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Abstract 

The problem that we address in this paper is how a mobile robot can plan in order 

to arrive at its goal with minimum uncertainty. Traditional motion planning algo
rithms often assume that a mobile robot can track its position reliably, however, in real 
world situations, reliable localization may not always be feasible. Partially Observable 
Markov Decision Processes (POMDPs) provide one way to maximize the certainty of 
reaching the goal state, but at the cost of computational intractability for large state 
spaces. 

The method we propose explicitly models the uncertainty of the robot's position as 
a state variable, and generates trajectories through the augmented pose-uncertainty 
space. By minimizing the positional uncertainty at the goal, the robot reduces the 
likelihood it becomes lost. We demonstrate experimentally that coastal navigation 
reduces the uncertainty at the goal, especially with degraded localization. 

1 Introduction 

For an operational mobile robot, it is essential to prevent becoming lost. Early motion 
planners assumed that a robot would never be lost - that a robot could always know its 
position via dead reckoning without error [7]. This assumption proved to be untenable due 
to the small and inevitable inconsistencies in actual robot motion; robots that rely solely on 
dead reckoning for their position estimates lose their position quickly. Mobile robots now 
perform position tracking using a combination of sensor data and odometry [2, 10, 5]. 

However, the robot's ability to track its position can vary considerably with the robot's 
position in the environment. Some parts of the environment may lack good features for lo
calization [11]. Other parts of the environment can have a large number of dynamic features 
(for example, people) that can mislead the localization system. Motion planners rarely, if 
ever, take the robot's position tracking ability into consideration. As the robot's localiza
tion suffers, the likelihood that the robot becomes lost increases, and as a consequence, the 

robot is less likely to complete the given trajectory. 

Most localization systems therefore compensate by adding environment-specific knowl
edge to the localization system, or by adding additional sensing capabilities to the robot, 
to guarantee that the robot can complete every possible path. In general, however, such 
alterations to the position tracking abilities of the robot have limitations, and an alternative 
scheme must be used to ensure that the robot can navigate with maximum reliability. The 
conventional planners represent one end of a spectrum of approaches (figure 1), in that a 

plan can be computed easily, but at the cost of not modelling localization performance. 

At opposite end of the spectrum is the Partially Observable Markov Decision Process 
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Figure 1: The continuum of possible approaches to the motion planning, from the robust but in
tractable POMDP, to the potentially failure-prone but real-time conventional planners. Coastal navi
gation lies in the middle of this spectrum. 

(POMDP). POMDPs in a sense are the brass ring of planning with uncertainty; a POMDP 
policy will make exactly the right kind of compromise between conventional optimality 
considerations and certainty of achieving the goal state. Many people have examined the 

use of POMDPs for mobile robot navigation [5, 6, 8]. However, computing a POMDP 
solution is computationally intractable (PSPACE-hard) for large state systems - a mobile 
robot operating in the real world often has millions of possible states. As a result, many 
of the mobile robot POMDP solutions have made simplifying assumptions about the world 
in order to reduce the state space size. Many of these assumptions do not scale to larger 
environments or robots. In contrast, our hypothesis is that only a small number of the 
dimensions of the uncertainty matter, and that we can augment the state with these dimen

sions to approximate a solution to the POMDP. 

The coastal navigation model developed in this paper represents a tradeoff between robust 
trajectories and computational tractability, and is inspired by traditional navigation of ships. 
Ships often use the coasts of continents for navigation in the absence of better tools such 
as GPS, since being close to the land allows sailors to determine with high accuracy where 
they are. The success of this method results from coast lines containing enough information 
in their structure for accurate localization. By navigating sufficiently close to areas of the 
map that have high information content, the likelihood of getting lost can be minimized. 

2 Modelling Uncertainty 

The problem that we address in this paper is how a mobile robot can plan in order to arrive 
at its goal with minimum uncertainty. Throughout this discussion, we will be assuming a 
known map of the environment [9]. The position, x, of the robot is given as the location 
(x, y) and direction e, defined over a space X = (X, Y, 8). Our localization method is 
a grid-based implementation of Markov localization [3, 5]. This method represents the 
robot's belief in its current position using a 3-dimensional grid over X = (X, Y, 8), which 
allows for a discrete approximation of arbitrary probability distributions. The probability 
that the robot has a particular pose x is given by the probability p(x). 

State Augmentation We can extend the state of the robot from the 3-dimensional pose 
space to an augmented pose-uncertainty space. We can represent the uncertainty of the 
robot's positional distribution as the entropy, 

H(Px ) = - J p(x) log(p(x)) dx (1) 

x 

We therefore represent the state space of the robot as the tuple 

S (x,y,e,H(x,y,e)) 

(x, H(x)) 

State Transitions In order to construct a plan between two points in the environment, 
we need to be able to represent the effect of the robot's sensing and moving actions. The 
implementation of Markov localization provides the following equations for the tracking 
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the robot's pose from x to x': 

p(x'lu) 

p(x'lz) 

J p(x'lx, u)p(x)dx 

x 

ap(zlx)p(x) 
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(2) 

(3) 

These equations are taken from [3, 12], where equation (2) gives the prediction phase of 
localization (after motion u), and equation (3) gives the update phase of localization (after 
receiving observation z). a is a normalizing constant. We extend these equations to the 
fourth dimension as follows: 

3 Planning 

p(slu) 

p(slz) 

(p(xlu),ll(p(xlu))) 

(p(xlz), ll(p(xlz))) 

(4) 

(5) 

Equations (4) and (5) provide a mechanism for tracking the robot's state, and in fact contain 
redundant information, since the extra state variable ll(x) is also contained in the probabil
ity distribution p(x). However, in order to make the planning problem tractable, we cannot 
in fact maintain the probabilistic sensing model. To do so would put the planning problem 
firmly in the domain ofPOMDPs, with the associated computational intractability. Instead, 
we make a simplifying assumption, that is, that the positional probability distribution of 
the robot can be represented at all times by a Gaussian centered at the mean x. This allows 
us to approximate the positional distribution with a single statistic, the entropy. In POMDP 

terms, we using the assumption of Gaussian distributions to compress the belief space to a 
single dimension. We can now represent the positional probability distribution completely 
with the vector s, since the width of the Gaussian is represented by the entropy ll(x). 

More importantly, the simplifying assumption allows us to track the state of the robot de
terministically. Although the state transitions are stochastic (as in equation (4», the obser
vations are not. At any point in time, the sensors identify the true state of the system, with 
some certainty given by II (p(xlz)). This allows us to compress the state transitions into a 
single rule: 

p(slu) (p(xlu),ll(p(xlu,z))) (6) 

The final position of the robot depends only on the motion command 1l and can be identified 
by sensing z. However, the uncertainty of the pose, ll(p(xlll, z)), is a function not only 
of the motion command but also the sensing. The simplifying assumption of Gaussian 
models is in general untenable for localization; however, we shall see that this assumption 
is sufficient for the purpose of motion planning. 

One final modification must be made to the state transition rule. In a perfect world, it 
would be possible to predict exactly what observation would be made. However, it is 
exactly the stochastic and noisy nature of real sensors that generates planning difficulty, 
yet the update rule (6) assumes that it is possible to predict measurement z at pose x. 
Deterministic prediction is not possible; however, it is possible to compute probabilities 
for sensor measurements, and thus generate an expected value for the entropy based on the 
probability distribution of observations Z, which leads to the final state transition rule: 

p(slu) (p(xlu), Ez[ll(p(xlu , z))]) (7) 

where Ez[ll(p(xlll, z))] represents the expected value of the entropy of the pose distribu
tion over the space of possible sensor measurements. 

With the transition rule in equation (7), we can now compute the transition probabilities 
for any particular state using a model of the robot's motion, a model of the robot's sensor 
and a map of th~ environment. The probability p(xlu) is given by a model of the robot's 
motion, and can be easily precomputed for each action u. The expectation term Ez [ll] 
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can also be precomputed for each possible state s. The precomputation of these transition 
probabilities is very time-intensive, because it requires simulating sensing at each state in 
the environment, and then computing the posterior distribution. However, as the precom
putation is a one-time operation for the environment and robot, planning itself can be an 
online operation and is (in the limit) unaffected by the speed of computing the transition 
probabilities. 

3.1 Computing Trajectories 

With the state update rule given in equation (7), we can now compute the optimal trajectory 
to a particular goal. We would in fact like to compute not just the optimal trajectory from 
the current robot position, but the optimal action from any position in the world. If the robot 
should deviate from the expected trajectory for any reason (such as error in the motion, or 

due to low-level control constraints), interests of efficiency suggest precomputing actions 
for continuing to the goal, rather than continually replanning as these contingencies arise. 
Note that the motion planning problem as we have now phrased it can be viewed as the 
problem of computing the optimal policy for a given problem. The Markovian, stochastic 
nature of the transitions, coupled with the need to compute the optimal policy for all states, 
suggests a value iteration approach. 

Value iteration attempts to find the policy that maximizes the long-term reward [1,4]. The 
problem becomes one of finding the value function, J(s) which assigns a value to each 
state. The optimal action at each state can then be easily computed by determining the 
expected value of each action at each state, from the neighboring values. We use a modified 
form of Bellman's equations to give the value of state J (s) and policy as 

N 

J(Si) m:x[R(sd + C(s, u) + L p(Sj lSi, u) . J(Sj)] (8) 
j=1 

N 

argmax[R(si) + C(s, u) + L p(Sj lSi, u) . J(Sj)] (9) 
Il 

j=1 

By iterating equation (8), the value function iteratively settles to a converged value over all 
states. Iteration stops when no state value changes above some threshold value. 

In the above equations, R(sd is the immediate reward at state si, p(Sj lSi , u) is the transition 

probability from state si to state Sj, and C(s, u) is the cost of taking action u at state s. Note 
that the form of the equations is undiscounted in the traditional sense, however, the additive 
cost term plays a similar role in that the system is penalized for policies that take longer 
trajectories. The cost in general is simply the distance of one step in the given direction u, 
although the cost of travel close to obstacles is higher, in order to create a safety margin 
around obstacles. The cost of an action that would cause a collision is infinite, preventing 
such actions from being used. 

The immediate reward is localized only at the goal pose. However, the goal pose has a 
range of possible values for the uncertainty, creating a set of goal states, g. In order to 

reward policies that arrive at a goal state with a lower uncertainty, the reward is scaled 
linearly with goal state uncertainty. 

R( xd = {~ - H (s) 
S (; 9 
otherwise 

(10) 

By implementing the value iteration given in the equations (8) and (9) in a dynamic pro
gram, we can compute the value function in O( nkcrid where n is the number of states in 
the environment (number of positions x number of entropy levels) and kcrit is the num
ber of iterations to convergence. With the value function computed, we can generate the 
optimal action for any state in O(a) time, where a is the number of actions out of each 
state. 



Coastal Navigation with Mobile Robots 1047 

4 Experimental Results 

Figure 2 shows the mobile robot, Minerva, used for this research. Minerva is a RWI B-18, 
and senses using a 3600 field of view laser range finder at 10 increments. 

Figure 2: Minerva, the B-18 mobile robot used for this research, and an example environment map, 
the Smithsonian National Museum of American History. The black areas are the walls and obstacles. 

Note the large sparse areas in the center of the environment. 

Also shown in figure 2 is an example environment,the Smithsonian National Museum of 
American History. Minerva was used to generate this map, and operated as a tour-guide in 

the museum for two weeks in the summer of 1998. This museum has many of the features 
that make localization difficult -large open spaces, and many dynamic obstacles (people) 
that can mislead the sensors. 

Startillg Positioll Start POSitiOIl 

~ ~~ ~ .,.~ 

~ . I 
. .-A. ~ 

(a) Conventional (b) Coastal (c) Sensor Map 

Figure 3: Two examples in the museum environment. The left trajectory is given by a conventional, 
shortest-path planner. The middle trajectory is given by the coastal navigation planner. The black 
areas correspond to obstacles, the dark grey areas correspond to regions where sensor infonnation is 

available, the light grey areas to regions where no sensor infonnation is available. 

Figure 3 shows the effect of different planners in the sample environment. Panel (a) shows 
the trajectory of a conventional, shortest distance planner. Note that the robot moves di-



1048 N. Roy and S. Thrun 

rectly towards the goal. Panel (b) shows the trajectory given by the coastal planner. In both 
examples, the robot moves towards an obstacle, and relocalizes once it is in sensor range of 
the obstacle, before moving towards the goal. These periodic relocalizations are essential 
for the robot to arrive at the goal with minimum positional uncertainty, and maximum reli
ability. Panel (c) shows the sensor map of the environment. The black areas show obstacles 
and walls, and the light grey areas are where no information is available to the sensors, be
cause all environmental features are outside the range of the sensors. The dark grey areas 
indicate areas where the information gain from the sensors is not zero; the darker grey the 
area, the better the information gain from the sensors. 
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Figure 4: The performance of the coastal navigation algorithm compared to the coastal motion plan
ner. The graph depicts the entropy of the position probability distribution against the range of the 
laser sensor. Note that the coastal navigation dramatically improves the certainty of the goal position 
with shorter range laser sensing. 

Figure 4 is a comparison of the average positional certainty (computed as entropy of the 
positional probability) of the robot at its goal position, compared to the range of the laser 
range sensor. As the range of the laser range gets shorter, the robot can see fewer and 
fewer environmental features - this is essentially a way of reducing the ability of the robot 

to localize itself. The upper line is the performance of a conventional shortest-distance 
path planner, and the lower line is the coastal planner. The coastal planner has a lower 
uncertainty for all ranges of the laser sensor, and is substantially lower at shorter ranges, 
confirming that the coastal navigation has the most effect when the localization is worst. 

5 Conclusion 

In this paper, we have described a particular problem of motion planning - how to guarantee 
that a mobile robot can reach its goal with maximum reliability. Conventional motion 
planners do not typically plan according to the ability of the localization unit in different 

areas of the environment, and thus make no claims about the robustness of the generated 
trajectory. In contrast, POMDPs provide the correct solution to the problem of robust 
trajectories, however, computing the solution to a POMDP is intractable for the size of the 
state space for typical mobile robot environments. 

We propose a motion planner with an augmented state space that represents positional 
uncertainty explicitly as an extra dimension. The motion planner then plans through pose
uncertainty space, to arrive at the goal pose with the lowest possible uncertainty. This can 
be seen to be an approximation to a POMDP where the multi-dimensional belief space is 
represented as a subset of statistics, in this case the entropy of the belief space. 

We have shown some experimental comparisons with a conventional motion planner. Not 
only did the coastal navigation generated trajectories that provided substantial improve
ment of the positional certainty at the goal compared to the conventional planner, but the 
improvement became more pronounced as the localization was degraded. 
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The model presented here, however, is not complete. The entire methodology hinges upon 
the assumption that the robot's probability distribution can be adequately represented by 
the entropy of the distribution. This assumption is valid if the distribution is restricted 
to a uni-modal Gaussian, however, most Markov localization methods that are based on 

this assumption fail, because multi-modal, non-Gaussian positional distributions are quite 
common for moving robots. Nonetheless, it may be that multiple uncertainty statistics 
along multiple dimensions (e.g., x and y) may do a better job of capturing the uncertainty 
sufficiently. It is an question for future work as to how many statistics can capture the 
uncertainty of a mobile robot, and under what environmental conditions. 
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