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The ecological impact of large coastal human populations on marine ecosystems remains 

relatively unknown. Here, we examine the population structure of Patiria miniata, the bat 

star, and correlate genetic distances with a model based on flow rates and proximity to  

P. miniata populations for the four major stormwater runoff and wastewater effluent sources 

of the Southern California Bight. We show that overall genetic connectivity is high (FST~0.005); 

however, multivariate analyses show that genetic structure is highly correlated with 

anthropogenic inputs. The best models included both stormwater and wastewater variables 

and explained between 26.55 and 93.69% of the observed structure. Additionally, regressions 

between allelic richness and distance to sources show that populations near anthropogenic 

pollution have reduced genetic diversity. Our results indicate that anthropogenic runoff and 

effluent are acting as barriers to larval dispersal, effectively isolating a high gene flow species 

that is virtually free of direct human impact. 

1 Hawai’i Institute of Marine Biology, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, P.O. Box 1346, Kane’ohe, Hawaii 
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H
uman beings have impacted every marine ecosystem on 
earth, and almost half of these systems have been strongly 
a�ected by multiple anthropogenic factors1. �e ecological 

consequences of anthropogenic impacts have become too large to 
ignore, and recent e�orts have been made to incorporate them into 
management and conservation strategies2,3. However, in addition 
to recognizing humans as the world’s most powerful evolutionary 
force4, we have little information on anthropogenic impacts to the 
evolutionary processes of non-harvested species, such as population 
connectivity, and this speci�c information remains a critical miss-
ing element in almost all marine conservation5,6. Over 17 million 
people, close to 25% of the entire US coastal population7,8, inhabit 
the coastal area of the Southern California Bight (SCB), and it rep-
resents one of the most a�ected marine ecosystems in the world1. 
Besides habitat loss and modi�cation, the next largest environmen-
tal impact of this urban population is the discharge of contami-
nants into the ecosystem7. �e SCB has more than 60 point sources  
discharging ~4.7 billion liters of e�uent per day, with the two  
largest sources of contaminants being sewage e�uent from munici-
pal treatment plants (wastewater) and runo� from highly modi-
�ed natural river basins (stormwater)9. �is e�uent transports 
large loads of known and unknown contaminants, including heavy  
metals, chlorinated hydrocarbons, petroleum hydrocarbons, nutri-
ents and bacteria7, and has been shown to be toxic to marine fauna10. 
A wide range of anthropogenic chemicals has been shown to dis-
rupt the hormonal systems of wildlife species and have become a 
major cause for concern in global e�orts to conserve biodiversity11. 
Many of these substances are also known to be toxic to larvae12–14. 
We hypothesized that anthropogenic e�uent and runo� and the 
transported contaminants associated with them are toxic to larvae, 
therefore a�ecting marine population connectivity in the SCB by 
inducing broad-scale larval mortality.

To test whether population connectivity was limited by storm-
water and wastewater contaminants, we examined the population 
structure of Patiria miniata, the common bat star, across 16 popula-
tions in the SCB. P. miniata is a ubiquitous omnivore found along 
the subtidal and intertidal west coast of North America. It has a  
6–10-week pelagic larval development period, a potential year-
round breeding season that may peak in summer15,16, and has been 
shown to have both high genetic diversity and high genetic con-
nectivity between populations over 1,000-km apart17. Moreover,  
P. miniata is a non-�shed, non-harvested species relatively free from 
any direct human impact, making it a conservative system to test for 
human-mediated e�ects on connectivity. We found stormwater and 
wastewater to be e�ective barriers to larval dispersal, reducing gene 
�ow between populations. Furthermore, wastewater (and most likely 
stormwater) sources e�ectively lower genetic diversity. �us, our 
study suggests a role for human impact in altering larval dispersal.

Results
Population connectivity. We sequenced 439 individuals at two 
mitochondrial DNA (mtDNA) genes and genotyped them at 
seven microsatellite loci (nDNA). As expected, genetic diversity 
is extremely high (Table 1, Supplementary Fig. S1) and the overall 

genetic structure of P. miniata is low, with global FST values ranging 
between 0.001 and 0.007 and only one of those values being 
statistically signi�cant. However, examining pairwise di�erentiation 
values among sites showed that there is a distinct geographic 
pattern to the genetic structure of P. miniata (Fig. 1), and the 
structure appeared to correlate visually with the major sources of 
anthropogenic contaminants in the SCB (Fig. 1).

Anthropogenic e�ects on genetic structure. To speci�cally test 
the e�ects of stormwater and wastewater on genetic structure,  
we created a simple model based on the average �ow rate of the con-
taminant source and the distance of that source from our sampled 
populations. �at model was then used to create pairwise ‘resist-
ance’ matrices for all of our populations. We examined how well 
anthropogenic resistance matrices predicted the pairwise values  
of genetic structure, connectivity (FST) and di�erentiation (DEST), 
using single and multiple matrix regression (MMR) frameworks18  
and a distance-based canonical redundancy analysis.

Single-variable regression. Examining pollution sources in a  
single-variable framework revealed consistent and signi�cant  
limitations to gene �ow associated with contaminant sources. Over-
all, several stormwater and wastewater variables have high and  
signi�cant correlations to several measures of genetic structure 
using the low diversity (LD) mtDNA locus (Table 2, Supplementary 
Table S2). In contrast, no signi�cant predictors were found for the 
nDNA data sets. Neither geographic distance nor the stormwater 
input from the Santa Clara River (RSC) was found to be a signi�cant 
predictor for any data set.

Multivariate regression. Expanding models to include more than 
one predictive variable greatly improved the model �t for all data 
sets, highlighting the synergistic e�ect of multiple anthropogenic 
sources on the genetic structure of P. miniata. Every top model 
included both stormwater and wastewater variables (Table 3,  
Supplementary Tables S3–S8), indicating that both are important in 
driving the observed patterns of genetic structure. Although there 
were signi�cant models predicting nDNA genetic structure, they 
o�en had relatively low R2 values (0.11–0.14) compared with that 
using mtDNA loci (0.22–0.57). Models predicting genetic structure 
values using the LD mtDNA marker showed the highest R2 values 
(0.54–0.58) and the best �t (Fig. 2).

Among stormwater sources, three were present in every top 
mtDNA model: the Los Angeles River, the San Gabriel River and 
the Santa Ana River. RSC was included in several models, but was 
usually nonsigni�cant. Among all loci, the Hyperion and Palos  
Verdes sewage outfalls were included in all top models, whereas the 
Point Loma outfall appears in two of the six models. �e Huntington  
Beach outfall is not included in many models and is o�en insigni�-
cant when it does. �is is most likely because of its proximity and 
spatial autocorrelation with Santa Ana River.

Canonical redundancy analysis. MMR is one of the better performing 
methods of evaluating the in�uence of landscape (seascape) variables 

Table 1 | Genetic diversity of Patiria miniata.

LD mtDNA Full mtDNA nDNA

Number of haplotypes 33 294 Average number of alleles per locus 13
Number of singletons 24 238 Number of unique genotypes 437
Mean gene diversity 0.4169 0.9914 Mean gene diversity 0.6013
Mean allelic richness 2.47 13.17 Mean allelic richness 5.9

LD, low diversity; mtDNA, mitochondrial DNA.

Diversity statistics for all three loci. Gene diversity and allelic richness are averaged across populations, and across loci for the nDNA markers.
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on genetic structure; however, it has recently been suggested that the 
best analytical strategies involve using multiple types of analyses19. To 
this end, we used a distance-based canonical redundancy analysis, 
that has been shown to have not only relatively low power for detect-

ing e�ects but also low type-1 error rate19, to redo all single variable  
regressions (Supplementary Table S9) and to test the six top models 
from the MMR analysis (Supplementary Table S10). �e results were 
nearly identical to the MMR and corroborate our initial �ndings.
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Figure 1 | Visualization of anthropogenic correlations of P. miniata population structure. (a) Map and satellite image of P. miniata population sampling 

sites highlighting the four wastewater sources (red squares) and the four stormwater sources (blue triangles). The image is a reverse black and white 

rendering of an image from the NASA MODIS satellite on 1 December 2005 (http://rapidfire.sci.gsfc.nasa.gov/subsets/?subset=AERONET_La_

Jolla.2005012.aqua.250m) showing visible sediment from stormwater. White squares represent populations with n < 20, whereas white circles are 

populations with n > 20. Each population is also labelled with a four-letter code for reference. Red squares are the locations of wastewater outfalls and 

blue triangles are the locations of stormwater sources (river mouths). Pollution source abbreviations are RLA, The Los Angeles River; RSA, The Santa Ana 

River; RSG, The San Gabriel River; SHB, outfall for the Huntington Beach wastewater treatment facility; SHP, Hyperion sewage treatment plant; SPS, outfall 

for the Point Loma wastewater treatment plant and SPV, outfall for the Rancho Palos Verdes wastewater treatment plant. (b) A heat map colour-coded 

by pairwise linearized FST values from the LD mtDNA marker. (c) A Kriging surface interpolation using the average pairwise FST value for each population 

averaged across each of the three marker sets. Scale bar, 50 km.
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Table 2 | Single anthropogenic source regression results.

LD mtDNA FST nDNA FST

Full data set R2 N > 20 subset R2 Full data set R2 N > 20 subset R2

RSG 0.4051*** RLA 0.6376*** SPV 0.0307 SPS 0.2915***
SPV 0.3785*** RSG 0.6288*** RLA 0.0235 DIST 0.0739*
RLA 0.3625*** SHB 0.6015*** DIST 0.0207 RSC 0.0459
SHB 0.3344*** RSA 0.5856*** RSG 0.0174 SPV 0.023
RSA 0.3334*** SPV 0.4004*** SHP 0.0157 SHB 0.0158
SHP 0.2629*** SHP 0.1844** RSC 0.0121 RLA 0.0138
RSC 0.0137 RSC 0.0935* SPS 0.0032 RSA 0.0134
SPS 0.0116 DIST 0.0759 SHB 0.0027 RSG 0.0112
DIST 0.0031 SPS 0.0504 RSA 0.0019 SHP 0.0019

LD mtDNA DEST nDNA DEST

Full data set R2 N > 20 subset R2 Full data set R2 N > 20 subset R2

RSG 0.3653*** RSG 0.8710*** RSC 0.0273 RSC 0.1579**
RLA 0.3545*** RLA 0.8166*** DIST 0.0197 SPS 0.1199**
SPV 0.2922*** RSA 0.8138*** SPV 0.0121 DIST 0.0156
SHB 0.2523*** SHB 0.7661*** SHP 0.0078 SPV 0.0092
RSA 0.2450*** SPV 0.2689*** SPS 0.0071 SHP 0.0032
SHP 0.1802*** DIST 0.0337 RLA 0.0058 RLA 0.0027
SPS 0.0850** RSC 0.0319 SHB 0.0040 SHB 0.0021
RSC 0.0306 SHP 0.0177 RSG 0.0030 RSG 0.0017
DIST 0.0000 SPS 0.0039 RSA 0.0008 RSA 0.0011

DIST, geographic distance; LD, low diversity; mtDNA, mitochondrial DNA; RLA, The Los Angeles River; RSA, The Santa Ana River; RSC, The Santa Clara River; RSG, The San Gabriel River; SHB, outfall 
for the Huntington Beach wastewater treatment facility; SHP, Hyperion sewage treatment plant; SPS, outfall for the Point Loma wastewater treatment plant; SPV, outfall for the Rancho Palos Verdes 
wastewater treatment plant.

R2 values for single-variable matrix regression tests using the LD mtDNA and nDNA FST and DEST values. Each measure of genetic structure was tested with the full data set and the n > 20 data subset. 
*P < 0.05, **P < 0.01, and ***P < 0.001.

Table 3 | Multiple anthropogenic source regression results.

FST Full data set DEST

Marker Model R2 ∆AICc Marker Model R2 ∆AICc

LD RSA, RLA, RSG, RSC, SHP, SPV 0.5768 0.00 LD RSA, RLA, RSG, SHP, SPV, SPS 0.5406 0.00
mtDNA RSA, RLA, RSG, SHP, SPV 0.5669 0.48 mtDNA RSA, RLA, RSG, SHP, SPV, SHB, SPS 0.5445 1.32

RLA, RSG, RSC, SHP, SPV, SHB 0.5743 0.70 RSA, RLA, RSG, SHP, SPV, SPS, DIST 0.5432 1.66

Full RSA, RLA, RSG, SHP, SPV, SPS 0.3259 0.00 Full RSA, RLA, RSG, SHP, SPV 0.2655 0.00
mtDNA RSA, RLA, RSG, RSC, SHP, SPV, SPS 0.3365 0.45 mtDNA DIST, RSA, RLA, RSG, SHP, SPV 0.2741 0.88

RSA, RLA, SPV, SHB, SPS 0.3080 0.86 RSA, RLA, RSG, SPV, SHB 0.2532 1.99

nDNA RLA, RSG, RSC, SHP, SPV 0.1075 0.00 nDNA RSA, RSC, SHP, SPV 0.1181 0.00
RSA, RSC, SHP, SPV 0.1233 0.08 RLA, RSG, RSC, SHP, SPV 0.1292 0.74
RLA, RSG, RSC, SHP, SPV 0.1382 0.28 RSC, SHP, SPV, SHB 0.1116 0.88

FST N > 20 subset DEST

Marker Model R2 ∆AICc Marker Model R2 ∆AICc

LD RLA, RSC, SHP, SPV 0.7621 0.00 LD DIST, RLA, RSG, SHP, SPS 0.9369 0.00
mtDNA RLA, RSC, SHP, SPV, SPS 0.7705 0.11 mtDNA DIST, RSG, SHP, SPV, SPS 0.9368 0.12

RSG, RSC, SHP, SPV 0.7616 0.13 DIST, RLA, SHP, SPV, SPS 0.9367 0.20

Full RSA, RLA, RSG, SHP, SPS 0.6802 0.00 Full RLA, RSC, SHP, SPV, SPS 0.4288 0.00
mtDNA RLA, RSG, SHP, SHB, SPS 0.6802 0.00 mtDNA RSG, RSC, SHP, SPV, SPS 0.4287 0.01

RSA, RSG, SHP, SHB, SPS 0.6802 0.00 RLA, RSG, RSC, SHP, SPS 0.4275 0.14

nDNA RLA, RSG, SHP, SPS 0.4447 0.00 nDNA RSC, SPS 0.2365 0.00
SHP, SPV, SHB, SPS 0.4441 0.08 RSC, SPV, SPS 0.2525 0.95
RSA, SHP, SPV, SPS 0.4421 0.32 RLA, RSC, SPS 0.2425 1.82

DIST, geographic distance; LD, low diversity; mtDNA, mitochondrial DNA; RLA, The Los Angeles River; RSA, The Santa Ana River; RSC, The Santa Clara River; RSG, The San Gabriel River; SHB, outfall 
for the Huntington Beach wastewater treatment facility; SHP, Hyperion sewage treatment plant; SPS, outfall for the Point Loma wastewater treatment plant; SPV, outfall for the Rancho Palos Verdes 
wastewater treatment plant.

The R2 and AICc values for the top three multivariate models for each marker and for each measure of genetic structure. Full mtDNA refers to using both loci in a concatenated analysis (see Methods). 
Models were ranked by AICc score. Each variable was italicized if its regression coefficient was significantly different than zero with P < 0.05. The best model, in bold, was chosen as the model with the 
lowest AICc score that had all significant variable coefficients. All of the models were significant at P < 0.001, with the exception of the models using nDNA, which were all significant at P < 0.05.
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Population sampling size and high-diversity genetic markers. 
Despite its ubiquitous nature, P. miniata was rare at some sites, 
and despite extensive survey, some populations only had 15 indi-
viduals sampled. For genetic markers with high mutation rates and  
especially for species with low levels of genetic structure, under-
sampling of populations may lead to inaccurate measures of genetic 
structure20,21. To control for this possibility, a subset of the data was 

reanalyzed using only populations with more than 20 individuals 
sampled. �is data subset represents a balance between increas-
ing the accuracy of our genetic measures while still retaining 11 of  
the 16 original populations and maintaining su�cient geographic 
sampling (Fig. 1, Supplementary Table S1).

For all stormwater and wastewater models, R2 values increased 
using the subset of well-sampled populations (Tables 2 and 3, and 
Fig. 2). In single variable tests, almost all signi�cant variables from 
the full data set remained signi�cant (Table 2, Supplementary  
Table S2). For multivariate models, the top models had increased 
R2 values and included fewer variables than top models using the 
full data set; however, they still included both wastewater and 
stormwater variables (Table 3). For multivariate models, removing 
populations, especially those bordering or between anthropogenic 
inputs, lessened geographic sampling, leading to higher correla-
tions between predictive matrices and therefore less variables in the 
top models. Using the data subset also decreased the large discrep-
ancy between R2 values of multivariate models for the two mtDNA  
loci, demonstrating that under-sampling had a large e�ect on the 
genetic structure values from the higher polymorphism marker. 
In all cases, R2 values were greater for models using either of the 
mtDNA markers compared with the nDNA markers.

Loss of genetic diversity due to anthropogenic isolation. To exam-
ine the e�ects of wastewater and stormwater sources on genetic 
diversity, rare�ed nDNA allelic richness (AR) for each popula-
tion was regressed to the distance of each population from a single  
e�uent source. �ere were positive correlations between AR and 
distance away from every wastewater and stormwater source;  
however, only two sources had signi�cant relationships (P < 0.05), 
wastewater sources Hyperion and Palos Verdes (Fig. 3).

Contemporary versus historical e�ects. Examining the relative 
roles of contemporary and historical seascape e�ects on genetic 
connectivity is essential to any seascape genetic study22. �e storm-
water sources examined in this study are also the mouths of natural 
rivers. Without accurate estimates of historical river outputs, there 
is no way of separating contemporary anthropogenic in�uences  
of increased urban runo�, more consistent out�ow and extensive 
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Figure 2 | Graphs of the best multivariate models using the LD mtDNA loci. (a) Predicted rank FST versus actual FST rank using the full population  
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riverbed engineering7, from the potential historical e�ects of natu-
ral river �ow in these variables. �erefore, a conservative approach 
was taken and all stormwater variables were treated solely as his-
toric variables, and wastewater variables were treated as the only 
contemporary anthropogenic variables and examined in an MMR 
framework.

For each measure of population structure, an MMR model using 
only historic (stormwater) variables was selected by AICc (Akaike 
information criterion adjusted for small sample sizes) value. �e 
residuals, or unexplained variance, of that model were then used 
as a response variable in an MMR model using only contemporary 
(wastewater) variables. �is speci�cally examines whether contem-
porary variables can explain signi�cant portions of population 
structure that are unexplained by historic variables. Anthropogenic 
wastewater variables explained signi�cant amounts of residual var-
iation in three of the six models tested with the full data set and 
all six models tested with the n > 20 subset (Table 4), conclusively 
showing that contemporary variables have considerable in�uence 
on the population connectivity of P. miniata.

Discussion
�e high and signi�cant correlations of anthropogenic environmen-
tal variables with the population structure of P. miniata demonstrate 
the utility of using a spatially explicit model to examine in�uences 
on population connectivity. Single variable and multivariate mod-
elling show that human beings have a profound in�uence on the 
population connectivity of a ubiquitous, non-harvested species with 
high levels of genetic diversity and gene �ow. �is anthropogenic 
isolation is most likely caused by larval mortality from the substan-
tial contemporary augmentation of freshwater, particulate and/or 
pollutant load into the SCB.

Most seascape genetic studies have focused on the role of ocea-
nographic factors in determining genetic structure23–28. �e SCB, 
however, is an oceanographically unique system with heterogeneous 
and variable mesoscale eddies in�uencing short-term circulation 
and the Southern California Cyclonic Gyre dominating longer term 
circulation patterns29. Ocean-based circulation models for connec-
tivity in the SCB have shown rather stable patterns within single 
spawning seasons with large amounts of heterogeneity between 
seasons30, and most simulations with larvae in the water column 
for 30 or more days showed high levels of connectivity between 
most sites, with a general pattern of mainland sites as sources and 
the Northern and Southern Channel Islands as sinks31. Moreover, 
a comprehensive seascape genetics study of three separate species  
in the SCB revealed that oceanographic processes were poor  
predictors of genetic connectivity and diversity in species with 

longer pelagic larval durations32. Considering the 6–10-week larval 
development period and year-long breeding season of P. miniata15,16, 
oceanographic factors are most likely weak in�uences on the genetic 
connectivity and diversity of this species and were subsequently  
not included in any models.

In any study examining anthropogenic e�ects on evolution-
ary processes, it is critical to be able to separate historic, natural  
processes from contemporary anthropogenic ones22,33. It could be 
argued that the genetic structure of P. miniata has been shaped  
historically for thousands of generations by natural rivers. However, 
several key results from this study point to the anthropogenic nature 
of the observed e�ects.

�e current generalization in landscape genetics is that micro-
satellites are the best genetic markers suited for studies of contem-
porary gene �ow22,34,35. �is is most likely because of the fact that 
the majority of landscape genetics studies have been on vertebrates  
and plants in the terrestrial systems22 in which e�ective population 
sizes are small and genetic variation may be di�cult to �nd. How-
ever, in an organism with high genetic diversity and a large e�ec-
tive population size, such as P. miniata, this is likely not the case 
and the crucial factor becomes not the mutation rate of the marker 
but whether or not there is enough variation within the landscape36. 
Recently isolated populations (< 50 generations) that were previously  
very diverse and well connected will not have time to accumulate 
much di�erentiation by mutation, even in fast-evolving mark-
ers37. Consequently, almost all current spatial genetic information 
is contained in extant alleles37. In fact, most spatial autocorrelation 
is created over 20–50 generations, and its detectable signal wanes 
in markers with the highest mutation rates37. In these situations, 
the only evolutionary force acting on allele frequencies in these 
populations will be genetic dri�, which has larger e�ects on smaller 
e�ective population sizes38, and has been shown to be rampant in 
arti�cially fragmented populations39. �erefore, considering the 
high genetic diversity of P. miniata and previous connectivity17, we 
would expect to see a more pronounced signal of anthropogenic 
isolation in the mtDNA markers, which have an e�ective popula-
tion ~1/4 the size of the nDNA markers38. In all population struc-
ture models tested, we observed that R2 values were ~1.5–30 times 
higher for mtDNA markers relative to nDNA markers (Tables 2–4), 
although results from nDNA genetic diversity regressions were  
consistent with anthropogenic isolation (Fig. 3). �is indicates that 
the observed structure is most likely due to the very recent isola-
tion of these previously well-connected populations and not due to 
a historical pattern of isolation.

Wastewater variables also contain valuable information about 
the temporal scale of the observed gene �ow patterns as they are 

Table 4 | Stormwater residual regression results.

FST Full data set DEST

Marker Model R2 P-value Marker Model R2 P-value

LD mtDNA SHP, SPV, SHB 0.1217 0.0012 LD mtDNA SHP, SPV, SPS 0.1290 0.0011
Full mtDNA SHP, SPV, SPS 0.0771 0.0249 Full mtDNA SPS 0.0042 0.4815
nDNA SHP 0.0022 0.6051 nDNA SHP, SPV, SHB 0.0394 0.1964

FST N > 20 subset DEST

Marker Model R2 P-value Marker Model R2 P-value

LD mtDNA SHP, SPV, SHB 0.2104 0.0020 LD mtDNA SHP, SPV, SHB, SPS 0.1813 0.0146
Full mtDNA SHP, SPV, SHB, SPS 0.4003 0.0001 Full mtDNA SPS 0.0849 0.0176
nDNA SHP, SPV, SHB, SPS 0.4048 0.0001 nDNA SPS 0.0905 0.0141

LD, low diversity; mtDNA, mitochondrial DNA; SHB, outfall for the Huntington Beach wastewater treatment facility; SHP, Hyperion sewage treatment plant; SPS, outfall for the Point Loma wastewater 
treatment plant; SPV, outfall for the Rancho Palos Verdes wastewater treatment plant.

The R2 and P-values values for the top multivariate models for each marker and for each measure of genetic structure correlating wastewater variables to the residuals from top stormwater models. 
Each variable was italicized if its regression coefficient was significantly different than zero, with P < 0.05.
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completely contemporary and anthropogenic. Here, we observed 
wastewater variables in all top multivariate models and high and 
signi�cant correlations to genetic structure in single variable tests. 
Distance away from two stormwater sources was also signi�cantly 
correlated to nDNA genetic diversity (Fig. 3). Moreover, when 
stormwater variables were treated as historical variables, despite 
the fact that stormwater runo� has been greatly augmented by 
urbanization and riverbed civil engineering7, wastewater variables 
still explained signi�cant amounts of variation in genetic structure 
not explained by ‘historic variables’ (Table 4). �ese results strongly 
suggest that human-mediated inputs have a profound in�uence on 
the genetic structure of P. miniata.

Finally, RSC is the second largest source of stormwater by  
volume24; however, it was only signi�cantly correlated to genetic 
structure in one single-variable test, and that correlation was  
negative. RSC was also not included in many of the top multivariate  
models and when it was included, typically it was nonsigni�cant 
(Table 3). RSC is the least populated, least urbanized and least  
modi�ed watershed of the four stormwater sources40, and these 
three factors correlate directly to pollutant and contaminant  
loading41. �us, we argue that it is contaminant loading and not 
freshwater river input that drives the signi�cant deviation from 
panmixia detected in this study.

In summary, our results clearly indicate that coastal pollu-
tion is limiting the larval dispersal and population connectivity of  
P. miniata. However, even if the observed e�ects were purely from 
historical river input, these results would still have far-reaching 
implications. �is is because both stormwater volume and wastewa-
ter volume have increased with the human population of the SCB,  
augmenting and dwar�ng historical natural runo�, especially  
during dry weather periods7. Consequently, the broad, immediate 
conservation implications of these results would not change; the 
current paradigm for the incorporation of wastewater and storm-
water in ecosystem-based management needs to be rethought.

Methods
Population genetic methods. Microsatellite loci were genotyped according to  
ref. 17 with the exception of using dye-labelled primers and an ABI 3730XL for  
genotyping. Two mtDNA loci were sequenced, a tRNA region and part of the cyto-
chrome oxidase subunit I gene (COI)17 and control region (CR)42. �e two mtDNA 
loci were analysed as a LD marker (COI) and as a full mtDNA marker (COI + CR). 
�is was carried out to add more phylogenetic information to the diverse CR loci (268 
unique haplotypes). FST values for mtDNA loci were calculated using the PhiST estima-
tor of ARLEQUIN43. FST values for microsatellites were calculated using the PhiST 
estimator in GenoDive44. DEST values were calculated using SMOGD45 and SPADE46. 
AR was calculated using rarefaction to 15 individuals per population using FSTAT47.

Seascape genetic methods. Shortest sea distance was calculated between every 
population and each stormwater and wastewater source using Google Earth (http://
earth.google.com). Distances were then entered into the model: PW = �ow×exp( − 0.1× 
distance), where �ow is the average daily �ow (in millions of gallons per day) of  
the contaminant source. E�uent plumes are subject to oceanographic conditions. 
Modelling of plumes is well beyond the scope of this project, so PW was based on a 
simple function of exponential decay. �e coe�cient of  − 0.01 was chosen for simpli-
city and for the property of decreasing ~100-fold by ~50 km and quickly approach-
ing zero therea�er. �is was an attempt to match the approximate distance between 
adjacent populations. Results were also examined using an alternate PW model, 
PW = �ow/(distance)3, approximating volumetric expansion and were similar  
(data not shown). PW statistics were summed for each pair of populations to create 
pairwise matrices of ‘ecological distance’ or ‘resistance’ for each anthropogenic source.

Matrices were analysed in an MMR framework18,33 with FST and DEST values 
as dependent values. For the full data set, all matrices, with the exception of full 
mtDNA values, were rank transformed a�er examining the residuals of regressions 
using untransformed data. �e n > 20 data set was untransformed. Signi�cance was 
calculated using 10,000 random permutations of matrices. All MMR analyses were 
performed in the R statistical package48 using the ecodist package. AICc values 
were calculated using JMP 8 (SAS).

Canonical redundancy analyses were performed in R using package rdaTest 
with 10,000 permutations used to assess signi�cance. For single-variable tests, all 
three FST or all three DEST were combined into one simultaneous test, and whenever 
geographic distance was found to be signi�cant, it was included in all other  
variable tests as a covariable. 
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