .
2 90.8 The most famous wines produced here . . . are dry red wines made from Pinot noir grapes . . .

Correctly Predicted Examples

W
R

L
O

N
G

(Query, Answer) (position held, member of the National Assembly of South Africa)

1 98.4 Anchen Margaretha Dreyer (born 27 March 1952) is a South African politician, a Member of
Parliament for the opposition Democratic Alliance , and currently . . .

(Query, Answer) (headquarters locations, Solihull)

1 13.8 LaSer UK is a provider of credit and loyalty programmes , operating in the UK and Republic . . .
4 82.3 The company ’s operations are in Solihull and Belfast where it employs 800 people .

W
S

(Query, Answer) (avril lavigne husband, Chad Kroeger)

1 17.6 Avril Ramona Lavigne ([vrłl] [lvin] / ; French pronunciation : ¡200b¿ ( [avil] [lavi] ) ;. . .
23 68.4 Lavigne married Nickelback frontman , Chad Kroeger , in 2013 . Avril Ramona Lavigne was . . .

Table 6: Example outputs from REINFORCE (K=1) with BOW sentence selection model. First column: sentence index (l).
Second column: attention distribution pθ(sl|d, x). Last column: text sl.

tion distribution over sentences, p(sl | d, x), for

different learning procedures. The increased fre-

quency of the answer string in WIKISUGGEST vs.

WIKIREADING LONG is evident in the leftmost

plot. SOFTATTEND and CHUNKBOW clearly dis-

tribute attention more evenly across the sentences

compared to BOW and CNN.

7 Related Work

There has been substantial interest in datasets

for reading comprehension. MCTest (Richard-

son et al., 2013) is a smaller-scale datasets focus-

ing on common sense reasoning; bAbi (Weston

et al., 2015) is a synthetic dataset that captures

various aspects of reasoning; and SQuAD (Ra-

jpurkar et al., 2016; Wang et al., 2016; Xiong

et al., 2016) and NewsQA (Trischler et al., 2016a)

are QA datasets where the answer is a span in

the document. Compared to Wikireading, some

datasets covers shorter passages (average 122

words for SQuAD). Cloze-style question answer-

ing datasets (Hermann et al., 2015; Onishi et al.,

2016; Hill et al., 2015) assess machine compre-

hension but do not form questions. The recently

released MS MARCO dataset (Nguyen et al.,

2016) consists of query logs, web documents and

crowd-sourced answers.

Answer sentence selection is studied with the

TREC QA (Voorhees and Tice, 2000), Wik-

iQA (Yang et al., 2016b) and SelQA (Jurczyk

et al., 2016) datasets. Recently, neural networks

models (Wang and Nyberg, 2015; Severyn and
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Figure 5: For a random subset of documents in the development set, we visualized the learned attention over the sentences
(p(sl|d, x)).

Moschitti, 2015; dos Santos et al., 2016) achieved

improvements on TREC datsaet. Sultan et al.

(2016) optimized the answer sentence extraction

and the answer extraction jointly, but with gold la-

bels for both parts. Trischler et al. (2016b) pro-

posed a model that shares the intuition of ob-

serving inputs at multiple granularities (sentence,

word), but deals with multiple choice questions.

Our model considers answer sentence selection as

latent and generates answer strings instead of se-

lecting text spans, and we found that WIKIREAD-

ING dataset suits our purposes best with some

pruning, which still provided 1.97 million exam-

ples compared to 2K questions for TREC dataset.

Hierarchical models which treats sentence se-

lection as a latent variable have been applied

text categorization (Yang et al., 2016b), extractive

summarization (Cheng and Lapata, 2016), ma-

chine translation (Ba et al., 2014) and sentiment

analysis (Yessenalina et al., 2010; Lei et al., 2016).

To the best of our knowledge, we are the first to

use the hierarchical nature of a document for QA.

Finally, our work is related to the reinforcement

learning literature. Hard and soft attention were

examined in the context of caption generation (Xu

et al., 2015). Curriculum learning was investigated

in Sachan and Xing (2016), but they focused on

the ordering of training examples while we com-

bine supervision signals. Reinforcement learning

recently gained popularity in tasks such as co-

reference resolution (Clark and Manning, 2016),

information extraction (Narasimhan et al., 2016),

semantic parsing (Andreas et al., 2016) and textual

games (Narasimhan et al., 2015; He et al., 2016).

8 Conclusion

We presented a coarse-to-fine framework for QA

over long documents that quickly focuses on the

relevant portions of a document. In future work we

would like to deepen the use of structural clues and

answer questions over multiple documents, using

paragraph structure, titles, sections and more. In-

corporating coreference resolution would be an-

other important direction for future work. We ar-

gue that this is necessary for developing systems

that can efficiently answer the information needs

of users over large quantities of text.
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