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COATES-WILES TOWERS FOR CM ABELIAN VARIETIES

CHRISTOPHER M. ROWE

Abstract. The aim of this paper is to compute congruence relations on units in
fields generated by adjoining torsion points of a CM abelian variety to a number field.
For elliptic curves, congruence relations of the form we compute were an important
ingredient in the early proofs of the Coates-Wiles theorem. In general, we compute
congruence relations on exterior products of units in division fields, which more natu-
rally fit into the framework of Rubin’s generalization of Stark’s conjecture.

Introduction

Let E be an elliptic curve defined over F with complex multiplication by the ring of in-
tegers of an imaginary quadratic extension K ofQ, where F is eitherK orQ. In [CW77],
Coates and Wiles proved that if E(K) has positive rank then the Hasse-Weil L-series
L(E/F, s) vanishes at s = 1. (In Rubin’s important work on Tate-Shafarevich groups,
he determined bounds on Selmer groups, which yield another proof of the Coates-Wiles
theorem [Rub87].)
Coates and Wiles used formal groups and Iwasawa-theoretic techniques to relate

elliptic units with special values of L(E/F, s). Using more classical techniques, Stark
and Gupta were able to give a proof of the Coates-Wiles theorem for elliptic curves
defined over Q [Sta83, Gup85]. The proofs utilize different techniques, but both include
many of the same ideas.
Specifically, let E be an elliptic curve defined over Q with complex multiplication

(CM) by the ring of integers of an imaginary quadratic extension K of Q (so necessarily
of class number one). Let p = (π) be one of infinitely many suitably chosen primes of
K, and Kn the field of πn-division values of E (i.e., the finite extension of K obtained
by adjoining all the πn-torsion of E to K). Then there exists a unique prime pn of Kn

lying over p. Fix a point Q ∈ E(Q) \ πE(Q) of infinite order and let Ln be the field of
pn-division values of Q, i.e., Ln = Kn(

1
pn
Q).

Gupta showed there exists a positive integer e such that the conductor of the field
extension Le/Ke is p2e, and then by class field theory all units of Ke congruent to
1 mod pe are also congruent to 1 mod p2e. Both Coates and Wiles and Gupta used
a congruence relation of this form to show that π|L(E/Q, 1), and hence L(E/Q, 1)
vanishes.
The goal of this paper is to compute conductors and congruence relations on units

for CM abelian varieties paralleling the work of Gupta for CM elliptic curves. In par-
ticular, let A be an abelian variety of dimension g defined over a Galois number field
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2 C. ROWE

K with complex multiplication by the ring of integers of K (with the degree 2g over
Q). Furthermore let p be a prime of K lying over the odd rational prime p, and assume
that both p splits completely in K and A has good reduction at all primes lying over p.
Then we describe congruence relations on units of Kn, the extension of K generated by
the pn-torsion points of A. For abelian surfaces, Grant described congruence relations
on units similar to those of Gupta (see [Gra88]), but additional progress was stymied
by the lack of understanding and construction of “abelian units” to parallel the theory
of elliptic units. Moreover, it seems to be a difficult problem to come up with a general
theory of abelian units.
Since we require that p splits completely, the field extensions Kn/K can be shown

to have degree pn−1(p − 1) and to be totally ramified at half of the primes of K lying
above p and unramified at the other half (which primes ramify depends upon p and the
“CM type” of A). We fix a point Q ∈ A(K) \ pA(K) of infinite order and construct
field extensions Ln = Kn(

1
pn
Q), the field of pn-division values of Q. We are able to show

that there exists a positive integer e such that Ln/Kn is unramified for 1 ≤ n < e, but
Le/Ke is ramified. Then using properties of formal groups, we are able to compute the
conductor of Le/Ke.

Theorem 1. There exists a set E of at least one and at most g primes of Ke lying over
p such that the conductor of Le/Ke is

∏
Pe∈E

P2
e.

If E is composed of a lone prime, then we have computed a conductor exactly as in
the work of Gupta and of Grant [Gup85, Gra88]. In this case, we will have the same
type of congruence relations on units of Ke. If on the other hand E is composed of more
than one prime, say #(E) = s > 1, we have a congruence relation on exterior products
of units of Ke.

Theorem 2. Let u1, . . . , us be units of Ke, which are congruent to 1 mod
∏

Pe∈E
Pe.

Then u1 ∧ · · · ∧ us is trivial mod
∏

Pe∈E
P2

e.

This fits more naturally into the framework of Rubin’s generalization of Stark’s conjec-
ture [Rub96, Sta80]. Stark’s conjecture is a generalization of the class number formula,
which relates the arithmetic of number fields to special values of Artin L-series. For
example, let F/E be a finite abelian extension of number fields and χ a character on
G = Gal(F/E). Let S be a finite set of primes of E including the archimedian primes,
the primes which ramify in F , and a set of r primes which split completely in F . Stark’s
conjecture relates the lead term of the Taylor expansion of the Artin L-series L(s, χ)
at s = 0 to the determinant of an r × r matrix whose entries are linear combinations
of logarithms of absolute values of S-units in F (i.e., units locally at all primes not in
S). For r = 1, Stark gave the following refined conjecture. Let P1 be any prime of F
sitting over the designated prime of S. Then there exists an S-unit ǫ1 such that for all
characters χ on G

L′(0, χ) = −
1

wF

∑

γ∈G

χ(γ) log |γ(ǫ1)|P1
.

When F = Q or an imaginary quadratic extension of Q, Stark was able to use proper-
ties of cyclotomic and elliptic units, respectively, to prove his refined conjecture [Sta80].
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For r ≥ 1, Rubin gave a generalized refined Stark’s conjecture, which conjectured a re-
lation between exterior products of S-units and the lead term in the Taylor expansion of
L(s, χ) at s = 0 [Rub96]. Rubin’s conjecture relates an entry in a lattice of Q⊗

∧r US,T

to the rth derivative at s = 0 of L(s, χ), where US,T is a specific subgroup of the group
of S-units, depending upon an auxiliary, finite set of primes T .
Rubin’s conjecture applied to Ke/K should produce exterior products of “abelian

S-units” in Ke. Outside of Rubin’s original paper, the only direct evidence for Rubin’s
conjecture is given in [Gra99], which looks at exterior products of units arising from
5-torsion on the Jacobian of y2 = x5+1/4. However, for g = 1, Stark further refined his
conjecture so that the S-unit in Kn relating to the L-series is actually a unit, and it was
congruences on units, not the corresponding S-units, that were employed in the proof of
the Coates-Wiles theorem. These results led us to consider whether the existence of a
point of infinite order in A(K) should force congruence conditions on exterior products
of units in Ke; the result of which is Theorem 2.
The first section of this paper fixes notation and assumptions about our abelian

variety A and number field K. In the second section, we collect the information we
need about formal groups attached to abelian varieties. Then we use properties of
formal groups attached to abelian varieties in sections 3 and 4 to describe properties of
the field extensions Kn/K and Ln/Kn, respectively. We prove Theorem 1 in section 6
and Theorem 2 in section 7.
Most of the results of this paper were contained in the author’s Ph.D. thesis, and the

author would be remiss if he did not thank his advisor, David Grant, for his invaluable
assistance. Also, the author would like to thank both Wolfgang Schmidt and the Pacific
Institute for the Mathematical Sciences for their support during the writing of this
paper.

Notation. Let F/E be number fields, and q a prime of E. We let f(F/E) and D(F/E)
denote the conductor and discriminant of F/E respectively. We let E denote an alge-
braic closure of E, OE the ring of integers of E, Eq the completion of E at q, and Oq

the ring of integers of Eq.

1. The Setup

We will use the terminology and results of the theory of complex multiplication as
developed by Lang in [Lan83] for the results in this section.
Throughout this paper, K will denote a number field of degree 2g over Q, which is

both Galois and a CM field. Recall that K is a CM field if it is a totally imaginary
quadratic extension of a totally real number field. Furthermore we assume that A is an
abelian variety of dimension g with complex multiplication by the ring of integers of K.
This means that we have an embedding

i : K →֒ End(A)⊗Q = EndQ(A)

such that i(OK) = i(K) ∩ End(A).
The action of i on the tangent space of A determines a CM type Φ = {φ1, . . . , φg},

where φi, φj are non-conjugate embeddings of K into C for 1 ≤ i, j ≤ g.
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A CM abelian variety will be a pair (A, i). We say that (A, i) is defined over a number
field K if both A and every element of End(A) are defined over K. Let K be a fixed
algebraic closure of K. For α ∈ OK , we put [α] = i(α) : A(K) → A(K). Therefore
we have that σ([α]) = [σ(α)] for any σ ∈ Gal(K/K). We let A[α] = ker[α] denote the
α-torsion of A.
Throughout this paper p will represent an odd rational prime such that (i) A has good

reduction at all primes lying over p and (ii) p splits completely in K. Furthermore we
fix a prime p of K such that p|p and an element π ∈ OK such that ordpπ = ordpπ = 1
(such a π exists by the Chinese remainder theorem since p splits completely). For ease
of notation, we put pi = φi(p) for 1 ≤ i ≤ g and let S = {p1, . . . , pg}.

Remark. The Jacobians of rational images of Fermat curves are a class of abelian vari-
eties satisfying the assumptions of this section (see [Lan83] or [Shi98] for more details).

2. Formal groups

We need a variety of results on formal groups. We refer to Hazewinkel’s excellent
book [Haz78] as a general reference on formal groups and to Hindry and Silverman
[HS00] for the construction of a formal group attached to an abelian variety and results
on the kernel of reduction of A mod p.

2.1. Basic Properties. Let R be a commutative ring with identity and let X =
(X1, . . . , Xn)

t, Y = (Y1, . . . , Yn)
t, and Z = (Z1, . . . , Zn)

t be column vectors of vari-
ables. We call an n-tuple of power series over R, F = (F1, . . . , Fn)

t in 2n-variables an
n-dimensional commutative formal group (law) over R if

F (X, Y ) = X + Y + (d◦ ≥ 2),

F (X,F (Y, Z)) = F (F (X, Y ), Z), and

F (X, Y ) = F (Y,X),

where (d◦ ≥ m) denotes a n-tuple of power series, all of whose terms are of total degree
at least m.
If F and G are two n-dimensional formal groups defined over R. A homomorphism

ϕ : F → G over R is a n-tuple of power series over R without constant terms such that
ϕ(F (X, Y )) = G(ϕ(X), ϕ(Y )). A homomorphism is an isomorphism if it has a two-
sided inverse. Let ϕ = (ϕ1, . . . , ϕn)

t be a homomorphism from F to G. Suppose that
the linear term of ϕi(X1, . . . , Xn)

t is
∑n

j=1 aijXj. We call the matrix (aij) the jacobian

of ϕ, which we denote by j(ϕ). The following is elementary.

Lemma 2.1. A homomorphism ϕ between two n-dimensional formal groups defined
over R is an isomorphism if and only if det(j(ϕ)) is a unit in R.

Furthermore, we call two formal groups strictly isomorphic over R if there is an
isomorphism ϕ over R such that j(ϕ) is the identity matrix. In [HS00], Hindry and
Silverman demonstrate how to construct a g-dimensional commutative formal group
F , defined over K, associated to our g-dimensional abelian variety A defined over K.
Moreover, F can be defined over Zp and, since p splits completely, we will show that
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F is strictly isomorphic to a product of g one-dimensional formal groups defined over
Zp of Lubin-Tate type. In order to do this, we need to formalize what we mean by a
“product of formal groups”.
Let F = (F1, . . . , Fn)

t, G = (G1, . . . , Gm)
t be n and m-dimensional formal groups,

respectively, defined over R. Let X = (X1, . . . , Xn)
t and Y = (Y1, . . . , Yn)

t be n-tuples
of variables such that Fi(X, Y ) ∈ R[[X, Y ]] for 1 ≤ i ≤ n. Also let W = (W1, . . . ,Wm)

t

and Z = (Z1, . . . , Zm)
t be m-tuples of variables such that Gi(W,Z) ∈ R[[W,Z]] for

1 ≤ i ≤ m. Then we can define an (m + n)-dimensional formal group H over R with
Hi ∈ R[[X,W, Y, Z]] by putting

Hi = Fi for 1 ≤ i ≤ n and

Hn+i = Gi for 1 ≤ i ≤ m.

Specifically, if G1, . . . ,Gg are one-dimensional commutative formal groups over R, then
iterating the above construction gives us a g-dimensional commutative formal group over
R. Let G be the formal group constructed in this manner, then we will call such a G a
product of one-dimensional commutative formal groups, and write G = ⊕g

j=1Gj . Let ϕj

be an endomorphism of Gj for 1 ≤ j ≤ g. Then it is easy to see that ϕ = (ϕ1, . . . , ϕg)
t

is an endomorphism of G, which we will denote by ϕ = ⊕g
j=1ϕj .

2.2. Properties of the Formal Group F Associated with A. Following Hindry
and Silverman [HS00], we associate to A a g-dimensional commutative formal group F

over K. Let O denote the origin of A, ÔA the completed local ring at the origin of A,
and n the maximal ideal of the local ring at the origin of A. Since A is nonsingular, there

is an isomorphism ÔA
∼= K[[s1, . . . , sg]], where s1, . . . , sg ∈ n are fixed local parameters

on A at the origin.
Next we consider the product A×A. Let pi : A×A→ A be the projection onto the

ith factor for i = 1, 2 and for local parameters at the point (O,O) ∈ A × A we choose

the functions x1, . . . , xg, y1, . . . , yg, where xi := si ◦p1 and yi := si ◦p2. Let ÔA×A be the
completed local ring at the origin of A×A. Then this choice determines an isomorphism

ÔA×A
∼= ÔA × ÔA

∼= k[[x1, . . . , xg, y1, . . . , yg]].
The morphism giving the group law on A, add : A× A→ A, induces a map of local

rings add∗ : ÔA → ÔA×A and by the above isomorphisms, a map add∗ : k[[s1, . . . , sg]] →
k[[x1, . . . , xg, y1, . . . , yg]] of formal power series rings. We let Fi = add∗(si), and F =
(F1, . . . ,Fg)

t. However the formal group F depends upon the choice of parameters
s1, . . . , sg ∈ n. Since A is defined over K and the determinant of a change of basis
matrix of n/n2 is a unit in K, Lemma 2.1 shows that all formal groups associated to A
in this way are isomorphic over K. Since A has complex multiplication by OK and K is
Galois over Q, we are able to show that the formal group F possesses a “CM action”.

Lemma 2.2. There exist local parameters s1, . . . , sg at the origin of A defined over K
such that for any α ∈ OK

[α]∗si := si ◦ [α] = φi(α)si + (d◦ ≥ 2), in ÔA. (1)
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Proof. Let P be a prime of K lying over p, then A has good reduction at P by as-
sumption. Let Ã denote the reduced abelian variety mod P, which is defined over
K̃ = OK/POK , and H

0(A,Ω) the space of holomorphic differentials of A. There exists
a basis ω1, . . . , ωg of differentials defined over K such that [α]∗ωi := ωi ◦ [α] = φi(α)ωi

for all 1 ≤ i ≤ g and α ∈ OK . Indeed, this follows from [Shi98, pg. 99], since K/Q is
Galois, the field of definition of (A, i) is K, and (A, i) has CM type (K,Φ). We will call
such a basis a splitting basis for H0(A,Ω).
Since ω ∈ H0(A,Ω) is translation invariant, we can characterize ω by its representa-

tion as a differential at the origin [Shi98, pg. 13]. Recall that n is the maximal ideal of
the local ring at the origin of A, and let ψ be the isomorphism n/n2 ∼= H0(A,Ω) (see
[Mil86]), where τ ∈ n maps to the differential at the origin represented by dτ . Now we
pick a Si ∈ n such that ψ(Si) = ωi, and since ψ commutes with endomorphisms of A
[Shi98, pg. 75], we have that [α]∗Si = φi(α)Si + (d◦ ≥ 2).
We still need to show that we can choose parameters defined over K. Since Gal(K/K)

commutes with ψ (see [Shi98]), we see that σ(Si) = Si mod n2 for all σ ∈ Gal(K/K).
If we let E = K(Si), then E/K is a finite Galois extension. Now we set si =
(1/|Gal(E/K)|)

∑
τ∈Gal(E/K) τ(Si), which gives us the desired parameters, now defined

over K. �

By Lemma 2.2, we can define ([α]F)i(s1, . . . , sg) := [α]∗si ∈ K[[s1, . . . , sg]] for any
α ∈ OK . Then the map α 7→ [α]F = (([α]F)1, . . . , ([α]F)g)

t gives an embedding of OK

into the endomorphism ring of F . Next we show that F and [α]F are actually defined
over OK .

Lemma 2.3. There exist local paramaters s1, . . . , sg at the origin of A such that F
is defined over OK and [α]F is a g-tuple of power series in OK [[s1, . . . , sg]] for every
α ∈ OK . Moreover, if s = (s1, . . . , sg)

t then

([α]Fs)i = φi(α)si + (d◦ ≥ 2).

Proof. Let P be a prime of K lying over p. In the proof of Lemma 2.2, we saw that
there exists a splitting basis ω1, . . . , ωg for H0(A,Ω), where the ωi are defined over K.
For ω ∈ H0(A,Ω), a suitable multiple of ω will reduce to a non-zero differential on

Ã [Shi98, pg. 80]. When ω reduces to a non-zero differential on Ã, we let ω̃ denote the
reduced differential. After multiplication by a suitable multiple ai ∈ K, ãiωi is non-zero
and defined. If we rename aiωi as ωi, then the (new) ωi form a basis for H0(A,Ω) such
that [α]∗ωi = φi(α)ωi, and hence the CM action is preserved.
Let ψ be the isomorphism between n/n2 and H0(A,Ω) given in the proof of Lemma

2.2 and s1, . . . , sg be local parameters at the origin of A over K such that ψ(si) = ωi.

Since p is unramified in K by assumption, the ω̃i form a basis for H0(Ã,Ω) [Shi98, pg.
99]. Since ψ commutes with the reduction map mod P, letting s̃i be the reduction of

si, the s̃i form a set of parameters at the origin of Ã. Since A has good reduction at P,
the addition map on A reduces to the addition map on Ã. Therefore we can construct
a formal group on the reduced abelian variety coming from the parameters s̃1, . . . , s̃g,
which will yield power series Fi ∈ (OK/POK)[[X1, . . . , Xg, Y1, . . . , Yg]]. By construction,
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ãdd∗si = ãdd∗s̃i, so the formal group F defined by s1, . . . , sg over K reduces mod P to

F̃i = Fi. Therefore Fi ∈ OK [[X1, . . . , Xg, Y1, . . . , Yg]].

Since endomorphisms of A reduce to endomorphisms of Ã, endomorphisms of F

reduce to endomorphisms of F̃ . Indeed, [̃α]∗si = [̃α]
∗
s̃i (see [Shi98, pg. 75]), and so we

must have [α]∗si ∈ OK [[s1, . . . , sg]]. �

Remarks.

(1) For a CM elliptic curve, the CM type is usually taken to consist of the identity,
so the CM action is trivial.

(2) We will use this CM action to determine which primes ramify. (We became
aware of this use of the CM action in [Gra96].)

Let Φ
′

K = {φ−1
1 , . . . , φ−1

g }, then (K,Φ
′

K) is a CM type [Lan83, pg. 62]. Let NΦ
′

K
(x) =∏

φ∈Φ
′

K
φ(x) for x ∈ K and extend NΦ

′

K
this to ideals of K in the usual way. Let P be

a prime of K lying over p, then A has good reduction at P by assumption. Since A has
principal complex multiplication by K, there exists an element αP ∈ OK such that [αP]
reduces to the Frobenius endomorphism mod P (i.e., the endomorphism x 7→ xNP on
Ã) [Lan83, pg. 61].

Lemma 2.4. Let P be a prime of K lying over p, and αP the element of OK which
reduces to the Frobenius mod P. Then αP has ideal decomposition in K given by

(αP) = NΦ
′

K
(P) =

g∏

j=1

φ−1
j (P). (2)

Moreover, ordpαP = 1 if and only if P is also in S.

Proof. The left hand equality in (2) is just [Lan83, pg. 88] and the right hand equality
comes from the definition of NΦ

′

K
. Since p splits completely and K/Q is Galois, the

φ−1
j (P) are distinct primes lying over p. On the one hand, if P = pi for some 1 ≤ i ≤ g,

then φ−1
i (φi(p)) = p is a term in the product. On the other hand, if P|p, but P /∈ S,

then p 6= φ−1
j (P) for any 1 ≤ j ≤ g. �

2.3. The Kernel of Reduction. Fix a prime P of K lying over p. By base extension,
we consider F defined over OP. Let L be a finite extension ofKP, OL its ring of integers,
and m its maximal ideal. By assumption, A considered over OL has good reduction
at m, so we let Ã denotes the reduced abelian variety mod m, which is defined over
L̃ = OL/mOL. We define the kernel of reduction of A mod m by

A◦(L) := ker
{
A(L)

red
−→ Ã(L̃)

}
. (3)

Now consider X, Y ∈ mg = m× · · ·×m. Then Fi(X, Y ) will converge in OL. Indeed,
OL is a complete local ring, and F is defined over OP ⊆ OL. Thus the formal group
F defines a group structure on mg. Let F(m) be the set of g-tuples mg with the group
law

mg ×mg +F−→ mg, given by X +F Y := F(X, Y ). (4)
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This gives us the following isomorphism

A◦(L) ∼= F(m), (5)

given by A◦(L) ∋ R 7→ (s1(R), . . . , sg(R)) ∈ mg [HS00, Thm. C.2.6].
Now let KP be a fixed algebraic closure of KP with valuation ring O and maximal

ideal M. Although KP is not complete, each of its elements lives in a finite extension
of KP. So we extend +F to Mg and identify F(M) with A◦(KP) (defined analogously
to (3)). By Lemma 2.3, [α]F is an endomorphism of F for every α ∈ OK . For α ∈ OK ,
we define the α-torsion of F to be F [α] = ker{[α]F : F(M) → F(M)}, and for any
ideal a ∈ OK , we define F [a] = ∩α∈aF [α] to be the a-torsion of F .

Lemma 2.5.

(i) F(M) has no torsion relatively prime to p.
(ii) A[pn] is in the kernel of reduction mod M if and only if P ∈ S.

Proof. (i) This is Proposition C.2.5 of [HS00].
(ii) On the one hand, if P /∈ S then [πn]F is an endomorphism of F . So by Lemma

2.1 the determinant of the jacobian of [πn]F is det(j([π]nF)) =
∏g

j=1 φj(π
n). As in

the proof of Lemma 2.4, we see that ordPdet(j([π
n]F)) = 0 and therefore j([πn]F) is

invertible. Hence [πn]F is an automorphism of F(M), so F(M) can have no πn-torsion.
By definition, F [pn] ⊆ F [πn], and the result follows.
On the other hand, if P ∈ S and αP is the element of OK which reduces to the

Frobenius mod P. Now [αn
P] is a purely inseparable morphism, so Ã[αn

P] = Õ. There-
fore A[αn

P] is in the kernel of reduction mod P. Basic facts about torsion groups and
Lemma 2.4 give that A[αn

P] = A[pn]⊕A[a] for some integral ideal a of K. Hence A[pn]
is in the kernel of reduction mod P. �

Corollary 2.6. Let P ∈ S and consider F defined over OP. Then we can identify
A[pn] with F [πn].

Proof. Lemma 2.5 allows us to identify A[pn] with F [pn], and we know that F [pn] ⊆
F [πn]. Also, the ideal pn is generated by πn and p for m > n. We take m to be a
multiple of the class number of K, so that p = (γ) for some γ ∈ OK . Then π = γδ
with δ relatively prime to p by our choice of π, so [δ] is an automorphism of F over OP.
Therefore F [p] = F [π], and hence F [pn] = F [p] ∩ F [πn] = F [π] ∩ F [πn] = F [πn]. �

2.4. A Product of Formal Groups. Now we will construct a formal group G strictly
isomorphic to F over OP for (fixed) P ∈ S, where G is the product of one-dimensional
Lubin-Tate formal groups. This added structure will be very useful in what follows.
In order to show that F is isomorphic to a product of one-dimensional formal groups,
we need to recall the properties of higher-dimensional Lubin-Tate formal groups (see
[Haz78]).

Remark. In [dS87], de Shalit gave a short proof of this decomposition using the theory
of p-divisible groups. However, we need to be careful to show that this isomorphism
preserves the CM action as given by Lemma 2.3, and we could not find this anywhere
in the literature.
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Let πP be a prime element of OP, i.e., (πP) = POP. Let M be a g × g matrix such
that π−1

P M is an invertible matrix with entries in OP. We let EM denote the set of all

g-tuples of power series d(X) in X = (X1, . . . , Xg)
t such that

d(X) =MX + (d◦ ≥ 2), d(X) ≡ Xp mod (πP). (6)

Then the following is [Haz78, Thm. 13.3.3] adapted to our assumptions.

Lemma 2.7. For each d(X) ∈ EM , there is precisely one g-dimensional formal group
Fd(X, Y ) over OP such that Fd(d(X), d(Y )) = d(Fd(X, Y )), so d ∈ End(Fd). If

d(X), d(X) ∈ EM , then Fd(X, Y ) and Fd(X, Y ) are strictly isomorphic over OP.

For g = 1, a formal group satisfying Lemma 2.7 is called a Lubin-Tate formal group,
and hence is commutative [LT65]. For g > 1, we call a formal group F with an endo-
morphism d as in (6) a higher dimensional Lubin-Tate formal group.
For the rest of this section, fix an i with 1 ≤ i ≤ g. Then we let P = φi(p), αP ∈ OK

be such that [αP] reduces to the Frobenius mod P and s = (s1, . . . , sg)
t represent

local parameters over K at the origin of A which are parameters for a g-dimensional
commutative formal group F over OP with CM action as in Lemma 2.3. It will be
useful to recall that p splits completely and π ∈ OK such that ordpπ = ordpπ = 1.

Lemma 2.8. F is a higher dimensional Lubin-Tate formal group defined over OP
∼= Zp.

Proof. By Lemma 2.3, we have that [αP]
∗sj = φj(αP)sj + (d◦ ≥ 2). But by Lemma

2.4 (αP) =
∏g

k=1 φ
−1
k (P), so P exactly divides φj(αP) for all 1 ≤ j ≤ g. Let M be

the diagonal matrix whose ith diagonal entry is given by the coefficient of the linear
term of [αP]

∗sj for each 1 ≤ j ≤ g, i.e., M = diag〈φ1(αP), . . . , φg(αP)〉. Let πP be
chosen by the Chinese Remainder Theorem such that P exactly divides (πP) and no
other conjugate of P divides (πP). Then we can write φj(αP) = πPuj with uj ∈ OK

and uj relatively prime to P, and hence M = πPdiag〈u1, . . . , ug〉. The uj are units in
OP, so π

−1
P M is an invertible matrix. Then we have, by the definition of the Frobenius

and since P is a first degree prime,

[αP]F (s) =Ms+ (d◦ ≥ 2), [αP]F(s) ≡ sp mod (πP).

Hence [αP]F ∈ EM , and F is a higher dimensional Lubin-Tate formal group. �

Now we are in a position to decompose F into a product of one-dimensional formal
groups over P.

Proposition 2.9. Let everything be as in Lemma 2.8.

(i) F is strictly isomorphic to a product of g one-dimensional commutative formal
groups of Lubin-Tate type defined over OP, say G = ⊕g

j=1Gj, where G is given
by paramaters t = (t1, . . . , tg)

t.
(ii) For each 1 ≤ j ≤ g, there is an embedding of OK into End(Gj) given by α 7→

[α]Gj
, where [α]Gj

= αtj + (d◦ ≥ 2)(tj). Then we have an embedding OK into
End(G) given by α 7→ ⊕g

j=1[φj(α)]Gj
. Moreover, we can identify G[α] with F [α]

for all α ∈ OK.
(iii) Let πi = φi(π), then ordPπi = 1 and A[pn] can be identified with Gi[π

n
i ].
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Proof. (i) Let M = diag〈φ1(αP), . . . , φg(αP)〉 and πP be as in the proof of Lemma 2.8,
then M = πPdiag〈u1, . . . , ug〉, where [αP]Fs =Ms + (d◦ ≥ 2) with [αP]F ∈ EM .
Now let d(t) = (d1(t1), . . . , dg(tg))

t, where dj(tj) = πPujtj + tpj . Then d(t) ∈ EM by
construction, and hence, by Lemma 2.7, there exists precisely one g-dimensional formal
group Fd over OP such that d is an endomorphism of Fd. We will construct a formal
group G, which is a product of one-dimensional Lubin-Tate formal groups, with d(t) an
endomorphism of G, and hence, by Lemma 2.7, G = Fd.
Now apply Lemma 2.7 with M = πPuj for any 1 ≤ j ≤ g. Then dj(tj) ∈ EπPuj

, so
there exists precisely one one-dimensional Lubin-Tate type formal group Gj over OP such
that dj is an endomorphism of Gj for each 1 ≤ j ≤ g. Let G = ⊕g

j=1Gj . Therefore G is a
g-dimensional commutative higher dimensional Lubin-Tate formal group. Furthermore,
d(t) = (d1(t1), . . . , dg(tg))

t is an endomorphism of G by construction, and hence G = Fd.
By Lemma 2.7, we have that F is strictly isomorphic to G over OP.
(ii) For 1 ≤ j ≤ g, we know that Gj is a one-dimensional Lubin-Tate formal group

over OP such that dj(tj) = φj(αP)tj + tpj is an endomorphism of Gj . Following [LT65],
since φj(αP) is a uniformizer at P, we define an endomorphism [φj(αP)]Gj

(tj) := dj(tj),
and for any γ ∈ OP, let [γ]Gj

(tj) be the unique power series such that [γ]Gj
(tj) =

γtj + (d◦ ≥ 2) and [φj(αP)]Gj
([γ]Gj

(tj)) = [γ]Gj
([φj(αP)]Gj

(tj)). Let m ∈ Z ⊂ OP,
then it is easy to see that multiplication by m coming from the group law on Gj is an
endomorphism of Gj , which must commute with any endomorphism, so is equivalent to
the endomorphism [m]Gj

defined by Lubin-Tate theory. Therefore we have an embedding
of Z[αP] into End(Gj) given by β 7→ [φj(β)]Gj

for β ∈ Z[αP], since φj(m) = m form ∈ Z.
Furthermore, the map β 7→ ⊕g

j=1[φj(β)]Gj
gives an embedding of Z[αP] into End(G).

Since P is a prime of K of degree one over Q by assumption, we have that Z[αP] is
of finite index in OK [Lan83, pg. 88]. Therefore we can extend the above map to an
embedding of OK into End(G), where the jacobian of [α]G = diag〈φ1(u), . . . , φg(u)〉.
Now, by (i), there is a strict isomorphism between F and G, which we denote by

β. Therefore β ◦ [α]F ◦ β−1 is an endomorphism of G for all α ∈ OK . Since β is
a strict isomorphism, j(β) = j(β−1) is the identity matrix, and hence j(β ◦ [α]F ◦
β−1) = j(β)j([α]F)j(β

−1) = j([α]F). Thus the kernel of [α]F can be identified with
the kernel of β ◦ [α]F ◦ β−1. Since these jacobians are equal, Lemma 2.3 shows us that
β ◦ [α]F ◦ β−1(t) = Nt + (d◦ ≥ 2), where N = diag〈φ1(α), . . . , φg(α)〉. Therefore, for
α ∈ OK , [α]G has the same jacobian as β ◦ [α]F ◦ β−1, and hence it is easy to see that
they have the same kernel. Thus we can identify F [α] with G[α] for any α ∈ OK .
(iii) By Corollary 2.6, we know that we can identify A[pn] with F [πn]. By construction

of the embedding of OK →֒ End(G) in (ii), we can identify F [πn] with G[πn]. By
definition, we have

G[πn] = ker{[πn]G : G(M) → G(M)}

= ker
{
⊕g

j=1[φj(π
n)]Gj

: ⊕g
j=1Gj(M) → ⊕g

j=1Gj(M)
}

= ⊕g
j=1Gj[φj(π

n)]
∼= Gi[φi(π

n)] = Gi[π
n
i ].
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Indeed, for j 6= i, ordPφj(π
n) = 0. Therefore [φj(π

n)]Gj
is an automorphism, and hence

Gj[φj(π
n)] = {O}. �

Corollary 2.10. Let everything be as in Proposition 2.9, then

[πi]Gi
(ti) = πiti + utpi + πiα + β,

where u is unit in OP, α and β are power series in ti with lowest terms of degree two
and 2p respectively.

Proof. By Proposition 2.9, we know that [αP]G = ⊕g
j=1[φi(αP)]Gj

. By Lemma 2.4, we
know that ordPφi(αP) = 1, and hence πi = φi(αP)ui with ui a unit in OP. Then we
have the following (dropping the Gi in the notation).

[πi](ti) = [ui]([φi(αP)](ti))

= [ui](πiu
−1
i ti + tpi )

= ui(πiu
−1
i ti + tpi ) + (d◦ ≥ 2)(πiu

−1
i ti + tpi )

= πiti + uit
p
i + (d◦ ≥ 2)(πiu

−1
i ti + tpi ).

�

3. Division fields

In this section, we are interested in algebraic properties of the field extensions of K
generated by adjoining pn-torsion points to K for K and p-torsion from A as in section
1. (Recall that this means that p is a first-degree prime of K.) We will denote the field
of pn-division values of K by Kn = K(A[pn]).

Proposition 3.1. Let P be a prime of K lying over p.

(i) Kn/K is totally ramified at P ∈ S, and unramified at P /∈ S.
(ii) Kn/K is a cyclic extension of degree pn−1(p− 1).
(iii) Let P = φi(p) for fixed a fixed i with 1 ≤ i ≤ g and let Pn be the unique prime

of Kn above P. Then ordPn
ti(v) = 1 for any v ∈ A[pn] \ A[pn−1].

Notation. We denote by Sn the collection of primes Pn of Kn described in (iii). By
Proposition 5.3 of [Lan83] and (ii), we fix isomorphisms

Gal(Kn/K) ∼= (OK/p
nOK)

× ∼= (Z/pnZ)×.

Proof of Proposition 3.1. For now, fix a prime P = φi(p) with 1 ≤ i ≤ g. By Proposi-
tion 2.9, we can identify A[pn] with Gi[φi(π

n)].
On the one hand, if Pn is a prime of Kn lying over P, we can make the following

identification:

(Kn)Pn
= (K(A[pn]))Pn

= KP(A[p
n]) = KP(Gi[φi(π

n)]).

Let F = KP, and Fn = KP(Gi[φi(π
n)]). Since Gi is a Lubin-Tate formal group, Fn/F

is a totally ramified cyclic extension of degree pn−1(p − 1) (see [LT65]), and hence
[Kn : K] ≥ pn−1(p− 1).
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On the other hand, it is well known that Gal(Kn/K) is isomorphic to a subgroup
of (OK/p

nOK)
×. Since p splits completely, we have that (OK/p

nOK)
× ∼= (Z/pnZ)×,

where the latter is a cyclic group of order pn−1(p−1). Therefore [Kn : K] ≤ pn−1(p−1).
This completes the proof of half of (i) and all of (ii).
For (iii), let λn = ti(v) for some v ∈ A[pn] \ A[pn−1]. Since Gi is a Lubin-Tate

formal group, Fn = F (λn) and NFn/F (−λn) = φi(π) (see [Neu99, pg. 348]). Note that
(φi(π)) = POP, and therefore ordPn

λn = 1.
In order to finish (i), let P /∈ S and IPn

be the inertia group of Pn/P. Assume
that P ramifies in Kn, then IPn

6= 1, i.e., there exists a σ 6= 1 ∈ IPn
such that

σ(α) ≡ α mod Pn for all α ∈ OKn
. Therefore σ̃(a) = ã for a ∈ A[pn] \ A[pn−1]. Since

σ 6= 1, σ(a)−a = b ∈ A[pn]\{O}. Recall that A has good reduction at all primes above
p, therefore the addition map reduces to a morphism on Ã [HS00, pg. 271]. Hence
reduction commutes with addition, and we have that

Õ = σ̃(a)− ã = ˜σ(a)− a = b̃.

This says that b is in the kernel of reduction, but this contradicts Lemma 2.5. Thus
IPn

= 1, and P does not ramify as we claimed. �

Now we are in a position to determine some of the arithmetic properties of the fields
Kn/K.

Lemma 3.2. Let P1 ∈ S1 and let χ be a non-trivial character on Gal(Kn/K1) with
n > 1. Then ordP1

f(χ) ≥ p.

Proof. Let χ be a non-trivial character on the group Gal(Kn/K1), which is a cyclic
group of order pn−1 by Proposition 3.1. For ease of notation, let Lχ denote the fixed
field of χ. Then Lχ = Kr for some 2 ≤ r ≤ n, and hence f(χ) = f(Kr/K1) and
f(K2/K1)|f(Kr/K1). Therefore it is enough to show that f((K2)P2

/(K1)P1
) = Pp

1.
Once we calculate D((K2)P2

/(K1)P1
), the result follows by applying the conductor-

discriminant formula (see [Neu99, pg. 534]).
Let v ∈ A[p2] \A[p], then by Proposition 3.1, ti(v) is a uniformizer at P2, and hence

O(K2)P2
= O(K1)P1

[ti(v)]. Let f be a minimum polynomial for ti(v), then

D((K2)P2
/(K1)P1

) = N(K2)P2
/(K1)P1

(f ′(ti(v))

= N(K2)P2
/(K1)P1

(
∏

u=v+w
w∈A[p]\{O}

(ti(v)− ti(u)))

=
∏

u,v∈A[p2]\A[p]
u 6=v

(ti(v)− ti(u))

= P
p(p−1)
1 .

(7)

Indeed, for each v 6= u ∈ A[p2]\A[p], there exists w ∈ A[p]\{O} such that ti(v)−ti(u) =
ti(u + w) − ti(u) = ti(w) + (d◦ ≥ 2)(ti(u), ti(w)). By Proposition 3.1, ordP1

ti(w) = 1,
and hence by comparing terms of least valuation we have ordP1

(ti(v)− ti(u)) = 1.
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Since (K2)P2
/(K1)P1

is an extension of degree p, the conductor-discriminant formula
gives us that D((K2)P2

/(K1)P1
) = f((K2)P2

/(K1)P1
)p−1, and comparing this with (7)

completes the result. �

Proposition 3.3. A has everywhere good reduction over K1.

Proof. Since A has complex multiplication by OK , good reduction at all primes lying
over p, and p splits completely in K, the result follows from slight modification to the
proof of Theorem 2 of [CW77] (see [Row03] for more details). �

4. The tower

Let h denote the class number of K. Assume that the OK-rank of A(K) is positive.
Let Q be a point of infinite order of A rational over K such that Q ∈ A(K) \ pA(K),
where pA(K) = ∪α∈p[α]A(K) (this set is non-empty since the free part of A(K) is a
finitely generated OK-module).
Let m = rh be a positive integer multiple of the class number of K. We have

that pm = (γ) for some γ ∈ OK (hence A[p] = A[γ]). Let Qm ∈ A(K) be such
that [γ]Qm = Q. We define Lm = Km(Qm) to be the field of p-division values of Q
which is independent of the choice of Qm and γ. Then, for 1 ≤ n ≤ m, we define
Ln = Kn(∪α∈pm−n [α]Qm) to be the field of pn-division values of Q.
Remarks.

(1) Since the class number of K is often not one, we cannot define the field of pn-
division values of Q in the usual way. Therefore we use the fact that OK is a
Dedekind domain to note that pm−n is generated by two elements of OK , say
pm−n = (α1, α2). Then it is not hard to see that Ln = Kn([α1]Qm, [α2]Qm)
regardless of the choice of generators for pm−n.

(2) This definition is independent of our choice of m. Let m1 = r1h and m2 = r2h
with n < m1 < m2. We can choose Qm2

recursively so that [γ]Qr2h = Q(r2−1)h,

and hence [γr2−r1]Qm2
= Qm1

. Then pm2−n = pr1h−np(r2−r1)h = pm1−n(γr2−r1)
and

Kn(∪α∈pm1−n[α]Qm1
) = Kn(∪α∈pm1−n [α][γr2−r1 ]Qm2

) = Kn(∪β∈pm2−n [β]Qm2
).

(3) From now on, we may assume that m is a suitably large, fixed multiple of h.
Via our isomorphism OK/p

nOK
∼= Z/pnZ, we indentify A[pn] ⊂ A[p] with the

subgroup pm−nOK/pOK ⊂ OK/pOK .

Following [Gup85], we call the fields Ln ⊃ Kn ⊃ K the Coates-Wiles tower. It is easy
to see that Ln/K is Galois for all n. Furthermore, Gm = Gal(Lm/K) is identifiable
with a subgroup of

Hm =

{(
1 ∗
0 ∗

)
∈ GL2(OK/pOK)

}
.
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The action of σ =

(
1 aσ
0 bσ

)
∈ Gm is given by

σ(Qm) = Qm + aσ,

σ(R) = [bσ]R,

where R, aσ ∈ A[p] ∼= OK/p and bσ ∈ (OK/p)
×.

Since p splits completely and we have complex multiplication, we expect the extension
Ln/K to be “as big as possible”.

Lemma 4.1. Gal(Lm/Km) ∼= A[p].

Proof. We will first show that L1 6= K1. Let γ and π be as per usual, so that
p = (γ) and ordpπ = ordpπ = 1. Then pm−1 = (γ, πm−1), and we have that L1 =
K1([γ]Qm, [π

m−1]Qm) = K1([π
m−1]Qm). For τ ∈ Gal(L1/K), we have τ([πm−1]Qm) =

[πm−1]Qm + aτ with aτ ∈ A[p] \ {O}.
Now assume that L1 = K1, and define the map f(τ) = aτ . It is clear that this

defines a 1-cocycle of Gal(L1/K) = Gal(K1/K) into A[p]. Since A[p] is a p-group,
H1(Gal(K1/K), A[p]) must be a p-group. But Proposition 3.1 shows that [K1 : K] = p−
1 and [Ser79, pg. 130] shows that H1(Gal(K1/K), A[p]) is annihilated by multiplication
by p − 1. Therefore H1(Gal(K1/K), A[p]) = 0 and f must be a coboundary. Thus
there exists c ∈ A[p] such that f(τ) = τc− c for all τ ∈ Gal(K1/K). Therefore τ fixes
[πm−1]Qm − c for all τ ∈ Gal(K1/K), and hence [πm−1]Qm − c ∈ A(K). By our choice
of π, we must have π = δγ with δ and p relatively prime. But then [π]([πm−1]Qm− c) =
[π]Qm = [δγ]Qm = [δ]Q ∈ A(K), which shows thatQ ∈ [p]A(K). This is a contradiction
of the choice of Q, and hence L1 6= K1.
Let σ ∈ Gal(Lm/Km). Then it is not hard to see that σQm = Qm+aσ with aσ ∈ A[p]

and the map σ 7→ aσ gives us an embedding of Gal(Lm/Km) into A[p] (for more details
see [Row03]). Thus the map σ 7→ aσ injects Gal(L1/K1) into A[p]. Since L1/K1 is
non-trivial, Gal(L1/K1) is isomorphic to a non-trivial subgroup of A[p]. But the only
non-trivial subgroup of A[p] is A[p].
Since L1/K1

∼= A[p], the rest lemma follows by modifying an argument of Lang for
elliptic curves [Lan78]. �

Now we show that, for n = m, Lm/K is as big as possible.

Proposition 4.2. Gm = Hm.

Proof. By Proposition 3.1, we have that [Km : K] = pm−1(p − 1). By Proposition 5.3
of [Lan83], we have that A[p] ∼= OK/pOK , and hence #(A[p]) = p. By Galois theory
and Lemma 4.1, we must have #(Gm) = [Lm : K] = ppm−1(p − 1). By construction
Gm →֒ Hm, and a simple calculation shows that #(Hm) = ppm−1(p − 1) = #(Gm).
Therefore Gm = Hm. �

Notation. Recall that we fixed an isomorphism such that A[p] ∼= OK/pOK
∼= Z/pZ,

where A[pm−n] ⊂ A[p] corresponds to pnOK/pOK . For α ∈ OK/pOK , we say α ≡
0 mod pn if α comes from A[pm−n]. We will say that β ≡ 1 mod pn if β ∈ (OK/pOK)

×

acts on A[pn] ⊂ A[p] as the identity automorphism.
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Since Proposition 4.2 gives us the matrix representation of Gal(Lm/K), we can use
properties of this matrix group to try and determine the representation of its subgroups.

Proposition 4.3. Gal(Ln/Kn) ∼= A[pn], and hence Ln/K is “as big as possible”.

Proof. It is not hard to see that Ln ∩Km = Kn, and that we have the following isomor-
phisms:

Gal(Lm/Kn) ∼=
{(

1 ∗
0 β

)
∈ GL2 (OK/pOK) : β ≡ 1 mod pn

}
(8)

and

Gal(Lm/Ln) ∼=
{(

1 α
0 β

)
∈ GL2 (OK/pOK) : α ≡ 0, β ≡ 1 mod pn

}
. (9)

From equations (8) and (9), we can compute that [Lm : Kn] = ppm−n and [Lm : Ln] =
p2m−2n. Therefore [Ln : Kn] = p2m−n/p2m−2n = pn.
Since A[pn] is a cyclic group of order pn and [Ln : Kn] = pn, we need only show

that Gal(Ln/Kn) is isomorphic to a cyclic group. Since Ln ∩ Km = Kn, we have
Gal(Ln/Kn) ∼= Gal(LnKm/Km). But the second group is a quotient of the cyclic group
Gal(Lm/Km), hence it is cyclic. �

In order to compute the conductor of Ln/Kn, we will need to compare calculations
made up different branches of the Coates-Wiles tower (see Figure 1). Moreover, we will
find the following subextensions of Ln/K helpful in our calculations:

Mn := K(∪α∈pm−n [α]Qm) (10)

and

M̃n := K1(∪α∈pm−n [α]Qm) = K1Mn for 1 ≤ n < m. (11)

Ln

pn

Mn

pn−1(p−1)

pn−1

Kn

pn−1L1

p

M1

p−1

p

K1

K

p−1

Figure 1. The Coates-Wiles tower
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5. The Filtration.

We may assume that Q ∈ A◦(KP) for all P ∈ S, since after multiplying Q by a
suitable integer relatively prime to p this is the case. Let π ∈ OK such that ordpπ =
ordpπ = 1, and recall that p = (γ). Then π = γδ with δ and p relatively prime and
pm−n = (γ, πm−n) for 1 ≤ n ≤ m. Thus we have Ln = Kn([π

m−n]Qm).
We are interested in computing f(Ln/Kn), and the following lemma shows that

f(Ln/Kn) is only divisible by primes of Sn.

Lemma 5.1. Ln/Kn is unramified outside of Sn.

Proof. In Lemma 3.3, we showed that A has everywhere good reduction over K1, and
hence over Kn. It follows easily from Lemma 2.5 that Ln can only be ramified at primes
of Kn which lie above p (see [ST68]).
First we will show the result for n = m. Let q /∈ Sm be a prime of Km above p,

F = (Km)q the completion of Km at q, and A◦(F ) the kernel of reduction mod q.
Let Q be a prime of Km lying over q, and IQ the inertia group of Q over q. Then

IQ acts trivially on Qm if and only if Lm is unramified at q. Assume IQ does not act
trivially, then there exists σ 6= 1 ∈ IQ such that σ(Qm) and Qm reduce to the same
element mod q. Therefore σ(Qm)−Qm ∈ A◦(F ), but σ(Qm)−Qm = α ∈ A[p]. Indeed,

[γ](σ(Qm)−Qm) = σ([γ]Qm)− [γ]Qm = σ(Q)−Q = O,

where p = (γ) with γ ∈ OK . By good reduction at q, we know that reduction commutes
with addition, and hence we have

Õ = ˜σ(Qm)−Qm = σ̃(Qm)− Q̃m = α̃.

By Lemma 2.5, α = O, and hence σ acts trivially on Qm. This contradiction completes
the case of n = m. For 1 ≤ n < m, let q′ /∈ S be a prime of K lying over p. Then
the case of n = m and Proposition 3.1 combine to show us that q does not ramify in
Lm. Therefore q does not ramify in Ln ⊂ Lm, and hence Ln/Kn is unramified outside
of Sn. �

For what follows, it is important to recall that

(1) P is a prime of K such that P = φi(p) with 1 ≤ i ≤ g, where φi refers to an
element of the CM type of A, and

(2) (φi(π)) = (p) = POP locally for some π ∈ OK .

By Proposition 2.9, we are able to define a filtration of A◦(KP) for P ∈ S. Let
A◦(KP) = A0(KP) and define

Aj(KP) = {R ∈ A◦(KP) : ordPti(R) > j}; (12)

so A0(KP) ⊇ A1(KP) ⊇ A2(KP) ⊇ · · ·

Proposition 5.2. Let L be a finite extension of K with prime P lying over P ∈ S and
let β ∈ OK be relatively prime to p. Then

(i) [π]G : Aj(KP) → Aj+1(KP) is an isomorphism for all j ≥ 0.
(ii) [β]G : A◦(LP ) → A◦(LP ) is an isomorphism.
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Proof. (i) Proposition 2.9 shows that G = ⊕g
k=1Gk, where Gk is a one-dimensional Lubin-

Tate formal group. What we have done is to construct a filtration on the ith component
of this formal group, and by [Ser65] we have an isomorphism on the ith component. Now
since [π]G = ⊕g

k=1[φk(π)]Gk
and ordPφk(π) = 0 for k 6= i, [φk(π)]Gk

is an automorphism of
Gk(P). Indeed, j([φk(π)]) is a unit inOP for k 6= i. Since A0(KP) ∼= G(P) = ⊕g

k=1Gi(P),
[π]G is an isomorphism of Aj(KP) onto Aj+1(KP).
(ii) Given β ∈ OK with β and p relatively prime, we have [β]G = ⊕g

k=1[φi(β)]Gk
,

and φk(β) is a unit in KP for all 1 ≤ k ≤ g. Then the result follows from a slight
modification to the proof of Theorem 3 [Ser65, LG 4.25]. �

Notation. Let eP be the smallest integer such that Q /∈ AeP (KP), e = minP{eP}, and
E = {P ∈ S : eP = e}.

Let Pn be a prime of Ln lying over Pn, for fixed P ∈ S. Let Q = Q̃0 and choose Q̃n

recursively such that [π]Q̃n = Q̃n−1.

Proposition 5.3. Let Pn be a prime of Ln lying over Pn ∈ Sn, then

(Ln)Pn
= (Kn)Pn

(ti(Q̃n)).

Proof. We will first show that (Lm)Pm
= (Km)Pm

(Q̃m). By definition, we have that
(Lm)Pm

= (Km)Pm
(Qm). Since Q ∈ A◦(KP) and [γ]Qm = Q, there is some choice of

Qm ∈ A◦((Lm)Pm
). Since A[p] is in the kernel of reduction, we actually have all choices

of Qm ∈ A◦((Lm)Pm
). By (5), we have that A◦((Lm)Pm

) ∼= G(Pm), where the map is
given by R 7→ t(R) = (t1(R), . . . , tg(R))

t. Hence

(Km)Pm
(Qm) = (Km)Pm

(t1(Qm), . . . , tg(Qm))

Note that [π]Q̃m = [γ]([δ]Q̃m) = Q, and hence [δ]Q̃m = Qm+a with a ∈ A[p]. Therefore,

in the formal group, we have that [δ]Gt(Q̃m) = t(Qm + a) = t(Qm) +G t(a). Since
t(a) ∈ (Km)Pm

, we may assume without loss of generality that a = O. Since δ is
relatively prime to p, Proposition 5.2 gives us that [δ]G is an automorphism , and hence

invertible. Therefore [δ]Gt(Q̃m) = t(Q), and we have that

(Km)Pm
(t1(Qm), . . . , tg(Qm)) ⊂ (Km)Pm

(t1(Q̃m), . . . , tg(Q̃m)).

The reverse inclusion then comes from [δ−1]Gt(Qm) = t(Q̃m). For 1 ≤ n < m, recall
that Ln = Kn([π

m−n]Qm). As above, we have that

(Ln)Pn
= (Kn)Pn

([πm−n]Qm) = (Kn)Pn
([πm−n]Q̃m) = (Kn)Pn

(Q̃n).

Finally, recall that [πn]G = ⊕g
k=1[φk(π

n)]Gk
, and [φk(π

n)]Gk
is an automorphism on Gk(P)

for k 6= i. Hence tk(Q̃n) ∈ Gk(P) for k 6= i, which shows us that

(Kn)Pn
(Q̃n) = (Kn)Pn

(t1(Q̃n), . . . , tg(Q̃n)) = (Kn)Pn
(ti(Q̃n)).

�

Notation. Since (Kn)Pn
(Q̃n) = (Kn)Pn

(ti(Q̃n)), we will use the notations interchange-
ably in what follows.
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Proposition 5.4. Let P ∈ S and eP be as above. Then

(i) for 1 ≤ n < eP, Pn splits completely in Ln,
(ii) LeP/KeP is ramified over PeP , and
(iii) PeP splits completely in LeP−1KeP . Hence LeP/LeP−1KeP is a totally ramified

extension of degree p over any prime above P.

Proof. (i) By the filtration (12), we see that there is a Q
′

n ∈ AeP−n−1(KP) such that

[πn]Gt(Q
′

n) = t(Q). But [πn]Gt(Q̃n) = t(Q), hence Q̃n = Q
′

n + u for some u ∈ A[pn].
Since Q

′

n + u ∈ A((Kn)Pn
), we see that Pn splits completely. Indeed, there exists a

prime Pn of Ln lying over Pn such that

(Ln)Pn
= (Kn)Pn

(Q̃n) = (Kn)Pn
(Q

′

n + u) = (Kn)Pn
(u) = (Kn)Pn

.

(ii) Since p splits completely and we have the formal group decomposition of Propo-
sition 2.9, this follows from a slight modification to Theorem 11 of [CW77].
(iii) Let n = eP. By (i), the decomposition group of Gal(Ln−1/Kn−1) for Pn−1 is

trivial. It is not hard to see that Gal(Ln−1/Kn−1) ∼= Gal(Ln−1Kn/Kn). Then the de-
composition group of Gal(Ln−1Kn/Kn) for Pn is isomorphic to a trivial group. Indeed,
these decomposition groups are the Galois groups of the corresponding local extensions.
Hence Pn splits completely in Ln−1Kn. �

We can reduce the computation of f(Ln/Kn) to computing an Artin conductor. If χ
is a character of a subgroup H of Gal(Ln/K), let χ∗ be the corresponding induced char-

acter on Gal(Ln/K), and char(n) = {χ ∈ Ĝal(Ln/Kn) : χ
pn−1

6= 1}, where Ĝal(Ln/Kn)
denotes the character group of Gal(Ln/Kn). The next lemma demonstrates the impor-
tance of computing f(χ) for χ ∈ char(n).

Lemma 5.5. For any χ ∈ char(e), f(Le/Ke) = f(χ).

Proof. By definition, χpe−1

6= 1 for χ ∈ char(e). Hence the fixed field of χ, Lχ, is not
contained in KeLe−1, which is an extension of Ke of degree pe−1. Therefore Lχ = Le.
Since f(χ) = f(Lχ/Ke), we are done. �

6. Conductor Calculations

Let E be as in the last section and for the rest of this section fix P ∈ E. Further, we
recall that Pn is the unique prime of Kn sitting above P in K. By Proposition 5.2 and
(10), there exists a prime P of Me−1 over P such that

(Me−1)P = KP.

Let Pe be any prime of Le−1Ke lying over P and P1 its restriction to M̃e−1 (see (11)

to recall the definition of M̃e−1). By (12) and Proposition 5.4, we see that both

(Le−1Ke)Pe
= (Ke)Pe

and (M̃e−1)P1
= (K1)P1

.

Again by Proposition 5.4, there exists a unique totally ramified prime Pe of Le over

Pe such that [(Le)Pe
: (Le−1Ke)Pe

] = p. Let ℘1, ℘ be the restrictions of Pe to M̃e andMe
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(Ke)Pe
(Q̃e) = (Le)Pe

p

(K1)P1
(Q̃e) = (M̃e)℘1

p

(Ke)pe

pe−1

Kp(Q̃e) = (Me)℘

p

(K1)p1

p−1

Kp

Figure 2. The local tower

respectively. The portion of the Coates-Wiles tower we are interested locally is shown
in Figure 2, where it is important to note that all of the extensions are totally ramified.

As a first step we will compute the conductor of (K1)P1
(Q̃e)/(K1)P1

, and then use

this to compute the conductor of (Ke)Pe
(Q̃e)/(Ke)Pe

. By Proposition 5.2, we have that

ordPti(Q̃e−1) = 1 and ti(Q̃e−1) = [πi]Gi
ti(Q̃e). In Corollary 2.10, we saw that

[πi]Gi
(ti) = πiti + utpi + πiα + β,

where α, β are power series in ti with terms of lowest degree two and 2p respectively.
So

ti(Q̃e−1) = [πi]Gi
(ti)(Q̃e) = πiti(Q̃e) + utpi (Q̃e) + πiα(Q̃e) + β(Q̃e). (13)

Since (Me)℘/KP is a totally ramified extension of degree p, ord℘ti(Q̃e−1) = p. Note

that ord℘πiti(Q̃e) > p, hence the term on the right-hand side of (13) with least valuation

at ℘ can only be uti(Q̃e)
p. Since u is a unit in OP, we see that ord℘ti(Q̃e) = 1, and we

also have ord℘1
(Q̃e) = p−1 (since (K1)P1

(Q̃e)/KP(Q̃e) is a totally ramified extension of

degree p−1). Thus ti(Q̃e) has a ℘1-adic expansion,
∑

i≥p−1 aiη
i
1, with ai ∈ {0, . . . , p−1},

ap−1 6= 0, and η1 a uniformizer at ℘1. Indeed, O℘1
/℘1O℘1

∼= Z/pZ, so we can take
ai ∈ {0, . . . , p− 1}. Therefore we have that

(K1)P1
(Q̃e)/(K1)P1

= (K1)P1
(η1)/(K1)P1

. (14)

Let σ 6= τ ∈ Gal((K1)P1
(Q̃e)/(K1)P1

), then σti(Q̃e) = ti(Q̃e + u), τti(Q̃e) = ti(Q̃e + v)
for some u 6= v ∈ A[p]. Using the formal group Gi, we see

ti(Q̃e + u)− ti(Q̃e + v) = ti(u− v) + (d◦ ≥ 2)(ti(Q̃e + v), ti(u− v)). (15)

By Proposition 3.1, ti(u− v) is a uniformizer at P1, and hence ord℘1
ti(u− v) = p. We

also have that ord℘1
ti(Q̃e + v) = p− 1, because ord℘ti(Q̃e + v) = ord℘ti(Q̃e) = 1 (since

any choice of Q̃e will work in (13)). So by comparing the terms of (15) of least valuation
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at ℘1 we see that

p = ord℘1
(ti(Q̃e + u)− ti(Q̃e + v))

= ord℘1
(
∑

i≥p−1

ai((ση1)
i − (τη1)

i))

= ord℘1
((ση1 − τη1)

∑

i≥p−1

ai

i−1∑

j=0

(ση1)
j(τη1)

i−1−j)

= ord℘1
(ση1 − τη1) + ord℘1

(
∑

i≥p−1

ai

i−1∑

j=0

(ση1)
j(τη1)

i−1−j).

(16)

This follows because xn − yn = (x − y)(
∑n−1

j=0 x
jyn−1−j). Note that the second term

on the last line on the right-hand side of (16) has ord℘1
≥ p − 2. Indeed, p − 2 is the

smallest this valuation can be, since we get at least p− 2 copies of terms with the same
valuation as η1 in the sum. So (16) implies that

ord℘1
(ση1 − τη1) ≤ 2. (17)

Now we are in a position to compute the desired conductor.

Proposition 6.1. f((K1)P1
(Q̃e)/(K1)P1

) = P2
1

Proof. We know that (K1)P1
(Q̃e)/(K1)P1

is a totally ramified extension of degree p. Let
G represent its Galois group, Gm the mth ramification group of ℘1 over P1, and k the

exact order of P1 dividing D((K1)P1
(Q̃e)/(K1)P1

). Then k =
∑

m≥0(#(Gm)−1). Since
#(G) = p and P1 is totally and wildly ramified, we see that G0 = G1 = G. Therefore

k ≥ 2(p− 1) and P
2(p−1)
1 divides D((K1)P1

(Q̃e)/(K1)P1
).

We know from (14) that η1 generates (K1)P1
(Q̃e). Let f be a minimal polynomial for

η1, and σ, τ ∈ G, then

D((K1)P1
(Q̃e)/(K1)P1

) = N(K1)P1
(Q̃e)/(K1)P1

(f ′(η1))

=
∏

σ 6=τ

(ση1 − τη1)
∣∣∣(℘2

1)
p(p−1) = P

2(p−1)
1 .

(18)

Comparing equations (18) and (17), we have that ord℘1
(ση1 − τη1) = 2, and hence

D((K1)P1
(Q̃e)/(K1)P1

) = P
2(p−1)
1 .

Now let ψ be a non-trivial first degree character on G. Recall that G is cyclic of order
p. Therefore there are p − 1 such characters, and they all have the same conductor,

i.e., f(ψ) = f((K1)P1
(Q̃e)/(K1)P1

). The conductor-discriminant formula and the above
calculation yield:

P
2(p−1)
1 = D((K1)P1

(Q̃e)/(K1)P1
) = f((K1)P1

(Q̃e)/(K1)P1
)p−1. (19)

The result follows on taking (p− 1)th roots of both sides of (19). �

The following corollary is immediate, and is shown in the proof of the preceding
proposition.



COATES-WILES TOWERS FOR CM ABELIAN VARIETIES 21

Corollary 6.2. Let ψ be a non-trivial first degree character on the Galois group of

(K1)P1
(Q̃e)/(K1)P1

, then f(ψ) = P2
1.

Figure 2 begins to illustrate how we will use Proposition 6.1 and Corollary 6.2. The
approach is to compute conductors for n = 1, and then to use isomorphisms from field
theory to lift the results to n = e. It is not hard to see that we have the following
isomorphism of Galois groups (for more details see [Row03]):

Gal((Ke)Pe
(Q̃e)/(Ke)Pe

) ∼= Gal((K1)P1
(Q̃e)/(K1)P1

), (20)

and hence

Gal((Ke)Pe
(Q̃e)/(K1)P1

) ∼= Gal((Ke)Pe
(Q̃e)/(Ke)Pe

)×Gal((Ke)Pe
/(K1)P1

). (21)

Proposition 6.3. Let ψ be any non-trivial first degree character on the Galois group

of ((Ke)Pe
(Q̃e)/(Ke)Pe

) and let ψ̃ be the associated character on the Galois group of

((K1)P1
(Q̃e)/(K1)P1

) given by (20). Then

ordPe
f(ψ) = ordP1

f(ψ̃).

Proof. Given Corollary 6.2 and Lemma 3.2, this follows almost verbatim from the proof
of Proposition 5.16 of [Gra88]. �

Proof of Theorem 1. Let χ be a non-trivial first degree character of Gal(Le/Ke) such

that χpe−1

6= 1. By Lemma 5.5, we know that f(Le/Ke) = f(χ) and f(χ) is the product
of its (local) Artin conductors. Since the only ramification occurs above primes in E,
we need only compute their local conductors. Given the assumption on χ, we see that
χ is non-trivial when restricted to Gal(Le/Le−1Ke).

And Gal(Le/Le−1Ke) ∼= Gal((Ke)Pe
(Q̃e)/(Ke)Pe

), so we are in a position to apply
Proposition 6.3. But Proposition 6.3 combined with Corollary 6.2 gives us the result. �

7. Congruence relations on units

Let e and E be as in section 5. Since e is fixed, we will let F = Le, E = Ke, and
Pi represent the unique totally ramified primes of Ke lying over pi of K for 1 ≤ i ≤ g.
Furthermore, we let P1, . . . ,Ps be the primes of E. For an ideal m of E, we denote the
ray class field modulo m by E(m).

Proposition 7.1. E(P2
1 · · ·P

2
s)/E(P1P

2
2 · · ·P

2
s) is an extension of degree p.

Proof. By Theorem 1, we know that the extension E(P2
1 · · ·P

2
s)/E(P1P

2
2 · · ·P

2
s) is non-

trivial. Indeed, F/E has conductor f(L/E) = P2
1 · · ·P

2
s, so we must have E(P2

1 · · ·P
2
s) ⊇

F and E(P1P
2
2 · · ·P

2
s) 6⊇ F . Since p is odd and of first degree, the result follows from

an easy application of the snake lemma and class field theory. �

Corollary 7.2. The units of E congruent to 1 mod P1P
2
2 · · ·P

2
s are also congruent to

1 mod P2
1 · · ·P

2
s.

Remark. Both Gupta and Grant used results similar to Corollary 7.2 to give congruence
relations on units. Under our hypotheses, unless #(E) = 1, the best we can do is
Theorem 2, which gives a congruence relation on an exterior product of units.
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Lemma 7.3. Fix i with 1 ≤ i ≤ g and let v and w be units of E congruent to 1 mod Pi.
Then there exist relatively prime integers a, b such that vawb ≡ 1 mod P2

i .

Proof. By the Chinese remainder theorem, we can choose π ∈ OE to be a uniformizer
at Pi. Let v, w have the following Pi-adic expansions: v ≡ 1 + απi mod P2

i and
w ≡ 1+βπi mod P2

i . Since NPi = p, we may choose α, β ∈ {0, . . . , p−1}. We see that
vawb ≡ 1+ (αa+ βb)πi mod P2

i . So by putting a = β/gcd(α, β) and b = −α/gcd(α, β),
we have (a, b) = 1 and vawb ≡ 1 mod P2

i . �

Lemma 7.4. Let v, w be units of E such that v, w ≡ 1 mod Pi and v
awb ≡ 1 mod P2

i

for some relatively prime integers a, b. Then v∧w = vawb∧vcwd ≡ 1∧vcwd ≡ 1 mod P2
i ,

where c, d ∈ Z are such that ad− bc = 1. That is, v ∧w = v′ ∧w′ with v′, w′ units such
that v′ ≡ 1 mod P2

i , w
′ ≡ 1 mod Pi.

Proof. Since (a, b) = 1, there exist integers such that af + bg = 1. Let d = f and
c = −g. By properties of exterior products, v ∧ w = (ad − bc)(v ∧ w) = vawb ∧ vcwd ≡
1 ∧ vcwd mod P2

i . �

With this result, we are now in a position to complete the prooof of the theorem.

Proof of Theorem 2. Note that if s = 1 then the result is trivial. We will apply the
Lemma 7.4 repeatedly for the primes Pi with 2 ≤ i ≤ s. Starting with P2, we apply
Lemma 7.4 as many as s− 1 times. Then

u1 ∧ · · · ∧ us = u
′

1 ∧ · · · ∧ u
′

s,

where u′1, . . . , u
′
s−1 ≡ 1 mod P1P

2
2P3 · · ·Ps and u

′
s ≡ 1 mod P1 · · ·Ps. So if we do this

recursively, we get u1 ∧ · · · ∧ us = u
(s−1)
1 ∧ · · · ∧ u

(s−1)
s , where

u
(s−1)
1 ≡ 1 mod P1P

2
2 · · ·P

2
s

u
(s−1)
2 ≡ 1 mod P1P

2
2 · · ·P

2
s−1Ps

...
...

u
(s−1)
s−1 ≡ 1 mod P1P

2
2P3 · · ·Ps

u(s−1)
s ≡ 1 mod P1P2 · · ·Ps.

Now by Corollary 7.2, u
(s−1)
1 ≡ 1 mod P2

1 · · ·P
2
s. Thus u1 ∧ · · · ∧ us ≡ 1 ∧ u

(s−1)
2 ∧ · · · ∧

u
(s−1)
s ≡ 1 mod P2

1P
2
2 · · ·P

2
s as desired. �

Corollary 7.5. Let u1, . . . , ug be units of E congruent to 1 mod P1 · · ·Pg, then

u1 ∧ · · · ∧ ug ≡ 1 mod P2
1 · · ·P

2
g.

Proof. Let u1, . . . , ug ≡ 1 mod P1 · · ·Pg. By repeated application of Lemma 7.4, we
can construct

u1 ∧ · · · ∧ ug = ũ1 ∧ · · · ∧ ũg,

where ũ1, . . . , ũs ≡ 1 mod P1 · · ·PsP
2
s+1 · · ·P

2
g. The result follows from applying The-

orem 2 to ũ1, . . . , ũs. �
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