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Abstract. At Mace Head, Eire, in the coastal East Atlantic,
diiodomethane has been identified as an important precursor
of iodine oxide radicals. Peak concentrations of bothCH2I2
and IO at low water indicate that the intertidal region is a
strong source of organo-iodines. Atmospheric measurements
of CH2I2 made in marine air are compared with the concen-
trations predicted by a 2-dimensional model incorporating
horizontal and vertical dispersion of surface emissions. The
model shows that micrometeorological variability, proxim-
ity of the site to emissions, and photolysis all play important
roles in determining theCH2I2 concentrations at Mace Head.
In addition to a tidal-height dependent intertidal flux, which
was estimated from seaweed production data, a contribution
from offshore (non-local) sources was required in order to
reproduce the strong signature of photolysis in theCH2I2
observations. A combination of an offshore flux and an in-
tertidal flux (of up to1.4 × 109 molecules cm−2 s−1 at low
water) results in good agreement between the measured and
modelledCH2I2 concentrations. Although this study does
not necessarily infer emission ofCH2I2 from the open ocean,
it suggests that air-sea exchange ofCH2I2 in coastal waters
does occur.

1 Introduction

During the last decade it was established that catalytic cycles
involving halogen oxide radicals (BrO with smaller contri-
butions from IO and ClO) were responsible for rapid ozone
depletion events in the Arctic boundary layer during spring
(Barrie et al., 1988; Bottenheim et al., 1990; Barrie and Platt,
1997). More recently, the IO radical has been identified
in Antarctica (Friess et al., 2001) and in the mid-latitudes
(Alicke et al., 1999; Allan et al., 2000) in conjunction with
organoiodine precursors (Carpenter et al., 1999), confirming
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the potential for the more widespread occurrence of bound-
ary layer ozone depletion. Formation of IO is driven by
ocean-atmosphere exchange of organo-iodines that are pho-
tolysed quickly within the marine boundary layer. Previous
studies at Mace Head found that a range of photolabile io-
dine containing organics includingCH3I, C2H5I, CH2ICl,
CH2IBr andCH2I2 were present in sufficiently high concen-
trations to sustain IO levels of a few parts per trillion (ppt),
via the following reactions:

RI hv−→ R + I (1)

I + O3 → IO + O2 (2)

Of the organoiodines measured,CH2I2 was found to be the
most important iodine precursor (Carpenter et al., 1999). The
photodissociation lifetime of diiodomethane is only a few
minutes at midday (M̈ossinger et al., 1998).

The impact of IO on ozone concentrations depends on the
detailed gas phase and heterogeneous chemistry following
reaction (2). Computational modelling investigations indi-
cate that the rate of ozone destruction associated with iodine
photochemistry in the marine boundary layer could equal that
from HOx photochemistry (Vogt et al., 1999; Stutz et al.,
1999; McFiggans et al., 2000). Perhaps of even greater un-
certainty are the emissions and distributions of iodine precur-
sors. Shipboard experiments have identifiedCH2ICl (Klick
and Abrahamsson, 1992; Schall et al., 1997) andCH2I2
(Schall et al., 1997) in the open ocean, although it is not yet
established whether these originate from microalgae (phy-
toplankton) or other (e.g. photochemical) sources. That
coastal macroalgae are prolific emitters of a wide range of or-
ganic halogens is without doubt (e.g. Gschwend et al., 1985;
Nightingale et al., 1995; Pedersén et al., 1996; Carpenter et
al., 2000 and references therein), although the global budgets
of seaweed emissions are very uncertain.

During the ACSOE (Atmospheric Chemistry Studies in
the Oceanic Environment) experiment at Mace Head in 1997,
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Figure 1.  IO, tidal height and solar radiation (as photopic flux) during 9-15 September, 1998.  
The dotted line on the IO graph represents the average detection limit.  The grey areas mark the 
low tide periods during the day.   

Fig. 1. IO, tidal height and solar radiation (as photopic flux) during
9–15 September 1998. The dotted line on the IO graph represents
the average detection limit. The grey areas mark the low tide periods
during the day.

macroalgal emissions were observed to have a direct impact
on the local atmosphere, as reflected by the peak air con-
centrations of polyhalogenated halocarbons occurring at low
water (Carpenter et al., 1999). These observations may be
attributed to direct emission into the surrounding air from
exposed macroalgae at low tide and/or increased emissions
due to oxidative stress of algae upon exposure (Carpenter et
al., 2000). At high tide, emissions from submerged beds are
diluted in seawater and may undergo photolysis before ex-
change at the air-sea interface.

Measurements of organo-iodines and IO radicals at Mace
Head were repeated during the 1998 EU project PARFORCE
(New Particle Formation and Fate in the Coastal Environ-
ment). In this study we attempt to evaluate the relative im-
portance of coastal and offshore emissions ofCH2I2, pro-
viding further information on sources of the IO radical. A 2-
dimensional model is used to predict the horizontal and ver-
tical distributions ofCH2I2 resulting from coastal and off-
shore (non-local) emissions.

2 Experimental

Mace Head is located on the remote western coast of County
Galway, Eire (53◦19′ N, 9◦54′ W). The site is well known for
background air measurements and receives relatively clean
marine air from the prevailing westerly sector associated
with the easterly tracking cyclonic systems of the North At-
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Figure 2.  Correlation of IO and tidal height (TH) during PARFORCE (whole data set). The data 
points are binned averages of 0.5m segments of TH.  The vertical error bars represents the relative 
frequency of the data, the horizontal error bars the length of the respective interval. The daytime 
data and all data are fitted with an exponentially decreasing trend, the night-time data has a linear 
fit.

Fig. 2. Correlation of IO and tidal height (TH) during PARFORCE
(whole data set). The data points are binned averages of 0.5 m
segments of TH. The vertical error bars represents the relative fre-
quency of the data, the horizontal error bars the length of the re-
spective interval. The day-time data and all data fitted with an ex-
ponentially decreasing trend, the night-time data has a linear fit.

lantic. The rocky upper littoral zone and cold waters provide
favourable conditions for seaweeds.

2.1 Halocarbons

During the period 5–24 September 1998, halocarbons in air
were monitored in-situ every 40 minutes with a Hewlett
Packard 6890/5973 gas chromatograph/mass spectrometer
(GC/MS) system. The GC/MS was operated in a laboratory
situated ca. 100 m from the high tide mark, with a sampling
inlet located with an open fetch to the ocean at a height of
approx. 12 m above mean sea level (MSL). The system is de-
veloped for automated air sampling and is described fully in
Carpenter et al. (1999). Analysis was also performed on dis-
crete samples of surface seawater and the water surrounding
incubated seaweeds. For a full description of analytical pro-
cedures for air and seawater analyses during PARFORCE see
Carpenter et al. (2000).

2.2 IO measurements by DOAS

Over a 1-month period from 8 September until 8 October
1998 LP DOAS (Long-Path Differential Optical Absorption
Spectroscopy; Platt, 1994) measurements of the halogen ox-
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Figure 3.  CH2I2, tidal height and calculated J-CH2I2 during clean maritime conditions. 
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Fig. 3. CH2I2, tidal height and calculated J-CH2I2 during clean marine conditions.

ides IO, OIO and BrO and of other atmospheric trace gases
includingNO2, O3, HCHO, HONO andNO3 were carried
out whenever the visibility allowed reasonable signal to noise
ratios.

Briefly, the principle of DOAS is the identification and
quantification of atmospheric trace gases by their specific
narrow (< 5 nm) band optical absorption structure in the
open atmosphere, separating trace gas absorption from broad
band molecule and aerosol extinction processes, thus allow-
ing very sensitive detection of many molecular species (see
e.g. Platt and Perner, 1983). The identification of the gases
is unambiguous since their specific absorption structure is,
similar to a fingerprint, unique. Calibration of the instrument
is not necessary as long as the absorption cross section is
known.

A DOAS instrument based on the principle of Platt and
Perner (Platt and Perner, 1983) was used at Mace Head. It
incorporates a combination of two coaxially arranged New-
tonian telescopes, one collimating the light of a Xe-short-
arc lamp through the atmosphere, the second recollecting the
beam reflected by an array of quartz prism retroreflectors.
The telescopes were set up in a laboratory about 20 meters
from the shore, while the retroreflector array was placed on
the northern shore of the bay. The light beam was running
at an average height of 10 meters above the ocean with a
light path length of2 × 7.27 km. A 0.5 m Czerny-Turner
spectrograph (f = 6.9, 600 gr/mm grating, thermostated to
30 ± 0.3◦C), in combination with a 1024 pixel photodiode
array detector (thermostated to−15 ± 0.3◦C), was coupled
to the telescope by a quartz fibre, which also performed the
task of a mode mixer (Stutz and Platt, 1997). Iodine oxide
was measured in the wavelength range from 414 to 437 nm
with a spectral resolution of about 0.5 nm (a dispersion of

0.078 nm/pixel). Three further wavelength regions were cho-
sen to detect BrO (335 ± 40 nm) (Hönninger, 1999), OIO
(550 ± 40 nm) (Hebestreit, 2001),NO3 (645 × 40 nm) and
the other species absorbing in the respective wavelength re-
gions (O3, SO2, NO2, HCHO, HONO). BesidesNO3, all
spectra were recorded using the multi channel scanning tech-
nique (Brauers et al., 1995). The concentrations of IO were
derived using a least squares fit mixer (Stutz and Platt, 1997)
of the reference spectra ofH2O, NO2 and IO, together with
a sixth order polynomial to the atmospheric absorption spec-
trum. The IO reference spectrum was measured in our labo-
ratory, since no absorption cross section of sufficient resolu-
tion was available.NO2 was measured in a reference cell
in the field. Absolute values for both spectra were deter-
mined by comparison with literature cross sections (Cox et
al., 1999; Harder et al., 1997; Hönninger, 1999). TheH2O
reference was calculated by a convolution of the instrument
function with the absorption cross section of the HITRAN
database (HITRAN, 1987).

2.3 Model description

A 3-day period (18–20 September 1998, Julian days
261–263) of clean marine south-westerly air with sta-
ble temperatures (17.2 ± 1.9◦C) and wind speed (5.5 ±
1.0 m s−1) was selected as a case study for evaluation
of marine emissions. Data were evaluated using a
model written in the FACSIMILE language. The pho-
tolysis rate of diiodomethane (J-CH2I2) was computed
at 40 minute intervals using a 2-stream radiative trans-
fer model (Hough, 1988), with absorption cross-sections
from Mössinger et al. (1998) and TOMSO3 column data
(http://toms.gsfc.nasa.gov/ozone/ozone01.html). Photolysis
rates were corrected for cloud cover using the ratio of mea-
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Figure 4.  Correlations of CH2I2 and CH2IBr with solar radiation (SR) and tidal height (TH) for 
the whole measurement period. The data points are binned averages of 0.5m segments of TH.  
The vertical error bars represents the relative frequency of the data, the horizontal error bars the 
length of the respective interval.  The correlation with TH is divided into night-time (n) and day-
time (d) values of CH2I2 and CH2IBr, respectively. 
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Fig. 4. Correlations of CH2I2 and CH2IBr with solar radiation (SR) and tidal height (TH) for the whole measurement period. The data points
are binned averages of 0.5 m segments of TH. The vertical error bars represents the relative frequency of the data, the horizontal error bars
the length of the respective interval. The correlation with TH is divided into night-time (n) and day-time (d) values of CH2I2 and CH2IBr,
respectively.

sured/modelled UVA data. The 2-dimensional model incor-
porated a 5.2 km long by 50 m high slice through the atmo-
sphere divided into cells of 100 m length and 2 m height. The
first 5 km of the horizontal axis represented the “offshore” re-
gion, the next 100 m represented the intertidal region, and the
Mace Head site was notionally located in the final 100 m cell,
at 12 m height (the sampling height ofCH2I2). CH2I2 was
emitted into the bottom cell and transported across consec-
utive cell faces using the finite volume method to discretise
the spatial partial derivatives, given by:

∂C

∂t
= Q + D

∂2C

∂x2
− u

∂C

∂x
(3)

whereC is the concentration ofCH2I2, Q is the net rate
of production and destruction,D is the diffusion coefficient
(set to zero for horizontal transport), the third term represent-
ing advection, withu the horizontal wind speed. Horizontal
wind speed was parameterised with 40-minute averages of
the measured mean values at 3 m height (de Leeuw et al.,
2001). Measurements made at 18 m were typically∼25%
higher (de Leeuw et al., 2001) as expected from the loga-
rithmic dependence of wind speed with height and a rough-
ness length,z0, of ∼ 10−4 m (Kunz et al., 2000). Locally,

the extent of the sloping terrain upwind of the site will vary
with tidal height, adding to some variability in the roughness
length.

The rate of transport across the vertical boundary faces of
each cell was described by replacing∂x with ∂z and the eddy
diffusivity coefficient, Kz, in place ofD. The diffusivity
coefficient was assumed to vary with height in the surface
layer according to (cf. Stull, 1988):

Kz =
κu∗z

φ(z/L)
(4)

whereκ is the von Karman constant (κ = 0.4), z is height,
u∗ is the friction velocity andφ(z/L) is a stability correc-
tion equal to unity during neutrally stratified boundary layer
conditions, which prevailed at Mace Head (de Leeuw et al.,
2001). During PARFORCE, de Leeuw et al. (2001) found
that the friction velocity in marine sector air was approxi-
mately equal to 9% of the wind speed at 3 m, a relationship
which was used to defineu∗ in the model. Formation of an
internal boundary layer (IBL) would lead to abrupt changes
in the diffusivity gradient at heights determined by the dis-
tance from the shoreline. It is difficult to assess the impact of

Atmos. Chem. Phys., 1, 9–18, 2001 www.atmos-chem-phys.org/acp/1/9/
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Figure 5.  Comparison of measured and modelled CH2I2 levels assuming only tidal emissions, 
shown with the tidal flux used in the model. 
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Fig. 5. Comparison of measured and modelled CH2I2 levels assuming only tidal emissions, shown with the tidal flux used in the model.
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Figure 6.  Comparison of measured and modelled CH2I2 levels assuming only offshore emissions 
(constant wind speed and K). 
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Fig. 6. Comparison of measured and modelled CH2I2 levels assuming only offshore emissions (constant wind speed andK).

IBL formation on the conclusions of this study, but we note
the additional uncertainty.

3 Results and discussion

3.1 Relationships of iodine species with tidal height and
solar radiation

Analysis of PARFORCE data showed that tidal height (TH)
and solar radiation (SR) were correlated withCH2I2, IO, and
to a lesser extent,CH2IBr air concentrations. Figure 1 shows
IO, tidal height and solar radiation at 555 nm (photopic flux
in kW/m2 = klx) for the period 9–15 September. The figure
shows that the maximum IO concentrations occurred during
the day at low tide. The daily IO maximum shifted simul-
taneously with the minimum in TH (about one hour from
day to day), indicating that both solar flux and tidal height
controlled the time of the IO peak. There is an IO peak af-
ter sunset on the evening of the 14 September, however the
IO signal during this period was below the detection limit,

which increased substantially at that time due to fog. Fig-
ure 2 shows correlations of IO versus TH for daytime val-
ues only (d), all data (a), and night-time values (n) of the 4
week measurement period. Under daylight conditions, high
IO values were clearly associated with low tidal height, while
at night no correlation between IO and TH was found. The
correlation was described well by an exponential decrease
with rising tide (r2 = 0.96).

Figure 3 shows tidal height,CH2I2 concentrations and
calculated J-CH2I2 during the clean marine south-westerly
air period 18–20 September 1998. Scatter plots forCH2I2
andCH2IBr concentrations with TH and SR for the whole
campaign period are shown in Fig. 4. Strong evidence for
these organic iodines as important photolytic precursors of
IO is evident from their decreasing concentrations with solar
flux and, during night-time, maxima at low tide. There is lit-
tle correlation between TH and organo-iodine levels during
the day, because of the strong influence of photolysis. Note
that although peak concentrations of organo-iodines were
observed at low water, bothCH2I2 andCH2IBr exhibited

www.atmos-chem-phys.org/acp/1/9/ Atmos. Chem. Phys., 1, 9–18, 2001
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Figure 7.  Comparison of measured and modelled CH2I2 levels assuming only offshore emissions 
(40 minute averaged wind speed and K). 
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Fig. 7. Comparison of measured and modelled CH2I2 levels assuming only offshore emissions (40 minute averaged wind speed andK).
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Figure 8.  Comparison of measured and modelled CH2I2 levels assuming both offshore and 
intertidal emissions (40 minute averaged wind speed and K). 
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Fig. 8. Comparison of measured and modelled CH2I2 levels assuming both offshore and intertidal emissions (40 minute averaged wind
speed andK).

non-zero concentrations above their detection limits of 0.03
pptv even at high tide, presumably due to local sources, as
discussed later. The dependence ofCH2I2 on tidal height
and solar radiation was found to be [CH2I2]night = 0.17 −
0.02[TH] and [CH2I2]all = 0.12− 0.0013[SR].

Given that the organoiodine precursors exhibited linear de-
pendencies with TH at night, the cause of the exponential
relationship of IO with TH (Fig. 2) does not appear to be ex-
plained by source variations and is possibly attributable to
the photochemistry of IO. It should also be noted that the IO
measurements represent averages over∼ 7 km, whereas the
organoiodines were measured by point sampling.

3.2 2-dimensional model simulations

The initial model simulations incorporated only tidal emis-
sions. The night-timeCH2I2 vs TH negative trend, shown
in Fig. 4, was presumed to be indicative of coastal produc-
tion processes. Therefore the tidal dependence of the coastal
flux was assumed to have the same qualitative form. A quan-

titative fix was available from independent data on seaweed
emissions, described below.

In addition to atmospheric measurements made during
PARFORCE, the release rates of organic bromines and
iodines from seaweeds were determined from incubations in
seawater of ten species of brown, red and green macroal-
gae collected in the intertidal or subtidal zones of the rocky
shore (Carpenter et al., 2000). The most prevalent seaweeds
present in the intertidal zone at Mace Head, in common with
most Northern European rocky shores (Michanek, 1975),
were the brown algaeLaminaria digitata, Laminaria saccha-
rina andAscophyllum nodosum. These algae are also among
the most productive in terms ofCH2I2 emissions, with mean
production rates of 8.3, 1.9 and 0.36 pmol g−1 fresh weight
hr−1, respectively (Carpenter et al., 2000). Estimates of to-
tal kelp density from data provided by the Irish Seaweed In-
dustry Organisation (ISIO) are 11.6 kg m−2 (Carpenter et al.,
2000). However this value includesLaminaria hyboborea,
which is only present at depth, therefore the kelp density of
the intertidal zone should be reduced by∼25% (Carpenter

Atmos. Chem. Phys., 1, 9–18, 2001 www.atmos-chem-phys.org/acp/1/9/



L. J. Carpenter et al.: Coastal zone production of IO precursors 15L. J. Carpenter et al., Coastal zone production of IO precursors 9

 
Figure 9a.  Gradient of CH2I2 mixing ratios predicted using the offshore flux scenario. 
 
 
 
 

 
Figure 9b.  Gradient of CH2I2 mixing ratios predicted using the coastal flux scenario. 
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Fig. 9a. Gradient ofCH2I2 mixing ratios predicted using the offshore flux scenario.
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Fig. 9b. Gradient ofCH2I2 mixing ratios predicted using the coastal flux scenario.

et al., 2000). Assuming the density is evenly spread be-
tweenL. digitata, L. saccharinaandA. nodosumand over
the intertidal zone leads to a totalCH2I2 emission rate of
∼ 1.5 × 109 molecules cm−2 s−1. This rate was used as the
maximum coastal flux at the lowest tide. The high tide flux
was assumed to be equal to the offshore flux, described be-
low.

Figure 5 shows that the overall magnitude of theCH2I2
concentrations predicted by the model was in good agree-
ment with the observed levels, indicating that estimation of
the CH2I2 flux from seaweed emissions was a valid ap-
proach. However, there were clear discrepancies in some of
the features. Also shown in Fig. 5 is the modelled intertidal
flux used in this scenario. At night, the flux is closely cor-
related with theCH2I2 concentration, with small differences
due to the variability in wind speed and eddy diffusivity. Dur-
ing the day, the modelledCH2I2 concentration is reduced
relative to the tidal flux because of photolysis. However,
the reduction due to photolysis was not sufficient to simu-

late the observations, as is clearly seen during the last day of
data. There are also other features not well represented by
the model, such as the overestimation of [CH2I2] during the
night of the 18–19 September.

3.3 Simulation of offshore emissions

An alternative flux situation was investigated, wherein the
offshore region was a source ofCH2I2. The atmospheric
concentration ofCH2I2 predicted by the 2-dimensional
model is related to the product of the magnitude of the flux
and the length of the grid. It is therefore not possible to put a
meaningful value on the magnitude of the offshore flux with-
out knowing precisely the length of the upwind fetch. Al-
though this was known to a reasonable degree for the tidal
scenario (i.e. the intertidal range), the degree of open ocean
production ofCH2I2 is uncertain.

Ocean production ofCH2I2 up to 5 km offshore of Mace
Head was assessed from discrete surface seawater measure-
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Figure 10.  Predicted variation in CH2I2 concentration gradients upwind (negative distances) and 
downwind (positive distances) of Mace Head at midnight. The colour scale represents the CH2I2 

concentration in molecule cm-3, with black representing concentrations less than 1 x 105 molecule 
cm-3. 
 

 

-2000 -1500 -1000 -500 0 500 1000 1500 2000

40

30

20

10

0

distance from Mace Head (m)

h
e
i
g
h
t
 
(
m
)

5.0e+006 1.7e+007 2.8e+007

Fig. 10. Predicted variation inCH2I2 concentration gradients upwind (negative distances) and downwind (positive distances) of Mace
Head at midnight. The colour scale represents theCH2I2 concentration in molecule cm−3, with black representing concentrations less than
1× 105 molecule cm−3.

ments made during the 2 weeks immediately after the atmo-
spheric measurements. Although there was a higher concen-
tration ofCH2I2 in seawater sampled directly over kelp beds
then in areas with no seaweeds, there was no obvious rela-
tionship between distance from shore and dissolvedCH2I2
concentration between 200 m and 5 km offshore. The aver-
age concentration over this region was0.52±0.26 pmol L−1

(mean of 6 measurements) and the mean seawater temper-
ature was 12◦C (Carpenter et al., 2000). The equilibrium
air concentration at this temperature calculated using the
Henry’s law coefficient forCH2I2 reported by Moore et
al. (1995) is 0.1 pptv. Thus, it is difficult to assess whether
or not the offshore waters of Mace Head were a source of
CH2I2 or simply in equilibrium. An upper limit to the flux
can however be calculated using aCH2I2 concentration in air
of zero. From the Liss-Merlivat expression (Liss and Merli-
vat, 1986) with a square root molecular weight correction for
the transfer velocity (Liss and Slater, 1974) and the mean
wind speed, the flux is2× 105 molecules cm−2 s−1.

Because the offshore emissions and fetch are highly uncer-
tain, we do not attempt here to provide an estimate of these
emissions, but rather to provide an emission regime that re-
sults in good agreement with the measurements. Thus, the
point of including an offshore scenario is to establish whether
non-local sources ofCH2I2 were present at Mace Head, and
the possible contribution of these.

With a 5 km fetch of offshore emissions, a flux of4 ×
107 molecules cm−2 s−1 was required for good agreement
of the overall levels of measured and modelled [CH2I2], as

shown in Fig. 6. Because a fetch of at least up to 5 km off-
shore was established by the seawater measurements, this
flux can be taken as an upper limit. Note, however, that
the same agreement would have been possible with the es-
timated flux of2 × 105 molecules cm−2 s−1 and a fetch of
about 1000 km. The model predictions shown in Fig. 6 were
made assuming constant wind speed and eddy diffusivity (av-
erages for the period). The model reproduced the daytime
reductions in [CH2I2] due to photolysis, indicating that non-
local sources were indeed an important contribution to the
atmospheric levels at Mace Head. However, the peak levels
of CH2I2 were not replicated well by the model. The simu-
lation was repeated using 40-minute averages of wind speed
and eddy diffusivity. Figure 7 shows that the inclusion of
micrometeorological variability resulted in significantly im-
proved agreement with the measurements. Clearly, meteoro-
logical parameters also played a large part in controlling the
variability in CH2I2 concentrations at Mace Head.

The result of including both coastal and offshore fluxes in
the model is shown in Fig. 8. Although the combination of
fluxes resulted in an overestimation of modelledCH2I2 con-
centrations by∼30%, the correlation between modelled and
measured data was greater than that of either the separate
flux scenarios. For ten-point averages of modelled vs mea-
sured data, ther2 values were 0.89 (coastal+ offshore), 0.78
(offshore only) and 0.75 (coastal only).
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3.4 Prediction of spatial variation ofCH2I2 concentrations

The horizontal domain of the model was extended by 2 km
in order to examine the dispersion ofCH2I2 downwind from
the shore. Both the coastal and offshore flux scenarios gave
rise to similar levels ofCH2I2 at Mace Head at 12 m height.
However, the vertical profiles predicted were very different,
as shown in Figs. 9a and 9b. The offshore source resulted in a
constantCH2I2 concentration vertical gradient over the open
sea, but a rapidly increasing concentration with height over
Mace Head, 150 m downwind of the shore. Conversely, over
a few metres height, the tidal source gave rise to decreasing
CH2I2 levels over Mace Head, 50 m downwind of the tidal
region (i.e. the mid point of the 100 m cell adjacent to the
100 m tidal region). Internal boundary layer formation would
lead to perturbations of these modelled gradients.

Figure 10 shows the predictedCH2I2 concentrations from
2 km upwind of the site to 2 km downwind at midnight in
westerly (marine) air. Considerable heterogeneity is ex-
pected over the few hundred metres downwind. Measure-
ments in both the horizontal and vertical domains at Mace
Head are planned to test these predictions.

4 Summary and conclusions

Strong evidence for the organoiodinesCH2I2 andCH2IBr
as photolytic precursors to the IO radical at Mace Head was
shown from the dependence of the atmospheric concentra-
tions of all three species on tidal height. Iodine oxide con-
centrations peaked at low water during midday hours and
the reactive organoiodines, whose atmospheric lifetimes are
less than 1 hour at midday, peaked when low water coincided
with night.

The intertidal flux ofCH2I2 upwind of Mace Head was es-
timated from seaweed emissions and used in a 2-dimensional
model to predict theCH2I2 concentrations in marine air at
Mace Head. This flux resulted in good agreement between
the mean concentrations of measured and modelledCH2I2,
but did not reproduce well the daytime depletion due to pho-
tolysis. A non-local, offshore, source ofCH2I2 was invoked,
which did reproduce the daytime depletion. Three separate
scenarios of offshore sources alone, tidal sources alone, and
offshore plus tidal sources were used as inputs to the model.
The model showed that variability in wind speed and friction
velocity, proximity to source, and photolysis all played im-
portant roles in determining theCH2I2 concentrations at the
site. The best agreement with theCH2I2 observations was
obtained using constrained micrometeorological fields, and a
combination of a constant offshore flux and a tidal flux that
peaked at1.4× 109 molecules cm−2 s−1 at low water.

Because the atmospheric concentration ofCH2I2 pre-
dicted by the 2-dimensional model was related to the length
of the upwind fetch, a meaningful value cannot be assigned
to the offshore emission rate, although we estimate an upper

limit of 4 × 107 molecules cm−2 s−1. Rather, we conclude
that a contribution from both intertidal and offshore sources
is likely, with the tidal flux being several orders of magnitude
higher. Although this study cannot predict whetherCH2I2
is emitted from the open ocean, it suggests that it does un-
dergo air-sea exchange in coastal waters despite its presum-
ably rapid photolysis rate.
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