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Coastal environmental and
atmospheric data reduction in
the Southern North Sea
supporting ecological
impact studies

Lőrinc Mészáros1,2*, Frank van der Meulen2, Geurt Jongbloed2

and Ghada El Serafy1,2

1Marine and Coastal Systems, Deltares, Delft, Netherlands, 2Applied Mathematics, Delft University of
Technology, Delft, Netherlands
Coastal climate impact studies make increasing use of multi-source and multi-

dimensional atmospheric and environmental datasets to investigate

relationships between climate signals and the ecological response. The large

quantity of numerically simulated data may, however, include redundancy,

multi-colinearity and excess information not relevant to the studied processes.

In such cases techniques for feature extraction and identification of latent

processes prove useful. Using dimensionality reduction techniques this

research provides a statistical underpinning of variable selection to study the

impacts of atmospheric processes on coastal chlorophyll-a concentrations,

taking the Dutch Wadden Sea as case study. Dimension reduction techniques

are applied to environmental data simulated by the Delft3D coastal water

quality model, the HIRLAM numerical weather prediction model and the Euro-

CORDEX climate modelling experiment. The dimension reduction techniques

were selected for their ability to incorporate (1) spatial correlation viamulti-way

methods (2), temporal correlation through Dynamic Factor Analysis, and (3)

functional variability using Functional Data Analysis. The data reduction

potential and explanatory value of these methods are showcased and

important atmospheric variables affecting the chlorophyll-a concentration

are identified. Our results indicate room for dimensionality reduction in the

atmospheric variables (2 principle components can explain the majority of

variance instead of 7 variables), in the chlorophyll-a time series at different

locations (two characteristic patterns can describe the 10 locations), and in the

climate projection scenarios of solar radiation and air temperature variables (a

single principle component function explains 77% of the variation for solar

radiation and 57% of the variation for air temperature). It was also found that

solar radiation followed by air temperature are themost important atmospheric

variables related to coastal chlorophyll-a concentration, noting that regional

differences exist, for instance the importance of air temperature is greater in

the Eastern Dutch Wadden Sea at Dantziggat than in the Western Dutch

Wadden Sea at Marsdiep Noord. Common trends and different regional

system characteristics have also been identified through dynamic factor
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analysis between the deeper channels and the shallower intertidal zones,

where the onset of spring blooms occurs earlier. The functional analysis of

climate data showed clusters of atmospheric variables with similar functional

features. Moreover, functional components of Euro-CORDEX climate

scenarios have been identified for radiation and temperature variables, which

provide information on the dominant mode (pattern) of variation and its

uncertainties. The findings suggest that radiation and temperature

projections of different Euro-CORDEX scenarios share similar characteristics

and mainly differ in their amplitudes and seasonal patterns, offering

opportunities to construct statistical models that do not assume

independence between climate scenarios but instead borrow information

(“borrow strength”) from the larger pool of climate scenarios. The presented

results were used in follow up studies to construct a Bayesian stochastic

generator to complement existing Euro-CORDEX climate change scenarios

and to quantify climate change induced trends and uncertainties in

phytoplankton spring bloom dynamics in the Dutch Wadden Sea.
KEYWORDS

coastal environment, dimensionality reduction, multivariate analysis, climate change,
phytoplankton, eutrophication
1 Introduction
Motivation - The present study is part of an overarching

research investigating possibilities for statistical quantification of

climate change induced uncertainties in future coastal ecosystem

state. The research builds on a multitude of data sources,

prominently using numerical models. As the research focuses on

statistical methods to quantify and propagate uncertainties, a

proper understanding of the multivariate input data, its

redundancy, and most importantly the identification of latent

variables and extraction of features is a natural first step in the

analysis. A host of methods for dealing with these issues is

available in the literature but scattered over various disciplines,

such as chemometrics, econometrics and mathematics. This paper

investigates how these methods can be applied to achieve the

higher level objectives: (1) providing statistical underpinning for

atmospheric variables selection to study chlorophyll-a response,

and (2) identifying important features of the climate projections

for further statistical models, for instance the Bayesian stochastic

generator implemented in (Mészáros et al., 2021). More

specifically, in this paper a case study (Dutch Wadden Sea) is

presented, first introduce the main idea of selected statistical

methods, subsequently applying them to a particular dataset

(consisting of coastal biogeochemical model, numerical

weatherprediction model and climate model outputs) and

interpret the results. While the applied statistical methods are

separately well documented in the literature (in their own fields),
02
structured and combined use of them for the multivariate analysis

of air-sea interactions to informing ecological impact studies is a

novelty to the marine scientific community.

Scientists aiming to study the air-sea interactions either in

(operational) short term or (climate) long term scale often make

use of numerical models, which produce approximate solutions

to the underlying physical phenomena. The role of these

physics-based models is even more prominent with the

increasing (cloud) computing capabilities (Vance et al., 2019)

that facilitate further refined spatial scales and improved process

parametrizations. Using these models, gap-free (in space) and

high frequency (in time) fields of atmospheric and

environmental datasets can be produced. Such multi-

dimensional numerical model simulated dataset often includes

several variables at many locations (e.g. three dimensional

spatial discretization) over long periods of time and covering

different model scenarios (e.g. various model boundary

conditions and model initializations). While the increasing

volume of marine data contains abundant information and

insights into the physical processes (also their interconnections

and long term evolution), it must be noted that the processes

underlying the variations in these simulated data are complex,

the data might be noisy, and not all modelled variables are

relevant to the studied processes. Consequently, latent variables

can be useful for exploring and reducing the data. Traditionally,

dimension reduction methods are used for such purposes.

Dimension reduction is an approach often used in

multivariate data analysis and it is implemented for several
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https://doi.org/10.3389/fmars.2022.920616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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reasons. Firstly, using dimension reduction techniques high-

dimensional data can often be transformed to a lower

dimensional space without significant loss of statistical

information (preserving accuracy). Secondly, dimension

reduction techniques help in the removal of multi-colinearity

in the dataset. The multi-colinearity problem is present if two or

more variables are highly correlated, and therefore one can be

accurately linearly predicted from the others. This is an

unwanted property as it increases the variance in estimates of

regression parameters (Maitra and Yan, 2008) and makes

interpretation difficult. A further advantage of dimension

reduction is that it facilitates the interpretation and

visualization of high dimensional data as it is reduced to lower

dimensions. Additionally, transforming data into lower

dimensions decreases the required processing time and

storage, and therefore makes analysis algorithms more efficient.

Various dimension reduction methods exist, some use linear

combinations of variables to reduce dimensions (linear

methods), whereas others use non-linear functions of variables

(non-linear methods). A collection of non-linear dimension

reduction methods can be found in (Hastie et al., 2009). The

most widely used linear dimension reduction techniques are the

Principal Component Analysis (PCA), an unsupervised

technique, and the Partial Least Squares (PLS) (Maitra and

Yan, 2008), a supervised technique. These are useful

dimension reduction methods in regression problems due to

the following features. Firstly, applying the transformed

principal components instead of the original predictive

variables tackles the problem of multi-colinearity since the

covariance of principal components is zero. Secondly, the

principal components successively capture the maximum

variance of the predictor matrix, and therefore it is natural to

use the first few components as predictive variables for

regression. In most cases the majority of the variance is

captured by them.

While their concept offers clear advantages, a practical

limitation of these standard dimension reduction methods is that

they work with “2-way” matrices. The 2-way structure usually

contains the observations as rows and the variables as columns. A

third way of the matrix, that could be the temporal or spatial

dimension for instance, cannot be explicitly included. Multi-way

analysis can help to resolve this issue. Multi-way analysis techniques

also project variables to low dimensional spaces, therefore they can

be called dimension reduction methods, but they are also able to

work with multi-way (N > 2) data structures. Similarly to the other

dimension reduction techniques, multi-way analysis can create

latent variables by transforming the original variables, it can

reduce noise, and it can explain which original variables are most

important to the latent variables (Smilde et al., 2004). Further

purpose of applying multi-way methods is data exploration, which

includes finding patterns and interrelations (e.g. temporal and

spatial behaviour of the different variables), or summarizing the

data through decomposition.
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Another missing feature in standard dimension reduction

techniques that is quite essential in atmospheric and

environmental time series is temporal correlation. For this

reason, temporal correlation is included in this research

through Dynamic Factor Analysis (DFA). Moreover, in this

study the discrete-time data are also investigated using

Functional Data Analysis (FDA), after transforming them to

functional data through a basis function expansion. This is also

motivated by the fact that certain variables display ‘strong

periodic behaviour’, such as the sinusoidal shape of air

temperature or solar radiation. Similarly to the dimension

reduction techniques on discrete-time data, Functional Data

Analysis also aims to find common patterns and underlying

functions that can describe the general shape of the curves and

explain their variability.

In this paper the above described statistical models are

applied to atmospheric and environmental datasets in the

Dutch Wadden Sea to investigate the relationships between

atmospheric signals and the ecological response. Due to the

complex interactions of atmospheric forcing with biological

processes, the phytoplankton response is not trivial to

understand, especially in our case study area. Considering the

system dynamics, the southern North Sea is a tidally mixed

region (Longhurst, 2007) but in our study area other shallow

water, coastal, and estuarine fronts are also prominent. This

makes it possible that certain regions are seasonally stratified

while others are permanently mixed (van Leeuwen et al., 2015).

Consequently, in the offshore areas surface mixing and

convective cooling have a greater impact on phytoplankton

biomass (Blauw et al., 2018), while in the highly dynamic

coastal systems tidal mixing is more dominant.

The relationship between physical factors (atmospheric and

oceanic) and the selected ecological response variable

(chlorophyll-a) is well documented in the literature,

nevertheless, debates still exist between scientists. In general,

chlorophyll-a concentration (a proxy for phytoplankton

biomass) is coupled to thermal stratification, resource and

energy dynamics, as well as predator-prey interactions

(Behrenfeld and Boss, 2018). Based on a cross correlation

analysis conducted by (Blauw et al., 2018) in the North Sea (at

a site with dynamics similar to our study area), the highest

correlations were found with solar radiation, air temperature,

turbidity, and tidal mixing. This study considered a range of

physical factors (tidal mixing, wind mixing, solar radiation, air

temperature, SST, salinity, turbidity) and chlorophyll-a

(McQuatters-Gollop and Vermaat, 2011). found that inter-

annual variability in phytoplankton dynamics in North

Atlantic coastal waters were related to solar radiation, sea

surface temperature, as well as Si availability. On the other

hand, in the offshore regions it was mainly regulated by

temperature, Atlantic inflow, wind stress and North Atlantic

Oscillation (NAO). Moreover, in his study describing

interannual changes in phytoplankton seasonality due to
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climate forcing (González Taboada and Anadón, 2014), used the

following variables: sea surface temperature that impacts the

physiological and ecological processes and is a tracer of vertical

mixing; solar radiation that limits phytoplankton growth rates or

increases pigment cell levels; wind that is responsible for surface

mixing and turbulence; and ocean current variability impacting

stratification (Katara et al., 2008). also found that atmospheric

variability are associated with chlorophyll-a concentration

changes but the study considered large-scale modes of

atmospheric variability. A shortcoming of our study is that it

focuses on a small-scale coastal area, therefore large scale

processes cannot be revealed.
2 Materials and methods

This research aims to support ecological impact studies in

coastal ecosystems by providing a statistical framework for

investigating latent processes and selecting important

atmospheric variables. This statistical framework contains

three types of dimension reduction techniques (Figure 1).

Firstly, discrete-time data is considered and temporal

correlation is neglected. Supervised and unsupervised

techniques are compared and spatial correlation is included

through multi-way methods. Secondly, temporal correlation is
Frontiers in Marine Science 04
incorporated by applying dynamic factor models. Lastly, the

discrete-time climate data is transformed into functional data

representation, by smoothing them with basis function

expansion (e.g. Fourier basis expansion), and subsequently

study the functional variation with Functional PCA. While

discrete-time data is a set of discretely measured values yi1,…,

yin functional data is when these values are converted to a

function xi with values xi(t) computable for any desired time t

(Ramsay and Silverman, 2005).
2.1 Dataset

Our study is based on data from various numerical models

(see Figure 2): a coastal water quality model, a numerical

weather prediction model, and a climate model. The ecological

indicator variable is chlorophyll-a concentration, a proxy for

algal biomass, while the atmospheric variables are air

temperature, solar radiation, eastern and northern wind

components, air pressure, relative humidity, and total cloud

cover. These are standard atmospheric variables simulated by

most modelling systems for both operational purposes and

climate experiments.
NO TEMPORAL
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FIGURE 1

Overview of the applied statistical techniques for discrete-time and functional data, including temporal and spatial correlation.
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2.1.1 Chlorophyll-a concentration data
The chlorophyll-a concentration data is obtained from the

water quality sub-module of the Delft3D integrated modelling

system, Delft3D-WAQ (https://www.deltares.nl/en/software/

158delft3d-4-suite/) (Blauw et al., 2009). In this research an

existing model setup is used, which has been previously

calibrated and validated for the location of our study area

(Los et al., 2008). The spatial domain of the physical model

covers the Southern North Sea with coarser horizontal

resolution offshore and finer resolution along the Dutch

coast, as shown in Figure 3. The model comprises of twelve

vertical layers, making it a three dimensional physical model.

The horizontal resolution of the water quality model in the

Dutch Wadden Sea ranges from 1-by-2 km to 2.5-by-3 km on a

curvilinear grid.

Delft3D-WAQ is a comprehensive hybrid ecological

model including an array of modules reproducing water

quality processes that are then combined with a transport

module to calculate advection and dispersion. The model

most importantly calculates primary production and

chlorophyll-a concentration while integrating dynamic

process modules for dissolved oxygen, nutrient availability

and phytoplankton species. This Delft3D-WAQ setup

includes the phytoplankton module (BLOOM) that

simulates the growth, respiration and mortality of

phytoplankton. Using this module the species competition

and their adaptation to limiting nutrients or light are

simulated (Los et al., 2008).
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2.1.2 Atmospheric data
Two sources of atmospheric data are used in this study: (1)

outputs of an operational numerical weather prediction model,

and (2) results of a regional climate modelling experiment. First,

the High Resolution Limited Area Model (HIRLAM) model

(Meijgaard et al., 2008) output is used, which was applied as

atmospheric forcing for the Delft3D-WAQ model setup to

compute chlorophyll-a concentration. HIRLAM is a Numerical

Weather Prediction (NWP) system developed by the

international HIRLAM programme (http://hirlam.org/)

(Undén et al., 2002). Since it is the Delft3D-WAQ input data

that drives the processes, it allows the exploration of the

correlations between atmospheric forcing and numerically

computed ecological response. The data for this study are

obtained from the 22 km grid resolution HIRLAM model and

include near-surface air temperature, solar radiation, eastern and

northern near-surface wind components, surface pressure, near-

surface relative humidity, and total cloud cover. All HIRLAM

model output variables were used in the Delft3D-WAQmodel as

temporally and spatially variable forcing fields except solar

radiation, which is an area average, therefore the same for the

entire domain.

Additionally, simulated values of climate variables are

acquired from the high resolution 0.11 degree (∼12.5 km)

EURO-CORDEX Coordinated Regional Downscaling

Experiment (https://www.euro-cordex.net/) (Jacob et al., 2014),

which uses the Swedish Meteorological and Hydrological

Institute Rossby Centre regional atmospheric model (SMHI-
frontiersin.org
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FIGURE 2

Overview of the data used in the study (model type, source, temporal frequency and variables) for the marine water quality model (top),
numerical weather prediction model (middle), and climate model (bottom).
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RCA4) (Samuelsson et al., 2015). In order to produce various

regionally downscaled scenarios, EURO-CORDEX applies a

range of General Circulation Models (GCMs) to drive the

above mentioned Regional Climate Model (RCM). The four

driving GCMs in this study are the National Centre for

Meteorological Research general circulation model (CNRM-

CM5) (Voldoire et al., 2013), the global climate model system

from the European EC-Earth consortium (EC-EARTH)

(Hazeleger et al., 2012), the Institut Pierre Simon Laplace

Climate Model at medium resolution (IPSL-CM5A-MR)

(Dufresne et al., 2013), and the Max-Planck-Institute Earth

System Model at base resolution (MPI-ESM-LR) (Giorgetta

et al., 2013). In addition to the driving models, further

scenarios are obtained by considering different socio-economic

changes described in the Representative Concentration

Pathways (RCPs). RCPs are labeled according to their specific

radiative forcing pathway in 2100 relative to pre-industrial

values. This study includes RCP8.5 (high), and RCP4.5

(medium-low) (van Vuuren et al., 2011) and four driving

GCMs for the projection period between 2006-2100. Together

the four different driving GCMs and two RCPs provide us with

an ensemble of eight trajectories per climate variable. The

climate variables included in the analysis are near-surface air

temperature, surface downwelling shortwave radiation, eastern

and northern near-surface wind components, surface pressure,

near-surface relative humidity, and total cloud cover. For this

dataset, near-surface means at a height between 1.5 to 10.0 m.

2.1.3 Data processing
The above introduced datasets are temporally varying

multivariate fields covering large domains (see Figure 4). For

the purpose of this study, time series data were extracted at ten

locations of Rijkswaterstaat monitoring stations in the Dutch

Wadden Sea (see Figure 3). Both the atmospheric variables and

the chlorophyll-a concentration were provided as 6-hourly
Frontiers in Marine Science 06
datasets. The longer and higher frequency data were sub-

sampled to the period between 1st of March and 1st of

November, daily at 12:00 (245 time steps). The model

simulation year (2009) was chosen based on the fact that a

detailed study was conducted (at Deltares) for that year with

high resolution information on the suspended matter fields

which are crucial for water quality computation in the shallow

Wadden Sea. The reason for selecting a reduced time period (9

months) is to concentrate on the season of high phytoplankton

productivity and to eliminate near zero chlorophyll-a values

during winter. Moreover, the daily time step at 12:00 was

selected to eliminate zero radiation values during the night. All

variables were then centered to their mean and divided by their

standard deviation to eliminate the problem of different

measurement units. Finally, the right skewed chlorophyll-a

concentration was log transformed to achieve a more

symmetrical distribution that may improve the performance of

statistical models used in the study. It is a standard practice to

log transform chlorophyll-a as it is approximately lognormally

distributed in marine waters (Campbell, 1995). The distribution

of chlorophyll-a concentration (all locations and all time steps)

before and after log transformation are shown in Figure S1

(Supplementary Material). The pair plot of all variables with

kernel density estimation is displayed in Figure S2

(Supplementary Material).

Figure 5 shows the Spearman’s rank correlation coefficient of

all variables after scaling (data taken from all stations). The same

plot using Pearson correlation coefficient can be found in Figure

S3 (Supplementary Material). It can be observed that solar

radiation and air temperature have the highest correlation

with chlorophyll-a. Moreover, cross-correlation between the

atmospheric data an also be identified, e.g. pressure and

northern wind component or humidity and air temperature. It

is important to note that while air temperature and solar

radiation are positively correlated, they have different impact
FIGURE 3

Case study area: Dutch Wadden Sea. Delft3D-WAQ model domain in the Southern North Sea and along the Dutch coast (left panel, source:
(Mészáros et al., 2021)). Location of the stations where time series data was extracted (right panel).
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FIGURE 4

Illustration of the atmospheric and environmental variables used in the study.
Frontiers in Marine Science frontiersin.org07

https://doi.org/10.3389/fmars.2022.920616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Mészáros et al. 10.3389/fmars.2022.920616
on chlorophyll-a concentration: air temperature has negative

correlation, whereas solar radiation has positive correlation with

chlorophyll-a. Since in the North Sea the correlation between

solar radiation/air temperature and chlorophyll-a concentration

highly depends on the region (offshore or coastal) and the

temporal scales (short, seasonal, long) there could be various

reasons. In our case, it might be attributed to the phenomena

reported by Blauw et al. (2018), who found that the thermal

mixing of phytoplankton cells (from the deep chlorophyll

maximum) into the surface layer is the dominant process

explaining the negative correlation between sea surface

temperature and the chlorophyll concentration in the daily

time series (in the Southern North Sea).
2.2 Two-way and multi-way methods

2.2.1 From PCA to N-PLS
This section briefly introduces the steps to extend the two-

way component methods to multi-way regression methods. For

convenience, Principal Component Analysis (PCA), Principal

Component Regression (PCR) and ordinary PLS regression are

introduced briefly, because the N-PLS regression is based on
Frontiers in Marine Science 08
these algorithms. Assuming that X∈RI×J and y ∈ RI are column

centred and scaled matrices, the predictor matrix X and response
y are decomposed as follows:

X = TP0 + EX (1)

y = Tq + eY (2)

where T is a matrix of scores (T=XP); P′ is a matrix of X loadings,

q is a matrix of y loadings, whereas EX and ey are the residuals.

PCA focuses only on the predictor matrix projecting each data

point onto the principal components while preserving as much

of the data’s variation as possible. PCA finds R components such

that they maximize the variance of the projected data in X. The

description below is written for R=1. To calculate the 1st PCA

component, x̂ ij is approximated with ti core and wj loading:

x̂ ij = tiwj (3)

where t ∈ RI ,w ∈ RJ , i ∈ f1,…, Ig, j ∈ f1,…, Jg, and ||w||=1.

Then the score vector and loading vector can be obtained as

follows:

t wð Þ = a rgmin
t

o
I

i=1
o
J

j=1
xij − tiwj

� �2 (4)
FIGURE 5

Heatmap with Spearman’s rank correlation coefficient. Dark red indicates strong positive, while dark blue indicates strong negative correlations.
Data from all time series. Abbreviations: solar radiation (rsds), air temperature (tas), eastern (uas) and northern (vas) wind components, cloud
cover (clt), humidity (hurs), air pressure (ps), chlorophyll-a (chlfa).
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w∗ = a rgmax
w :jjwjj=1

var   t wð Þ (5)

⇒ t* = t(w*) (6)

Then the approximation of X̂ can be rewritten as:

X̂ = TP0 (7)

with T = t and P0 = w. Finally, the decomposition of X (for

the 1st PC situation) is obtained as:

X = X̂ + EX (8)

The PCR algorithm is similar to the PCA algorithm except

that it is extended with response y using Eq (2). In other words,

PCR constructs R components the same way as PCA, but adds a

regression step to it. Consequently, the regression coefficient q is

obtained from regressing y on T

q* = a rgmin
q

∥ y − Tq ∥2 = T 0T
� �−1T 0y (9)

The PLS regression differs from PCR, due to its supervised

nature, as it finds R omponents from both X and y such that

covariance between the score vector t(w) and y is maximized:

w* = a rgmax
w :jjwjj=1

cov t wð Þ, y� �
(10)

⇒ t* = t(w*) (11)

Again, rewrite the approximation as Eq (7). with T = t and

P = w. Then obtain the decomposition as in Eq (8).

Subsequently from Eq (2). the regression coefficient q is

obtained as in Eq (9). As a consequence, PLS finds loading w

that leads to a least squares solution to Eq (3). Moreover, the PLS

score vector has maximal covariance with y. In general, both

PCA and PLS achieve dimension reduction by converting highly

correlated variables to a set of uncorrelated variables through

linear transformation. The difference is that PCA, as an

unsupervised technique, captures maximum variance only in

the predictor matrix without considering how each predictive

variable may be related to the response variable. On the other

hand, PLS combines information about the variances of both the

predictors and the responses, while also considering the

correlations among them (supervised dimension reduction).

PLS is considered useful in particular if there are more

independent (predictor) variables than dependent (response)

variables, and if there is multi-colinearity in the predictors. Since

in this study several correlated atmospheric variables are used to

estimate one ecological response variable, the use of supervised

dimension reduction techniques is preferable.

The N-PLS regression algorithm is an extension of the PLS

regression algorithm to multi-way data, where essentially the
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bilinear model of X is replaced with a multilinear model of X. In

case the data is three-way, as in this study, then an appropriate

model of X is a trilinear decomposition, as depicted in Eq (16).

The model of xij in ordinary PLS is shown in Eq (3), whereas in

three-way PLS the approximation of xijk is given by the following

equation:

x̂ ijk = tiw
J
j w

K
k (12)

where t ∈ RI ,wJ ∈ RJ ,wK ∈ RK . In this case the three-way

decomposition is defined by:

t wJ ,wK� �
= a rgmin

t
o
I

i=1
o
J

j=1
o
K

k=1

xijk − tiw
J
j w

K
k

� �2
(13)

w*J ,w*K
� �

= a rgmax
jjwJ jj=1, jjwK jj=1

cov t wJ ,wK� �
, y

� �
(14)

⇒ t* = t(wJ*,wK*) (15)

where ||wJ||=1 and ||wK||=1. The regression coefficient q s

obtained by regressing y on T as in Eq (9), rewriting the

approximation as above in Eq (7). with T=[t] and P=[w]

subsequently obtaining the decomposition as in Eq (8). Similar

to ordinary PLS the resulting score vector has maximal

covariance with y and the loadings (wJ
j and wK

k ) lead to a least

square solution. For R>1 further components can be obtained as

follows. Rewrite Eq (7) with T = ½t1,…, tR�, P = ½w1,…,wR�.
Finally, decomposition of X is in Eq (8), and subsequently

from Eq (2). the regression coefficient q is obtained as in Eq (9).

In summary, the N-PLS model first extracts the important

features from the predictor dataset into the loading array P then

estimates the regression coefficient vector q using least squares.

For a more detailed description of the N-PLS algorithm the

reader is referred to (de Jong, 1998; Bro, 1996; Smilde, 1997; Bro,

1998; Bro et al., 2001; Smilde et al., 2004).

2.2.2 Comparison of multi-way methods
Atmospheric datasets are often multi-dimensional due to the

fact that they contain several variables, which are not only

varying over time but also over space. Moreover, often

additional dimensions are present such as different climate

projection scenarios, or model ensembles, which simulate the

same information but use different assumptions or initial

conditions. Three-way data that contain information on

different variables, over time and space can be organized in a

three-way array X = Xi,j,k. In our case the first dimension (mode

1 or index i of the three-way array X corresponds to time, the

second dimension (mode 2 or index j corresponds to different

atmospheric variables, and the third dimension (mode 3 or

index k corresponds to location. Consequently, each frontal slice

Xk represents a location with variables j sampled over time i.

The distinction between component and regression models

should also be noted. The typical purpose of component models
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on one block of data is exploring the patterns and interrelations

using latent variables (principal components), while regression

models are aimed at predicting a block of data (response) using

another block of data (predictors) through a prediction model.

Consequently, component models require one block data, while

regression models need multi block data. The above mentioned

dimension reduction methods (PCA and PLS) are two-way

component and regression models that cannot be directly

applied to multi-way data. The traditional approach to deal

with multi-way data is to use unfold methods (sliced analysis)

such as the one introduced by Wold et al., (1987). Unfold

methods first unfold the multi-way array to a two-way matrix

and then perform ordinary PCA and PLS analysis. However, as

Bro (1996) has pointed out, the unfolding methods are not

favourable since they do not make use of the multi-way structure

in the data, they are often complex (using many parameters) and

more difficult to interpret compared to the multi-way methods

that do not use unfolding.

More appropriate models have been developed for handling

multi-way data, which are the so-called multi-way component

and regression models, schematized in Figure 6. Multi-way

component models are basically generalizations of the two-

way solutions to higher order arrays. One generalization of

PCA to higher orders is Parallel factor analysis (PARAFAC),

also known as trilinear decomposition, with general equation

given by:
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xijk =o
R

r=1
airbjrckr + eijk (16)

where R is the number of components used to fit the model; air,

bjr,ckr are ‘triads’ (trilinear factors) and eijk is the residual (see

Figure 6). Note that here R>1 s explicitly possible, compare PCA

and PLS descriptions above. Another generalization is the

Tucker decomposition, also called N-mode Principal

Component Analysis (Bro, 1997). For the three-way case,

Smilde et al. (2004) describe the Tucker3 model with the

following equation:

xijk = o
P

P=1
o
Q

q=1
o
R

r=1
aipbjqckrgpqr + eijk (17)

where aip,bjq,ckr are elements of the loading matrices A, B, C, gpqr
is an element of the core-array G nd eijk is the residual element in

E as depicted in Figure 6.

Similarly, the two-way partial least squares regression was

also extended to multi-way data as described in Section 3.2.1.

The N-way Partial Least Squares (N-PLS) method was developed

by (Bro, 1996) and further elaborated by (de Jong, 1998; Smilde,

1997; Bro, 1998; Bro et al., 2001). A pictorial representation of

N-PLS model is shown in Figure 6. Due to its desirable

properties, as compared to the unfolding methods, the N-PLS

method has been applied in a range of areas such as
= + + +PARAFAC

= +TUCKER

= + + +

N-PLS

= + +

Multiple Linear
Regression

+

FIGURE 6

Schematization of multi-way models. The cubes (cuboids) represent three dimensional arrays (X denoting the data array, G the core-array for
the Tucker model and Ex the residual array for all models), the three arrows represent orthogonal vectors (trilinear factors a1, b1, c1, and loading
vectors wk, wj with score vector t), while the lines represent vectors (response vector y, score vector u, and residual vector ey), and the
rectangles represent loading matrices for the Tucker model (A, B, C). Adopted from (Fujiwara and Mohr, 2009).
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chemometrics, neuroscience and environmental analysis (Bro,

2006), food industry (Favilla et al., 2013), organic pollutants in

the environment (Mas et al., 2010) or most recently in

agriculture (Lopez-Fornieles et al., 2022).

Moreover, recently another generalized multilinear

regression method, the Higher Order Partial Least Squares

(HOPLS), was introduced by (Zhao et al., 2013). HOPLS

differs substantially from N-PLS in that it uses the Tucker

tensor decomposition (see Eq. (17)) instead of the trilinear

decomposition (see Eq. (16)), hence, it benefits from the

advantages of Tucker over PARAFAC. Zhao et al. (2013)

found that HOPLS could outperform N-PLS and PLS in case

of small sample sizes and higher order N>3 response data y.

While HOPLS appears to be a promising method in those cases,

it should be noted that in this study sufficient number of samples

is available and the response y dataset is not high dimensional

N≤3 The substantial differences between the above mentioned

multi-way methods can be seen from their schematic

representation (Figure 6). A comprehensive review of other

dimension reduction methods for multidimensional data via

Multilinear Subspace Learning (MSL) can be found in (Lu et al.,

2013). In this study the PCA, PLS, PARAFAC and Tucker

algorithms were implemented using open source Python

packages such as scikit-learn and TensoLy, whereas for the N-

PLS algorithm the N-way Toolbox (Andersson et al., 2000) was

used in Matlab.

In order to showcase the differences between the various

two-way (PCA, PLS) and multi-way (PARAFAC, TUCKER, N-

PLS) dimension reduction methods, they were applied on the

atmospheric and environmental data (from Section 2.1) for

prediction. Their prediction errors were analysed from 10-fold

cross-validation. K-fold cross-validation, briefly described in

(Hastie et al., 2009), uses a subset of the available data as a

training set to fit the model and a different subset as a test set,

where the full dataset is split into K qual-sized parts, in this case

K=10. For the prediction of every k−th subset the model is fitted

to the remaining K−1 subsets of the data and the prediction error

of the fitted model is calculated. This process is repeated for

k=1,2,…,K and the K estimates of prediction error are averaged.

First the Mean Squared Error (MSE) with only the intercept (no

principal components in regression) was calculated, and later on

the MSE is computed using 10-fold cross-validation for the

principal components, adding one component at the time in

increasing order. The error measures of the unsupervised

methods were obtained by extracting their computed model

factors (with different number of components) which were then

used to fit linear regression. The results of estimated mean

squared errors of predicting y from 10-fold cross-validation

are shown in Figure 7.

Apart from the prediction accuracy, it is also investigated

how strongly each component (latent variable) in the two

component N-PLS model (the best performing multi-way

model) depends on the original variables (see Figure 8).
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2.3 Dynamic factor analysis

The previously presented dimension reduction techniques

are able to identify unobserved factors that influence a

substantial portion of the variation in a larger number of

observed variables, and able to summarize the dataset through

decomposition. None of these techniques, however, is designed

for time series analysis as temporal correlation is neglected.

Dynamic Factor Analysis (DFA) is a factor model that explicitly

models the transition dynamics of the unobserved factors; hence,

it is a dimension reduction technique that is designed for time

series data. In fact, DFA is a multivariate time-series analysis

technique that estimates underlying common trends in

multivariate time series (Harvey, 1990; Mike West, 1997;

Lütkepohl, 2005). The time series are modelled using a linear

combination of common trends, explanatory variables, and a

noise component (Zuur et al., 2003a).

Given N ime series, these could be analysed by univariate

models by treating them as N separate univariate time series.

However, this would result in N estimated trends without

considering the interactions between them. DFA aims to

overcome this disadvantage by reducing the N univariate

trends to M common trends, where 1≤M<N. The main

objectives of DFA on environmental time series are therefore

identifying underlying common trends (unobserved factors) in

the input time series, identifying interactions between the time

series, and analysing the effects of explanatory variables.

The basic concept of DFA is to decompose themultivariate data

into trends, explanatory variables and noise. Supposing that yt is a

univariate response variable measured in time t where t=1,…,T one

of the simplest univariate time series models is given as follows:

yt = gat +∈t (18)

at = at−1 + ht (19)

where at represents the factor (unknown trend) at time t while

∈t and ht are error components (noise). This model is called the

random walk trend plus noise model. A formulation for the DFA

with N time series (N rows) andM common trends (M columns)

can be written as:

y1t

⋮

yNt

2
664

3
775 =

g11 g1M
⋮ ⋮

gN1 gNM

2
664

3
775

a1t

⋮

aMt

2
664

3
775 +∈t (20)

a1t

⋮

aMt

2
664

3
775 =

a1,t−1

⋮

aM,t−1

2
664

3
775 +

h1t

⋮

hMt

2
664

3
775 (21)

or in generic form:

yt = Gat +∈t (22)
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at = at−1 + ht (23)

where G is a factor loading matrix with dimension N×M and

contains the unknown factor loadings, which are multiplication

factors that determine the linear combination of the original
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variables; and at is a vector of the M common trends at time t

with dimensionM×1. It is generally assumed that the error terms

are independent, normally distributed with mean 0 and an

unknown diagonal or symmetric/non-diagonal covariance

matrix: ∈t∼N(0,H) h∼N(0,Q) and a0∼N(a0,V0) where H,Q,V0

are covariance matrices (Zuur et al., 2003b). Based on these
FIGURE 7

Comparison of two-way (point markers) and multi-way (triangle markers), unsupervised (PCA, PARAFAC, TUCKER) and supervised (PLS, N-PLS)
dimension reduction models. Prediction errors (MSE) from 10-fold cross-validation with increasing number of components. Prediction is done
at Marsdiep Noord station.
FIGURE 8

Importance of predictor variables in the N-PLS model. Loadings of atmospheric variables in the 1st and 2nd N-PLS components for locations
Mardiep Noord (left) and Dantziggat (right). Eastern and northern wind components are denoted by u-wind and v-wind, respectively.
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parameters the covariance matrix of yt can be written as:

cov(yt) = G var(at)G
0 +H (24)

In order to include K explanatory variables in the DFA,

equations (22)– (23) can be extended to the following model:

yt = Gat + Dxt +∈t (25)

at = at−1 + ht (26)

where D is an N×K matrix containing the partial (standardized)

regression coefficients, and xt is a K×1 vector containing the

values of the K explanatory variables at time t. The effects of

explanatory variables are modelled as in linear regression, and

therefore it depends on the same underlying assumptions, such

as normality, independence, and homogeneity of residuals (Zuur

et al., 2003a).

Equations (25)- (26) can be cast into state space form, and

the unknown trends can be estimated via the Kalman filter. The

likelihood is then evaluated based on the filtering recursions, and

maximum likelihood estimation is used to estimate the

parameters. The Kalman Filter and smoother algorithm for the

model in equations (25)- (26) can be found in (Zuur

et al., 2003b).

The dynamic factor model was applied to the ten

chlorophyll-a time series. The main objective was to identify

underlying common trends and further analyse the effects of

atmospheric variables on chlorophyll-a concentrations, this time

considering temporal correlation. Since standard dynamic factor

models are not designed for multi-way data, such as N-PLS, the

atmospheric data is averaged over the locations. In order to

verify that the underlying assumptions of the dynamic factor

model are not violated, several tests were conducted. These tests

include plotting the standardized residuals over time, checking

the normality of the residuals and plotting the correlogram (see

Figure S4 in the Supplementary Material). It was verified that

residuals are uncorrelated (since the autocorrelations are near

zero of all time-lag separations), and normally distributed with

mean zero. Thus, underlying assumptions are valid.
2.4 Functional PCA

So far the paper has investigated the features and relationships

between short term (1 year long) meteorological data and

environmental response. These datasets offered us the

opportunity to apply supervised techniques since the

environmental response was computed with the meteorological

data as input. Moreover, we could consider temporal dependence

and compute unobserved factors in the time series due to the

reasonable number of time steps that allow us to apply

computationally intensive state space models. However, apart

from the analysis on short term data, we are also interested in
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investigating the features of the long term (climate scale)

atmospheric projections and potential for data reduction. In

order to achieve this, firstly we use Euro-CORDEX climate

projections (covering the entire 21st century) instead of

numerical weather prediction model outputs. Secondly, we

analyse the discretely computed (in time) atmospheric data in

the functional data space. This allows us to apply functional data

analysis and study functional variation, which is more logical for

climate projections that are long time series of modelled variables

and are not meant to study short term changes and daily

variability. Naturally, an interesting feature of the climate

projections is their long term trends. Conclusions on their

seasonal variability and the similarities between climate

scenarios are less often drawn, however. We aim to reach such

conclusions through Functional Data Analysis. By treating these

long term climate projections as functional data our objective is to

find an underlying function that can characterize the general

shape of the time series, explain their variability (functional

variation), reduce data complexity, and to aid the interpretation

of the underlying variability sources (Ramsay and Silverman,

2005). The findings of the previous analyses and the Functional

Data Analysis can be jointly used for climate impact assessment by

aiding the atmospheric variables selection for studying

chlorophyll-a climate response, as well as the identification of

important features of the climate projections for further

statistical models.

Functional data representation is commonly done by

smoothing the discrete-time data with basis expansion (e.g.

constant, polynomial, polygonal, B-splines, power, exponential,

Fourier) as a pre-processing step. In our study, a Fourier basis

expansion is applied, which has good computational properties

especially when the data points are equally spaced. Moreover,

Fourier bases are natural for describing periodic data, such as

atmospheric variables, and therefore it is commonly used in this

domain. The functional basis components can be then estimated

through Functional Principal Component Analysis (FPCA).

The underlying idea is that a function xi(t) can be expressed

as a basis expansion:

xi(t) = �x(t) +o
∞

j=1
fijjj(t) (27)

And

fij =
Z 

jj(t) xi(t) − �x(t)½ �dt (28)

where �x(t) is the functional mean (zero if the data is mean

centered), jj(t) are the orthonormal eigenfunctions and fij are

the Functional Principal Component Scores. The first few

eigenfunctions and eigenvalues can be used for data reduction

and feature extraction, while the Functional Principal

Component Scores can be used to describe, cluster and classify

the curves (Segovia-Gonzalez et al., 2009). The Functional
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Principal component analysis in this research uses an open

source Matlab toolbox (Ramsay et al., 2009).

While the other above mentioned methods (multi-way

methods and dynamic factor model) are used for identifying

the most important atmospheric variables affecting chlorophyll-

a concentrations in a shorter time interval, in this research

Functional Principal Component Analysis is used to investigate

different features of the long term climate projections spanning

the 21st entury (from 2006 to 2100). Functional Principal

Component Analysis was therefore applied to the Euro-

CORDEX climate projections to compare the functional

variation of climate variables, and to describe, cluster and

classify the climate scenarios for the two most important

variables (radiation and temperature).

The discrete-time data points are first transformed to

functional data using a Fourier basis expansion. The left panel

of Figure 9 shows the atmospheric variables as functional data

for an arbitrarily selected year within the 95 year interval. The

well distinguishable sinusoidal shapes of solar radiation and

temperature can be seen in the figure. Functional Principal

Component Analysis with two principal components is then

performed on the functional data and the scores of the first two

components are plotted to analyse similarities between the

variables (right panel of Figure 9). Moreover, as a second

experiment, using Functional Principal Component Analysis

the aim is to classify and cluster the climate scenarios

(Representative Concentration Pathways and driving General

Circulation Models) for the two important climate variables

(radiation and temperature), see Figures 10, 11.
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3 Results

3.1 Comparing two-way and
multi-way methods

Another observation is the performance difference between

PCA, PARAFAC and Tucker models. Both PARAFAC and

TUCKER are generalizations of PCA to a higher order, with

the important difference that the PARAFAC model has the

attractive feature of providing unique solutions (there is no

problem with rotational freedom). If the data are approximately

trilinear, the true underlying phenomena can be found if the

right number of components is used and the signal-to-noise

ratio is appropriate (Bro, 1998). The Tucker model is, however,

more flexible and has rotational freedom. It is not structurally

unique as PARAFAC. This makes the Tucker model complex

and might explain why it has lower performance for this specific

example. A restricted Tucker model version exists where domain

knowledge is used to restrict the core elements, forcing

individual elements to take specific values. This way it is

possible to define models that uniquely estimate certain

properties. This could be seen as a structural model tailored to

a specific problem. In this paper restricted Tucker models were

not used.

In Figure 8 the loadings of the first two components of the

N-PLS model (the best performing multi-way model) are given

for two different locations. By identifying the original predictor

variables that weight most heavily one can draw conclusions on

the underlying physical processes. Moreover, less important
FIGURE 9

Functional Principal Component scores for the Euro-CORDEX climate variables. Atmospheric variables transformed to functional data (for an
arbitrarily selected year) on the left panel, and clustering of variables based on the FPCA function scores on the right panel.
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predictors could be excluded from the dataset in order to reduce

the number of variables. In Figure 8 it can be observed that at

Marsdiep Noord, a location of a deeper tidal inlet, the highest

loadings are given to radiation in the first component and to

temperature in the second component. On the other hand, at

Dantziggat, located in the shallow inter-tidal area, the opposite

can be observed: the highest loadings are given to temperature in

the first component and to radiation in the second component.

Moreover, apart from temperature and radiation which have the

highest loadings, northward-wind also has high loading in the

second component at Datziggat. The factor loadings indicate the

differences in the physical systems between the two locations. In

deeper areas (Marsdiep Noord) solar radiation is the primary

driver of the onset of phytoplankton blooms, while in shallower

areas (Dantzigat) radiation intensity is slightly less limiting and

light availability in the water column heavily depend on wind,

which influences turbidity due to the mixing of layers and

suspension. This could explain the greater importance of wind

speed at Dantziggat, especially that northerly winds cause the

highest surges of sea water along the Dutch coast (Klein Tank

and Lenderink, 2009) that leads to enhanced mixing. In addition,

thermal stratification and vertical mixing conditions are different

at the two locations, Marsdiep Noord being intermittently
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stratified and Dantziggat being permanently mixed (van

Leeuwen et al., 2015). This influences nutrient availability in

the mixed layer depth as well as phytoplankton composition and

therefore could be responsible for the greater importance of air

temperature at Dantziggat. Moreover, top-down phytoplankton

governing factors (e.g. grazing, filter-feeding) are also different at

the two locations. For instance the density of filter-feeders is

much higher near Dantziggat (Folmer et al., 2014).
3.2 Dynamic factors

Choosing the optimal number of unobserved factors is

crucial to find a model that identifies common trends in the

dataset without significant loss of statistical information. In

order to find the optimal number of factors, the Akaike’s

Information Criterion (AIC) for each model setup (different

number of factors, error covariance matrix diagonal or

unstructured) was calculated and the model containing the

lowest AIC value was selected as optimal. The selected model

contains two factors if the error covariance matrix is set to

diagonal. The identified two unobserved factors can be seen in

the middle panel of Figure 12. It should be noted that the second
FIGURE 10

Functional Principal Component Analysis for the Euro-CORDEX solar radiation scenarios. Eight solar radiation scenarios transformed to
functional data on the upper left panel, the first PCA component with ± two standard deviations on the bottom left panel, and clustering of
scenarios based on the PCA function scores on the right panel.
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Mészáros et al. 10.3389/fmars.2022.920616
factor has negative factor loadings, and for demonstration

purposes, it was plotted with negative sign. The results

indicate two well distinguished trends. The first factor

represents the trends of those locations where the chlorophyll-

a concentration peak (spring bloom) occurs earlier, such as

Dantziggat. This is confirmed by the factor loadings G. On the

other hand, the second factor shows the pattern of the locations

where the occurrence of the peak is delayed. The identified

temporal shift between locations in the onset of the spring bloom

can be explained by the different system dynamics of the areas,

for instance shallower intertidal zones and the proximity from

river or tidal inlets.

The partial standardized regression coefficients of the

dynamic factor model for the two representative stations

Marsdiep Noord and Dantziggat (see Figure 13) are in

agreement with the findings of N-PLS loadings and confirm

that radiation and temperature are the most important

atmospheric variables. It is also confirmed that at Dantziggat

air temperature has significantly larger impact than at Marsdiep

Noord. As mentioned above, this might be related to the

differences in thermal stratification, mixing conditions and

trophic interactions between the two locations. Nevertheless,
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considering temporal correlation the relative impact of solar

radiation (compared to the other variables) seems to be even

more important, especially at station Marsdiep Noord. This

finding could be explained by the fact that phytoplankton

biomass onset in this coastal ecosystem highly depends on the

timing of increased energy from solar radiation during spring

(Sommer and Lengfellner, 2008). In fact, it was reported by

(Sommer and Lengfellner, 2008) that the (external) light regime

appears to play a more important role in the initiation of spring

blooms than temperature.
3.3 Functional principal components

An important aspect of FPCA is the examination of the

scores of each curve (variable) on each component (here we

display the first two). Figure 9 (right panel) shows the scores of

the first two components of the Functional Principal

Component Analysis applied to Euro-CORDEX climate

variables. In order to draw conclusions from this figure, one

must take into consideration the inverse correlation between two

group of variables: cloud cover and northerly wind on one hand
FIGURE 11

Functional Principal Component Analysis for Euro-CORDEX air temperature scenarios. Eight air temperature scenarios transformed to functional
data on the upper left panel, the first PCA component with ± two standard deviations on the bottom left panel, and clustering of scenarios
based on the PCA function scores on the right panel.
frontiersin.org

https://doi.org/10.3389/fmars.2022.920616
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org
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and radiation, temperature, and pressure on the other hand.

These variables have relatively similar FPCA function scores but

the scores of second group have negative signs (expressing the

inverse correlation). Known examples are the anticorrelation of

atmospheric pressure and cloud cover (high pressure meaning

lower cloudiness), or cloud cover and solar radiation (high

cloudiness meaning lower surface downward solar radiation).

After accounting for the sign of the FPCA scores, a single

main cluster can be distinguished that group variables (their

functional representations) with similar characteristics and two

variables, eastern wind and humidity, that are relatively

separated. In general the correlation between cloud cover and
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wind speed is documented (Essenwanger, 1962) but the reason

for eastern wind to be separated could be explained by the fact

that at this specific location the maritime air mass is mainly

brought by the northerly wind from the North Sea to replace the

dry continental air mass (Klein Tank and Lenderink, 2009)

causing cloud formation. The fact that radiation and

temperature are positively correlated and lie near each other is

expected, due to their similar sinusoidal functional shapes. The

relationship of variations in air temperature to changes in air

pressure was also reported in literature (Aguilar and Brunet,

2001) based on the analysis of long historical records. They

concluded that changes in atmospheric circulation (influenced
FIGURE 12

Underlying trends in chlorophyll-a time series. First and second factors of the Dynamic Factor model simulating chlorophyll-a trends with
atmospheric variables as exogenous variables (middle). Log chlorophyll-a time series at representative stations (bottom). Bathymetry map
showing the location of the representative stations (top). Map source is https://portal.emodnet-bathymetry.eu/.
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by air pressure) has a key role in air temperature variation,

acknowledging that the relationship is seasonally dependent and

impacted by the regional topography. Indirect links between air

pressure and solar radiation were also discovered by (Klein Tank

and Lenderink, 2009). They argue that high pressure systems

impact air quality, which in turn affects solar irradiance (Zhang

et al., 2022; Yang et al., 2022; Gómez et al., 2023). However, as

the considered data are outputs of a climate model, which does

not include air quality processes, this could not have been

captured in our dataset.

Considering the Functional Principal Component Analysis

results for the removal of multi-collinearity, one could expect

that using only radiation or temperature might be sufficient

without significant loss of statistical information. For climate

impact studies at this location it should be considered, however,

that solar radiation and temperature display different long term

trends in this region and influence the phytoplankton dynamics

differently. Based on the Euro-CORDEX projections, long term

trends of radiation is constant or slightly decreasing, whereas air

temperature trends are increasing.

Figure 10 depicts the functional representation of the eight

climate scenarios for solar radiation and the first FPCA function

with ± two standard deviations. Most of the variability 77% can

be explained by the first FPCA function, which suggest that the

scenarios are largely similar. Nevertheless, varying amplitudes

and time shifts are observed between scenarios. These deviations

from the mean function are depicted in the lower left panel of

Figure 10. Furthermore, when comparing the component scores

it can be clearly identified that the climate scenarios are clustered
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based on the driving GCMs, and the two RCP scenarios (RCP4.5

and RCP 8.5) per driving GCM have similar characteristics. This

is in line with previous finding that uncertainty in Regional

Climate Model projections are primarily influenced by the

driving GCMs while the impact of RCPs is less dominant

(Morim et al., 2019). The results also suggest that the CNRM

and ICHEC driving GCMs are very similar to each other,

whereas the IPSL driving GCM is divergent from the other

driving GCMs. This was also reported by (Mészáros et al., 2021)

based on an in-depth analysis of the characteristics of Euro-

CORDEX climate projections.

The same exercise was performed for air temperature and

the results are shown in Figure 11. Similarly to the radiation

scenarios, the air temperature scenarios also differ in their

amplitudes and seasonality (temporal shift). The uncertainty

around the mean function (first FPCA component) clearly

illustrates this phenomenon. In this case, the variability

explained by the first FPCA function is smaller 57% indicating

that temperature scenarios are less similar, perhaps due to the

long term trends (moderately increasing for RCP4.5 but more

sharply increasing for RCP8.5). Surprisingly, the FPCA

component scores show a different picture from the results of

the radiation variable. While the IPSL driving GCM is still

farthest from the others and ICHEC RCP4.5 and CNRM

RCP8.5 remain similar, the other scenarios are not clustered

by driving GCMs anymore.

These findings indicate that the time series of Euro-

CORDEX climate scenarios (for both solar radiation and air

temperature) show structural differences across driving GCMs
FIGURE 13

Dynamic Factor model partial standardized regression coefficients for Marsdiep Noord and Dantziggat stations demonstrating the effects of
atmospheric variables as exogenous variables to model chlorophyll-a trends.
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but full independence between the scenarios cannot be assumed

as their functional features are similar. In fact, they can be

described with a mean function and varying amplitude plus

phase shift. This feature should be incorporated in any statistical

model that is aimed at generating new representative climate

scenarios similar to the existing Euro-CORDEX projection

scenarios. While the results of the Functional Principle

Component Analysis do not allow us to draw conclusions

about shifting seasonality of radiation scenarios on the long-

term, but it does express the strength of the mean signal (77%

and 57% variance explained by the first FPCA for radiation and

temperature respectively) and highlights the source of the

variability around the mean signal.

In a related study (Mészáros et al., 2021) a deeper analysis of

the same Euro-CORDEX climate dataset has been performed

that reached conclusions on the long term characteristics. In this

analysis the radiation projections have been modelled by a

structural time series model that has various components

accounting for long term trend, seasonal shape with varying

amplitude and time shift, and an additive residual term. The

parameters of these time series model components have been

estimated through Bayesian parameter inference based on the

eight Euro-CORDEX climate projection scenarios over the 21st

entury. The seasonal shift was represented by the deviations in

the (yearly) seasonal cycle lengths. It was observed that the

deviations are centered around zero (deviations were maximum

around 14 days) and have a negative lag 1 autocorrelation

meaning that most positive deviations tend to be followed by

negative deviations and vice versa. In this way the yearly cycle

lengths remain close to the ideal cycle length (one calendar year)

throughout the entire time series. Therefore, no consistent shift

in seasonality was identified. Regarding the trend slope, the

general expectation that RCP8.5 has steeper slope than RCP4.5

was confirmed for the temperature variable and also for solar

radiation but much less pronounced. Finally, regarding the

amplitude of the seasonal shape, deviations of up to around

20% were observed but without consistent trend.
4 Discussion

It must be emphasized once again that all statistical

techniques applied in this study are well documented in the

literature. Consequently, the added value of our research to the

marine scientific community is not the development of novel

techniques but the application of carefully selected dimension

reduction techniques (originating from various domains) to

marine and climate big data, in order to provide statistical

underpinning for climate variable selection and data reduction

to support subsequent ecological impact studies. In addition, our

study also offers a framework for the structured application of

these dimension reduction techniques to specifically cover three

features in marine and climate datasets: (1) spatial correlation,
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(2) temporal correlation, and (3) functional variability. The

paper therefore offers a “dimension reduction tool kit” that

goes beyond the standard practice and is suitable to jointly

study marine and climate datasets.

For instance, N-PLS was developed in the domain of

chemometrics, and while several applications in other domains

were reported (Bergant and Kajfež-Bogataj, 2005; Bro, 2006; Mas

et al., 2010; Favilla et al., 2013; Lopez-Fornieles et al., 2022), it

has not been applied in coastal ecological impact studies, to the

best of the author’s knowledge. An N-PLS application

particularly relevant to our research is the study of Bergant

and Kajfež-Bogataj, (2005) in the field of applied climatology

that used N-PLS as an empirical downscaling tool for predicting

climate variables. That study employed N-PLS regression using

average monthly near-ground air temperature, specific humidity

and sea-level pressures from Global Climate Models as

predictors for downscaled average monthly air temperature,

dew temperature, and precipitation. The results of the N-PLS

regression were then compared to the ones form Principal

Component Regression (PCR). It was concluded that in

general N-PLS regression outperforms the commonly used

PCR, and therefore presents a promising alternative. While

that study presented comparison to PCR, our study extends

the comparison of the N-PLS results to a range two-way and

multi-way methods. Moreover, the application of N-PLS is also

extended by including ecological response apart from the climate

data. This provides further evidence on the benefits of N-PLS in

the fields of marine and climate sciences.

As opposed to N-PLS, Dynamic Factor Analysis has been

more widely used in environmental studies (Fujiwara and Mohr,

2009; Chow et al., 2011; Kuo et al., 2014), including marine

ecosystem studies (Zuur et al., 2003b; Zuur et al., 2003a; Ruff

et al., 2017), also considering the impact of climate change

(Kröncke et al., 2019) to identify general patterns in

multivariate time series, interactions between the time series,

and the correlation between the time series and explanatory

variables. Nevertheless, our application can complement the

studies of (Zuur et al., 2003b; Zuur et al., 2003a) that focused

on macro zoobenthos and fisheries, as our study describes

phytoplankton biomass (via chlorophyll-a as proxy), which

has different role in the marine food web.

Our study also advances scientific knowledge related to the

analysis (and data reduction) of climate scenarios. In the past,

PCA has been applied to various climate multi-model ensembles

to reduce the larger ensemble sizes into smaller subsets

(Sanderson et al., 2015). applied PCA to define a measure of

s imi lar i ty between models in the Coupled Model

Intercomparison Project (CMIP5) (Taylor et al., 2012)

(Mendlik and Gobiet, 2016). also used PCA to find common

climate change patterns within a multi-model ensemble

(ENSEMBLES regional multi-model ensemble), combined with

cluster analysis detecting model similarities. Furthermore

(Dalelane et al., 2018), presented a methodology using PCA
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for reducing the climate projection ensemble size of EURO-

CORDEX for subsequent impact studies. There are important

differences between our research and these existing studies,

however. Firstly, the motivation for those studies to use PCA

was to select a subset of scenarios from a larger ensemble while

keeping the characteristics representative, whereas our goal is

more than just the clustering of climate scenarios. Our study

identified features of the radiation and temperature functions

such as the sources of variability (e.g. time lag and amplitude

shift). These identified properties allow us to construct synthetic

realizations of the climate projection scenarios in subsequent

studies (using climate generators). Thus, the objectives are in

sharp contrast, the former aiming to support scenario studies

(based on a reduced number of representative ensemble

members) and the latter supporting probabilistic studies

(based on numerous synthetic realizations). Secondly, all of

these studies used ordinary PCA, not Functional Principal

Component analysis. By considering climate data to be

functional data, although computed at discrete time intervals,

Functional Data Analysis allowed us to represent the entire

measured function on a continuum interval. This paradigm shift

from discrete-time to functional data presents an alternative

approach to the conventional statistical methods, since it

provides additional information on the underlying functions.

Of course, Functional Data Analysis itself is also not new and has

been previously applied in various fields, such as hydrology

(Suhaila et al., 2011; Chebana et al., 2012; Suhaila and Yusop,

2017; Alaya et al., 2020; Hael, 2021), climatology (Bonner et al.,

2014; Suhaila, 2021), water quality (Henderson, 2006; Gong

et al., 2021), and others (Ullah and Finch, 2013) (Suhaila,

2021). already documented the benefits of using Functional

Data Analysis to study temporal features of climate data,

although in that study Functional PCA was applied to

historical data, namely the El Niño Southern Oscillation. In

our research Functional PCA is applied to an ensemble of future

climate projections.
5 Conclusions

In this paper a variety of statistical methods for the

multivariate analysis of air-sea interactions are applied in

order to aid the understanding of complex multi-dimensional

datasets and to support ecological impact studies. The selected

dimension reduction methods were chosen to account for

spatial correlation, temporal correlation, and functional

variability. The presented methods were found to be useful in

exploring the datasets, identifying latent processes, removing

multi-collinearity and selecting atmospheric variables that are

the most important when predicting chlorophyll-a response. A

comparison of standard two-way (PCA, PLS) and less

frequently used multi-way methods (PARAFAC, Tucker, N-

PLS) showcased the potential of multi-way methods to
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construct parsimonious data reduction models. The results

allow us to conclude that there is room for dimension

reduction in the atmospheric dataset since in most cases low

prediction errors could be achieved with as few as 2 principal

components. Further conclusions could be drawn on the

predictors that affect the coastal chlorophyll-a concentration

the most. All used methods indicate solar radiation to be the

most important influencing factor, followed by air temperature

and wind in shallow zones. The dynamic factor model proved

to be an appropriate tool to acquire information about

underlying common trends in chlorophyll-a time series

across stations, and to investigate the effects of atmospheric

explanatory variables with the inclusion of temporal structure

when constructing unobserved factors. The difference in

phytoplankton bloom onset at different parts of the Dutch

Wadden Sea was revealed by the dynamic factor model and

solar radiation was re-confirmed to be the most dominant

atmospheric variable when temporal correlation is considered.

Finally, using Functional Principal Component analysis

further insights into the Euro-CORDEX regional climate

data were gained by identifying features of the climate

projection scenarios.

Overall, our findings support the use of solar radiation as the

primary driving atmospheric variable to simulate climate

impacts on coastal chlorophyll-a concentrations in the Dutch

Wadden Sea. Moreover, structural patterns of Euro-CORDEX

climate scenarios for solar radiation and air temperature have

been determined, which provide information on the mean

functions and their uncertainties. In ecological impact studies,

uncertainties stemming from the climate scenarios are often only

represented by picking few climate ensemble members (some of

the driving GCMs and RCPs). Instead of such scenario studies it

is advised to use the presented uncertainty intervals in the

functional variation of the Euro-CORDEX climate scenarios

and perform a fully probabilistic assessment for proper climate

uncertainty propagation. In this context, the findings can also

inform studies in which climate generators are proposed to

produce numerous synthetic realizations of solar radiation and

air temperature projections. The underlying structural time

series models of such climate generators should incorporate

the two identified features: varying amplitudes and time lag

(shift) in seasonality. Moreover, due to the identified shared

characteristics, climate scenarios seem exchangeable rather than

independent, hence, the pooling of scenarios is recommended in

hierarchical models to borrow strength and make statistical

models more optimal.
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González Taboada, F., and Anadón, R. (2014). Seasonality of north Atlantic
phytoplankton from space: impact of environmental forcing on a changing
phenology (1998-2012). Global Change Biol. 20, 698–712. doi: 10.1111/gcb.12352

Hael, M. A. (2021). Modeling of rainfall variability using functional principal
component method: a case study of taiz region, Yemen. Modeling Earth Syst.
Environ. 7, 17–27. doi: 10.1007/S40808-020-00876-W/FIGURES/6

Harvey, A. C. (1990). Forecasting, structural time series models and the kalman
filter (Cambridge: Cambridge University Press), 554. doi: 10.1017/
CBO9781107049994

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The elements of statistical
learning Vol. vol. 1 (New York, NY: Springer), 1–694. doi: 10.1007/b94608
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