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ABSTRACT: 

Coastal erosion occurring all over the world is a disastrous coastal geological phenomenon. It can be caused by many natural factors 

such as wind and waves. Hurricane Sandy made landfall on the east coast of the United States at the end of October 2012 and caused 

severe damage to the economy and ecological environment. In this paper, we employ the ground-based LiDAR which has higher spatial 

resolution to observe the coastal change detection at Fire Island, New York where the place is severely affected. The research showed 

that sediment accumulation occurred away from the coast, up to 2.9 meters, erosion close to the coast, up to 9 meters. The total volume 

of the study area decreased by 78160.96 cubic meters. The coastline retreated by 32.86 meters on average. In addition, a website has 

been designed to record coastal erosion anytime and anywhere. We hope this study will help people better understand the impact of 

hurricanes on coastal erosion, enhance our awareness of environmental protection, and provide scientific information for further study. 

1. INTRODUCTION

Coastal erosion occurs almost all over the world's coastlines and 

is defined as the gradual wearing away of the earth’s surface by 

the action of natural forces of wind and water (Li et al., n.d.). 

Increasing storminess, continuous sea level rising and storm 

waves make it a serious problem along many countries (Swift, 

1968; Swift and Thorne, 1991; Leatherman et al., 2000; Lentz et 

al., 2013; Prasad and Kumar, 2014; Obu et al., 2017; Gracia et 

al., 2018; Mohd et al., 2018; Li et al., n.d.). The coastal erosion 

problem has been attracting more attention from society because 

erosion along the coast may cause loss of coastal land and even 

dramatic landscape modification, etc.(Dolan et al., 1978; Marfai, 

2011; Prasad and Kumar, 2014). In particular, hurricanes and 

tidal effects can cause coastal movement and erosion, the drastic 

changes of coastline cannot be ignored for the impact on ecology, 

environment, economy and society, so the study of coastline 

change and coastal erosion has received widespread attention. 

Most studies in change detection such as coastal erosion studies 

commonly used satellite imageries or aerial photographs to 

observe and monitor, because Remote Sensing (RS) and 

Geographic Information System (GIS) offer convenient ways to 

model and visualize. Many researchers use high resolution 

images for coastline change detection and extraction, etc. 

Maglione suggested using WorldView-2 imagery with two 

indices of Normalized Difference Vegetation Index (NDVI) and 

Normalized Difference Water Index (NDWI) to extract coastline 

(Maglione et al., 2014). Li’s team combined the spatial modeling 

and monitoring shoreline erosion with high-resolution imagery 

together along the south shore of Lake Erie. Light Detection and 
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Ranging (LiDAR), a kind of remote-sensing technology, has been 

increasingly used and becomes an important tool in coastal 

geomorphology. In contrast to optical remote sensing, LiDAR 

can facilitate the acquisition of detailed, accurate topographic 

data over broad coastal regions. In addition, it works day and 

night without the influence of different light conditions, which 

makes it more convenient in change detection (Gálai and 

Benedek, 2017; Sofonia et al., 2019; Cui, 2020; Gibson et al., 

2020; Xian et al., 2020; Zhu et al., 2020; Krishnan et al., n.d.). 

On the Atlantic coast, France government created a new 

observatory called OR2C of coastal hazards to monitor nearly 

400km of coastal line based on airborne LiDAR technology. The 

data which is updated every year and freely accessible to coastal 

managers supported decision-making and updated policies or 

strategic documents (Kerguillec et al., 2019). Obu (2017) studied 

elevation and volume change used repeat airborne LiDAR with 1 

m horizontal resolution to study elevation and volume change, 

coastline movements in the Yukon Coastal Plain (Canada). The 

ground object classification result of LiDAR data is improved by 

combining multi-features of imagery, thus, the verification 

LiDAR has outstanding ability in land and water differentiation.  

The impacts of hurricane Sandy on the shoreline and inner shelf, 

which are permanently submerged and primarily accessible only 

through acoustic mapping, are harder to observe. In this study, 

GIS, RS and machine learning are combined to get LiDAR data 

processed and visualized.  

The objectives in this study are summarized as follows:  

A. Derive DTMs for pre-storm and post-storm using XYZ

ground-based LiDAR; Calculate (ECM) Elevation Change

Model;

B. Extract coastlines for pre-storm and post-storm;
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C. Develop a website for recording coastal erosion. 

This paper is structured as followed. Study area is introduced in 

section 2. Data information is stated in section 3. Section 4 

proposes DTMs process, the structure of the model and coastline 

extraction through Machine learning feature classification. 

Results and discussion are shown in section 5. Conclusions are 

presented in section 6. 

 

2. STUDY AREA 

Fire Island is a tiny island on the southern edge of New York's 

Long Island as Figure 1, which was severely destroyed by the 

high tides and winds caused by Hurricane Sandy. Sandy made 

landfall in New Jersey on October 30, 2012, causing great 

economic and social damage to the east coast of the United States. 

Sandy attained sustained wind speeds of 25.1 m/s and significant 

wave heights of 9.65 m. These values were ~25% and ~50% 

higher, respectively, than most other strong storms during this 

period (Sebek et al., 2014; Goff et al., 2015). It was the second-

costliest hurricane in U.S. history, as it caused an estimated 75 

billion dollars in economic damage (Varlas et al., 2019). Sandy 

caused high tides and high winds that seriously eroded the coasts 

of many coastal cities in the United States, the peak storm surge 

was at 3.9 m and the peak storm tide was at 4.4 m (Hsu, 2013).  

 

 

         

Figure 1. Study area Fire Island(Note: Map derived from 

ArcGIS Pro) and its three locations(Petersburg, 2015)  

 

3. DATA 

U.S. Geological Survey (USGS) aimed to characterize beach 

topography following substantial erosion that occurred during 

Hurricane Sandy. USACE-FRF team collected the high-

resolution LiDAR data using the CLARIS platform. CLARIS is 

a vehicle-mounted system that integrates a terrestrial LiDAR 

scanner and X-band radar with precise motion and position 

information. In this study, we used point cloud data which was 

used to create the DTMs. The point cloud data was derived as 

ASCII format, which needed to convert to las format for the 

subsequent data processing. Table 1 lists the experimental data 

obtained. In addition, Google high-resolution images are also 

used to conduct the incipient object classification for training 

sample which applied to coastline extraction. 

Data name Data format Acquisition 

time 

Fire Island Point cloud 

data 

ASCII XYZ 

Data 

Oct 2012; 

Nov 2012 

Fire Island boundary Shapefile May 2012 

 

Table 1. Data information. 

  

4. METHODS 

4.1 DTM generation 

To generate DTM of pre-storm and post-storm, LAStools are 

employed for XYZ data processing and Raster Calculate in 

ArcMap which is set for ECM calculation, data processing and 

visualization. The ECM was created as Figure 2. 
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Figure 2. Elevation change model acquisition flow 

Because of the large volume of TLS data, the effective use of this 

data inevitably involves some semi-automatic or automated 

methods. One of the available solutions is LAStools, which 

includes tools to classify, tile, convert, filter, raster, triangulate, 

contour and clip LiDAR data (Lederer et al., 2004; Jovan D. and 

Nikola Č., 2018; Moudrý et al., 2020).  

Basic information of “las2012” could be acquired from LASinfo. 

The Z coordinate value varied from -0.57 to 15.39 and it only has 

one return. What’s more, the point density is 3.81 per square 

meter while point spacing is 0.51 meters. Therefore, the file was 

set as multi-purpose datasets referenced to Figure 3 (Silke, 2012) . 

 

Figure 3. Common Point Densities (Felix, 2017) 
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4.1.1 Elevation Change Model: To derive Elevation change 

model, subtract the 2013 DTM from the 2012 DTM using Raster 

calculator. Therefore, we can determine the place where erosion 

occurs or sediment accumulation happens. The following Figure 

4 is a schematic diagram of the ECM acquisition method. There 

are three types of value in ECM, the positive value in blue cells 

presents erosion while the negative value in green cells stands for 

deposition. Obviously, the orange cells represent there is no 

elevation change in that area. 

 

Figure 4. Schematic diagram of deriving Elevation change 

model 

 

4.2 Coastline extraction 

In this section, PCA (Principal Component Analysis) and SVM 

(Support Vector Machine) are applied to extract features and 

classify. PCA  aims to transform multiple indexes into a few 

comprehensive indexes by using the idea of dimensionality 

reduction (Bishop, 1999; Shi and Zakhor, 2011; Lee et al., 

2016; Pan et al., 2019). SVM is a kind of generalized linear 

classifier that classifies binary data by supervised learning(V. N. 

Vapnik, 1999; V. Vapnik, 1999; Lodha et al., 2006; Li et al., 

2007; Samadzadegan et al., 2010; Matkan et al., 2014). For 

coastline extraction of LiDAR data, the LiDAR data in the 

study area are divided into four types according to the ground 

object classification system referencing to Google high-

resolution images. The following Figure 5 is the flow chart of 

coastline extraction for LiDAR feature classification. 
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Figure 5. Coastline extraction flow chart 

There are four types of targets respectively for water, ground, 

building and vegetation. The experiment uses the combination of 

feature echo intensity (EI), echo times (ET), point density (PD) 

and intensity density (ID). PCA weight determination for 

extracted combination features (CF) was set as the input of the 

classifier, to train the samples of LiDAR data and obtain the SVM 

classifier to achieve classification. To avoid accidental 

contingency, the experimental training and testing data are in 

different areas, and the database is shown in Table 2. 

 

Class Train Test 

Water 1300 325 

Ground 1268 317 

Building 1224 306 

Vegetation 1120 280 

Total Number 4912 1228 

Table 2. Training test database 

 

5. RESULTS AND DISCUSSION 

5.1 Results 

5.1.1 Coastal erosion change: Following the ECM, we could 

identify the area along the coast eroded, elevation lowered and 

deposition occurred far from the shoreline, elevation rose. It 

exists an obvious hierarchy from south to north no matter in 

which area as Figure 8-10. (Note: The maps are derived from 

ArcGIS Pro from partial Fire Island). Along the study area, which 

is about 3.1 km, the peak value was up to 13.6 and the lowest 

value was -0.8 m after the storm, while the peak value of 

elevation was 14.3 and the lowest value was -0.6 m before the 

storm. The average elevation was dropped by 0.66 m. 82% of the 

area experienced elevation dropped and collapsed. 

 

Figure 6. Elevation changes of western Fire Island 
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Figure 7. Elevation changes of central Fire Island 

 
Figure 8. Elevation changes of eastern Fire Island 

The total volume of the study area decreased by 78160.96 cubic 

meters while the surface area increased by 311343.18 square 

meters; the mean attitude of the study area decreased by about 

0.82 meters.  

 

5.1.2 Coastline movement: For this part, the average retreat of 

coastline is 32.86 m with a maximum of 63.28 m which happened 

in the eastern Fire Island, and the minimum value is 19.46 m 

which occurred in the western Fire Island.  

As the basic data of GIS, the coastline extracted from DTMs is 

remarkably similar to that extracted from LiDAR data, thus 

confirming the reliability of coastline extraction by machine 

learning. 

 

5.1.3 Website development: To raise users’ awareness and better 

statistics on how often and where coastal erosion occurs, we 

develop a website (Story map) which employs HTML, CSS, PHP, 

PhpMyAdmin database and JavaScript for recording and 

updating coastal erosion around the world anytime. (Note: the 

link is https://arcg.is/19zGfL. The layers are encrypted at present, 

it can be emailed if you are interested in frames) 

 
Figure 9. Website initial page (Note: Screen shot from website) 

 
Figure 10. Website report page (Note: Screenshot from website) 

 

5.2 Discussion 

In this project, we figure out the place where are tends to occur 

sediment accumulation while areas elevation decrease. In 

addition, the coastline movement is observed using Machine 

learning feature classification. Therefore, after Hurricane Sandy 

leaves, more sediment accumulates in the littoral area, which 

contribute to more surface area of the beach. 

 

5.2.1 Parameters in Point cloud data processing: There are 

many parameters in LAStools model making a difference to the 

outcome. Here, the parameter “No bulge” in LASground model 

is discussed as followed. We notice this parameter can contribute 

a lot when classifying the Lidar points into Unassigned or Ground 

points. When the parameter “No bulge” is applied in LASground 

tool, nearly 10 times as point clouds are classified into 

Unassigned as Figure 11. Therefore, the parameter “No bulge” is 

significant when using the terrestrial data because this tool is 

designed for airborne-LiDAR. 

 

 
Figure 11. Different results in LASground tool by applying “no 

bulge” 

 

5.2.2 Parameters in the machine learning: The test results are 

shown in Figure 12, and the classification results are shown in 

Table 3.  

 
(a) 
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(b) 

 
(c) 

 
(d) 

 

 
(e) 

Figure 12. Confusion matrix of different methods, Where 

Fig.12 (a) is the confusion matrix of EI, Fig.12 (b) is the 

confusion matrix of ET, Fig.12(c) is the confusion matrix of PD, 

Fig.12 (d) is the confusion matrix of ID, Fig.12 (e) is the 

confusion matrix of Feature combination.  

 

Class EI ET PD ID CF 

Water 88% 89% 87% 91% 100% 

Ground 92% 91% 90% 88% 97% 

Building 84% 86% 88% 89% 91% 

Vegetation 82% 89% 87% 90% 92% 

Total Number 87% 88% 88% 89% 95% 

Table 3. Accuracy results of identification 

The coastline is extracted by ground and water binary images. In 

the experimental results, the confusion matrix comes from the 

experimental classifier. In the meanwhile, the accuracy of water 

and land division is verified, therefore, the coastline can be 

extracted successfully. In addition, the coastline obtained from 

deep learning classification is further compared with that 

obtained by DTM to verify the feasibility as Table 4. 

 

Coastline 

extraction 

method 

Coastline extraction 

based on terrain 

classification 

Coastline extraction 

based on DEM 

Coastline 

movement(

meter) 

32.86    31.97 

Table 4. Comparison of coastline movement extracted by two 

methods 

 

5.2.3 Uncertain influencing factors: About the uncertain 

analysis, it will be better if the data were derived in late October 

2012 and early November 2012, which is close to the day when 

Sandy made landfall and departed. We cannot determine all these 

coastal erosion changes due to Hurricane Sandy, there must be 

some erosion influenced by other factors. That’s to say, time 

resolution and timeliness should be raised. 

 

6. CONCLUSION 

Hurricane Sandy brought severe disaster to Fire Island, which 

changed the whole island completely. This work disclosed the 

distribution of coastal erosion and sediment accumulation and 

coastline movement. At present, GIS and RS have become vital 

tools in studying abnormal phenomena related to change 

detection. Compared with ordinary images, LiDAR has the 

characteristics of higher resolution and stronger anti-interference 

ability. In conclusion, by using GIS methods to process LiDAR 

point cloud data, we acquire Elevation Change Model and 

implement the visualization to clarify the law and scope of 

sediment and erosion. Through PCA weight determination and 

SVM classification, the coastline is extracted and the movement 

distance of coastline is obtained by machine learning of multi-

feature extraction. The feasibility of this method is also 

confirmed by comparing the parameters of various methods. 

There are various parameters that are significant when processing 

the point clouds data and deep learning, although a few of 

parameters are mentioned in the previous discussion. We hope 

that people can have a better and deeper understanding of the 

seriousness of coastal erosion and improve the awareness of 

disaster prevention through this study. 
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