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We examine solidification in thin liquid films produced by annealing amorphous
Alq3 (tris-(8-hydroxyquinoline) aluminium) in methanol vapour. Micrographs acquired
during annealing capture the evolution of the film: the initially-uniform film breaks
up into drops that coarsen, and single crystals of Alq3 nucleate randomly on the
substrate and grow as slender ‘needles’. The growth of these needles appears to follow
power-law behaviour, where the growth exponent, γ , depends on the thickness of
the deposited Alq3 film. The evolution of the thin film is modelled by a lubrication
equation, and an advection–diffusion equation captures the transport of Alq3 and
methanol within the film. We define a dimensionless transport parameter, α, which
is analogous to an inverse Sherwood number and quantifies the relative effects of
diffusion- and coarsening-driven advection. For large α-values, the model recovers the
theory of one-dimensional, diffusion-driven solidification, such that γ → 1/2. For low
α-values, the collapse of drops, i.e. coarsening, drives flow and regulates the growth
of needles. Within this regime, we identify two relevant limits: needles that are small
compared to the typical drop size, and those that are large. Both scaling analysis and
simulations of the full model reveal that γ → 2/5 for small needles and γ → 0.29 for
large needles.

Key words: interfacial flows (free surface), low-Reynolds-number flows, lubrication theory

1. Introduction

An amorphous solid, i.e. a glass, can be ‘melted’ by raising its temperature above
its glass-transition temperature. Alternatively, introducing solvents, or other additives,
to the amorphous solid phase can reduce its glass-transition temperature below the
ambient temperature, a process known as plasticization. During plasticization, the
amorphous solid becomes a liquid at an ambient temperature that is above its glass-
transition temperature, but below its melting temperature. Applying this process to
organic semiconductors enables the growth of single crystals of organic electronics at
room temperature.
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Recent efforts to produce thin-film organic electronics have invigorated interest in
the solidification of thin, liquid films. Such films have been extensively studied in
the literature in the context of a wide variety of applications and physical effects
(see e.g. Oron, Davis & Bankoff 1997, for a comprehensive review). These systems,
often referred to as lubrication flows, share the commonality of widely disparate length
scales (i.e. the film thickness compared to variations in the other dimensions). This
disparity allows an asymptotic analysis in which inertial and higher-order terms of the
Navier–Stokes equations are neglected, resulting in a dramatic simplification of the
governing equations. Lubrication flows are particularly relevant to wet deposition (e.g.
drop-casting, spin-coating; see Liu et al. 2009) and post-deposition annealing (Bollinne
et al. 2003; Lee et al. 2004; Mascaro et al. 2005; Ishii et al. 2007; Xu, Shi & An
2008) of polymers and organic small molecules. These films can be destabilized by
intermolecular forces, which can transform an initially-uniform film into drops. Over
time, these drops combine to form larger drops, in a process known as coarsening
(Oron et al. 1997; Craster & Matar 2009). Understanding the dynamics in these thin
films can aid the control of film morphology, which has been shown to affect the
performance of organic electronic devices (Brinkmann et al. 1997; Dickey, Anthony &
Loo 2006; Becerril et al. 2008; Miller et al. 2008).

This desire to control film morphology has motivated numerous studies of
crystallization and self-organization in thin films. For example, Rabani et al. (2003)
observed pattern formation during the evaporation of solvent from a nano-particle
solution. Using a lattice model of a nano-particle/liquid/gas system, they demonstrated
qualitative agreement with the self-organization of cadmium-selenide nano-crystals
from a hexane solution. In more recent work (see e.g. Náraigh & Thiffeault
2007; Naraigh & Thiffeault 2010; Thiele 2011), researchers derived a continuum
model for thin films of binary fluids by combining a thin-film equation with an
advection–diffusion equation. Thiele (2011) demonstrated that these models can be
derived using gradient dynamics and extended this formulation to films of suspensions
and to solute–solvent systems. Naraigh & Thiffeault (2010) derived a set of equations
that capture the coupled effects of phase separation and free-surface variations in a
thin film of binary liquid. Further analysis of this model revealed equilibrium solutions
composed of extended domains in which the concentration field attained the extreme
limiting values, connected by smooth transitions associated with dips in the free
surface.

This paper focuses on a specific case of phase separation: long, slender crystals,
i.e. needles, grown from a thin liquid film during solvent-vapour annealing (Mascaro
et al. 2005; de Luca et al. 2007, 2008). In particular, Mascaro et al. (2005) produced
extremely high-aspect-ratio Alq3 (tris-(8-hydroxyquinoline) aluminium) needles up to a
centimetre long, with characteristic cross-sectional dimensions of less than a micron.
After evaporating thin (10–20 nm) films of amorphous Alq3 onto silicon and glass
substrates, Mascaro et al. annealed these films in a solvent vapour (chloroform or
methanol) at room temperature and atmospheric pressure to promote the growth
of single-crystal Alq3 needles (similar to the needle shown in figure 1). They
demonstrated that the rate of Alq3-needle growth and its morphology depended on
substrate topography, substrate properties, and solvent properties.

Motivated by Mascaro et al. we examine the growth of needle-like crystals from a
binary fluid mixture. Through experiments, numerical modelling, and analytic scaling
laws, we characterize the general growth process on planar substrates. Section 2
describes the experimental setup and annealing procedure for growing single-crystal
needles from a mixture of Alq3 and methanol. In §§ 3 and 4, the evolution of
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DropletsAlq3 needle Wetting layer

FIGURE 1. (Colour online) (a) Schematic of a needle growing into a fluid film. (b) Optical
micrograph of the area surrounding an Alq3 needle after annealing the Alq3 film for 3 h. The
rectangular needle (entering from the left of the image) is surrounded by a clear wetting layer
of fluid followed by a region characterized by small droplets. Note: the schematic is drawn
in a plane orthogonal to the substrate, while the micrograph shows a top-down view of the
substrate.
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FIGURE 2. (Colour online) Growth of Alq3 needles: a thin, amorphous film of Alq3 is
evaporated onto a half-inch-square glass substrate. The substrate is then placed in a sealed
chamber along with a container of methanol. The solvent vapour fills the chamber and
interacts with the Alq3 film to produce droplets and needles.

the thin film is modelled by a lubrication equation, and an advection–diffusion
equation captures the transport of Alq3 and methanol within the film. These equations
are solved numerically in § 5. In § 6, we derive scaling laws for the growth of
needles. These scaling laws provide a physical understanding of needle growth in the
diffusion-dominated and coarsening-dominated regimes. Section 7 compares the results
from experiments and simulations and suggests further experiments for the interested
researcher.

2. Experiments

2.1. Experimental procedure

The experimental procedure is outlined in figure 2. Thin, amorphous Alq3 films, with
film thickness HAlq3

ranging between 10–60 nm, were evaporated onto half-inch-square
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FIGURE 3. (a) Optical micrographs of needles for different thicknesses of Alq3 films
after annealing for 1–5 h. For HAlq3

= 60 nm, the inset shows a magnified region with a
40 µm scale bar and a ‘splotch’ with tapered needles growing from its periphery. (b) SEM
micrograph of rectangular needles growing from a common nucleation site after solvent-
annealing a film with HAlq3

= 15 nm.

glass substrates at low pressure (∼10−6 Torr) with deposition rates of 1.5–2.5 Å s−1

(see Mascaro et al. 2005 for details on preparing substrates and depositing Alq3).
After deposition, a substrate, along with a container of methanol, was placed in a
sealed chamber at room temperature and atmospheric pressure, for 1–5 h. During
this annealing period, a small portion of the substrate (1.4 mm × 1 mm) was imaged
using an optical microscope. We did not attempt to use higher-resolution imaging
techniques during the annealing process (e.g. scanning electron microscopy or atomic
force microscopy) because the solvent-rich atmosphere makes such imaging techniques
significantly more difficult.

2.2. Experimental results

A few minutes into the annealing process, images of the substrate as viewed through
a microscope darken, and later the substrate develops a speckled texture. This visual
transformation corresponds to an initially-uniform film breaking up into small drops
driven by either spinodal dewetting or hole nucleation (Lee et al. 2004). The first Alq3

crystals begin to appear during this transformation. These crystal needles tend to grow
in clusters surrounding a common nucleation point, as shown in figure 3. For thicker
films, these points of nucleation appeared as large ‘splotches’ (see the micrograph
for HAlq3

= 60 nm in figure 3) that were tens of microns in diameter; the periphery
of these splotches acted as nucleation sites for crystal needles. These nucleation sites
were not seeded; instead, it appears they came from imperfections during deposition or,
possibly, from particulate contamination during handling. It is interesting to note that
the morphology and thickness dependence of these splotches resembles hole formation
in nucleation-driven dewetting (see e.g. Becker et al. 2003). The thick rims of such
holes could serve as nucleation sites, which is in agreement with our observations.
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FIGURE 4. (Colour online) (a) Successive snapshots of a cluster of needles growing during
solvent-annealing. The top-left needle from the cluster is tracked over time in (b). (b) Slice
of micrograph pixels along the axis of a needle as a function of time. The line along the
top of the curved shape indicates the location of the tip of the needle as a function of time
and shows the needle growing from 5 to 44 µm over the course of the 3 h anneal. A dashed
line highlights the position of the needle tip and ends where needle growth stops. To the left
and right of the pixel-slice plot, are images of the needle 5 and 180 min into the annealing
process.

In experiments, Alq3 tends to solidify into single-crystal, high-aspect-ratio needles,
as shown in the scanning electron microscope (SEM) image in figure 3(b). Note that
Alq3-needle formation is not specific to these experiments; needle formation is also
observed in crystals grown from physical-vapour deposition (Tian et al. 2006) and
liquid solutions of Alq3 and solvent (Chen, Peng & Li 2008). Thus, it is likely that
Alq3 has an anisotropy in the growth due to an anisotropic surface energy, which
favours needle-like morphologies (Granasy et al. 2004). Nevertheless, the rectangular
geometry (see the SEM micrograph in figure 3b) breaks down for large HAlq3

. The
needles for HAlq3

= 60 nm are tapered and have a sharp (as opposed to flat) tip. In
addition, these tapered needles grow along slightly curved paths, in contrast to the
straight paths observed in thinner films.

For rectangular needles, we track their lengths in experiments by taking a one-
dimensional slice of pixels along the needle’s long-axis. When sequential pixel slices
are placed side-by-side, they form a simple visualization of the evolution of the needle
length, as shown in figure 4. The dark curved line in figure 4(b) gives the position of
the needle tip as a function of time and corresponds to the length of the needle, since
the pixel slices start at the base of the needle.

Needle growth appeared to exhibit a power-law behaviour over one decade, such
that the needle length grows like

Lneedle ∼ (T − T0)
γ , (2.1)

where T is time, T0 is the time of nucleation, and γ is the growth exponent. In our
experiments, T0 was taken to be the start of the experiment. While some needles may
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FIGURE 5. Histogram of growth exponents from solvent-annealing experiments. (a) 15 nm
Alq3 film; (b) 30 nm Alq3 film.

nucleate at a slightly later time, we found that fitting T0 for each needle did not have
a significant impact on the long-time behaviour nor on the measured growth exponents.
The dashed line in figure 4(b) highlights the position of the needle tip and spans the
duration of this power-law regime. Needle growth slows down over time, as shown in
figure 4(b), such that 0 < γ < 1. Simulations, discussed later in this paper, suggest that
this slowing of growth is due to the depletion of liquid Alq3: at late times, growth
saturates as nearby liquid Alq3 solidifies, thus reducing the availability of mobile
material.

Needles exhibited inconsistent growth exponents due to unpredictable nucleation
behaviour. The randomness associated with the location, orientation, and time of
nucleation can lead to needles that interfere with each other, local concentrations
that are not initially uniform, and needles with different widths/thicknesses. To
mitigate the influence of these growth variations, we measure the growth of many
needles and look for statistically-significant growth exponents. Figure 5 compares the
growth exponent, γ , for Alq3 needles growing from a solvent-annealed Alq3 film
of thickness HAlq3

= 15 nm and HAlq3
= 30 nm. Despite the wide variation in the

growth exponent, there are distinct peaks at γ ≈ 0.43 and γ ≈ 0.33 for HAlq3
= 15 nm

and HAlq3
= 30 nm, respectively. Needles in thinner films failed to grow sufficiently

long for measurement due to limited supply of Alq3. In thicker films, needles were
tapered and grew with slightly curved paths, as discussed earlier. These morphological
differences were accompanied by irregular growth behaviour and will not be discussed
further in this paper.

3. Physical picture

In these experiments, methanol vapour interacts with a solid Alq3 film to produce
a liquid mixture. Initially, Alq3 is deposited onto glass substrates as an amorphous
solid, i.e. a glass. During annealing, the presence of solvent imparts mobility to Alq3

molecules and reduces its glass-transition temperature. In polymers, this reduction of
the glass-transition temperature is known as plasticization (Sears & Darby 1982), a
term that has also been extended to colloidal systems, where a mixture of particles
of different sizes leads to an entropically-induced plasticization effect (Gotze &
Voigtmann 2003). In this paper, we assume that the Alq3 film has absorbed enough
methanol to become liquid; thus, evolution of the Alq3–methanol film is governed
by the dynamics of thin liquid films. Furthermore, we neglect condensation and
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FIGURE 6. (Colour online) Schematic of a crystal needle growing in a thin, liquid film.

evaporation of solvent during needle growth. In what follows, we consider a time
after a needle has nucleated from the binary mixture, as depicted in figure 6.

The mixture of Alq3 and methanol forms a thin, liquid film with characteristic film
thickness H0 and characteristic length L in the plane of the film. (For comprehensive
reviews of thin-film dynamics see Oron et al. 1997; Craster & Matar 2009). If H0 ≪ L,
the lubrication approximation (see e.g. Oron et al. 1997) yields an evolution equation
for the height, H(X, T), of the fluid mixture

∂H

∂T
=

∂

∂X

(

H3

3µ

∂P

∂X

)

, (3.1)

where µ is the effective viscosity of the mixture, P(X, T) is the local pressure
averaged over the film thickness, and X is the coordinate along the long axis of
the needle. In this and all subsequent equations, we consider a one-dimensional slice
of the thin film along the axis of the needle, as depicted in figure 1. Equation (3.1) is
essentially an expression of mass conservation with a fluid flux Q = −(H3/3µ)∂P/∂X.

For films that are approximately 100 nm thick or less, intermolecular interactions
between the liquid, substrate, and surrounding vapour become important. For van
der Waals interactions, the interaction strength is given by the combined Hamaker
constant for the solid–liquid–vapour system, ASLV (Israelachvili 1991). If the van der
Waals attraction is balanced by a fourth-order short-range repulsion, we can write the
intermolecular pressure as

Π =
ASLV

6πE 3

[

(

E

H

)3

−

(

E

H

)4
]

, (3.2)

where E is the equilibrium film thickness at which short-range repulsion balances
long-range attraction. This intermolecular pressure (Sharma 1993) is also known as
the disjoining pressure (Glasner & Witelski 2003), generalized disjoining pressure
(Oron et al. 1997), disjoining–conjoining pressure (Gomba & Homsy 2009),
thermomolecular pressure (Wettlaufer & Worster 2006), and Derjaguin pressure
(Starov & Velarde 2009). Other exponents are commonly used in the intermolecular
pressure; for example, a 3–9 pressure represents a Lennard–Jones fluid, and a 2–3
pressure represents a polar fluid. (For an overview of different contributions to the
intermolecular pressure, see Teletzke, Davis & Scriven 1988.) In what follows, a 3–4
pressure is used, which is common in dewetting studies (Glasner & Witelski 2003).
Note, however, that the choice of exponent does not qualitatively affect the results
presented in this paper. The choice of pressure exponents controls the time constant
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for the dewetting instability, but the power-law behaviour described in the following
sections applies only after dewetting. In particular, note that the scaling analysis
presented in § 6 is not influenced by the exponents in Π .

In addition to the intermolecular pressure, surface tension, σ , produces a pressure
jump across a curved liquid/vapour interface; thus, the total fluid pressure is

P(X, T) = −σ
∂2H

∂X2
+ Π(H). (3.3)

The competition between surface tension and intermolecular forces causes the initially-
uniform film to break up into drops through either spinodal or nucleation-driven
dewetting (Lee et al. 2004). Note that the short-range repulsive force in Π prevents
the formation of dry spots; i.e. repulsion prevents H → 0. Although the term
‘dewetting’ suggests complete removal of fluid, here and in the literature (see e.g.
Becker et al. 2003; Glasner & Witelski 2003; Craster & Matar 2009), it describes
the progression toward an ultra-thin film (H ≈ E ) rather than film rupture. After
dewetting, the drops coarsen, during which capillary pressure dominates in drops,
while intermolecular pressure dominates in the ultra-thin film forming a slowly-
evolving, quasi-steady configuration. In this paper, we assume that drop formation
is driven by spinodal dewetting. Although this assumption will affect the dewetting
dynamics in simulations (e.g. the dewetting time scale), it will not significantly
influence coarsening behaviour, which is the focus of this paper.

In our system, the fluid film is composed of a binary mixture of Alq3 and solvent
molecules; hence, a second equation is required to track motion of solvent relative
to the mixture. The composition of the film is characterized by a local solvent
concentration, Φ(X, T), which is averaged over the film thickness. It is important
to emphasize that we write these equations in terms of the solvent concentration, not
the solute concentration, as is common in much of the literature (see e.g. Thiele
2011). Solvent is advected by fluid flow and driven down concentration gradients by
diffusion. Combining these effects leads to an advection–diffusion equation describing
the transport of solvent:

∂(ΦH)

∂T
=

∂

∂X

(

Φ
H3

3µ

∂P

∂X
+ DH

∂Φ

∂X

)

, (3.4)

where D is the diffusivity of solvent in the mixture. The first term on the right-hand
side describes solvent that is advected with the flow (see e.g. Zhou et al. 2005; Cook,
Bertozzi & Hosoi 2008), and the second term describes transport of solvent relative to
the mixture via diffusion. Note that Φ is the volume fraction of solvent averaged over
the film thickness, and we neglect variations of volume with concentration, as reflected
in (3.4). Thus, the diffusion term does not produce net mass flux, which is consistent
with the absence of a diffusion term in (3.1). Furthermore, we have assumed that
all material properties are independent of concentration in order to make the model
tractable. This assumption implies that the system is far from the glass transition, since
material properties will vary rapidly with small changes in concentration near the glass
transition.

During the deposition process, the Alq3 film is frozen into a metastable, glassy state
(Mascaro et al. 2005). After plasticization, Alq3 molecules are free to crystallize. At
the solid/liquid interface of a growing crystal needle, we assume local equilibrium at
the needle tip (Langer 1980; Balluffi, Allen & Carter 2005), such that the solvent
concentrations at the tip are fixed at Φsolid and Φtip on the solid and liquid sides of the
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Dimensionless parameter Symbol Definition Order of magnitude

Surface tension S
ρσH0

4

3µ2L3
10−8

Intermolecular attraction A
ρASLVH0

3

18πµ2E 3L
10−6

Diffusivity D
ρDH0

µL
10−6

Transport coefficient α =
D

A

18πµDE 3

ASLVH0
2

1

TABLE 1. Relevant dimensionless groups for the binary thin film. These values are
estimated using values for pure methanol with density ρ = 0.8 g cm−3 and viscosity
µ = 5 × 10−4 Pa s1. The diffusivity, D = 0.4 cm2 s−1, is estimated by considering an
Alq3 molecule in pure methanol. A glass/methanol/air system provides an estimate of the

Hamaker constant A123 = 10−20 kg m2 s−2. Length scales of L = 10 µm and H0 = 10 nm
are estimated from experiments.

interface, respectively. These fixed values provide the relevant boundary condition at
the needle tip if solidification is limited by transport of Alq3, not by interface kinetics.
Under these conditions, growth of the needle is limited by transport of Alq3 to the
needle; thus, the needle-tip velocity, Vtip, is given by the Stefan condition for moving
boundaries (Langer 1980):

Vtip =
∂Xtip

∂T
=

D

Φsolid − Φtip

∂Φ

∂X

∣

∣

∣

∣

tip

. (3.5)

Here, Φsolid is small (Alq3-rich), and Φtip is comparatively large (solvent-rich), such
that the needle grows in the opposite direction to the concentration gradient.

4. Mathematical model

Before developing a dimensionless mathematical model, we define an initial film
thickness H0, a characteristic horizontal length L, and characteristic time scale
T0 = ρH0L/µ. Using these length and time scales, we define the dimensionless
parameters

S =
ρσH0

4

3µ2L3
, (4.1)

A =
ρASLVH0

3

18πµ2E 3L
, (4.2)

D =
ρDH0

µL
, (4.3)

which measure the magnitude of surface tension, intermolecular interactions, and
diffusivity relative to viscous effects (see table 1). Note that S and D are proportional
to an inverse capillary number and an inverse Schmidt number (i.e. mass-transfer
Prandtl number), respectively.
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Following the work of Kao, Golovin & Davis (2006), we rescale X and T by
dimensionless length and time scales proportional to the most unstable wavelength and
characteristic time:

x =

√

A

S

X

L
, t =

A 2

S

T

ρH0L/µ
. (4.4)

This scaling reduces the governing equations, (3.1), (3.4) and (3.3), into dimensionless
form:

∂h

∂t
=

∂

∂x

(

h3 ∂p

∂x

)

, (4.5a)

∂φh

∂t
=

∂

∂x

(

αh
∂φ

∂x
+ φh3 ∂p

∂x

)

, (4.5b)

p = −
∂2h

∂x2
+

[

(ε

h

)3

−
(ε

h

)4
]

. (4.5c)

The only remaining parameters in these equations are ε = E /H0 (the dimensionless
equilibrium film thickness) and

α =
D

A
, (4.6)

a dimensionless transport parameter relating the speed of diffusion to the speed of
advection driven by the collapse of drops, i.e. coarsening, which, itself, is driven by
the strength of intermolecular attraction. For high values of α, diffusion dominates; in
contrast, advection due to coarsening dominates at low α-values. Thus, this transport
parameter is analogous to an inverse Sherwood number or mass-transfer Nusselt
number.

The needle velocity in (3.5) is rescaled by substitution of the rescaled length and
time from (4.4), such that

vtip = −α
∂φ

∂x

∣

∣

∣

∣

tip

. (4.7)

Note that the solvent concentration above, and in (4.5b), is expressed in dimensionless
terms as

φ =
Φ − Φsolid

Φtip − Φsolid

. (4.8)

This rescaling fixes φsolid = 0 and φtip = 1, such that φsolid − φtip = −1 when rewriting
(3.5) as (4.7). The governing equations, given by (4.5), combined with the boundary
condition at the needle tip (equation (4.7)), constitute the mathematical model for the
thin-film mixture of Alq3 and solvent.

5. Numerical results

5.1. Numerical details

The governing equations given by (4.5) were solved numerically using centred finite
differences and fully-implicit time steps (Press et al. 1992). Note that the concentration
is decoupled from the film thickness in (4.5), such that φ can be solved after solving
for h at each time step. An adaptive proportional–integral–derivative (PID) control
scheme (Valli, Carey & Coutinho 2005) varied the time steps to minimize run time.
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FIGURE 7. Evolving thin film. A solid needle grows from the left. At t = 0, (a), the fluid
film has a uniform, but rough, thickness. At a characteristic time (here at t = 256, b) the
uniform film becomes unstable and breaks up into small drops (t = 1000, c). At late times,
(d), drops collapse and coalesce to form larger, more coarsely-spaced drops. The grey dotted
line indicates the equilibrium ultra-thin-film thickness.

At each time step, the system was solved using a two-step procedure: first we solved
for h and φ using (4.5), while holding the needle tip fixed; next, we advanced the
needle tip using (4.7). During the solution of (4.5), no-flux boundary conditions were
enforced at both edges of the fluid domain (i.e. the right edge of figure 7 and at the
tip of the needle on the left side). At the boundary opposite the needle tip, no flux
is equivalent to a symmetry boundary condition with zero first- and third-derivatives
of the film thickness, h (as described in Glasner & Witelski 2003). At the needle tip,
this no-flux boundary condition was modified to account for the mesh spacing that was
deformed by the needle tip (see Yu 2011, for details). The fluid was assumed to wet
the tip of the needle, such that the height on the solid and liquid sides of the tip are
equal; i.e. htip = hsolid , where the subscript ‘tip’ denotes values on the liquid side of
the needle tip. After solving (4.5) with no-flux boundary conditions, the needle tip was
advanced using (4.7), and the concentration on the solid and liquid sides of the needle
tip were fixed at φsolid and φtip. Thus, the needle tip switches from a no-flux boundary
to an absorbing boundary, during which solute was removed from the fluid domain and
added to the needle. This mass transfer increases the needle length and reduces both
the length of the fluid domain and the fluid height, since the needle is taller than the
nearby fluid.

The main parameters of the simulation are the dimensionless equilibrium film
thickness (ε), the initial concentration of the fluid (φ0), the height of the needle (hsolid ),
and the transport parameter (α). In the following simulation results, ε = 0.5, φ0 = 0.5,
2 < hsolid < 64, and 10−4 < α < 101. Note that varying φ0 alters the magnitude of the
tip velocity, but it does not affect the growth exponent of the needle. Furthermore,
varying ε alters the characteristic time for dewetting, but the growth exponent
measured after dewetting is unchanged. These details are discussed further in Yu
(2011).
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FIGURE 8. (Colour online) Evolution of drop positions during coarsening. Each line in the
bottom plot denotes the position of a drop centre as a function of time. The termination of
a line coincides with the collapse of a drop. The schematic at the top denotes the thin-film
profile at t = 108 with the drop centres highlighted by dots.

5.2. Observed phenomena

At the start of simulations, a seed of solid Alq3 is placed at the left edge of the
domain to nucleate the crystal, as shown in figure 7(a). Solvent concentration in the
fluid domain is initialized with a uniform value (i.e. φ0 = constant for x > xtip), and the
thin-film thickness is initialized as h0 = 1 + δ(x), where δ(x) adds uniform noise with
an amplitude of approximately 1/10th of the initial film thickness. This magnitude is
comparable to the expected roughness of the thin film in experiments.

At early times, surface tension smooths the initially-rough film, as shown at t = 256
in figure 7(b). After this initial smoothing, the competition between intermolecular
forces and surface tension drives the formation of drops, as shown on the right
side of figure 1. From linear stability analysis (see Craster & Matar 2009, for an
overview), we can calculate the dimensionless characteristic time and wavelength for
this instability:

τdewet =
4

(3ε3 − 4ε4)
2
, (5.1)

λdewet = 2π

√

2

(3ε3 − 4ε4)
. (5.2)

The simplicity of these relations is due to the fact that the dimensionless parameters
in (4.4) were based on this stability analysis. Equations (5.1) and (5.2) tell us that the
initially-uniform film is unstable to perturbations when ε < 3/4. For all simulations
in this paper, ε = 0.5 such that the characteristic time for instability is τdewet = 256.
The undulations in the film at τdewet lead to the formation of drops by t = 1000. At
late times, drops collapse and coalesce to form larger, more coarsely-spaced drops
(figure 7d). This coarsening process is visualized in figure 8, which shows the position
of drop centres over time. The abrupt termination of drop centres reflects the fact that
drops do not collide during coarsening. Instead, a collapsing drop pushes fluid through
the ultra-thin film to adjacent drops (Glasner & Witelski 2003, 2005). During this
transformation, the needle grows from the left edge of the domain. Since the needle is
Alq3-rich, the fluid near the needle tip becomes solvent-rich as shown in figure 7(d).
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FIGURE 9. (Colour online) Growth rate as a function of α. At high α, diffusion dominates
and the growth rate approaches t1/2. At low α, coarsening dominates and the growth rate
approaches t0.29. Inset: log–log plot of xtip (needle length) as a function of time for low α

(10−3; lower curve) and high α (10; upper curve). The dotted curves correspond to growth
transients. The upper and lower curves in the inset correspond to the upper and lower square
markers in the main plot.

In the numerical model, we have assumed that fluid wets the needle such that a
meniscus forms at the needle tip. When the needle height is larger than the typical
drop height, then the pressure in the meniscus will be lower than the pressure in
the film. This pressure difference drives flow toward the needle tip and promotes
the collapse of drops near the tip. Higher rates of drop collapse lead to a larger-
than-typical separation between the needle tip and the nearest drop. In this paper,
this separation is called the wetting layer, which is shown schematically in figure 11
(denoted by ℓwet). These wetting layers match the clear regions surrounding needles in
experiments, as shown in figure 4. Note that no wetting layer is present in figure 7
because the drop heights are always comparable to or larger than the needle height in
this simulation.

5.3. Needle growth

The growth of needles is captured by the growth exponent, γ , where ℓneedle =
Lneedle/L ∼ tγ . Note that ℓneedle is equivalent to xtip since the needle grows from the
origin. Simulation results shown in figure 9 indicate that γ grows monotonically with
the transport parameter, α. The simulation data in figure 9 focus on needle growth
during an intermediate time range. At early times, simulations display a transient
growth (see the lower curve in the inset of figure 9). This transient is a numerical
artifact, due to finite spatial resolution, that lasts until the diffusion front grows
beyond the first few mesh points and has a characteristic time τnumerical ∼ 1x2/4α

(see Yu 2011, C.2.2 for more details). Furthermore, the dewetting process, with
characteristic time τdewet , also alters needle growth. The growth exponents reported
here are measured after these transients. In addition, two late-time effects are ignored:
(i) when all drops have collapsed, the dynamics change since droplet collapse can no
longer feed the needle, and (ii) when the diffusive front at the growing needle tip
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reaches the no-flux boundary opposite the needle, needle growth slows. This boundary
effect is analogous to the saturation of needle growth in experiments.

In addition to the late-time transients discussed above, we encounter an additional
difficulty when drops grow much larger than the needle. When drops are small
compared to the needle, the collapse of an individual drop has only a minor effect
on needle growth, and the average of many drop collapses governs needle growth
via advection. As time progresses, however, the film coarsens such that drops can
grow larger than the needle, and each droplet collapse near the needle tip noticeably
perturbs the growth rate of the needle resulting in discontinuities that increase in
magnitude and rarity as time progresses. These late-time dynamics are not analysed in
the following scaling analysis which assumes a continuous growth rate of the needle.

6. Needle growth regimes

The simulation results in figure 9 suggest asymptotes to true power laws in γ for
high and low values of α that are connected by a cross-over regime for moderate
values of α. In the following, we derive asymptotic values of γ for diffusion-
dominated and coarsening-dominated regimes.

6.1. High α-values: diffusion-dominated needle growth

For high α-values, transport via diffusion dominates: solvent diffuses through the
liquid faster than advection can carry it. Thus, in the high-α limit, this system reduces
to the problem of one-dimensional diffusion,

∂φ

∂t
= α

∂2φ

∂x2
, (6.1)

which, for an infinite domain, can be solved by a similarity solution (see e.g. Crank
1975). The one-dimensional diffusion equation with a Stefan boundary condition, i.e.
(4.7), yields an expression for the dimensionless needle length: ℓneedle ∼ t1/2.

6.2. Low α-values: coarsening-dominated needle growth

Coarsening causes drops to collapse and drives flow through the liquid film. For low
α-values, this flow carries solvent through the film faster than diffusion. Near the
needle tip, collapsing drops drive fluid toward the needle tip. However, not all of that
fluid can be incorporated into the needle since it has a specific composition, i.e. φsolid .
Since the needle is solvent-poor, left-over solvent builds up in front of the needle tip
and slows down needle growth. Thus, the needle growth rate depends on the local
solvent concentration. This concentration is governed by diffusion, the flux of fluid
toward the needle tip, and the rejection of solvent at the needle tip, which is a local
source of solvent.

In simulations, the needle length scales like a power law in time. To that end, we
seek solutions in which the meniscus length, ℓm, and the difference in concentration
between the needle tip and meniscus edge, 1φ = φtip − φm, change like power laws:

ℓm ∼ ta, 1φ ∼ t−b, (6.2)

where exponents a and b are positive. As solvent builds up in front of the needle,
φm asymptotically approaches φtip, such that 1φ → 0; this leads to a decaying power
law, as suggested by the negative exponent. Furthermore, we expect these variables to
asymptote, such that their exponents should be less than 1.
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FIGURE 10. (Colour online) A meniscus connects the needle tip to a thin wetting layer with
approximate thickness ε. Fluid flux across the right edge of the meniscus, xm, is given by qwet.
On the left edge, Alq3 leaves the meniscus as it solidifies into the solid crystal needle.

To solve for the velocity of the needle, we apply mass conservation of the mixture
on a control volume around the needle tip, as shown in figure 10. At low α-values,
mass consumed by the growing needle must balance the fluid flux through the wetting
layer and the mass change in the meniscus. Thus, the mass balance around the moving
control volume in figure 10 can be written as

vtip hsolid + V̇m = −qwet + vtip ε, (6.3)

where qwet is the flux through the wetting layer, vtip is the needle velocity, and V̇m is
the time derivative of the fluid volume in the meniscus. Here, qwet can vary in time,
but it is spatially invariant because h ≈ ε in the wetting layer. The needle velocity adds
to the flux because we take a reference frame that moves with the needle tip.

The needle velocity given by (4.7), can be approximated as

vtip ≈ −α
φm − φtip

ℓm

∼
1φ

ℓm

∼ t−a−b. (6.4)

Since a and b are positive, (6.4) suggests that the velocity slows over time.
To approximate the volume of the meniscus in (6.3), we first focus on the shape of

the meniscus. When the height at the needle tip is large, the majority of the meniscus
is much higher than the equilibrium thin-film height, ε. Thus, surface-tension effects
dominate intermolecular forces and the meniscus is roughly parabolic:

h ∼ hsolid

(

x

ℓm

)2

. (6.5)

This shape gives a meniscus volume with a time rate of change

V̇m =
d

dt

∫

ℓm

hdx ∼ hsolid ℓ̇m ∼ ta−1. (6.6)

The flux in (6.3) is driven by pressure differences between the meniscus and the
nearest drop. The meniscus at the needle tip creates a low-pressure region (because
∂2h/∂x2 > 0), while the curvature of the drop closest to the needle tip, i.e. the first
drop, creates a high-pressure region (because ∂2h/∂x2 < 0). The resulting flow through
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FIGURE 11. (Colour online) Schematic of needle growing from left to right. A meniscus,
with pressure pm, connects the needle tip and a thin wetting layer. Fluid flow to the needle is
driven by the pressure difference between the meniscus and the drop closest to the needle tip,
i.e. the first drop.

the wetting layer is

qwet = −h3 ∂p

∂x
∼ −ε3 p1 − pm

ℓwet

, (6.7)

where p1 is the pressure of the first drop, and ℓwet is the length of the wetting layer as
shown in figure 11. The scaling for this flux depends on the height of the needle and
will be discussed in the following sections.

6.3. Needle growth for low α-values and small hsolid

When the height of the needle, hsolid , is roughly the same size as (or smaller than) the
typical drop, we say the needle is small. In this limit, the pressure in the meniscus is
comparable to that of the typical drop, 〈p〉, and the distance from the needle tip to the
first drop is comparable to the typical drop spacing, 〈ℓ〉; thus, the flux through the film,
given by (6.7), simplifies to qwet ∼ −ε3〈p〉/〈ℓ〉. This calculation is identical to that in
Glasner & Witelski (2003), in which they compute that the typical drop pressure and
drop spacing for coarsening films scale as 〈p〉 ∼ t−1/5 and 〈ℓ〉 ∼ t2/5, such that

qwet ∼ t−3/5. (6.8)

To solve for the needle velocity, we note that moderate meniscus pressures
correspond to meniscus lengths that are insensitive to pressure variations (see (6.12)
below). Thus, the change in meniscus volume is negligible in this small-hsolid regime,
and (6.3) simplifies to

vtip ∼ qwet ∼ t−3/5. (6.9)

Integrating once in time gives a needle length that scales as

ℓneedle ∼ t2/5. (6.10)

Figure 12 compares this asymptotic limit for ℓneedle to simulation results. As hsolid

approaches 1 (the initial thin-film thickness), the growth exponent approaches 2/5, as
predicted.

6.4. Needle growth for low α-values and large hsolid

When the needle height is much larger than the typical drop height, we say that the
needle is large. For large needles, the pressure in the meniscus region is large in
magnitude, i.e. | pm |≫| 〈p〉 |, such that (6.7) becomes

qwet ∼ ε3pm/ℓwet. (6.11)
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FIGURE 12. (Colour online) Growth rate as a function of the height of the needle, hsolid .

Before deriving a scaling law for flux through the wetting layer, we first derive scaling
laws for the meniscus pressure, pm, and the length of the wetting layer, ℓwet.

6.4.1. Meniscus pressure
If the needle tip is large, the meniscus height is far from the ultra-thin-film

thickness, ε, such that surface tension dominates and the meniscus is approximately
parabolic; thus, we can relate the meniscus pressure to the length of the meniscus:

pm ∼ −
hsolid − ε

ℓm
2

. (6.12)

Since only ℓm is time-dependent on the right-hand side of this expression, we can
write

pm ∼ −t−2a. (6.13)

6.4.2. Growth of the wetting layer
The growth of the wetting layer is governed by the collapse of the drop nearest the

needle tip, i.e. the first drop (see figure 11). Following the work of Glasner & Witelski
(2003), we derive an evolution equation for the pressure in the first drop using mass
conservation:

dp1

dt
∼ ε3p1

3

[

〈p〉 − p1

〈ℓ〉
+

pm − p1

ℓwet

]

. (6.14)

At early times, the meniscus pressure dominates, such that

dp1

dt
∼

1

ℓwet

p1
3pm. (6.15)

The wetting layer grows after the previous (k − 1) first droplet collapses, at which time
ℓwet

k → ℓwet
k−1 + 〈ℓ〉. Before the collapse, the length of the wetting layer is roughly

constant. Note that this assumption is true only if the droplet collapses much faster
than the meniscus and the needle grow.

In the above differential equation, we can separate variables and integrate to find

p1
−2 ∼ −

1

ℓwet

t1−2a + C. (6.16)
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As the droplet collapses, the pressure should diverge (since small droplets have high
pressure). Thus, the droplet pressure can be written as

p1 ∼

[

1

ℓwet

(tc − t)1−2a

]−1/2

, (6.17)

where tc is the time period for droplet collapse of the kth first drop. Note that t here is
measured starting when the previous first drop (k − 1) collapses; thus, at t = 0, the kth
drop should have the same pressure as a typical drop, i.e. p1(t = 0) = 〈p〉, such that

tc ∼
(

ℓwet〈p〉−2
)1/(1−2a)

. (6.18)

Each time a droplet collapses, the wetting layer grows in discrete steps. This
discrete growth can be approximated over many steps by a continuous process:

dℓwet

dt
∼

〈ℓ〉

tc

. (6.19)

Far away from the needle tip, the dynamics are governed by coarsening effects
alone such that the typical drop spacing scales as 〈ℓ〉 ∼ t2/5, and pressure scales
as 〈p〉 ∼ t−1/5 (see Glasner & Witelski 2003). Combining these scalings with (6.13),
(6.18), and (6.19) gives

dℓwet

dt
∼ 〈ℓ〉

(

ℓwet
−1〈p〉2

)1/(1−2a)
. (6.20)

Separating variables and integrating gives a wetting layer that grows as

ℓwet ∼ t(5−14a)/(10−10a). (6.21)

6.4.3. Needle growth
Now that scalings for pm and ℓwet are known, the flow rate in (6.11) becomes

qwet ∼ −t−(5+6a−20a2)/(10−10a). (6.22)

Note that qwet is negative since the flux moves in the negative x-direction. We now
return to (6.3), and substitute the scalings for the needle velocity (6.4), meniscus
volume (6.6), and flux (6.22), which gives

t−a−b + ta−1 ∼ t−(5+6a−20a2)/(10−10a). (6.23)

All terms balance when a ≈ 0.29 and b ≈ 0.42, such that the needle velocity scales
like vtip ∼ t−0.71. Finally, integrating once in time gives a needle length which scales as

ℓneedle ∼ t0.29. (6.24)

This scaling is confirmed in simulations, in which large values of hsolid lead to growth
exponents that approach 0.29, as shown in figure 12.

7. Discussion

To examine consistency between simulations and experiments, we assume that the
transport parameter scales as α ∼ HAlq3

−2. Strictly speaking α ∼ H0
−2, where H0 (the

initial thickness of the fluid mixture) can differ from HAlq3
due to the addition of

methanol. All other parameters in α are collected as a fitting parameter. Nevertheless,
when estimated using the material properties of pure methanol, α is order one
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FIGURE 13. (Colour online) (a) Micrographs of needle growth for different thicknesses of
Alq3 films (from figure 3). (b) Growth exponents from simulations and experiments as a
function of α. The two grey bars extend from the lower to upper quartile of the experimental
data; while the line bisecting each bar marks the median of the data. The filled circles mark
growth exponents from simulations. Experiments in the low-α regime produced inconsistent
growth rates and those in the high-α regime failed to grow needles. The shaded region on
the left indicates α values at which irregular crystalline morphologies are observed in the
experiments. The shaded region on the right indicates film thicknesses that are sufficiently
thin such that limited growth is observed and our continuum model breaks down.

(see table 1). The grey bars in figure 13 extend from the lower to upper quartile (i.e.
the interquartile range) of the experimental data. The median of the experimental data,
marked by the horizontal lines bisecting the grey bars, matches the trend predicted
in simulations; i.e. the growth rate decreases for increasing film thickness. The
large variations of γ in experiments (grey bars) arise from unpredictable nucleation
behaviour, as discussed in § 2. Although γ is plotted for a wide range of α-values,
we only predict power-law behaviour at high and low α; the intermediate α-values
probably constitute a cross-over regime between these asymptotic, power-law regimes.

In experiments, Alq3 needles were typically >300 nm thick. Assuming that the
thickness of thin-film mixture is roughly the same as the original Alq3 film, needles
will be more than an order of magnitude thicker than the thin film. Thus, experiments
are in the large-hsolid regime and the growth exponent should approach 0.29 for small
values of α, as depicted in figure 13.

While available experimental data are consistent with our scaling and numerics, the
α-range in the experimental data presented in figure 13 is quite limited. Smaller α-
values, attained with thicker Alq3 films, produced crystals with a tapered (as opposed
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Low α High α
(coarsening) (diffusion)

Small needles ℓneedle ∼ t2/5

ℓneedle ∼ t1/2

Large needles ℓneedle ∼ t0.29

TABLE 2. Summary of scaling laws in various growth regimes.

to rectangular) shape and highly-irregular growth rates (see left-most micrograph in
figure 13a). In the high-α limit (thinner films), transport slowed dramatically and
failed to produce needles reliably (see right-most micrograph in figure 13a). These
issues prevented us from drawing a complete picture of the α-dependence. Other
material/solvent/substrate combinations should be investigated to explore both lower
and higher α-values.

In order to integrate single-crystal organic semiconductors into practical
(opto)electronic devices, a physical understanding of crystal growth mechanisms in
thin films is essential. In this paper, we have investigated the growth of single-
crystal needles of Alq3 from amorphous Alq3 films annealed in methanol vapour.
We developed a physical model describing solidification from thin-film liquid mixtures,
along with a set of scaling laws that provide physical insight into the growth behaviour
observed in numerical simulations.

In experiments, we annealed thin, amorphous films of Alq3 in solvent vapour to
promote needle growth, and captured real-time images of the growth process. Upon
solvent-vapour annealing, the initially-uniform Alq3 film formed drops and nucleated
crystal needles. Needle growth exhibited a power-law behaviour, with the needle
length scaling as ℓneedle ∼ tγ .

The governing equations were rescaled to produce a dimensionless transport
coefficient, α, which relates diffusion to coarsening. For high α-values (diffusion-
dominated regime), the needle length scaled as ℓneedle ∼ t1/2; this growth matches
the theory of one-dimensional, diffusion-dominated solidification. For low α-values
(coarsening-dominated regime), there were two sub-regimes: (i) small needles (i.e.
hsolid . 〈hdrop〉) with needle lengths scaling as ℓneedle ∼ t2/5, and (ii) large needles
(i.e. hsolid ≫ 〈hdrop〉), with ℓneedle ∼ t0.29. Needle growth in these low α-regimes was
dominated by fluid flux driven by droplet collapse, i.e. coarsening. These growth
regimes are summarized in table 2. In order to test the validity of this analysis,
we varied the thickness of the Alq3 film, HAlq3

, since α ∼ H0
−2 ∼ HAlq3

−2. The
measured growth exponents were consistent with the predicted range, and increased
with increasing α, as predicted by the model.

Although these experiments were
conducted on a single system, Alq3–methanol–glass, the results should be applicable
to many molecule–solvent–substrate systems. In particular, the behaviour of the system
is governed by a set of dimensionless parameters, primarily α, which could be tuned
using different molecules, solvents, and substrates. While our system falls primarily in
the cross-over between coarsening-dominated and diffusion-dominated regimes, other
material combinations should be investigated to shed light on the high- and low-α
limits.
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the morphology and crystalline structure of lithium phthalocyanine thin films and powders.
Thin Solid Films 292 (1–2), 192–203.

CHEN, W., PENG, Q. & LI, Y. 2008 Alq(3) nanorods: promising building blocks for optical devices.
Adv. Mater. 20 (14), 2747–2750.

COOK, B. P., BERTOZZI, A. L. & HOSOI, A. E. 2008 Shock solutions for particle–laden thin films.
SIAM J. Appl. Maths 68 (3), 760–783.

CRANK, J. 1975 Mathematics of Diffusion. Clarendon.

CRASTER, R. V. & MATAR, O. K. 2009 Dynamics and stability of thin liquid films. Rev. Mod.
Phys. 81 (3), 1131–1198.

DICKEY, K. C., ANTHONY, J. E. & LOO, Y. L. 2006 Improving organic thin-film transistor
performance through solvent-vapour annealing of solution-processable triethylsilylethynyl
anthradithiophene. Adv. Mater. 18 (13), 1721–1726.

GLASNER, K. B. & WITELSKI, T. P. 2003 Coarsening dynamics of dewetting films. Phys. Rev. E
67 (1, Part 2), 016302.

GLASNER, K. B. & WITELSKI, T. P. 2005 Collision versus collapse of droplets in coarsening of
dewetting thin films. Physica D 209 (1–4), 80–104.

GOMBA, J. M. & HOMSY, G. M. 2009 Analytical solutions for partially wetting two-dimensional
droplets. Langmuir 25 (10), 5684–5691.

GOTZE, W. & VOIGTMANN, T. 2003 Effect of composition changes on the structural relaxation of a
binary mixture. Phys. Rev. E 67 (2), 021502.

GRANASY, L., PUSZTAI, T., BORZSONYI, T., WARREN, J. A. & DOUGLAS, J. F. 2004 A general
mechanism of polycrystalline growth. Nature Mater. 3 (9), 645–650.

ISHII, Y., SHIMADA, T., OKAZAKI, N. & HASEGAWA, T. 2007 Wetting-dewetting oscillations of
liquid films during solution-mediated vacuum deposition of rubrene. Langmuir 23 (12),
6864–6868.

ISRAELACHVILI, J. N. 1991 Intermolecular and Surface Forces, 2nd edn. Academic.

KAO, J. C. T., GOLOVIN, A. A. & DAVIS, S. H. 2006 Rupture of thin films with resonant substrate
patterning. J. Colloid Interface Sci. 303 (2), 532–545.

LANGER, J. S. 1980 Instabilities and pattern-formation in crystal-growth. Rev. Mod. Phys. 52 (1),
1–28.

LEE, S., YOO, P., KWON, S. & LEE, H. 2004 Solvent-driven dewetting and rim instability. J. Chem.
Phys. 121, 4346.

LIU, S., WANG, W. M., BRISENO, A. L., MANNSFELD, S. C. B. & BAO, Z. 2009 Controlled
deposition of crystalline organic semiconductors for field-effect-transistor applications. Adv.
Mater 21 (12), 1217–1232.

DE LUCA, G., LISCIO, A., MACCAGNANI, P., NOLDE, F., PALERMO, V., MLLEN, K. & SAMORÏ,
P. 2007 Nucleation-governed reversible self-assembly of an organic semiconductor at surfaces:
long-range mass transport forming giant functional fibres. Adv. Funct. Mater. 17 (18),
3791–3798.

DE LUCA, G., LISCIO, A., NOLDE, F., SCOLARO, L. M., PALERMO, V., MULLEN, K. & SAMORI,
P. 2008 Self-assembly of discotic molecules into mesoscopic crystals by solvent-vapour
annealing. Soft Matt. 4 (10), 2064–2070.

MASCARO, D. J., THOMPSON, M. E., SMITH, H. I. & BULOVIC, V. 2005 Forming oriented
organic crystals from amorphous thin films on patterned substrates via solvent-vapour
annealing. Organic Electron. 6 (5–6), 211–220.



90 T. S. Yu, V. Bulović and A. E. Hosoi

MILLER, S., FANCHINI, G., LIN, Y. Y., LI, C., CHEN, C. W., SU, W. F. & CHHOWALLA, M.
2008 Investigation of nanoscale morphological changes in organic photovoltaics during solvent
vapour annealing. J. Mater. Chem. 18 (3), 306–312.
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