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ABSTRACT

The measurement of the longitudinal coupling
impedance of an accelerator component by coaxial wire
methods is discussed. Potential errors intrinsic to
this method are pointed out and analyzed. It is
concluded that measurements using the transmission
rather than the reflection coefficient are preferable
and are expected to give adequate results in the limit

of thin center conductors.
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I. INTRODUCTION

The longitudinal coupling impedance of an accelerator component
is usually measured by inserting a wire in the center of the beam pipe
to form a coaxial transmission line. Under certain conditions the
measuréble circuit parameters are related to the wall impedance which
couples to the beam. Either the reflected wave or the transmitted

wave have been used to determine the coupling impedance.lm8

The relation between a single, lumped wall impedance and the
scattering matrix describing the two-port is simple and transparent

for both reflection and transmission coefficient.

In this report it will be shown that if two or more impedances
are present it becomes advantageous to use the transmission-coefficient,
as the sum of all impedances enters directly provided there is no

change in cross section of the beam pipe.

“As an example of a distributed coupling impedance associated

with changes in cross section a cylindrical cavity, for which the

9,10

coupling impedance is well knowm, is considered. The impedance

determined from the reflection coefficient may now be wrong by as much
as an order of magnitude, and the error is independent of the choice

of diameter of the center conductor. Again, better results are obtained
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by using the transmission coefficient and the correct result is
obtained in the limit of an infinitely thin center conductor. But

for the diameters used so far in practice the errors are still substantial.

In general, results from coaxial wire measurements should be inter-
preted with caution. Transmission measurements are less erroneous than
reflection measurements, especially when the center conductor is chosen

as thin as measurement accuracy permits.

II. SINGLE, LUMPED IMPEDANCE

We consider a single localized impedance Z associated with a
w .
short gap in the circular beam pipe, Fig. 1. Coupling impedance

Z =92 1in this case.
c w

Fig. 1

The characteristics of a two-port in a transmission line environment
is most conveniently described by the scattering matrix or the S-parameters

as defined in appendix A.

The two-port above can be described as 3 cascaded two-ports, o, B,
and y (Fig. 2).

L2
' | w o,

'
" — T e 2
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where
zo
= — f{n —
Ro 2m n a

is the characteristic impedance of the transmission line. Z° is
the impedance of free space, Zo-= Ch =~ 377 Q. From the definitions

of the S-parameters we get:

B _ B _ W
S11 52 °Z v =&
W o
Zw
o~ W <<
7R for Zw Ro
o
B _ B _ g,
S12_521_1'2 + 2R
W
Zw . : .
¢ [ - —— << . . B
1 7R fo? Zw Ro IR
o
(s RN
S = . :. S = .
. e Jk&l 0 e JkLZ 0
where
k = w/é

is the propagation constant for the transmission lines. From the cascading

formulaes (appendix B) we get the total S-matrix:

z Lz

<0BY _ B -ik24; _ W -ik24) a W -jk244
811 T Sn1® =7 + 2R °© R ©

A W o : o

oy B -jkot,  Pu kot o lw o -ik24,

- -jk28y _ _w -3k e W
8p9 .= 5958 =7 F® © R ©
: . w o]
.SaBY - SaBY - SB -jkﬁ _ <.1 - Zw ) e-jk& a.(kl _ Zw ) -jki
. Z + 2R 2R /¢

12 21 ~ °21° .
_ , .- W o . "o

(1)

(2)

(3)

(4)

(5)
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where £ = &1 + LZ is the total length. It is seen that the S parameters
do not change in magnitude along the transmission lines, only their
ot
phase is changed. The measured reflection-coefficient, SlfY, must thus
be corrected for the phase shift caused by 2&1, '
B g@By k24

511 = 511

and Zw can be determined:

2R SB
o 11
2y = B
. 1 - S11
(6)
= 28 5P for lz | <r
o 11 1% o °
Alternatively the transmission-coefficient, ngv, must be corrected for
the phase shift caused by the total line length, 4:
B _ JoBy jki
521 =851 @
and Zw can be determined:
2R (1 - SB )
_ o 21
2z =
w SB
21
: (7
B
s - ° << .
2R (1 - 8;,) for lzwl R

For a single localized impedance the two methods appear equally good
except that the exact location of the gap must be known in.case of the
reflection-coefficient while only the total length has to be known in
case of the transmission-coefficient as the transmission is independent

of the location of the gap.

Transmission measurements may also be preferred if the impedance

to be measured is large compared to Ro(accelerating cavity e.g.), as it
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is much easier to measure a transmission close to zero than a

reflection close to unity.

IIT. TWO LUMPED IMPEDANCES. DISTRIBUTED-IMPEDANCES.

For two localized impedances we have the circuit equivélent Fig. 3.

Zw| Z
‘ i ] ! | Cwe
|' o— : | 4?_4::}_?, ° 2|
R | | R | ( R
o',n'" .- ° 0:02 -8 0:83 e 2
a B y - €
|" 2 »]
, ' Fig. 3
The elements of the scattering matrices are:
Z
! B _ B _ wl _
S~ %~z +x® - h
wl o
Z
B _ B _ wl _
S12=8%n =ty -l-h
wl fo}
Z
6 _ .6 _ w2 _
S11 S22 Z .+ 2R FZ
w2 o
YA
6 _ .6 _ w2 B
S8 =l -z rm cl-h
w2
For the combined S-matrix we find: s
o -jk24, !
11 " -jk24,
» 1 llfz e
-3 . =] +24 o
O l“le JkZ’(dl + I-ze Jk(2£1 2) lz l «< R
wl o
j i <<
g emdk2by L, mik(2ty+28y) |z | <®_
o W1 w2
2R
o
’ ) - k24
caBybe _ -jlaty I + Ty (L - 2Ty e 772
S, = e -
22 =jk2dy

l - rer e

(8)

K
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- e-Jk2&3 + T e-Jk(2&2+2£3) |Z l << R
2 1 ) wl o,
(9
- - q| <<
g ooik2ly o -ik(20g20s) ' lzw2| R
o W2 wl
' 2R
o
SdB‘y&'e _ goBvbe | -jkt -y v + Iy - S
12 21 1 -TT e-Jk2£2
12
-jkt
~e 1 -(0, +T)] | <<
C '(,1 NI Izwll R,
Z  +z, - (10)
_ -jkb wl © ‘w2 [z .| <<r
e l -« ——— w2 o
2R ,
o .
Even if the relative location of the two lumped impedances is
known one cannot in general determine the impedances from the reflection
coefficient as they enter wifh different phases, Only if, a priori,
it is known that the two impedances are identical we get:
. 2Z . coski ]
s . = e dk2(ttty) _wl 2 ifz =1z (11)
11 2Ro ? wl w2
and the measuring frequency will have to be restricted (k&2 < 1).
In the transmission-coefficient the two contributions simply
add up independently of their location, and we get immediately the
total impedance provided that each contribution is small compared
to R .
o
This result can easily be extended to more than two impedances
or to a general, nonuniform, distributed impedance:
d =
7, =2 W
ot - | o
Z,=),2 (x)dx - (12)

Z
- jkt - -W_>
Sa1° ¢ ( 1 R/ |Zw| =R

o
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By splitting the impedance into its real and imaginary parts,

Zw = Rw + JXW,

S71

T, R X
S (g e ke

2R IR
(o} [o]

. . R .
13 e-J(Xw/Z'RO).'(. 1 - _w_) )

2R
o

One can see that the imaginary part affects the phase while the real

- . part affects the amplitude of the transmitted signal.

'n"Thisrresdlt agrees with Faltens et al.1 althohgh they mainly'

emphasized the phase shift caused by the imaginary part. If fﬁe

transmitted signal is compared with a reference signal from a trans-

mission line with same delay, oneé should be able to measure small

amplitude variations too and thus the real part.

It is, hdwéver, important to point out that this derivation

assumes that the coupling impedances are not associated with any change

in cross-section of the beam pipe.

ITII. A DOUBLE STEP -CROSS SECTION CHANGE

As an example of a distributed coupling impedance associated with

cross section changes a cylindrical cavity is considered.

' 2a

(13)
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For frequencies well below the cutoff frequency of the beam bipe the

9,10

coupling impedance is purely inductive. If the cavity length

2
as there is no interaction between the two steps. The wall can,

4. is longer than the pipe radius the inductance is independent of &2

therefore, be characterized by a series inductor associated with
each step, and we get the following circuit equivalent with the

center conductor inserted, Fig. 5:

R,o, Q| R| 1-Q'Z

] R01Q3

|
a +' J¢] +, Yy s +b47}§_ff €

Fig. 5.
Z Z
where R = 2 in b and R, = == 4n d are the characteristic impedances
o 2m a 1 2m a

of the transmission lines involved.

For the two-ports B and 8 we use reference impedances for .the
S-matrix equal to the characteristic impedances of the transmission
lines attached to them as this gives simple S-matrices for the

transmission lines. We get:

B _ 6 - R1 B Ro + JXL
11 22 R1 + Ro + JXL

B 5 ~(Ry =R+ 3X
22 7 P11 T R + R+ 3K

WR RS
812 = 551 7812 F 521 i weree i ' E
1 o JxL

Y4

NN

/.
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From the cascading formulaes (appendix B) we obtain after some

manipulations:

apybe _ o~ IK(2yHly) .(AR+ij)ejk£2'(AR'ij)[l'zixL/.(ZRo'f'ARf“.ij)]e-jkLZ

11 2R°+AR+jXL

S S| %

1-[(AR-jXL)/(2R°+AR+jX)]ze

Soszée _ ooBybe

21 " 512 .
. o 12 =jk24,, - (15)
o5kt 4R1JXL+(AR-JXL) (l-e )
- e 1 2 2 2_-jk2t,
+A . - -3 :
(2R, R+JX) [; (8R=3X )/ (2R +AR+X ) e )
where AR = R, = R .
1 o .
822 is identical to S11 except that &1 is rgplacgd by LB.
We'will f;rst conside: the reflection coefficient. If the step '
heighf is relatively small, AR << Ro and XL << Ro’ and we retain only
lowest order terms in AR/R_ and X_/R :
o L o
SaBY&e h,e-Jk(2L1+L2) { 20R ejkL2 - e-JkLZ + 12 ‘eJkL2 + e'Jk£2 }
11 2R_ 2 32X, 2
(16).

e-jk(2L1+62) . . |
= 2Ro { j20R sin k&z + _]ZXL cos k&z }
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where the phase term exp[-jk(zl;1 + &2)] corresponds to the center of
the cavity. We get the beam coupling impedance term jZXL wi;h'the
cosine factor as in Eq. (11) plus an apparent additional inductive
term associated with the coaxial wire setup and caused by the change

in characteristic impedance, AR. For low frequencies

and Eq. (16) reduces further to

{ ‘0 [ 2
11 2R ] T c
o

]

] + jw[2Ls] }

from which it is seen that the additional measured "inductance". is

proportional to the step separation %2.

“From Keil and Zotter9 we geﬁ the low frequency impedance of the
double’ step (Lz >> b): ' J

(d - b)?
R d + 0.412b

) JZXL . 0.241 Zo
n ]

5N

Z (d - b)2

. o)
- P — - <<
j 0.171 b for 4d - b b

If n = wR/c is eliminated:

2
Z & ju b 0.171 ﬁ%

(17)

(18)
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and the inductance of two steps is thus:
1 (d - b)z S .

The change in characteristic impedance is

AR =Ry =R =gmtny ™ on b - (20)

so the additional measured "inductance" Lr becomes

_ ZAR&Z L (d - b)&2

2
= = = 1 Oom
Lr c po o n “o b

ol

which becomes equal to the step inductance 2LS for

£, = 0.5 X (d - b) . | (21)
It follows that we get a factor 2 error in the measured result already.

for a cavity ‘length which is about half the step height.l1

A For the examﬁle of the ISABELLE prototype pickup and clearing
electrode box with
42 =31lcm, d =5.8 cmy, b=23.6cm
the steps can be considered reasonably independent and the measured
inductance as given by Eq. (18) will be 30.4 times larger than the

double step inductance ZLS.

The much too large inductance obtained from '"black-box" interpretation
of the reflection coefficient agrees with measurements.12 As the structure

in this case is simple and well known, one can, however, in principle

B}

take the change in characteristic impedance properly into account.

11, The formulae (19)for the double step inductance is not even valid
for lengths that short.
12. S. Giordano, private communication.
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But as the correction term in this example is about 30 times larger
than the coupling impedance term this will drown in measurement »
inaccuracies. Furthermore, the exact formulae (14) will have to be
used as the correction term must be precisely known. Finally, the

reflection method cannot be used for more complex structures, for

which the correction term is unknowm.,

From Eq. (16) the origin of this error is obvious. In addition
to the reflections from the step inductance which couples to the beam
there are two reflections with opposite signs except for a small
phaée shift exp(-jk2£2). They originate from the change in impedance
AR (which in the relativistic limit 8 = 1 does not couple to the beam).
Added they appear shifted 90° and proportional to frequency and look
therefore exactly like an additional inductance. Only for very short
cavities the correct result is expected as the cavity now can be
considered as a lumped element associated with a short gap. For a o
'given length & the relative error increases as the step height ‘decreases
because the unde31red reflections are proportional to the step helght,
Eq. (20), while the step.inductance is proportional to the step height
squared, Eq. (19). Notice that the relative error for reflection:

measurements is independent of the radius of the central conductor.

Consider now the transmission, Eq. (15). If the step height is

relatively small, << AR << R, and we retain only lowest order terms
. o y .

in AR/Rb and XL/RO:

aPyse o -kt { 2’& (AR )2 (AR )2 -jkzzcz}
S 1 J —— + — e .
21 2R _ 2R_ (22)

For low frequencies, the approximation of Eq. (17) is valid and we get:

1= 22« o,
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Thus Eq. (22) reduces to:

A 2.
oBybe o -jki { 1 -3 X, (8R) “kla/Ry

a1 7R T J
o o .
(23)
2
. A
_ ik { . w(2L ) . w[ (4R)“2,/R c] }
1 TR J TR .
o o
It is seen that the effect of the changes in characteristic impedance.
again shows up as an apparently increased inductance, although generally
much smaller than in the reflection case.
‘The additional measured inductance L, has the value
oy, w @ -bp
L, - 2_ 09 2 (24)-
t R ¢ 2™n(b/a) 2
: o b
which becomes equal to the step inductance.ZLS for
4, ™ 1.07 b 4n(b/a) ‘ (25)-
which generally is much longer than &2 in Eq. (21). The error can in
principle be made as small as desired by choosing a sufficiently thin
. wire as Lt =+ 0 for a * 0, but the error does not decrease very rapidly.
due to the logarithm function and there are limits to how thin a wire
can be used.
For the ISABELLE pickup box previously considered and assuming:-
b/a = 10°, R_ = 60 {n b/a = 415 Q | : (26)

the correction term is about equal to the step inductance; a substantial

improvement over the factor 30 in the reflection case.
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The assumption XL << AR used for the approximation, Eq. (23),
can be shown to be equivalent to:

A = 389 >> 3.36 (d - b).

which always can be considered to be fulfilled for frequencies for

which our model is wvalid.

The four terms in Eq. (22) can be explained as follows. The
first term is the unperturbed transmission, the second is the transmission
loss from the two step inductances, the third is the transmission loss -
from two changes in impedance, which is partially compensated by.the
fourth term, which represents the twice reflected signal and which,
therefore, is shiftéd by 2k£2'in phase. As either two transmissions
or two reflections are involved in the undesired terms, the fela;ive
change in impedance enters squared, and the undesired terms become
second order terms, which can be made small by choosing a high characteristic

impedance or.a thin center wire.

It is worth pointing out that since both desired and undesired terms
are proportional to the step height squared, the relative error is

independent of the step height.

The importance of choosing the proper wire diameter was already
pointed out by Sandé and Reess, although their argumentation was different.
Requiring that the transmitted pulse is only slightly modified relative‘.
to the incident pulse is the same as requiring that the transmission-
coefficient does not deviate too much from unity within.the frequency
spectrum of the pulse; a requirement that was shown necessary for
the validity of Eq. (12): lZwl << Ro' In the present case XL << Ro
is a necessary condition for a small error, but not always a sufficient
condition.. The necessary condition.can-always be satisfied at low .

frequencies. The requirement

L9/

&2 << b 4n b/a or a << be (27)
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is often a strlcter limitation than XL < R for the choice of wire
size. There are limitations to how thin the wire may be chosen.
Firét, there are limits to how thin a wire can be safely handled.
Second, the losses may limit the wire dimension although a reference
line could eliminate this to a large extent. But the most serious
limitation is probably loss of measurement accuracy. As the undesired
“terns are reduced relative to the desired term by choosing a higher
Roland thus reducing the systematic error, the desired term is
‘simulhaneously reduced compared to unity [Egs. (225 and (23)] and’

the small change in transmission may drown in inaccuracies and random

errors in the measuring setup.

VAThe low frequency requirement, Eq. (17), is not necessary when
measuring transmissions. The perturbing terms, Eq. (22),'will not appear
purely inductive though, but if Eq. (27) is Satlsfled the perturblng

terms will remain small.

For higher frequencies (above waveguide cutoff) the model used
is no longer valid, and a field calculation and comparison between
the conductor/pipe and beam pipe systems will be required. Not-
withstanding, the transmission method is expected to be superior to

the reflection method as indicated by the results at low frequencies.

Summarizing the above discussion, we suggest the transmission
setup shown in Fig. 6 to measure the longitudinal coupling impedance

of wave guide discontinuities and typical accelerator components,

REFERENCE LINE MATCHING SECTIONS

508

HOw -
9 AV
Z(Jw)"'ZRo%r—e—{

MEASURING LINE

Fig. 6
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Tapered matching sections are required to change the impedance from
50 Q, for which standard high frequency components are available, to
the much higher Ro required in the measuring line. Imperfections

in the matching sections are cancelled out by identical matching
sections in the reference line., The two transmitted signals are then
subtracted in a hybrid junction, and the difference relative to the
reference givee the impedance relative. Lo 2Ro' It is important that
the two branches of the generator are well isolated, as the reflected
signal often is much larger than the change in tranémission,‘anq the

reflected signal must not perturb the reference signal.
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APPENDIX A

The Scattering Matrix - Definitions

The scattering matrix is a convenient way to descrlbe a two-port
in a transmlss1on line env1ronment.

R} I, I,
Vg v @ ‘[S} -
-
b bz )
Ref.=Rgj - 7 ° " 'Refi=Rgp .
SF%gv<7

~ Incident (a's) and reflected (b's) wave parameters are defiﬁed“ﬁy?ﬁb'

. , v
= 1 (-
—%<7RO—1+JR0111) bl.l-%(ﬁo—l /R 1) ,,
o Coe S . (AD)
' V . - . V .-
=3 (=2 4+ R I b.o=% (=% - VR I.)
42 (/RO2 02 2 ) 2 MRy =102 72

1
N
N

where R01 and R02 are arbitféfy;i§051tiVe, real reference impedances.

The scatteriﬁg parameters S.j are deflned by

orEmes W

13. F.F. Kuo, Network Analysis and Synthe31s (John Wlley & Sons,
New York, 1962).
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The input reflection coefficient S is thus given by:

11
Y AR
11 a _ Z. +R -
1 a2—0 1 01 R2—R02

where z1 is the input impedance with the output port terminated in the

reference impedance.

The forward transmission coefficient S

g1 1s glyen ?y:

2| gt
21 a o \) R - ‘B =
1 az—Q . glk‘ 02 R1 ROl’RZ R02 .
where R1 = R01 gives a simple relatlonshlp between Vgl
R2 = Ro2 1mp11§s §2_= 0.
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.and a, and

By reversing input and output ports we get the output reflection

coefficient:
s o2 =ﬂ%|
22 'a _ Z,+R -
2 al—O 2 02 R1 Ro1

and the reverse transmission coefficient:

o

s =L =ﬁ\/Rﬂ| §
12 Ty R _ _
2 "a)=0 g2 " 01 Ry=Ry ,R,=Ry,

If the two-port is-a lossless transmission line it is convenient to
choose the reference impedances equal to the characteristicAimpedance:
RO1 = RO2 = ZO' The wave parameters can then be'related to incident

and reflected voltages. The scattering matrix is then:

- jkt
{S]‘= { :-jkc : : .}

where jk is the propagation constant and 4 the line length.

(A3)

(A4)

(A5)

(46)

(A7)
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APPENDIX B

The S-matrix for Cascaded Two-Ports

As the S-matrix gives reflected waves in terms of incident waves,
the S~matrix for cascaded two-ports cannot be obtained by simple

matrix multiplication.

*—— *— SR —e
- _ - > - -
a? {Sa} a aB ,{Sﬁ} a,B
[—— " - -
- > = > .
b2 b2 bf bR
Fig. 8 ' By
% | o
r by 511 12
- W
2 21 . . U o

{ }{ 12}{ } - | ®2)

If the reference impedances at the junction point are chosen identical,

o B

R02 = ROl’ we have
B« o B
ay = b2 and a, = b1

and these fdur‘parameters can be eliminated in (Bl) and (B2):

a B o . a B
o - (s 512511521 ) & 512512 8
b, = RSt ) g —EE——
1 v 11 1 - SB SCY 1 1 - SB g% 2
11522 11522
B oo B .o B
b8 = 2%l o B, 521520512 )
2 B 21t \ 5" B /22
1-5°s 1-5"s

o 11°22 11722
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from which we get the S-parameters of the cascaded two=-ports:

a B «
@B _ oo, 512511521
11 11 1 - SB g
11722
o _"12%12
12 B .o
1 -5118, ) ,
B e ? TR
¥ _ 2121 ' '
21 B .o
T L =515y,
: B .o _B
(@B B Snfa0%1p
22~ %20 T T B Lo
11522

Distribution: External
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